1/* 2 * User-mode machine state access 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All rights reserved. 5 * 6 * This copyrighted material is made available to anyone wishing to use, 7 * modify, copy, or redistribute it subject to the terms and conditions 8 * of the GNU General Public License v.2. 9 * 10 * Red Hat Author: Roland McGrath. 11 */ 12 13#ifndef _LINUX_REGSET_H 14#define _LINUX_REGSET_H 1 15 16#include <linux/compiler.h> 17#include <linux/types.h> 18#include <linux/bug.h> 19#include <linux/uaccess.h> 20struct task_struct; 21struct user_regset; 22 23 24/** 25 * user_regset_active_fn - type of @active function in &struct user_regset 26 * @target: thread being examined 27 * @regset: regset being examined 28 * 29 * Return -%ENODEV if not available on the hardware found. 30 * Return %0 if no interesting state in this thread. 31 * Return >%0 number of @size units of interesting state. 32 * Any get call fetching state beyond that number will 33 * see the default initialization state for this data, 34 * so a caller that knows what the default state is need 35 * not copy it all out. 36 * This call is optional; the pointer is %NULL if there 37 * is no inexpensive check to yield a value < @n. 38 */ 39typedef int user_regset_active_fn(struct task_struct *target, 40 const struct user_regset *regset); 41 42/** 43 * user_regset_get_fn - type of @get function in &struct user_regset 44 * @target: thread being examined 45 * @regset: regset being examined 46 * @pos: offset into the regset data to access, in bytes 47 * @count: amount of data to copy, in bytes 48 * @kbuf: if not %NULL, a kernel-space pointer to copy into 49 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy into 50 * 51 * Fetch register values. Return %0 on success; -%EIO or -%ENODEV 52 * are usual failure returns. The @pos and @count values are in 53 * bytes, but must be properly aligned. If @kbuf is non-null, that 54 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 55 * ubuf gives a userland pointer to access directly, and an -%EFAULT 56 * return value is possible. 57 */ 58typedef int user_regset_get_fn(struct task_struct *target, 59 const struct user_regset *regset, 60 unsigned int pos, unsigned int count, 61 void *kbuf, void __user *ubuf); 62 63/** 64 * user_regset_set_fn - type of @set function in &struct user_regset 65 * @target: thread being examined 66 * @regset: regset being examined 67 * @pos: offset into the regset data to access, in bytes 68 * @count: amount of data to copy, in bytes 69 * @kbuf: if not %NULL, a kernel-space pointer to copy from 70 * @ubuf: if @kbuf is %NULL, a user-space pointer to copy from 71 * 72 * Store register values. Return %0 on success; -%EIO or -%ENODEV 73 * are usual failure returns. The @pos and @count values are in 74 * bytes, but must be properly aligned. If @kbuf is non-null, that 75 * buffer is used and @ubuf is ignored. If @kbuf is %NULL, then 76 * ubuf gives a userland pointer to access directly, and an -%EFAULT 77 * return value is possible. 78 */ 79typedef int user_regset_set_fn(struct task_struct *target, 80 const struct user_regset *regset, 81 unsigned int pos, unsigned int count, 82 const void *kbuf, const void __user *ubuf); 83 84/** 85 * user_regset_writeback_fn - type of @writeback function in &struct user_regset 86 * @target: thread being examined 87 * @regset: regset being examined 88 * @immediate: zero if writeback at completion of next context switch is OK 89 * 90 * This call is optional; usually the pointer is %NULL. When 91 * provided, there is some user memory associated with this regset's 92 * hardware, such as memory backing cached register data on register 93 * window machines; the regset's data controls what user memory is 94 * used (e.g. via the stack pointer value). 95 * 96 * Write register data back to user memory. If the @immediate flag 97 * is nonzero, it must be written to the user memory so uaccess or 98 * access_process_vm() can see it when this call returns; if zero, 99 * then it must be written back by the time the task completes a 100 * context switch (as synchronized with wait_task_inactive()). 101 * Return %0 on success or if there was nothing to do, -%EFAULT for 102 * a memory problem (bad stack pointer or whatever), or -%EIO for a 103 * hardware problem. 104 */ 105typedef int user_regset_writeback_fn(struct task_struct *target, 106 const struct user_regset *regset, 107 int immediate); 108 109/** 110 * struct user_regset - accessible thread CPU state 111 * @n: Number of slots (registers). 112 * @size: Size in bytes of a slot (register). 113 * @align: Required alignment, in bytes. 114 * @bias: Bias from natural indexing. 115 * @core_note_type: ELF note @n_type value used in core dumps. 116 * @get: Function to fetch values. 117 * @set: Function to store values. 118 * @active: Function to report if regset is active, or %NULL. 119 * @writeback: Function to write data back to user memory, or %NULL. 120 * 121 * This data structure describes a machine resource we call a register set. 122 * This is part of the state of an individual thread, not necessarily 123 * actual CPU registers per se. A register set consists of a number of 124 * similar slots, given by @n. Each slot is @size bytes, and aligned to 125 * @align bytes (which is at least @size). 126 * 127 * These functions must be called only on the current thread or on a 128 * thread that is in %TASK_STOPPED or %TASK_TRACED state, that we are 129 * guaranteed will not be woken up and return to user mode, and that we 130 * have called wait_task_inactive() on. (The target thread always might 131 * wake up for SIGKILL while these functions are working, in which case 132 * that thread's user_regset state might be scrambled.) 133 * 134 * The @pos argument must be aligned according to @align; the @count 135 * argument must be a multiple of @size. These functions are not 136 * responsible for checking for invalid arguments. 137 * 138 * When there is a natural value to use as an index, @bias gives the 139 * difference between the natural index and the slot index for the 140 * register set. For example, x86 GDT segment descriptors form a regset; 141 * the segment selector produces a natural index, but only a subset of 142 * that index space is available as a regset (the TLS slots); subtracting 143 * @bias from a segment selector index value computes the regset slot. 144 * 145 * If nonzero, @core_note_type gives the n_type field (NT_* value) 146 * of the core file note in which this regset's data appears. 147 * NT_PRSTATUS is a special case in that the regset data starts at 148 * offsetof(struct elf_prstatus, pr_reg) into the note data; that is 149 * part of the per-machine ELF formats userland knows about. In 150 * other cases, the core file note contains exactly the whole regset 151 * (@n * @size) and nothing else. The core file note is normally 152 * omitted when there is an @active function and it returns zero. 153 */ 154struct user_regset { 155 user_regset_get_fn *get; 156 user_regset_set_fn *set; 157 user_regset_active_fn *active; 158 user_regset_writeback_fn *writeback; 159 unsigned int n; 160 unsigned int size; 161 unsigned int align; 162 unsigned int bias; 163 unsigned int core_note_type; 164}; 165 166/** 167 * struct user_regset_view - available regsets 168 * @name: Identifier, e.g. UTS_MACHINE string. 169 * @regsets: Array of @n regsets available in this view. 170 * @n: Number of elements in @regsets. 171 * @e_machine: ELF header @e_machine %EM_* value written in core dumps. 172 * @e_flags: ELF header @e_flags value written in core dumps. 173 * @ei_osabi: ELF header @e_ident[%EI_OSABI] value written in core dumps. 174 * 175 * A regset view is a collection of regsets (&struct user_regset, 176 * above). This describes all the state of a thread that can be seen 177 * from a given architecture/ABI environment. More than one view might 178 * refer to the same &struct user_regset, or more than one regset 179 * might refer to the same machine-specific state in the thread. For 180 * example, a 32-bit thread's state could be examined from the 32-bit 181 * view or from the 64-bit view. Either method reaches the same thread 182 * register state, doing appropriate widening or truncation. 183 */ 184struct user_regset_view { 185 const char *name; 186 const struct user_regset *regsets; 187 unsigned int n; 188 u32 e_flags; 189 u16 e_machine; 190 u8 ei_osabi; 191}; 192 193/* 194 * This is documented here rather than at the definition sites because its 195 * implementation is machine-dependent but its interface is universal. 196 */ 197/** 198 * task_user_regset_view - Return the process's native regset view. 199 * @tsk: a thread of the process in question 200 * 201 * Return the &struct user_regset_view that is native for the given process. 202 * For example, what it would access when it called ptrace(). 203 * Throughout the life of the process, this only changes at exec. 204 */ 205const struct user_regset_view *task_user_regset_view(struct task_struct *tsk); 206 207 208/* 209 * These are helpers for writing regset get/set functions in arch code. 210 * Because @start_pos and @end_pos are always compile-time constants, 211 * these are inlined into very little code though they look large. 212 * 213 * Use one or more calls sequentially for each chunk of regset data stored 214 * contiguously in memory. Call with constants for @start_pos and @end_pos, 215 * giving the range of byte positions in the regset that data corresponds 216 * to; @end_pos can be -1 if this chunk is at the end of the regset layout. 217 * Each call updates the arguments to point past its chunk. 218 */ 219 220static inline int user_regset_copyout(unsigned int *pos, unsigned int *count, 221 void **kbuf, 222 void __user **ubuf, const void *data, 223 const int start_pos, const int end_pos) 224{ 225 if (*count == 0) 226 return 0; 227 BUG_ON(*pos < start_pos); 228 if (end_pos < 0 || *pos < end_pos) { 229 unsigned int copy = (end_pos < 0 ? *count 230 : min(*count, end_pos - *pos)); 231 data += *pos - start_pos; 232 if (*kbuf) { 233 memcpy(*kbuf, data, copy); 234 *kbuf += copy; 235 } else if (__copy_to_user(*ubuf, data, copy)) 236 return -EFAULT; 237 else 238 *ubuf += copy; 239 *pos += copy; 240 *count -= copy; 241 } 242 return 0; 243} 244 245static inline int user_regset_copyin(unsigned int *pos, unsigned int *count, 246 const void **kbuf, 247 const void __user **ubuf, void *data, 248 const int start_pos, const int end_pos) 249{ 250 if (*count == 0) 251 return 0; 252 BUG_ON(*pos < start_pos); 253 if (end_pos < 0 || *pos < end_pos) { 254 unsigned int copy = (end_pos < 0 ? *count 255 : min(*count, end_pos - *pos)); 256 data += *pos - start_pos; 257 if (*kbuf) { 258 memcpy(data, *kbuf, copy); 259 *kbuf += copy; 260 } else if (__copy_from_user(data, *ubuf, copy)) 261 return -EFAULT; 262 else 263 *ubuf += copy; 264 *pos += copy; 265 *count -= copy; 266 } 267 return 0; 268} 269 270/* 271 * These two parallel the two above, but for portions of a regset layout 272 * that always read as all-zero or for which writes are ignored. 273 */ 274static inline int user_regset_copyout_zero(unsigned int *pos, 275 unsigned int *count, 276 void **kbuf, void __user **ubuf, 277 const int start_pos, 278 const int end_pos) 279{ 280 if (*count == 0) 281 return 0; 282 BUG_ON(*pos < start_pos); 283 if (end_pos < 0 || *pos < end_pos) { 284 unsigned int copy = (end_pos < 0 ? *count 285 : min(*count, end_pos - *pos)); 286 if (*kbuf) { 287 memset(*kbuf, 0, copy); 288 *kbuf += copy; 289 } else if (__clear_user(*ubuf, copy)) 290 return -EFAULT; 291 else 292 *ubuf += copy; 293 *pos += copy; 294 *count -= copy; 295 } 296 return 0; 297} 298 299static inline int user_regset_copyin_ignore(unsigned int *pos, 300 unsigned int *count, 301 const void **kbuf, 302 const void __user **ubuf, 303 const int start_pos, 304 const int end_pos) 305{ 306 if (*count == 0) 307 return 0; 308 BUG_ON(*pos < start_pos); 309 if (end_pos < 0 || *pos < end_pos) { 310 unsigned int copy = (end_pos < 0 ? *count 311 : min(*count, end_pos - *pos)); 312 if (*kbuf) 313 *kbuf += copy; 314 else 315 *ubuf += copy; 316 *pos += copy; 317 *count -= copy; 318 } 319 return 0; 320} 321 322/** 323 * copy_regset_to_user - fetch a thread's user_regset data into user memory 324 * @target: thread to be examined 325 * @view: &struct user_regset_view describing user thread machine state 326 * @setno: index in @view->regsets 327 * @offset: offset into the regset data, in bytes 328 * @size: amount of data to copy, in bytes 329 * @data: user-mode pointer to copy into 330 */ 331static inline int copy_regset_to_user(struct task_struct *target, 332 const struct user_regset_view *view, 333 unsigned int setno, 334 unsigned int offset, unsigned int size, 335 void __user *data) 336{ 337 const struct user_regset *regset = &view->regsets[setno]; 338 339 if (!regset->get) 340 return -EOPNOTSUPP; 341 342 if (!access_ok(VERIFY_WRITE, data, size)) 343 return -EFAULT; 344 345 return regset->get(target, regset, offset, size, NULL, data); 346} 347 348/** 349 * copy_regset_from_user - store into thread's user_regset data from user memory 350 * @target: thread to be examined 351 * @view: &struct user_regset_view describing user thread machine state 352 * @setno: index in @view->regsets 353 * @offset: offset into the regset data, in bytes 354 * @size: amount of data to copy, in bytes 355 * @data: user-mode pointer to copy from 356 */ 357static inline int copy_regset_from_user(struct task_struct *target, 358 const struct user_regset_view *view, 359 unsigned int setno, 360 unsigned int offset, unsigned int size, 361 const void __user *data) 362{ 363 const struct user_regset *regset = &view->regsets[setno]; 364 365 if (!regset->set) 366 return -EOPNOTSUPP; 367 368 if (!access_ok(VERIFY_READ, data, size)) 369 return -EFAULT; 370 371 return regset->set(target, regset, offset, size, NULL, data); 372} 373 374 375#endif /* <linux/regset.h> */ 376