linux/include/net/sock.h
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Definitions for the AF_INET socket handler.
   7 *
   8 * Version:     @(#)sock.h      1.0.4   05/13/93
   9 *
  10 * Authors:     Ross Biro
  11 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche <flla@stud.uni-sb.de>
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Volatiles in skbuff pointers. See
  17 *                                      skbuff comments. May be overdone,
  18 *                                      better to prove they can be removed
  19 *                                      than the reverse.
  20 *              Alan Cox        :       Added a zapped field for tcp to note
  21 *                                      a socket is reset and must stay shut up
  22 *              Alan Cox        :       New fields for options
  23 *      Pauline Middelink       :       identd support
  24 *              Alan Cox        :       Eliminate low level recv/recvfrom
  25 *              David S. Miller :       New socket lookup architecture.
  26 *              Steve Whitehouse:       Default routines for sock_ops
  27 *              Arnaldo C. Melo :       removed net_pinfo, tp_pinfo and made
  28 *                                      protinfo be just a void pointer, as the
  29 *                                      protocol specific parts were moved to
  30 *                                      respective headers and ipv4/v6, etc now
  31 *                                      use private slabcaches for its socks
  32 *              Pedro Hortas    :       New flags field for socket options
  33 *
  34 *
  35 *              This program is free software; you can redistribute it and/or
  36 *              modify it under the terms of the GNU General Public License
  37 *              as published by the Free Software Foundation; either version
  38 *              2 of the License, or (at your option) any later version.
  39 */
  40#ifndef _SOCK_H
  41#define _SOCK_H
  42
  43#include <linux/hardirq.h>
  44#include <linux/kernel.h>
  45#include <linux/list.h>
  46#include <linux/list_nulls.h>
  47#include <linux/timer.h>
  48#include <linux/cache.h>
  49#include <linux/bitops.h>
  50#include <linux/lockdep.h>
  51#include <linux/netdevice.h>
  52#include <linux/skbuff.h>       /* struct sk_buff */
  53#include <linux/mm.h>
  54#include <linux/security.h>
  55#include <linux/slab.h>
  56#include <linux/uaccess.h>
  57#ifdef __GENKSYMS__
  58#include <linux/res_counter.h>
  59#else
  60#include <linux/page_counter.h>
  61#endif
  62#include <linux/memcontrol.h>
  63#include <linux/static_key.h>
  64#include <linux/aio.h>
  65#include <linux/sched.h>
  66
  67#include <linux/filter.h>
  68#include <linux/rculist_nulls.h>
  69#include <linux/poll.h>
  70
  71#include <linux/atomic.h>
  72#include <net/dst.h>
  73#include <net/checksum.h>
  74#include <linux/net_tstamp.h>
  75
  76#include <linux/rh_kabi.h>
  77#include <net/tcp_states.h>
  78
  79struct cgroup;
  80struct cgroup_subsys;
  81#ifdef CONFIG_NET
  82int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
  83void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
  84#else
  85static inline
  86int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  87{
  88        return 0;
  89}
  90static inline
  91void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  92{
  93}
  94#endif
  95/*
  96 * This structure really needs to be cleaned up.
  97 * Most of it is for TCP, and not used by any of
  98 * the other protocols.
  99 */
 100
 101/* Define this to get the SOCK_DBG debugging facility. */
 102#define SOCK_DEBUGGING
 103#ifdef SOCK_DEBUGGING
 104#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
 105                                        printk(KERN_DEBUG msg); } while (0)
 106#else
 107/* Validate arguments and do nothing */
 108static inline __printf(2, 3)
 109void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
 110{
 111}
 112#endif
 113
 114/* This is the per-socket lock.  The spinlock provides a synchronization
 115 * between user contexts and software interrupt processing, whereas the
 116 * mini-semaphore synchronizes multiple users amongst themselves.
 117 */
 118typedef struct {
 119        spinlock_t              slock;
 120        int                     owned;
 121        wait_queue_head_t       wq;
 122        /*
 123         * We express the mutex-alike socket_lock semantics
 124         * to the lock validator by explicitly managing
 125         * the slock as a lock variant (in addition to
 126         * the slock itself):
 127         */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129        struct lockdep_map dep_map;
 130#endif
 131} socket_lock_t;
 132
 133struct sock;
 134struct proto;
 135struct net;
 136
 137typedef __u32 __bitwise __portpair;
 138typedef __u64 __bitwise __addrpair;
 139
 140/**
 141 *      struct sock_common - minimal network layer representation of sockets
 142 *      @skc_daddr: Foreign IPv4 addr
 143 *      @skc_rcv_saddr: Bound local IPv4 addr
 144 *      @skc_hash: hash value used with various protocol lookup tables
 145 *      @skc_u16hashes: two u16 hash values used by UDP lookup tables
 146 *      @skc_dport: placeholder for inet_dport/tw_dport
 147 *      @skc_num: placeholder for inet_num/tw_num
 148 *      @skc_family: network address family
 149 *      @skc_state: Connection state
 150 *      @skc_reuse: %SO_REUSEADDR setting
 151 *      @skc_reuseport: %SO_REUSEPORT setting
 152 *      @skc_bound_dev_if: bound device index if != 0
 153 *      @skc_bind_node: bind hash linkage for various protocol lookup tables
 154 *      @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
 155 *      @skc_prot: protocol handlers inside a network family
 156 *      @skc_net: reference to the network namespace of this socket
 157 *      @skc_node: main hash linkage for various protocol lookup tables
 158 *      @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
 159 *      @skc_tx_queue_mapping: tx queue number for this connection
 160 *      @skc_refcnt: reference count
 161 *
 162 *      This is the minimal network layer representation of sockets, the header
 163 *      for struct sock and struct inet_timewait_sock.
 164 */
 165struct sock_common {
 166        /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
 167         * address on 64bit arches : cf INET_MATCH()
 168         */
 169        union {
 170                __addrpair      skc_addrpair;
 171                struct {
 172                        __be32  skc_daddr;
 173                        __be32  skc_rcv_saddr;
 174                };
 175        };
 176        union  {
 177                unsigned int    skc_hash;
 178                __u16           skc_u16hashes[2];
 179        };
 180        /* skc_dport && skc_num must be grouped as well */
 181        union {
 182                __portpair      skc_portpair;
 183                struct {
 184                        __be16  skc_dport;
 185                        __u16   skc_num;
 186                };
 187        };
 188
 189        unsigned short          skc_family;
 190        volatile unsigned char  skc_state;
 191        unsigned char           skc_reuse:4;
 192        unsigned char           skc_reuseport:4;
 193        int                     skc_bound_dev_if;
 194        union {
 195                struct hlist_node       skc_bind_node;
 196                RH_KABI_REPLACE(struct hlist_nulls_node skc_portaddr_node, struct hlist_node skc_portaddr_node)
 197        };
 198        struct proto            *skc_prot;
 199        possible_net_t          skc_net;
 200
 201#if IS_ENABLED(CONFIG_IPV6)
 202        struct in6_addr         skc_v6_daddr;
 203        struct in6_addr         skc_v6_rcv_saddr;
 204#endif
 205
 206        /*
 207         * fields between dontcopy_begin/dontcopy_end
 208         * are not copied in sock_copy()
 209         */
 210        /* private: */
 211        int                     skc_dontcopy_begin[0];
 212        /* public: */
 213        union {
 214                struct hlist_node       skc_node;
 215                struct hlist_nulls_node skc_nulls_node;
 216        };
 217        int                     skc_tx_queue_mapping;
 218        atomic_t                skc_refcnt;
 219        /* private: */
 220        int                     skc_dontcopy_end[0];
 221        /* public: */
 222};
 223
 224struct cg_proto;
 225/**
 226  *     struct sock - network layer representation of sockets
 227  *     @__sk_common: shared layout with inet_timewait_sock
 228  *     @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
 229  *     @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
 230  *     @sk_lock:       synchronizer
 231  *     @sk_rcvbuf: size of receive buffer in bytes
 232  *     @sk_wq: sock wait queue and async head
 233  *     @sk_rx_dst: receive input route used by early demux
 234  *     @sk_dst_cache: destination cache
 235  *     @sk_dst_pending_confirm: need to confirm neighbour
 236  *     @sk_policy: flow policy
 237  *     @sk_receive_queue: incoming packets
 238  *     @sk_wmem_alloc: transmit queue bytes committed
 239  *     @sk_write_queue: Packet sending queue
 240  *     @sk_omem_alloc: "o" is "option" or "other"
 241  *     @sk_wmem_queued: persistent queue size
 242  *     @sk_forward_alloc: space allocated forward
 243  *     @sk_napi_id: id of the last napi context to receive data for sk
 244  *     @sk_ll_usec: usecs to busypoll when there is no data
 245  *     @sk_allocation: allocation mode
 246  *     @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
 247  *     @sk_sndbuf: size of send buffer in bytes
 248  *     @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
 249  *                %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
 250  *     @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
 251  *     @sk_no_check_rx: allow zero checksum in RX packets
 252  *     @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
 253  *     @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
 254  *     @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
 255  *     @sk_gso_max_size: Maximum GSO segment size to build
 256  *     @sk_gso_max_segs: Maximum number of GSO segments
 257  *     @sk_lingertime: %SO_LINGER l_linger setting
 258  *     @sk_backlog: always used with the per-socket spinlock held
 259  *     @sk_callback_lock: used with the callbacks in the end of this struct
 260  *     @sk_error_queue: rarely used
 261  *     @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
 262  *                       IPV6_ADDRFORM for instance)
 263  *     @sk_err: last error
 264  *     @sk_err_soft: errors that don't cause failure but are the cause of a
 265  *                   persistent failure not just 'timed out'
 266  *     @sk_drops: raw/udp drops counter
 267  *     @sk_ack_backlog: current listen backlog
 268  *     @sk_max_ack_backlog: listen backlog set in listen()
 269  *     @sk_priority: %SO_PRIORITY setting
 270  *     @sk_cgrp_prioidx: socket group's priority map index
 271  *     @sk_type: socket type (%SOCK_STREAM, etc)
 272  *     @sk_protocol: which protocol this socket belongs in this network family
 273  *     @sk_peer_pid: &struct pid for this socket's peer
 274  *     @sk_peer_cred: %SO_PEERCRED setting
 275  *     @sk_rcvlowat: %SO_RCVLOWAT setting
 276  *     @sk_rcvtimeo: %SO_RCVTIMEO setting
 277  *     @sk_sndtimeo: %SO_SNDTIMEO setting
 278  *     @sk_rxhash: flow hash received from netif layer
 279  *     @sk_txhash: computed flow hash for use on transmit
 280  *     @sk_filter: socket filtering instructions
 281  *     @sk_protinfo: private area, net family specific, when not using slab
 282  *     @sk_timer: sock cleanup timer
 283  *     @sk_stamp: time stamp of last packet received
 284  *     @sk_tsflags: SO_TIMESTAMPING socket options
 285  *     @sk_socket: Identd and reporting IO signals
 286  *     @sk_user_data: RPC layer private data
 287  *     @sk_frag: cached page frag
 288  *     @sk_peek_off: current peek_offset value
 289  *     @sk_send_head: front of stuff to transmit
 290  *     @sk_security: used by security modules
 291  *     @sk_mark: generic packet mark
 292  *     @sk_classid: this socket's cgroup classid
 293  *     @sk_cgrp: this socket's cgroup-specific proto data
 294  *     @sk_write_pending: a write to stream socket waits to start
 295  *     @sk_state_change: callback to indicate change in the state of the sock
 296  *     @sk_data_ready: callback to indicate there is data to be processed
 297  *     @sk_write_space: callback to indicate there is bf sending space available
 298  *     @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
 299  *     @sk_backlog_rcv: callback to process the backlog
 300  *     @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
 301  *     @sk_reuseport_cb: reuseport group container
 302 */
 303struct sock {
 304        /*
 305         * Now struct inet_timewait_sock also uses sock_common, so please just
 306         * don't add nothing before this first member (__sk_common) --acme
 307         */
 308        struct sock_common      __sk_common;
 309#define sk_node                 __sk_common.skc_node
 310#define sk_nulls_node           __sk_common.skc_nulls_node
 311#define sk_refcnt               __sk_common.skc_refcnt
 312#define sk_tx_queue_mapping     __sk_common.skc_tx_queue_mapping
 313
 314#define sk_dontcopy_begin       __sk_common.skc_dontcopy_begin
 315#define sk_dontcopy_end         __sk_common.skc_dontcopy_end
 316#define sk_hash                 __sk_common.skc_hash
 317#define sk_portpair             __sk_common.skc_portpair
 318#define sk_num                  __sk_common.skc_num
 319#define sk_dport                __sk_common.skc_dport
 320#define sk_addrpair             __sk_common.skc_addrpair
 321#define sk_daddr                __sk_common.skc_daddr
 322#define sk_rcv_saddr            __sk_common.skc_rcv_saddr
 323#define sk_family               __sk_common.skc_family
 324#define sk_state                __sk_common.skc_state
 325#define sk_reuse                __sk_common.skc_reuse
 326#define sk_reuseport            __sk_common.skc_reuseport
 327#define sk_bound_dev_if         __sk_common.skc_bound_dev_if
 328#define sk_bind_node            __sk_common.skc_bind_node
 329#define sk_prot                 __sk_common.skc_prot
 330#define sk_net                  __sk_common.skc_net
 331#define sk_v6_daddr             __sk_common.skc_v6_daddr
 332#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
 333
 334        socket_lock_t           sk_lock;
 335        struct sk_buff_head     sk_receive_queue;
 336        /*
 337         * The backlog queue is special, it is always used with
 338         * the per-socket spinlock held and requires low latency
 339         * access. Therefore we special case it's implementation.
 340         * Note : rmem_alloc is in this structure to fill a hole
 341         * on 64bit arches, not because its logically part of
 342         * backlog.
 343         */
 344        struct {
 345                atomic_t        rmem_alloc;
 346                int             len;
 347                struct sk_buff  *head;
 348                struct sk_buff  *tail;
 349        } sk_backlog;
 350#define sk_rmem_alloc sk_backlog.rmem_alloc
 351        int                     sk_forward_alloc;
 352#ifdef CONFIG_RPS
 353        __u32                   sk_rxhash;
 354#endif
 355#ifdef CONFIG_NET_RX_BUSY_POLL
 356        unsigned int            sk_napi_id;
 357        unsigned int            sk_ll_usec;
 358#endif
 359        atomic_t                sk_drops;
 360        int                     sk_rcvbuf;
 361
 362        struct sk_filter __rcu  *sk_filter;
 363        struct socket_wq __rcu  *sk_wq;
 364
 365#ifdef CONFIG_NET_DMA_RH_KABI
 366        RH_KABI_DEPRECATE(struct sk_buff_head,  sk_async_wait_queue)
 367#endif
 368
 369#ifdef CONFIG_XFRM
 370        struct xfrm_policy      *sk_policy[2];
 371#endif
 372        unsigned long           sk_flags;
 373        struct dst_entry        *sk_rx_dst;
 374        struct dst_entry __rcu  *sk_dst_cache;
 375        RH_KABI_DEPRECATE(spinlock_t,   sk_dst_lock)
 376        atomic_t                sk_wmem_alloc;
 377        atomic_t                sk_omem_alloc;
 378        int                     sk_sndbuf;
 379        struct sk_buff_head     sk_write_queue;
 380        kmemcheck_bitfield_begin(flags);
 381        unsigned int            sk_shutdown  : 2,
 382#ifdef __GENKSYMS__
 383                                sk_no_check : 2,
 384#else
 385                                sk_no_check_tx : 1,
 386                                sk_no_check_rx : 1,
 387#endif
 388                                sk_userlocks : 4,
 389                                sk_protocol  : 8,
 390#define SK_PROTOCOL_MAX U8_MAX
 391                                sk_type      : 16;
 392        kmemcheck_bitfield_end(flags);
 393        int                     sk_wmem_queued;
 394        gfp_t                   sk_allocation;
 395        u32                     sk_pacing_rate; /* bytes per second */
 396        netdev_features_t       sk_route_caps;
 397        netdev_features_t       sk_route_nocaps;
 398        int                     sk_gso_type;
 399        unsigned int            sk_gso_max_size;
 400        u16                     sk_gso_max_segs;
 401        int                     sk_rcvlowat;
 402        unsigned long           sk_lingertime;
 403        struct sk_buff_head     sk_error_queue;
 404        struct proto            *sk_prot_creator;
 405        rwlock_t                sk_callback_lock;
 406        int                     sk_err,
 407                                sk_err_soft;
 408        unsigned short          sk_ack_backlog;
 409        unsigned short          sk_max_ack_backlog;
 410        __u32                   sk_priority;
 411#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
 412        __u32                   sk_cgrp_prioidx;
 413#endif
 414        struct pid              *sk_peer_pid;
 415        const struct cred       *sk_peer_cred;
 416        long                    sk_rcvtimeo;
 417        long                    sk_sndtimeo;
 418        void                    *sk_protinfo;
 419        struct timer_list       sk_timer;
 420        ktime_t                 sk_stamp;
 421        struct socket           *sk_socket;
 422        void                    *sk_user_data;
 423        struct page_frag        sk_frag;
 424        struct sk_buff          *sk_send_head;
 425        __s32                   sk_peek_off;
 426        int                     sk_write_pending;
 427#ifdef CONFIG_SECURITY
 428        void                    *sk_security;
 429#endif
 430        __u32                   sk_mark;
 431        u32                     sk_classid;
 432        struct cg_proto         *sk_cgrp;
 433        void                    (*sk_state_change)(struct sock *sk);
 434        void                    (*sk_data_ready)(struct sock *sk, int bytes);
 435        void                    (*sk_write_space)(struct sock *sk);
 436        void                    (*sk_error_report)(struct sock *sk);
 437        int                     (*sk_backlog_rcv)(struct sock *sk,
 438                                                  struct sk_buff *skb);
 439        void                    (*sk_destruct)(struct sock *sk);
 440
 441        /* RHEL SPECIFIC
 442         *
 443         * The following padding has been inserted before ABI freeze to
 444         * allow extending the structure while preserve ABI. Feel free
 445         * to replace reserved slots with required structure field
 446         * additions of your backport.
 447         */
 448        RH_KABI_USE2_P(1, __u32 sk_txhash, u32 sk_max_pacing_rate)
 449        RH_KABI_USE2_P(2, u16 sk_tsflags, __u32 sk_dst_pending_confirm)
 450        RH_KABI_USE_P(3, struct sock_reuseport __rcu    *sk_reuseport_cb)
 451#ifndef __GENKSYMS__
 452        struct rcu_head         sk_rcu;
 453#else
 454        RH_KABI_USE_P(4, sk_rcu.next)
 455        RH_KABI_USE_P(5, sk_rcu.func)
 456#endif
 457        RH_KABI_RESERVE_P(6)
 458        RH_KABI_RESERVE_P(7)
 459        RH_KABI_RESERVE_P(8)
 460};
 461
 462#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
 463
 464#define rcu_dereference_sk_user_data(sk)        rcu_dereference(__sk_user_data((sk)))
 465#define rcu_assign_sk_user_data(sk, ptr)        rcu_assign_pointer(__sk_user_data((sk)), ptr)
 466
 467/*
 468 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
 469 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
 470 * on a socket means that the socket will reuse everybody else's port
 471 * without looking at the other's sk_reuse value.
 472 */
 473
 474#define SK_NO_REUSE     0
 475#define SK_CAN_REUSE    1
 476#define SK_FORCE_REUSE  2
 477
 478static inline int sk_peek_offset(struct sock *sk, int flags)
 479{
 480        if (unlikely(flags & MSG_PEEK)) {
 481                s32 off = READ_ONCE(sk->sk_peek_off);
 482                if (off >= 0)
 483                        return off;
 484        }
 485
 486        return 0;
 487}
 488
 489static inline void sk_peek_offset_bwd(struct sock *sk, int val)
 490{
 491        s32 off = READ_ONCE(sk->sk_peek_off);
 492
 493        if (unlikely(off >= 0)) {
 494                off = max_t(s32, off - val, 0);
 495                WRITE_ONCE(sk->sk_peek_off, off);
 496        }
 497}
 498
 499static inline void sk_peek_offset_fwd(struct sock *sk, int val)
 500{
 501        sk_peek_offset_bwd(sk, -val);
 502}
 503
 504/*
 505 * Hashed lists helper routines
 506 */
 507static inline struct sock *sk_entry(const struct hlist_node *node)
 508{
 509        return hlist_entry(node, struct sock, sk_node);
 510}
 511
 512static inline struct sock *__sk_head(const struct hlist_head *head)
 513{
 514        return hlist_entry(head->first, struct sock, sk_node);
 515}
 516
 517static inline struct sock *sk_head(const struct hlist_head *head)
 518{
 519        return hlist_empty(head) ? NULL : __sk_head(head);
 520}
 521
 522static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
 523{
 524        return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
 525}
 526
 527static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
 528{
 529        return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
 530}
 531
 532static inline struct sock *sk_next(const struct sock *sk)
 533{
 534        return sk->sk_node.next ?
 535                hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
 536}
 537
 538static inline struct sock *sk_nulls_next(const struct sock *sk)
 539{
 540        return (!is_a_nulls(sk->sk_nulls_node.next)) ?
 541                hlist_nulls_entry(sk->sk_nulls_node.next,
 542                                  struct sock, sk_nulls_node) :
 543                NULL;
 544}
 545
 546static inline bool sk_unhashed(const struct sock *sk)
 547{
 548        return hlist_unhashed(&sk->sk_node);
 549}
 550
 551static inline bool sk_hashed(const struct sock *sk)
 552{
 553        return !sk_unhashed(sk);
 554}
 555
 556static inline void sk_node_init(struct hlist_node *node)
 557{
 558        node->pprev = NULL;
 559}
 560
 561static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
 562{
 563        node->pprev = NULL;
 564}
 565
 566static inline void __sk_del_node(struct sock *sk)
 567{
 568        __hlist_del(&sk->sk_node);
 569}
 570
 571/* NB: equivalent to hlist_del_init_rcu */
 572static inline bool __sk_del_node_init(struct sock *sk)
 573{
 574        if (sk_hashed(sk)) {
 575                __sk_del_node(sk);
 576                sk_node_init(&sk->sk_node);
 577                return true;
 578        }
 579        return false;
 580}
 581
 582/* Grab socket reference count. This operation is valid only
 583   when sk is ALREADY grabbed f.e. it is found in hash table
 584   or a list and the lookup is made under lock preventing hash table
 585   modifications.
 586 */
 587
 588static inline void sock_hold(struct sock *sk)
 589{
 590        atomic_inc(&sk->sk_refcnt);
 591}
 592
 593/* Ungrab socket in the context, which assumes that socket refcnt
 594   cannot hit zero, f.e. it is true in context of any socketcall.
 595 */
 596static inline void __sock_put(struct sock *sk)
 597{
 598        atomic_dec(&sk->sk_refcnt);
 599}
 600
 601static inline bool sk_del_node_init(struct sock *sk)
 602{
 603        bool rc = __sk_del_node_init(sk);
 604
 605        if (rc) {
 606                /* paranoid for a while -acme */
 607                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 608                __sock_put(sk);
 609        }
 610        return rc;
 611}
 612#define sk_del_node_init_rcu(sk)        sk_del_node_init(sk)
 613
 614static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
 615{
 616        if (sk_hashed(sk)) {
 617                hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
 618                return true;
 619        }
 620        return false;
 621}
 622
 623static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
 624{
 625        bool rc = __sk_nulls_del_node_init_rcu(sk);
 626
 627        if (rc) {
 628                /* paranoid for a while -acme */
 629                WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
 630                __sock_put(sk);
 631        }
 632        return rc;
 633}
 634
 635static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
 636{
 637        hlist_add_head(&sk->sk_node, list);
 638}
 639
 640static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
 641{
 642        sock_hold(sk);
 643        __sk_add_node(sk, list);
 644}
 645
 646static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
 647{
 648        sock_hold(sk);
 649        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 650            sk->sk_family == AF_INET6)
 651                hlist_add_tail_rcu(&sk->sk_node, list);
 652        else
 653                hlist_add_head_rcu(&sk->sk_node, list);
 654}
 655
 656static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 657{
 658        if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 659            sk->sk_family == AF_INET6)
 660                hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
 661        else
 662                hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
 663}
 664
 665static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
 666{
 667        sock_hold(sk);
 668        __sk_nulls_add_node_rcu(sk, list);
 669}
 670
 671static inline void __sk_del_bind_node(struct sock *sk)
 672{
 673        __hlist_del(&sk->sk_bind_node);
 674}
 675
 676static inline void sk_add_bind_node(struct sock *sk,
 677                                        struct hlist_head *list)
 678{
 679        hlist_add_head(&sk->sk_bind_node, list);
 680}
 681
 682#define sk_for_each(__sk, list) \
 683        hlist_for_each_entry(__sk, list, sk_node)
 684#define sk_for_each_rcu(__sk, list) \
 685        hlist_for_each_entry_rcu(__sk, list, sk_node)
 686#define sk_nulls_for_each(__sk, node, list) \
 687        hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
 688#define sk_nulls_for_each_rcu(__sk, node, list) \
 689        hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
 690#define sk_for_each_from(__sk) \
 691        hlist_for_each_entry_from(__sk, sk_node)
 692#define sk_nulls_for_each_from(__sk, node) \
 693        if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
 694                hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
 695#define sk_for_each_safe(__sk, tmp, list) \
 696        hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
 697#define sk_for_each_bound(__sk, list) \
 698        hlist_for_each_entry(__sk, list, sk_bind_node)
 699
 700/**
 701 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
 702 * @tpos:       the type * to use as a loop cursor.
 703 * @pos:        the &struct hlist_node to use as a loop cursor.
 704 * @head:       the head for your list.
 705 * @offset:     offset of hlist_node within the struct.
 706 *
 707 */
 708#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)                  \
 709        for (pos = rcu_dereference((head)->first);                             \
 710             pos != NULL &&                                                    \
 711                ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
 712             pos = rcu_dereference(pos->next))
 713
 714static inline struct user_namespace *sk_user_ns(struct sock *sk)
 715{
 716        /* Careful only use this in a context where these parameters
 717         * can not change and must all be valid, such as recvmsg from
 718         * userspace.
 719         */
 720        return sk->sk_socket->file->f_cred->user_ns;
 721}
 722
 723/* Sock flags */
 724enum sock_flags {
 725        SOCK_DEAD,
 726        SOCK_DONE,
 727        SOCK_URGINLINE,
 728        SOCK_KEEPOPEN,
 729        SOCK_LINGER,
 730        SOCK_DESTROY,
 731        SOCK_BROADCAST,
 732        SOCK_TIMESTAMP,
 733        SOCK_ZAPPED,
 734        SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
 735        SOCK_DBG, /* %SO_DEBUG setting */
 736        SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
 737        SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
 738        SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
 739        SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
 740        SOCK_MEMALLOC, /* VM depends on this socket for swapping */
 741        SOCK_RH_RESERVED_1, /* placeholders to avoid shifting the rest of
 742                             * the SOCK_* flags
 743                             */
 744        SOCK_RH_RESERVED_2,
 745        SOCK_RH_RESERVED_3,
 746        SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
 747        SOCK_RH_RESERVED_4,
 748        SOCK_RH_RESERVED_5,
 749        SOCK_RH_RESERVED_6,
 750        SOCK_FASYNC, /* fasync() active */
 751        SOCK_RXQ_OVFL,
 752        SOCK_ZEROCOPY, /* buffers from userspace */
 753        SOCK_WIFI_STATUS, /* push wifi status to userspace */
 754        SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
 755                     * Will use last 4 bytes of packet sent from
 756                     * user-space instead.
 757                     */
 758        SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
 759        SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
 760        SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
 761};
 762
 763#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
 764
 765static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
 766{
 767        nsk->sk_flags = osk->sk_flags;
 768}
 769
 770static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
 771{
 772        __set_bit(flag, &sk->sk_flags);
 773}
 774
 775static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
 776{
 777        __clear_bit(flag, &sk->sk_flags);
 778}
 779
 780static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
 781{
 782        return test_bit(flag, &sk->sk_flags);
 783}
 784
 785#ifdef CONFIG_NET
 786extern struct static_key memalloc_socks;
 787static inline int sk_memalloc_socks(void)
 788{
 789        return static_key_false(&memalloc_socks);
 790}
 791#else
 792
 793static inline int sk_memalloc_socks(void)
 794{
 795        return 0;
 796}
 797
 798#endif
 799
 800static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
 801{
 802        return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
 803}
 804
 805static inline void sk_acceptq_removed(struct sock *sk)
 806{
 807        sk->sk_ack_backlog--;
 808}
 809
 810static inline void sk_acceptq_added(struct sock *sk)
 811{
 812        sk->sk_ack_backlog++;
 813}
 814
 815static inline bool sk_acceptq_is_full(const struct sock *sk)
 816{
 817        return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
 818}
 819
 820/*
 821 * Compute minimal free write space needed to queue new packets.
 822 */
 823static inline int sk_stream_min_wspace(const struct sock *sk)
 824{
 825        return sk->sk_wmem_queued >> 1;
 826}
 827
 828static inline int sk_stream_wspace(const struct sock *sk)
 829{
 830        return sk->sk_sndbuf - sk->sk_wmem_queued;
 831}
 832
 833extern void sk_stream_write_space(struct sock *sk);
 834
 835/* OOB backlog add */
 836static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
 837{
 838        /* dont let skb dst not refcounted, we are going to leave rcu lock */
 839        skb_dst_force_safe(skb);
 840
 841        if (!sk->sk_backlog.tail)
 842                sk->sk_backlog.head = skb;
 843        else
 844                sk->sk_backlog.tail->next = skb;
 845
 846        sk->sk_backlog.tail = skb;
 847        skb->next = NULL;
 848}
 849
 850/*
 851 * Take into account size of receive queue and backlog queue
 852 * Do not take into account this skb truesize,
 853 * to allow even a single big packet to come.
 854 */
 855static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
 856                                     unsigned int limit)
 857{
 858        unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
 859
 860        return qsize > limit;
 861}
 862
 863/* The per-socket spinlock must be held here. */
 864static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
 865                                              unsigned int limit)
 866{
 867        if (sk_rcvqueues_full(sk, skb, limit))
 868                return -ENOBUFS;
 869
 870        /*
 871         * If the skb was allocated from pfmemalloc reserves, only
 872         * allow SOCK_MEMALLOC sockets to use it as this socket is
 873         * helping free memory
 874         */
 875        if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
 876                return -ENOMEM;
 877
 878        __sk_add_backlog(sk, skb);
 879        sk->sk_backlog.len += skb->truesize;
 880        return 0;
 881}
 882
 883extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
 884
 885static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 886{
 887        if (sk_memalloc_socks() && skb_pfmemalloc(skb))
 888                return __sk_backlog_rcv(sk, skb);
 889
 890        return sk->sk_backlog_rcv(sk, skb);
 891}
 892
 893static inline void sock_rps_record_flow(const struct sock *sk)
 894{
 895#ifdef CONFIG_RPS
 896        struct rps_sock_flow_table *sock_flow_table;
 897
 898        rcu_read_lock();
 899        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 900        rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
 901        rcu_read_unlock();
 902#endif
 903}
 904
 905static inline void sock_rps_reset_flow(const struct sock *sk)
 906{
 907#ifdef CONFIG_RPS
 908        struct rps_sock_flow_table *sock_flow_table;
 909
 910        rcu_read_lock();
 911        sock_flow_table = rcu_dereference(rps_sock_flow_table);
 912        rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
 913        rcu_read_unlock();
 914#endif
 915}
 916
 917static inline void sock_rps_save_rxhash(struct sock *sk,
 918                                        const struct sk_buff *skb)
 919{
 920#ifdef CONFIG_RPS
 921        if (unlikely(sk->sk_rxhash != skb->hash)) {
 922                sock_rps_reset_flow(sk);
 923                sk->sk_rxhash = skb->hash;
 924        }
 925#endif
 926}
 927
 928static inline void sock_rps_reset_rxhash(struct sock *sk)
 929{
 930#ifdef CONFIG_RPS
 931        sock_rps_reset_flow(sk);
 932        sk->sk_rxhash = 0;
 933#endif
 934}
 935
 936#define sk_wait_event(__sk, __timeo, __condition)                       \
 937        ({      int __rc;                                               \
 938                release_sock(__sk);                                     \
 939                __rc = __condition;                                     \
 940                if (!__rc) {                                            \
 941                        *(__timeo) = schedule_timeout(*(__timeo));      \
 942                }                                                       \
 943                lock_sock(__sk);                                        \
 944                __rc = __condition;                                     \
 945                __rc;                                                   \
 946        })
 947
 948extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
 949extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
 950extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
 951extern int sk_stream_error(struct sock *sk, int flags, int err);
 952extern void sk_stream_kill_queues(struct sock *sk);
 953extern void sk_set_memalloc(struct sock *sk);
 954extern void sk_clear_memalloc(struct sock *sk);
 955
 956int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
 957
 958struct request_sock_ops;
 959struct timewait_sock_ops;
 960struct inet_hashinfo;
 961struct raw_hashinfo;
 962struct module;
 963
 964/*
 965 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
 966 * un-modified. Special care is taken when initializing object to zero.
 967 */
 968static inline void sk_prot_clear_nulls(struct sock *sk, int size)
 969{
 970        if (offsetof(struct sock, sk_node.next) != 0)
 971                memset(sk, 0, offsetof(struct sock, sk_node.next));
 972        memset(&sk->sk_node.pprev, 0,
 973               size - offsetof(struct sock, sk_node.pprev));
 974}
 975
 976/* Networking protocol blocks we attach to sockets.
 977 * socket layer -> transport layer interface
 978 * transport -> network interface is defined by struct inet_proto
 979 */
 980struct proto {
 981        void                    (*close)(struct sock *sk,
 982                                        long timeout);
 983        int                     (*connect)(struct sock *sk,
 984                                        struct sockaddr *uaddr,
 985                                        int addr_len);
 986        int                     (*disconnect)(struct sock *sk, int flags);
 987
 988        struct sock *           (*accept)(struct sock *sk, int flags, int *err);
 989
 990        int                     (*ioctl)(struct sock *sk, int cmd,
 991                                         unsigned long arg);
 992        int                     (*init)(struct sock *sk);
 993        void                    (*destroy)(struct sock *sk);
 994        void                    (*shutdown)(struct sock *sk, int how);
 995        int                     (*setsockopt)(struct sock *sk, int level,
 996                                        int optname, char __user *optval,
 997                                        unsigned int optlen);
 998        int                     (*getsockopt)(struct sock *sk, int level,
 999                                        int optname, char __user *optval,
1000                                        int __user *option);
1001#ifdef CONFIG_COMPAT
1002        int                     (*compat_setsockopt)(struct sock *sk,
1003                                        int level,
1004                                        int optname, char __user *optval,
1005                                        unsigned int optlen);
1006        int                     (*compat_getsockopt)(struct sock *sk,
1007                                        int level,
1008                                        int optname, char __user *optval,
1009                                        int __user *option);
1010        int                     (*compat_ioctl)(struct sock *sk,
1011                                        unsigned int cmd, unsigned long arg);
1012#endif
1013        int                     (*sendmsg)(struct kiocb *iocb, struct sock *sk,
1014                                           struct msghdr *msg, size_t len);
1015        int                     (*recvmsg)(struct kiocb *iocb, struct sock *sk,
1016                                           struct msghdr *msg,
1017                                           size_t len, int noblock, int flags,
1018                                           int *addr_len);
1019        int                     (*sendpage)(struct sock *sk, struct page *page,
1020                                        int offset, size_t size, int flags);
1021        int                     (*bind)(struct sock *sk,
1022                                        struct sockaddr *uaddr, int addr_len);
1023
1024        int                     (*backlog_rcv) (struct sock *sk,
1025                                                struct sk_buff *skb);
1026
1027        void            (*release_cb)(struct sock *sk);
1028        void            (*mtu_reduced)(struct sock *sk);        /* not used anymore */
1029
1030        /* Keeping track of sk's, looking them up, and port selection methods. */
1031        void                    (*hash)(struct sock *sk);
1032        void                    (*unhash)(struct sock *sk);
1033        void                    (*rehash)(struct sock *sk);
1034        int                     (*get_port)(struct sock *sk, unsigned short snum);
1035        void                    (*clear_sk)(struct sock *sk, int size);
1036
1037        /* Keeping track of sockets in use */
1038#ifdef CONFIG_PROC_FS
1039        unsigned int            inuse_idx;
1040#endif
1041
1042#ifndef __GENKSYMS__
1043        bool                    (*stream_memory_free)(const struct sock *sk);
1044#endif
1045
1046        /* Memory pressure */
1047        void                    (*enter_memory_pressure)(struct sock *sk);
1048        atomic_long_t           *memory_allocated;      /* Current allocated memory. */
1049        struct percpu_counter   *sockets_allocated;     /* Current number of sockets. */
1050        /*
1051         * Pressure flag: try to collapse.
1052         * Technical note: it is used by multiple contexts non atomically.
1053         * All the __sk_mem_schedule() is of this nature: accounting
1054         * is strict, actions are advisory and have some latency.
1055         */
1056        int                     *memory_pressure;
1057        long                    *sysctl_mem;
1058        int                     *sysctl_wmem;
1059        int                     *sysctl_rmem;
1060        int                     max_header;
1061        bool                    no_autobind;
1062
1063        struct kmem_cache       *slab;
1064        unsigned int            obj_size;
1065        int                     slab_flags;
1066
1067        struct percpu_counter   *orphan_count;
1068
1069        struct request_sock_ops *rsk_prot;
1070        struct timewait_sock_ops *twsk_prot;
1071
1072        union {
1073                struct inet_hashinfo    *hashinfo;
1074                struct udp_table        *udp_table;
1075                struct raw_hashinfo     *raw_hash;
1076        } h;
1077
1078        struct module           *owner;
1079
1080        char                    name[32];
1081
1082        struct list_head        node;
1083#ifdef SOCK_REFCNT_DEBUG
1084        atomic_t                socks;
1085#endif
1086#ifdef CONFIG_MEMCG_KMEM
1087        /*
1088         * cgroup specific init/deinit functions. Called once for all
1089         * protocols that implement it, from cgroups populate function.
1090         * This function has to setup any files the protocol want to
1091         * appear in the kmem cgroup filesystem.
1092         */
1093        int                     (*init_cgroup)(struct mem_cgroup *memcg,
1094                                               struct cgroup_subsys *ss);
1095        void                    (*destroy_cgroup)(struct mem_cgroup *memcg);
1096        struct cg_proto         *(*proto_cgroup)(struct mem_cgroup *memcg);
1097#endif
1098};
1099
1100/*
1101 * Bits in struct cg_proto.flags
1102 */
1103enum cg_proto_flags {
1104        /* Currently active and new sockets should be assigned to cgroups */
1105        MEMCG_SOCK_ACTIVE,
1106        /* It was ever activated; we must disarm static keys on destruction */
1107        MEMCG_SOCK_ACTIVATED,
1108};
1109
1110struct cg_proto {
1111        void                    (*enter_memory_pressure)(struct sock *sk);
1112        /* Current allocated memory. */
1113        RH_KABI_REPLACE(struct res_counter      *memory_allocated,
1114                        struct page_counter     *memory_allocated)
1115        RH_KABI_DEPRECATE(struct percpu_counter*, sockets_allocated)
1116        int                     *memory_pressure;
1117        long                    *sysctl_mem;
1118        unsigned long           flags;
1119        /*
1120         * memcg field is used to find which memcg we belong directly
1121         * Each memcg struct can hold more than one cg_proto, so container_of
1122         * won't really cut.
1123         *
1124         * The elegant solution would be having an inverse function to
1125         * proto_cgroup in struct proto, but that means polluting the structure
1126         * for everybody, instead of just for memcg users.
1127         */
1128        struct mem_cgroup       *memcg;
1129};
1130
1131extern int proto_register(struct proto *prot, int alloc_slab);
1132extern void proto_unregister(struct proto *prot);
1133
1134static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1135{
1136        return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1137}
1138
1139static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1140{
1141        return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1142}
1143
1144int sock_load_diag_module(int family, int protocol);
1145
1146#ifdef SOCK_REFCNT_DEBUG
1147static inline void sk_refcnt_debug_inc(struct sock *sk)
1148{
1149        atomic_inc(&sk->sk_prot->socks);
1150}
1151
1152static inline void sk_refcnt_debug_dec(struct sock *sk)
1153{
1154        atomic_dec(&sk->sk_prot->socks);
1155        printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1156               sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1157}
1158
1159static inline void sk_refcnt_debug_release(const struct sock *sk)
1160{
1161        if (atomic_read(&sk->sk_refcnt) != 1)
1162                printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1163                       sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1164}
1165#else /* SOCK_REFCNT_DEBUG */
1166#define sk_refcnt_debug_inc(sk) do { } while (0)
1167#define sk_refcnt_debug_dec(sk) do { } while (0)
1168#define sk_refcnt_debug_release(sk) do { } while (0)
1169#endif /* SOCK_REFCNT_DEBUG */
1170
1171#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1172extern struct static_key memcg_socket_limit_enabled;
1173#define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1174#else
1175#define mem_cgroup_sockets_enabled 0
1176#endif
1177
1178static inline bool sk_stream_memory_free(const struct sock *sk)
1179{
1180        if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1181                return false;
1182
1183        return sk->sk_prot->stream_memory_free ?
1184                sk->sk_prot->stream_memory_free(sk) : true;
1185}
1186
1187static inline bool sk_stream_is_writeable(const struct sock *sk)
1188{
1189        return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1190               sk_stream_memory_free(sk);
1191}
1192
1193
1194static inline bool sk_has_memory_pressure(const struct sock *sk)
1195{
1196        return sk->sk_prot->memory_pressure != NULL;
1197}
1198
1199static inline bool sk_under_memory_pressure(const struct sock *sk)
1200{
1201        if (!sk->sk_prot->memory_pressure)
1202                return false;
1203
1204        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1205                return !!*sk->sk_cgrp->memory_pressure;
1206
1207        return !!*sk->sk_prot->memory_pressure;
1208}
1209
1210static inline void sk_leave_memory_pressure(struct sock *sk)
1211{
1212        int *memory_pressure = sk->sk_prot->memory_pressure;
1213
1214        if (!memory_pressure)
1215                return;
1216
1217        if (*memory_pressure)
1218                *memory_pressure = 0;
1219
1220        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1221                if (*sk->sk_cgrp->memory_pressure)
1222                        *sk->sk_cgrp->memory_pressure = 0;
1223}
1224
1225static inline void sk_enter_memory_pressure(struct sock *sk)
1226{
1227        if (!sk->sk_prot->enter_memory_pressure)
1228                return;
1229
1230        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1231                sk->sk_cgrp->enter_memory_pressure(sk);
1232
1233        sk->sk_prot->enter_memory_pressure(sk);
1234}
1235
1236static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1237{
1238        long *prot = sk->sk_prot->sysctl_mem;
1239        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1240                prot = sk->sk_cgrp->sysctl_mem;
1241        return prot[index];
1242}
1243
1244static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1245                                              unsigned long amt,
1246                                              int *parent_status)
1247{
1248        struct page_counter *counter;
1249
1250        if (page_counter_try_charge(prot->memory_allocated, amt, &counter))
1251                return;
1252
1253        page_counter_charge(prot->memory_allocated, amt);
1254        *parent_status = OVER_LIMIT;
1255}
1256
1257static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1258                                              unsigned long amt)
1259{
1260        page_counter_uncharge(prot->memory_allocated, amt);
1261}
1262
1263static inline long
1264sk_memory_allocated(const struct sock *sk)
1265{
1266        struct proto *prot = sk->sk_prot;
1267
1268        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1269                return page_counter_read(sk->sk_cgrp->memory_allocated);
1270
1271        return atomic_long_read(prot->memory_allocated);
1272}
1273
1274static inline long
1275sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1276{
1277        struct proto *prot = sk->sk_prot;
1278
1279        if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1280                memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1281                /* update the root cgroup regardless */
1282                atomic_long_add_return(amt, prot->memory_allocated);
1283                return page_counter_read(sk->sk_cgrp->memory_allocated);
1284        }
1285
1286        return atomic_long_add_return(amt, prot->memory_allocated);
1287}
1288
1289static inline void
1290sk_memory_allocated_sub(struct sock *sk, int amt)
1291{
1292        struct proto *prot = sk->sk_prot;
1293
1294        if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1295                memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1296
1297        atomic_long_sub(amt, prot->memory_allocated);
1298}
1299
1300static inline void sk_sockets_allocated_dec(struct sock *sk)
1301{
1302        percpu_counter_dec(sk->sk_prot->sockets_allocated);
1303}
1304
1305static inline void sk_sockets_allocated_inc(struct sock *sk)
1306{
1307        percpu_counter_inc(sk->sk_prot->sockets_allocated);
1308}
1309
1310static inline int
1311sk_sockets_allocated_read_positive(struct sock *sk)
1312{
1313        return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1314}
1315
1316static inline int
1317proto_sockets_allocated_sum_positive(struct proto *prot)
1318{
1319        return percpu_counter_sum_positive(prot->sockets_allocated);
1320}
1321
1322static inline long
1323proto_memory_allocated(struct proto *prot)
1324{
1325        return atomic_long_read(prot->memory_allocated);
1326}
1327
1328static inline bool
1329proto_memory_pressure(struct proto *prot)
1330{
1331        if (!prot->memory_pressure)
1332                return false;
1333        return !!*prot->memory_pressure;
1334}
1335
1336
1337#ifdef CONFIG_PROC_FS
1338/* Called with local bh disabled */
1339extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1340extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1341#else
1342static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1343                int inc)
1344{
1345}
1346#endif
1347
1348
1349/* With per-bucket locks this operation is not-atomic, so that
1350 * this version is not worse.
1351 */
1352static inline void __sk_prot_rehash(struct sock *sk)
1353{
1354        sk->sk_prot->unhash(sk);
1355        sk->sk_prot->hash(sk);
1356}
1357
1358void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1359
1360/* About 10 seconds */
1361#define SOCK_DESTROY_TIME (10*HZ)
1362
1363/* Sockets 0-1023 can't be bound to unless you are superuser */
1364#define PROT_SOCK       1024
1365
1366#define SHUTDOWN_MASK   3
1367#define RCV_SHUTDOWN    1
1368#define SEND_SHUTDOWN   2
1369
1370#define SOCK_SNDBUF_LOCK        1
1371#define SOCK_RCVBUF_LOCK        2
1372#define SOCK_BINDADDR_LOCK      4
1373#define SOCK_BINDPORT_LOCK      8
1374
1375/* sock_iocb: used to kick off async processing of socket ios */
1376struct sock_iocb {
1377        struct list_head        list;
1378
1379        int                     flags;
1380        int                     size;
1381        struct socket           *sock;
1382        struct sock             *sk;
1383        struct scm_cookie       *scm;
1384        struct msghdr           *msg, async_msg;
1385        struct kiocb            *kiocb;
1386};
1387
1388static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1389{
1390        return (struct sock_iocb *)iocb->private;
1391}
1392
1393static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1394{
1395        return si->kiocb;
1396}
1397
1398struct socket_alloc {
1399        struct socket socket;
1400        struct inode vfs_inode;
1401};
1402
1403static inline struct socket *SOCKET_I(struct inode *inode)
1404{
1405        return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1406}
1407
1408static inline struct inode *SOCK_INODE(struct socket *socket)
1409{
1410        return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1411}
1412
1413/*
1414 * Functions for memory accounting
1415 */
1416int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1417extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1418void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1419void __sk_mem_reclaim(struct sock *sk, int amount);
1420
1421#define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1422#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1423#define SK_MEM_SEND     0
1424#define SK_MEM_RECV     1
1425
1426static inline int sk_mem_pages(int amt)
1427{
1428        return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1429}
1430
1431static inline bool sk_has_account(struct sock *sk)
1432{
1433        /* return true if protocol supports memory accounting */
1434        return !!sk->sk_prot->memory_allocated;
1435}
1436
1437static inline bool sk_wmem_schedule(struct sock *sk, int size)
1438{
1439        if (!sk_has_account(sk))
1440                return true;
1441        return size <= sk->sk_forward_alloc ||
1442                __sk_mem_schedule(sk, size, SK_MEM_SEND);
1443}
1444
1445static inline bool
1446sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1447{
1448        if (!sk_has_account(sk))
1449                return true;
1450        return size<= sk->sk_forward_alloc ||
1451                __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1452                skb_pfmemalloc(skb);
1453}
1454
1455static inline void sk_mem_reclaim(struct sock *sk)
1456{
1457        if (!sk_has_account(sk))
1458                return;
1459        if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1460                __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1461}
1462
1463static inline void sk_mem_reclaim_partial(struct sock *sk)
1464{
1465        if (!sk_has_account(sk))
1466                return;
1467        if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1468                __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1469}
1470
1471static inline void sk_mem_charge(struct sock *sk, int size)
1472{
1473        if (!sk_has_account(sk))
1474                return;
1475        sk->sk_forward_alloc -= size;
1476}
1477
1478static inline void sk_mem_uncharge(struct sock *sk, int size)
1479{
1480        if (!sk_has_account(sk))
1481                return;
1482        sk->sk_forward_alloc += size;
1483}
1484
1485static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1486{
1487        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1488        sk->sk_wmem_queued -= skb->truesize;
1489        sk_mem_uncharge(sk, skb->truesize);
1490        __kfree_skb(skb);
1491}
1492
1493/* Used by processes to "lock" a socket state, so that
1494 * interrupts and bottom half handlers won't change it
1495 * from under us. It essentially blocks any incoming
1496 * packets, so that we won't get any new data or any
1497 * packets that change the state of the socket.
1498 *
1499 * While locked, BH processing will add new packets to
1500 * the backlog queue.  This queue is processed by the
1501 * owner of the socket lock right before it is released.
1502 *
1503 * Since ~2.3.5 it is also exclusive sleep lock serializing
1504 * accesses from user process context.
1505 */
1506#define sock_owned_by_user(sk)  ((sk)->sk_lock.owned)
1507
1508static inline void sock_release_ownership(struct sock *sk)
1509{
1510        if (sk->sk_lock.owned) {
1511                sk->sk_lock.owned = 0;
1512
1513                /* The sk_lock has mutex_unlock() semantics: */
1514                mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1515        }
1516}
1517
1518/*
1519 * Macro so as to not evaluate some arguments when
1520 * lockdep is not enabled.
1521 *
1522 * Mark both the sk_lock and the sk_lock.slock as a
1523 * per-address-family lock class.
1524 */
1525#define sock_lock_init_class_and_name(sk, sname, skey, name, key)       \
1526do {                                                                    \
1527        sk->sk_lock.owned = 0;                                          \
1528        init_waitqueue_head(&sk->sk_lock.wq);                           \
1529        spin_lock_init(&(sk)->sk_lock.slock);                           \
1530        debug_check_no_locks_freed((void *)&(sk)->sk_lock,              \
1531                        sizeof((sk)->sk_lock));                         \
1532        lockdep_set_class_and_name(&(sk)->sk_lock.slock,                \
1533                                (skey), (sname));                               \
1534        lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);     \
1535} while (0)
1536
1537#ifdef CONFIG_LOCKDEP
1538static inline bool lockdep_sock_is_held(const struct sock *csk)
1539{
1540        struct sock *sk = (struct sock *)csk;
1541
1542        return lockdep_is_held(&sk->sk_lock) ||
1543               lockdep_is_held(&sk->sk_lock.slock);
1544}
1545#endif
1546
1547extern void lock_sock_nested(struct sock *sk, int subclass);
1548
1549static inline void lock_sock(struct sock *sk)
1550{
1551        lock_sock_nested(sk, 0);
1552}
1553
1554extern void release_sock(struct sock *sk);
1555
1556/* BH context may only use the following locking interface. */
1557#define bh_lock_sock(__sk)      spin_lock(&((__sk)->sk_lock.slock))
1558#define bh_lock_sock_nested(__sk) \
1559                                spin_lock_nested(&((__sk)->sk_lock.slock), \
1560                                SINGLE_DEPTH_NESTING)
1561#define bh_unlock_sock(__sk)    spin_unlock(&((__sk)->sk_lock.slock))
1562
1563extern bool lock_sock_fast(struct sock *sk);
1564/**
1565 * unlock_sock_fast - complement of lock_sock_fast
1566 * @sk: socket
1567 * @slow: slow mode
1568 *
1569 * fast unlock socket for user context.
1570 * If slow mode is on, we call regular release_sock()
1571 */
1572static inline void unlock_sock_fast(struct sock *sk, bool slow)
1573{
1574        if (slow)
1575                release_sock(sk);
1576        else
1577                spin_unlock_bh(&sk->sk_lock.slock);
1578}
1579
1580
1581extern struct sock              *sk_alloc(struct net *net, int family,
1582                                          gfp_t priority,
1583                                          struct proto *prot);
1584extern void                     sk_free(struct sock *sk);
1585extern void                     sk_release_kernel(struct sock *sk);
1586extern struct sock              *sk_clone_lock(const struct sock *sk,
1587                                               const gfp_t priority);
1588
1589extern struct sk_buff           *sock_wmalloc(struct sock *sk,
1590                                              unsigned long size, int force,
1591                                              gfp_t priority);
1592extern struct sk_buff           *sock_rmalloc(struct sock *sk,
1593                                              unsigned long size, int force,
1594                                              gfp_t priority);
1595void __sock_wfree(struct sk_buff *skb);
1596extern void                     sock_wfree(struct sk_buff *skb);
1597extern void                     skb_orphan_partial(struct sk_buff *skb);
1598extern void                     sock_rfree(struct sk_buff *skb);
1599extern void                     sock_efree(struct sk_buff *skb);
1600#ifdef CONFIG_INET
1601void sock_edemux(struct sk_buff *skb);
1602#else
1603#define sock_edemux sock_efree
1604#endif
1605
1606extern int                      sock_setsockopt(struct socket *sock, int level,
1607                                                int op, char __user *optval,
1608                                                unsigned int optlen);
1609
1610extern int                      sock_getsockopt(struct socket *sock, int level,
1611                                                int op, char __user *optval,
1612                                                int __user *optlen);
1613extern struct sk_buff           *sock_alloc_send_skb(struct sock *sk,
1614                                                     unsigned long size,
1615                                                     int noblock,
1616                                                     int *errcode);
1617extern struct sk_buff           *sock_alloc_send_pskb(struct sock *sk,
1618                                                      unsigned long header_len,
1619                                                      unsigned long data_len,
1620                                                      int noblock,
1621                                                      int *errcode,
1622                                                      int max_page_order);
1623extern void *sock_kmalloc(struct sock *sk, int size,
1624                          gfp_t priority);
1625extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1626extern void sock_kzfree_s(struct sock *sk, void *mem, int size);
1627extern void sk_send_sigurg(struct sock *sk);
1628
1629/*
1630 * Functions to fill in entries in struct proto_ops when a protocol
1631 * does not implement a particular function.
1632 */
1633extern int                      sock_no_bind(struct socket *,
1634                                             struct sockaddr *, int);
1635extern int                      sock_no_connect(struct socket *,
1636                                                struct sockaddr *, int, int);
1637extern int                      sock_no_socketpair(struct socket *,
1638                                                   struct socket *);
1639extern int                      sock_no_accept(struct socket *,
1640                                               struct socket *, int);
1641extern int                      sock_no_getname(struct socket *,
1642                                                struct sockaddr *, int *, int);
1643extern unsigned int             sock_no_poll(struct file *, struct socket *,
1644                                             struct poll_table_struct *);
1645extern int                      sock_no_ioctl(struct socket *, unsigned int,
1646                                              unsigned long);
1647extern int                      sock_no_listen(struct socket *, int);
1648extern int                      sock_no_shutdown(struct socket *, int);
1649extern int                      sock_no_getsockopt(struct socket *, int , int,
1650                                                   char __user *, int __user *);
1651extern int                      sock_no_setsockopt(struct socket *, int, int,
1652                                                   char __user *, unsigned int);
1653extern int                      sock_no_sendmsg(struct kiocb *, struct socket *,
1654                                                struct msghdr *, size_t);
1655extern int                      sock_no_recvmsg(struct kiocb *, struct socket *,
1656                                                struct msghdr *, size_t, int);
1657extern int                      sock_no_mmap(struct file *file,
1658                                             struct socket *sock,
1659                                             struct vm_area_struct *vma);
1660extern ssize_t                  sock_no_sendpage(struct socket *sock,
1661                                                struct page *page,
1662                                                int offset, size_t size,
1663                                                int flags);
1664
1665/*
1666 * Functions to fill in entries in struct proto_ops when a protocol
1667 * uses the inet style.
1668 */
1669extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1670                                  char __user *optval, int __user *optlen);
1671extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1672                               struct msghdr *msg, size_t size, int flags);
1673extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1674                                  char __user *optval, unsigned int optlen);
1675extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1676                int optname, char __user *optval, int __user *optlen);
1677extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1678                int optname, char __user *optval, unsigned int optlen);
1679
1680extern void sk_common_release(struct sock *sk);
1681
1682/*
1683 *      Default socket callbacks and setup code
1684 */
1685
1686/* Initialise core socket variables */
1687extern void sock_init_data(struct socket *sock, struct sock *sk);
1688
1689extern void sk_filter_release_rcu(struct rcu_head *rcu);
1690
1691/**
1692 *      sk_filter_release - release a socket filter
1693 *      @fp: filter to remove
1694 *
1695 *      Remove a filter from a socket and release its resources.
1696 */
1697
1698static inline void sk_filter_release(struct sk_filter *fp)
1699{
1700        if (atomic_dec_and_test(&fp->refcnt))
1701                call_rcu(&fp->rcu, sk_filter_release_rcu);
1702}
1703
1704static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1705{
1706        unsigned int size = sk_filter_len(fp);
1707
1708        atomic_sub(size, &sk->sk_omem_alloc);
1709        sk_filter_release(fp);
1710}
1711
1712static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1713{
1714        atomic_inc(&fp->refcnt);
1715        atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1716}
1717
1718/*
1719 * Socket reference counting postulates.
1720 *
1721 * * Each user of socket SHOULD hold a reference count.
1722 * * Each access point to socket (an hash table bucket, reference from a list,
1723 *   running timer, skb in flight MUST hold a reference count.
1724 * * When reference count hits 0, it means it will never increase back.
1725 * * When reference count hits 0, it means that no references from
1726 *   outside exist to this socket and current process on current CPU
1727 *   is last user and may/should destroy this socket.
1728 * * sk_free is called from any context: process, BH, IRQ. When
1729 *   it is called, socket has no references from outside -> sk_free
1730 *   may release descendant resources allocated by the socket, but
1731 *   to the time when it is called, socket is NOT referenced by any
1732 *   hash tables, lists etc.
1733 * * Packets, delivered from outside (from network or from another process)
1734 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1735 *   when they sit in queue. Otherwise, packets will leak to hole, when
1736 *   socket is looked up by one cpu and unhasing is made by another CPU.
1737 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1738 *   (leak to backlog). Packet socket does all the processing inside
1739 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1740 *   use separate SMP lock, so that they are prone too.
1741 */
1742
1743/* Ungrab socket and destroy it, if it was the last reference. */
1744static inline void sock_put(struct sock *sk)
1745{
1746        if (atomic_dec_and_test(&sk->sk_refcnt))
1747                sk_free(sk);
1748}
1749/* Generic version of sock_put(), dealing with all sockets
1750 * (TCP_TIMEWAIT, ESTABLISHED...)
1751 */
1752void sock_gen_put(struct sock *sk);
1753
1754extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1755                          const int nested);
1756
1757static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1758{
1759        sk->sk_tx_queue_mapping = tx_queue;
1760}
1761
1762static inline void sk_tx_queue_clear(struct sock *sk)
1763{
1764        sk->sk_tx_queue_mapping = -1;
1765}
1766
1767static inline int sk_tx_queue_get(const struct sock *sk)
1768{
1769        return sk ? sk->sk_tx_queue_mapping : -1;
1770}
1771
1772static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1773{
1774        sk_tx_queue_clear(sk);
1775        sk->sk_socket = sock;
1776}
1777
1778static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1779{
1780        BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1781        return &rcu_dereference_raw(sk->sk_wq)->wait;
1782}
1783/* Detach socket from process context.
1784 * Announce socket dead, detach it from wait queue and inode.
1785 * Note that parent inode held reference count on this struct sock,
1786 * we do not release it in this function, because protocol
1787 * probably wants some additional cleanups or even continuing
1788 * to work with this socket (TCP).
1789 */
1790static inline void sock_orphan(struct sock *sk)
1791{
1792        write_lock_bh(&sk->sk_callback_lock);
1793        sock_set_flag(sk, SOCK_DEAD);
1794        sk_set_socket(sk, NULL);
1795        sk->sk_wq  = NULL;
1796        write_unlock_bh(&sk->sk_callback_lock);
1797}
1798
1799static inline void sock_graft(struct sock *sk, struct socket *parent)
1800{
1801        write_lock_bh(&sk->sk_callback_lock);
1802        sk->sk_wq = parent->wq;
1803        parent->sk = sk;
1804        sk_set_socket(sk, parent);
1805        security_sock_graft(sk, parent);
1806        write_unlock_bh(&sk->sk_callback_lock);
1807}
1808
1809extern kuid_t sock_i_uid(struct sock *sk);
1810extern unsigned long sock_i_ino(struct sock *sk);
1811
1812static inline void sk_set_txhash(struct sock *sk)
1813{
1814        sk->sk_txhash = prandom_u32();
1815
1816        if (unlikely(!sk->sk_txhash))
1817                sk->sk_txhash = 1;
1818}
1819
1820static inline struct dst_entry *
1821__sk_dst_get(struct sock *sk)
1822{
1823        return rcu_dereference_check(sk->sk_dst_cache,
1824                                     lockdep_sock_is_held(sk));
1825}
1826
1827static inline struct dst_entry *
1828sk_dst_get(struct sock *sk)
1829{
1830        struct dst_entry *dst;
1831
1832        rcu_read_lock();
1833        dst = rcu_dereference(sk->sk_dst_cache);
1834        if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1835                dst = NULL;
1836        rcu_read_unlock();
1837        return dst;
1838}
1839
1840extern void sk_reset_txq(struct sock *sk);
1841
1842static inline void dst_negative_advice(struct sock *sk)
1843{
1844        struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1845
1846        if (dst && dst->ops->negative_advice) {
1847                ndst = dst->ops->negative_advice(dst);
1848
1849                if (ndst != dst) {
1850                        rcu_assign_pointer(sk->sk_dst_cache, ndst);
1851                        sk_reset_txq(sk);
1852                        sk->sk_dst_pending_confirm = 0;
1853                }
1854        }
1855}
1856
1857static inline void
1858__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1859{
1860        struct dst_entry *old_dst;
1861
1862        sk_tx_queue_clear(sk);
1863        sk->sk_dst_pending_confirm = 0;
1864        /*
1865         * This can be called while sk is owned by the caller only,
1866         * with no state that can be checked in a rcu_dereference_check() cond
1867         */
1868        old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1869        rcu_assign_pointer(sk->sk_dst_cache, dst);
1870        dst_release(old_dst);
1871}
1872
1873static inline void
1874sk_dst_set(struct sock *sk, struct dst_entry *dst)
1875{
1876        struct dst_entry *old_dst;
1877
1878        sk_tx_queue_clear(sk);
1879        sk->sk_dst_pending_confirm = 0;
1880        old_dst = xchg(&sk->sk_dst_cache, dst);
1881        dst_release(old_dst);
1882}
1883
1884static inline void
1885__sk_dst_reset(struct sock *sk)
1886{
1887        __sk_dst_set(sk, NULL);
1888}
1889
1890static inline void
1891sk_dst_reset(struct sock *sk)
1892{
1893        sk_dst_set(sk, NULL);
1894}
1895
1896extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1897
1898extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1899
1900static inline void sk_dst_confirm(struct sock *sk)
1901{
1902        if (!sk->sk_dst_pending_confirm)
1903                sk->sk_dst_pending_confirm = 1;
1904}
1905
1906static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1907{
1908        if (skb_get_dst_pending_confirm(skb)) {
1909                struct sock *sk = skb->sk;
1910                unsigned long now = jiffies;
1911
1912                /* avoid dirtying neighbour */
1913                if (n->confirmed != now)
1914                        n->confirmed = now;
1915                if (sk && sk->sk_dst_pending_confirm)
1916                        sk->sk_dst_pending_confirm = 0;
1917        }
1918}
1919
1920bool sk_mc_loop(struct sock *sk);
1921
1922static inline bool sk_can_gso(const struct sock *sk)
1923{
1924        return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1925}
1926
1927extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1928
1929static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1930{
1931        sk->sk_route_nocaps |= flags;
1932        sk->sk_route_caps &= ~flags;
1933}
1934
1935static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1936                                           char __user *from, char *to,
1937                                           int copy, int offset)
1938{
1939        if (skb->ip_summed == CHECKSUM_NONE) {
1940                int err = 0;
1941                __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1942                if (err)
1943                        return err;
1944                skb->csum = csum_block_add(skb->csum, csum, offset);
1945        } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1946                if (!access_ok(VERIFY_READ, from, copy) ||
1947                    __copy_from_user_nocache(to, from, copy))
1948                        return -EFAULT;
1949        } else if (copy_from_user(to, from, copy))
1950                return -EFAULT;
1951
1952        return 0;
1953}
1954
1955static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1956                                       char __user *from, int copy)
1957{
1958        int err, offset = skb->len;
1959
1960        err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1961                                       copy, offset);
1962        if (err)
1963                __skb_trim(skb, offset);
1964
1965        return err;
1966}
1967
1968static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1969                                           struct sk_buff *skb,
1970                                           struct page *page,
1971                                           int off, int copy)
1972{
1973        int err;
1974
1975        err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1976                                       copy, skb->len);
1977        if (err)
1978                return err;
1979
1980        skb->len             += copy;
1981        skb->data_len        += copy;
1982        skb->truesize        += copy;
1983        sk->sk_wmem_queued   += copy;
1984        sk_mem_charge(sk, copy);
1985        return 0;
1986}
1987
1988static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1989                                   struct sk_buff *skb, struct page *page,
1990                                   int off, int copy)
1991{
1992        if (skb->ip_summed == CHECKSUM_NONE) {
1993                int err = 0;
1994                __wsum csum = csum_and_copy_from_user(from,
1995                                                     page_address(page) + off,
1996                                                            copy, 0, &err);
1997                if (err)
1998                        return err;
1999                skb->csum = csum_block_add(skb->csum, csum, skb->len);
2000        } else if (copy_from_user(page_address(page) + off, from, copy))
2001                return -EFAULT;
2002
2003        skb->len             += copy;
2004        skb->data_len        += copy;
2005        skb->truesize        += copy;
2006        sk->sk_wmem_queued   += copy;
2007        sk_mem_charge(sk, copy);
2008        return 0;
2009}
2010
2011/**
2012 * sk_wmem_alloc_get - returns write allocations
2013 * @sk: socket
2014 *
2015 * Returns sk_wmem_alloc minus initial offset of one
2016 */
2017static inline int sk_wmem_alloc_get(const struct sock *sk)
2018{
2019        return atomic_read(&sk->sk_wmem_alloc) - 1;
2020}
2021
2022/**
2023 * sk_rmem_alloc_get - returns read allocations
2024 * @sk: socket
2025 *
2026 * Returns sk_rmem_alloc
2027 */
2028static inline int sk_rmem_alloc_get(const struct sock *sk)
2029{
2030        return atomic_read(&sk->sk_rmem_alloc);
2031}
2032
2033/**
2034 * sk_has_allocations - check if allocations are outstanding
2035 * @sk: socket
2036 *
2037 * Returns true if socket has write or read allocations
2038 */
2039static inline bool sk_has_allocations(const struct sock *sk)
2040{
2041        return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2042}
2043
2044/**
2045 * wq_has_sleeper - check if there are any waiting processes
2046 * @wq: struct socket_wq
2047 *
2048 * Returns true if socket_wq has waiting processes
2049 *
2050 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
2051 * barrier call. They were added due to the race found within the tcp code.
2052 *
2053 * Consider following tcp code paths:
2054 *
2055 * CPU1                  CPU2
2056 *
2057 * sys_select            receive packet
2058 *   ...                 ...
2059 *   __add_wait_queue    update tp->rcv_nxt
2060 *   ...                 ...
2061 *   tp->rcv_nxt check   sock_def_readable
2062 *   ...                 {
2063 *   schedule               rcu_read_lock();
2064 *                          wq = rcu_dereference(sk->sk_wq);
2065 *                          if (wq && waitqueue_active(&wq->wait))
2066 *                              wake_up_interruptible(&wq->wait)
2067 *                          ...
2068 *                       }
2069 *
2070 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2071 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2072 * could then endup calling schedule and sleep forever if there are no more
2073 * data on the socket.
2074 *
2075 */
2076static inline bool wq_has_sleeper(struct socket_wq *wq)
2077{
2078        /* We need to be sure we are in sync with the
2079         * add_wait_queue modifications to the wait queue.
2080         *
2081         * This memory barrier is paired in the sock_poll_wait.
2082         */
2083        smp_mb();
2084        return wq && waitqueue_active(&wq->wait);
2085}
2086
2087/**
2088 * sock_poll_wait - place memory barrier behind the poll_wait call.
2089 * @filp:           file
2090 * @wait_address:   socket wait queue
2091 * @p:              poll_table
2092 *
2093 * See the comments in the wq_has_sleeper function.
2094 */
2095static inline void sock_poll_wait(struct file *filp,
2096                wait_queue_head_t *wait_address, poll_table *p)
2097{
2098        if (!poll_does_not_wait(p) && wait_address) {
2099                poll_wait(filp, wait_address, p);
2100                /* We need to be sure we are in sync with the
2101                 * socket flags modification.
2102                 *
2103                 * This memory barrier is paired in the wq_has_sleeper.
2104                 */
2105                smp_mb();
2106        }
2107}
2108
2109static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2110{
2111        if (sk->sk_txhash) {
2112                skb->l4_hash = 1;
2113                skb->hash = sk->sk_txhash;
2114        }
2115}
2116
2117/*
2118 *      Queue a received datagram if it will fit. Stream and sequenced
2119 *      protocols can't normally use this as they need to fit buffers in
2120 *      and play with them.
2121 *
2122 *      Inlined as it's very short and called for pretty much every
2123 *      packet ever received.
2124 */
2125
2126static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2127{
2128        skb_orphan(skb);
2129        skb->sk = sk;
2130        skb->destructor = sock_wfree;
2131        skb_set_hash_from_sk(skb, sk);
2132        /*
2133         * We used to take a refcount on sk, but following operation
2134         * is enough to guarantee sk_free() wont free this sock until
2135         * all in-flight packets are completed
2136         */
2137        atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2138}
2139
2140static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2141{
2142        skb_orphan(skb);
2143        skb->sk = sk;
2144        skb->destructor = sock_rfree;
2145        atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2146        sk_mem_charge(sk, skb->truesize);
2147}
2148
2149extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2150                           unsigned long expires);
2151
2152extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2153
2154int __sk_queue_drop_skb(struct sock *sk, struct sk_buff *skb,
2155                        unsigned int flags,
2156                        void (*destructor)(struct sock *sk,
2157                                           struct sk_buff *skb));
2158int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2159extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2160
2161extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2162
2163/*
2164 *      Recover an error report and clear atomically
2165 */
2166
2167static inline int sock_error(struct sock *sk)
2168{
2169        int err;
2170        if (likely(!sk->sk_err))
2171                return 0;
2172        err = xchg(&sk->sk_err, 0);
2173        return -err;
2174}
2175
2176static inline unsigned long sock_wspace(struct sock *sk)
2177{
2178        int amt = 0;
2179
2180        if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2181                amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2182                if (amt < 0)
2183                        amt = 0;
2184        }
2185        return amt;
2186}
2187
2188static inline void sk_wake_async(struct sock *sk, int how, int band)
2189{
2190        if (sock_flag(sk, SOCK_FASYNC))
2191                sock_wake_async(sk->sk_socket, how, band);
2192}
2193
2194/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2195 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2196 * Note: for send buffers, TCP works better if we can build two skbs at
2197 * minimum.
2198 */
2199#define TCP_SKB_MIN_TRUESIZE    (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2200
2201#define SOCK_MIN_SNDBUF         (TCP_SKB_MIN_TRUESIZE * 2)
2202#define SOCK_MIN_RCVBUF          TCP_SKB_MIN_TRUESIZE
2203
2204static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2205{
2206        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2207                sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2208                sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2209        }
2210}
2211
2212struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2213
2214/**
2215 * sk_page_frag - return an appropriate page_frag
2216 * @sk: socket
2217 *
2218 * If socket allocation mode allows current thread to sleep, it means its
2219 * safe to use the per task page_frag instead of the per socket one.
2220 */
2221static inline struct page_frag *sk_page_frag(struct sock *sk)
2222{
2223        if (sk->sk_allocation & __GFP_WAIT)
2224                return &current->task_frag;
2225
2226        return &sk->sk_frag;
2227}
2228
2229extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2230
2231/*
2232 *      Default write policy as shown to user space via poll/select/SIGIO
2233 */
2234static inline bool sock_writeable(const struct sock *sk)
2235{
2236        return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2237}
2238
2239static inline gfp_t gfp_any(void)
2240{
2241        return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2242}
2243
2244static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2245{
2246        return noblock ? 0 : sk->sk_rcvtimeo;
2247}
2248
2249static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2250{
2251        return noblock ? 0 : sk->sk_sndtimeo;
2252}
2253
2254static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2255{
2256        return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2257}
2258
2259/* Alas, with timeout socket operations are not restartable.
2260 * Compare this to poll().
2261 */
2262static inline int sock_intr_errno(long timeo)
2263{
2264        return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2265}
2266
2267static inline void
2268sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2269{
2270        skb->dropcount = atomic_read(&sk->sk_drops);
2271}
2272
2273static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2274{
2275        int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2276
2277        atomic_add(segs, &sk->sk_drops);
2278}
2279
2280extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2281        struct sk_buff *skb);
2282extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2283        struct sk_buff *skb);
2284
2285static inline void
2286sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2287{
2288        ktime_t kt = skb->tstamp;
2289        struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2290
2291        /*
2292         * generate control messages if
2293         * - receive time stamping in software requested
2294         * - software time stamp available and wanted
2295         * - hardware time stamps available and wanted
2296         */
2297        if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2298            (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2299            (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2300            (hwtstamps->hwtstamp.tv64 &&
2301             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)) ||
2302            (hwtstamps->syststamp.tv64 &&
2303             (sk->sk_tsflags & SOF_TIMESTAMPING_SYS_HARDWARE)))
2304                __sock_recv_timestamp(msg, sk, skb);
2305        else
2306                sk->sk_stamp = kt;
2307
2308        if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2309                __sock_recv_wifi_status(msg, sk, skb);
2310}
2311
2312extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2313                                     struct sk_buff *skb);
2314
2315static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2316                                          struct sk_buff *skb)
2317{
2318#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)                       | \
2319                           (1UL << SOCK_RCVTSTAMP))
2320#define TSFLAGS_ANY       (SOF_TIMESTAMPING_SOFTWARE                    | \
2321                           SOF_TIMESTAMPING_RAW_HARDWARE                | \
2322                           SOF_TIMESTAMPING_SYS_HARDWARE)
2323
2324        if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2325                __sock_recv_ts_and_drops(msg, sk, skb);
2326        else
2327                sk->sk_stamp = skb->tstamp;
2328}
2329
2330/**
2331 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2332 * @sk:         socket sending this packet
2333 * @tx_flags:   filled with instructions for time stamping
2334 */
2335extern void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2336
2337/**
2338 * sk_eat_skb - Release a skb if it is no longer needed
2339 * @sk: socket to eat this skb from
2340 * @skb: socket buffer to eat
2341 *
2342 * This routine must be called with interrupts disabled or with the socket
2343 * locked so that the sk_buff queue operation is ok.
2344*/
2345static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2346{
2347        __skb_unlink(skb, &sk->sk_receive_queue);
2348        __kfree_skb(skb);
2349}
2350
2351static inline
2352struct net *sock_net(const struct sock *sk)
2353{
2354        return read_pnet(&sk->sk_net);
2355}
2356
2357static inline
2358void sock_net_set(struct sock *sk, struct net *net)
2359{
2360        write_pnet(&sk->sk_net, net);
2361}
2362
2363/*
2364 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2365 * They should not hold a reference to a namespace in order to allow
2366 * to stop it.
2367 * Sockets after sk_change_net should be released using sk_release_kernel
2368 */
2369static inline void sk_change_net(struct sock *sk, struct net *net)
2370{
2371        struct net *current_net = sock_net(sk);
2372
2373        if (!net_eq(current_net, net)) {
2374                put_net(current_net);
2375                sock_net_set(sk, net);
2376        }
2377}
2378
2379static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2380{
2381        if (skb->sk) {
2382                struct sock *sk = skb->sk;
2383
2384                skb->destructor = NULL;
2385                skb->sk = NULL;
2386                return sk;
2387        }
2388        return NULL;
2389}
2390
2391extern void sock_enable_timestamp(struct sock *sk, int flag);
2392extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2393extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2394
2395/*
2396 *      Enable debug/info messages
2397 */
2398extern int net_msg_warn;
2399#define NETDEBUG(fmt, args...) \
2400        do { if (net_msg_warn) printk(fmt,##args); } while (0)
2401
2402#define LIMIT_NETDEBUG(fmt, args...) \
2403        do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2404
2405/* This helper checks if a socket is a full socket,
2406 * ie _not_ a timewait socket.
2407 */
2408static inline bool sk_fullsock(const struct sock *sk)
2409{
2410        return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT);
2411}
2412
2413bool sk_ns_capable(const struct sock *sk,
2414                   struct user_namespace *user_ns, int cap);
2415bool sk_capable(const struct sock *sk, int cap);
2416bool sk_net_capable(const struct sock *sk, int cap);
2417
2418extern __u32 sysctl_wmem_max;
2419extern __u32 sysctl_rmem_max;
2420
2421extern int sysctl_optmem_max;
2422
2423extern __u32 sysctl_wmem_default;
2424extern __u32 sysctl_rmem_default;
2425
2426#endif  /* _SOCK_H */
2427