linux/mm/mlock.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/mlock.c
   3 *
   4 *  (C) Copyright 1995 Linus Torvalds
   5 *  (C) Copyright 2002 Christoph Hellwig
   6 */
   7
   8#include <linux/capability.h>
   9#include <linux/mman.h>
  10#include <linux/mm.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/pagemap.h>
  14#include <linux/pagevec.h>
  15#include <linux/mempolicy.h>
  16#include <linux/syscalls.h>
  17#include <linux/sched.h>
  18#include <linux/export.h>
  19#include <linux/rmap.h>
  20#include <linux/mmzone.h>
  21#include <linux/hugetlb.h>
  22#include <linux/memcontrol.h>
  23#include <linux/mm_inline.h>
  24
  25#include "internal.h"
  26
  27int can_do_mlock(void)
  28{
  29        if (rlimit(RLIMIT_MEMLOCK) != 0)
  30                return 1;
  31        if (capable(CAP_IPC_LOCK))
  32                return 1;
  33        return 0;
  34}
  35EXPORT_SYMBOL(can_do_mlock);
  36
  37/*
  38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
  39 * in vmscan and, possibly, the fault path; and to support semi-accurate
  40 * statistics.
  41 *
  42 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
  43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  44 * The unevictable list is an LRU sibling list to the [in]active lists.
  45 * PageUnevictable is set to indicate the unevictable state.
  46 *
  47 * When lazy mlocking via vmscan, it is important to ensure that the
  48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  49 * may have mlocked a page that is being munlocked. So lazy mlock must take
  50 * the mmap_sem for read, and verify that the vma really is locked
  51 * (see mm/rmap.c).
  52 */
  53
  54/*
  55 *  LRU accounting for clear_page_mlock()
  56 */
  57void clear_page_mlock(struct page *page)
  58{
  59        if (!TestClearPageMlocked(page))
  60                return;
  61
  62        mod_zone_page_state(page_zone(page), NR_MLOCK,
  63                            -hpage_nr_pages(page));
  64        count_vm_event(UNEVICTABLE_PGCLEARED);
  65        if (!isolate_lru_page(page)) {
  66                putback_lru_page(page);
  67        } else {
  68                /*
  69                 * We lost the race. the page already moved to evictable list.
  70                 */
  71                if (PageUnevictable(page))
  72                        count_vm_event(UNEVICTABLE_PGSTRANDED);
  73        }
  74}
  75
  76/*
  77 * Mark page as mlocked if not already.
  78 * If page on LRU, isolate and putback to move to unevictable list.
  79 */
  80void mlock_vma_page(struct page *page)
  81{
  82        /* Serialize with page migration */
  83        BUG_ON(!PageLocked(page));
  84
  85        if (!TestSetPageMlocked(page)) {
  86                mod_zone_page_state(page_zone(page), NR_MLOCK,
  87                                    hpage_nr_pages(page));
  88                count_vm_event(UNEVICTABLE_PGMLOCKED);
  89                if (!isolate_lru_page(page))
  90                        putback_lru_page(page);
  91        }
  92}
  93
  94/*
  95 * Isolate a page from LRU with optional get_page() pin.
  96 * Assumes lru_lock already held and page already pinned.
  97 */
  98static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
  99{
 100        if (PageLRU(page)) {
 101                struct lruvec *lruvec;
 102
 103                lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
 104                if (getpage)
 105                        get_page(page);
 106                ClearPageLRU(page);
 107                del_page_from_lru_list(page, lruvec, page_lru(page));
 108                return true;
 109        }
 110
 111        return false;
 112}
 113
 114/*
 115 * Finish munlock after successful page isolation
 116 *
 117 * Page must be locked. This is a wrapper for try_to_munlock()
 118 * and putback_lru_page() with munlock accounting.
 119 */
 120static void __munlock_isolated_page(struct page *page)
 121{
 122        int ret = SWAP_AGAIN;
 123
 124        /*
 125         * Optimization: if the page was mapped just once, that's our mapping
 126         * and we don't need to check all the other vmas.
 127         */
 128        if (page_mapcount(page) > 1)
 129                ret = try_to_munlock(page);
 130
 131        /* Did try_to_unlock() succeed or punt? */
 132        if (ret != SWAP_MLOCK)
 133                count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 134
 135        putback_lru_page(page);
 136}
 137
 138/*
 139 * Accounting for page isolation fail during munlock
 140 *
 141 * Performs accounting when page isolation fails in munlock. There is nothing
 142 * else to do because it means some other task has already removed the page
 143 * from the LRU. putback_lru_page() will take care of removing the page from
 144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
 145 * the page back to the unevictable list if some other vma has it mlocked.
 146 */
 147static void __munlock_isolation_failed(struct page *page)
 148{
 149        if (PageUnevictable(page))
 150                __count_vm_event(UNEVICTABLE_PGSTRANDED);
 151        else
 152                __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
 153}
 154
 155/**
 156 * munlock_vma_page - munlock a vma page
 157 * @page - page to be unlocked, either a normal page or THP page head
 158 *
 159 * returns the size of the page as a page mask (0 for normal page,
 160 *         HPAGE_PMD_NR - 1 for THP head page)
 161 *
 162 * called from munlock()/munmap() path with page supposedly on the LRU.
 163 * When we munlock a page, because the vma where we found the page is being
 164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 165 * page locked so that we can leave it on the unevictable lru list and not
 166 * bother vmscan with it.  However, to walk the page's rmap list in
 167 * try_to_munlock() we must isolate the page from the LRU.  If some other
 168 * task has removed the page from the LRU, we won't be able to do that.
 169 * So we clear the PageMlocked as we might not get another chance.  If we
 170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
 171 * [page_referenced()/try_to_unmap()] to deal with.
 172 */
 173unsigned int munlock_vma_page(struct page *page)
 174{
 175        int nr_pages;
 176        struct zone *zone = page_zone(page);
 177
 178        /* For try_to_munlock() and to serialize with page migration */
 179        BUG_ON(!PageLocked(page));
 180
 181        /*
 182         * Serialize with any parallel __split_huge_page_refcount() which
 183         * might otherwise copy PageMlocked to part of the tail pages before
 184         * we clear it in the head page. It also stabilizes hpage_nr_pages().
 185         */
 186        spin_lock_irq(&zone->lru_lock);
 187
 188        nr_pages = hpage_nr_pages(page);
 189        if (!TestClearPageMlocked(page))
 190                goto unlock_out;
 191
 192        __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
 193
 194        if (__munlock_isolate_lru_page(page, true)) {
 195                spin_unlock_irq(&zone->lru_lock);
 196                __munlock_isolated_page(page);
 197                goto out;
 198        }
 199        __munlock_isolation_failed(page);
 200
 201unlock_out:
 202        spin_unlock_irq(&zone->lru_lock);
 203
 204out:
 205        return nr_pages - 1;
 206}
 207
 208/*
 209 * convert get_user_pages() return value to posix mlock() error
 210 */
 211static int __mlock_posix_error_return(long retval)
 212{
 213        if (retval == -EFAULT)
 214                retval = -ENOMEM;
 215        else if (retval == -ENOMEM)
 216                retval = -EAGAIN;
 217        return retval;
 218}
 219
 220/*
 221 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
 222 *
 223 * The fast path is available only for evictable pages with single mapping.
 224 * Then we can bypass the per-cpu pvec and get better performance.
 225 * when mapcount > 1 we need try_to_munlock() which can fail.
 226 * when !page_evictable(), we need the full redo logic of putback_lru_page to
 227 * avoid leaving evictable page in unevictable list.
 228 *
 229 * In case of success, @page is added to @pvec and @pgrescued is incremented
 230 * in case that the page was previously unevictable. @page is also unlocked.
 231 */
 232static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
 233                int *pgrescued)
 234{
 235        VM_BUG_ON(PageLRU(page));
 236        VM_BUG_ON(!PageLocked(page));
 237
 238        if (page_mapcount(page) <= 1 && page_evictable(page)) {
 239                pagevec_add(pvec, page);
 240                if (TestClearPageUnevictable(page))
 241                        (*pgrescued)++;
 242                unlock_page(page);
 243                return true;
 244        }
 245
 246        return false;
 247}
 248
 249/*
 250 * Putback multiple evictable pages to the LRU
 251 *
 252 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
 253 * the pages might have meanwhile become unevictable but that is OK.
 254 */
 255static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
 256{
 257        count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
 258        /*
 259         *__pagevec_lru_add() calls release_pages() so we don't call
 260         * put_page() explicitly
 261         */
 262        __pagevec_lru_add(pvec);
 263        count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
 264}
 265
 266/*
 267 * Munlock a batch of pages from the same zone
 268 *
 269 * The work is split to two main phases. First phase clears the Mlocked flag
 270 * and attempts to isolate the pages, all under a single zone lru lock.
 271 * The second phase finishes the munlock only for pages where isolation
 272 * succeeded.
 273 *
 274 * Note that the pagevec may be modified during the process.
 275 */
 276static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
 277{
 278        int i;
 279        int nr = pagevec_count(pvec);
 280        int delta_munlocked = -nr;
 281        struct pagevec pvec_putback;
 282        int pgrescued = 0;
 283
 284        pagevec_init(&pvec_putback, 0);
 285
 286        /* Phase 1: page isolation */
 287        spin_lock_irq(&zone->lru_lock);
 288        for (i = 0; i < nr; i++) {
 289                struct page *page = pvec->pages[i];
 290
 291                if (TestClearPageMlocked(page)) {
 292                        /*
 293                         * We already have pin from follow_page_mask()
 294                         * so we can spare the get_page() here.
 295                         */
 296                        if (__munlock_isolate_lru_page(page, false))
 297                                continue;
 298                        else
 299                                __munlock_isolation_failed(page);
 300                } else {
 301                        delta_munlocked++;
 302                }
 303
 304                /*
 305                 * We won't be munlocking this page in the next phase
 306                 * but we still need to release the follow_page_mask()
 307                 * pin. We cannot do it under lru_lock however. If it's
 308                 * the last pin, __page_cache_release() would deadlock.
 309                 */
 310                pagevec_add(&pvec_putback, pvec->pages[i]);
 311                pvec->pages[i] = NULL;
 312        }
 313        __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
 314        spin_unlock_irq(&zone->lru_lock);
 315
 316        /* Now we can release pins of pages that we are not munlocking */
 317        pagevec_release(&pvec_putback);
 318
 319        /* Phase 2: page munlock */
 320        for (i = 0; i < nr; i++) {
 321                struct page *page = pvec->pages[i];
 322
 323                if (page) {
 324                        lock_page(page);
 325                        if (!__putback_lru_fast_prepare(page, &pvec_putback,
 326                                        &pgrescued)) {
 327                                /*
 328                                 * Slow path. We don't want to lose the last
 329                                 * pin before unlock_page()
 330                                 */
 331                                get_page(page); /* for putback_lru_page() */
 332                                __munlock_isolated_page(page);
 333                                unlock_page(page);
 334                                put_page(page); /* from follow_page_mask() */
 335                        }
 336                }
 337        }
 338
 339        /*
 340         * Phase 3: page putback for pages that qualified for the fast path
 341         * This will also call put_page() to return pin from follow_page_mask()
 342         */
 343        if (pagevec_count(&pvec_putback))
 344                __putback_lru_fast(&pvec_putback, pgrescued);
 345}
 346
 347/*
 348 * Fill up pagevec for __munlock_pagevec using pte walk
 349 *
 350 * The function expects that the struct page corresponding to @start address is
 351 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
 352 *
 353 * The rest of @pvec is filled by subsequent pages within the same pmd and same
 354 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
 355 * pages also get pinned.
 356 *
 357 * Returns the address of the next page that should be scanned. This equals
 358 * @start + PAGE_SIZE when no page could be added by the pte walk.
 359 */
 360static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
 361                struct vm_area_struct *vma, int zoneid, unsigned long start,
 362                unsigned long end)
 363{
 364        pte_t *pte;
 365        spinlock_t *ptl;
 366
 367        /*
 368         * Initialize pte walk starting at the already pinned page where we
 369         * are sure that there is a pte, as it was pinned under the same
 370         * mmap_sem write op.
 371         */
 372        pte = get_locked_pte(vma->vm_mm, start, &ptl);
 373        /* Make sure we do not cross the page table boundary */
 374        end = pgd_addr_end(start, end);
 375        end = pud_addr_end(start, end);
 376        end = pmd_addr_end(start, end);
 377
 378        /* The page next to the pinned page is the first we will try to get */
 379        start += PAGE_SIZE;
 380        while (start < end) {
 381                struct page *page = NULL;
 382                pte++;
 383                if (pte_present(*pte))
 384                        page = vm_normal_page(vma, start, *pte);
 385                /*
 386                 * Break if page could not be obtained or the page's node+zone does not
 387                 * match
 388                 */
 389                if (!page || page_zone_id(page) != zoneid)
 390                        break;
 391
 392                get_page(page);
 393                /*
 394                 * Increase the address that will be returned *before* the
 395                 * eventual break due to pvec becoming full by adding the page
 396                 */
 397                start += PAGE_SIZE;
 398                if (pagevec_add(pvec, page) == 0)
 399                        break;
 400        }
 401        pte_unmap_unlock(pte, ptl);
 402        return start;
 403}
 404
 405/*
 406 * munlock_vma_pages_range() - munlock all pages in the vma range.'
 407 * @vma - vma containing range to be munlock()ed.
 408 * @start - start address in @vma of the range
 409 * @end - end of range in @vma.
 410 *
 411 *  For mremap(), munmap() and exit().
 412 *
 413 * Called with @vma VM_LOCKED.
 414 *
 415 * Returns with VM_LOCKED cleared.  Callers must be prepared to
 416 * deal with this.
 417 *
 418 * We don't save and restore VM_LOCKED here because pages are
 419 * still on lru.  In unmap path, pages might be scanned by reclaim
 420 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
 421 * free them.  This will result in freeing mlocked pages.
 422 */
 423void munlock_vma_pages_range(struct vm_area_struct *vma,
 424                             unsigned long start, unsigned long end)
 425{
 426        vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
 427
 428        while (start < end) {
 429                struct page *page = NULL;
 430                unsigned int page_mask;
 431                unsigned long page_increm;
 432                struct pagevec pvec;
 433                struct zone *zone;
 434                int zoneid;
 435
 436                pagevec_init(&pvec, 0);
 437                /*
 438                 * Although FOLL_DUMP is intended for get_dump_page(),
 439                 * it just so happens that its special treatment of the
 440                 * ZERO_PAGE (returning an error instead of doing get_page)
 441                 * suits munlock very well (and if somehow an abnormal page
 442                 * has sneaked into the range, we won't oops here: great).
 443                 */
 444                page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
 445                                &page_mask);
 446
 447                if (page && !IS_ERR(page)) {
 448                        if (PageTransHuge(page)) {
 449                                lock_page(page);
 450                                /*
 451                                 * Any THP page found by follow_page_mask() may
 452                                 * have gotten split before reaching
 453                                 * munlock_vma_page(), so we need to recompute
 454                                 * the page_mask here.
 455                                 */
 456                                page_mask = munlock_vma_page(page);
 457                                unlock_page(page);
 458                                put_page(page); /* follow_page_mask() */
 459                        } else {
 460                                /*
 461                                 * Non-huge pages are handled in batches via
 462                                 * pagevec. The pin from follow_page_mask()
 463                                 * prevents them from collapsing by THP.
 464                                 */
 465                                pagevec_add(&pvec, page);
 466                                zone = page_zone(page);
 467                                zoneid = page_zone_id(page);
 468
 469                                /*
 470                                 * Try to fill the rest of pagevec using fast
 471                                 * pte walk. This will also update start to
 472                                 * the next page to process. Then munlock the
 473                                 * pagevec.
 474                                 */
 475                                start = __munlock_pagevec_fill(&pvec, vma,
 476                                                zoneid, start, end);
 477                                __munlock_pagevec(&pvec, zone);
 478                                goto next;
 479                        }
 480                }
 481                /* It's a bug to munlock in the middle of a THP page */
 482                VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
 483                page_increm = 1 + page_mask;
 484                start += page_increm * PAGE_SIZE;
 485next:
 486                cond_resched();
 487        }
 488}
 489
 490/*
 491 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
 492 *
 493 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
 494 * munlock is a no-op.  However, for some special vmas, we go ahead and
 495 * populate the ptes.
 496 *
 497 * For vmas that pass the filters, merge/split as appropriate.
 498 */
 499static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
 500        unsigned long start, unsigned long end, vm_flags_t newflags)
 501{
 502        struct mm_struct *mm = vma->vm_mm;
 503        pgoff_t pgoff;
 504        int nr_pages;
 505        int ret = 0;
 506        int lock = !!(newflags & VM_LOCKED);
 507        vm_flags_t old_flags = vma->vm_flags;
 508
 509        if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
 510            is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
 511            vma_is_dax(vma))
 512                /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
 513                goto out;
 514
 515        pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
 516        *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
 517                          vma->vm_file, pgoff, vma_policy(vma),
 518                          vma->vm_userfaultfd_ctx);
 519        if (*prev) {
 520                vma = *prev;
 521                goto success;
 522        }
 523
 524        if (start != vma->vm_start) {
 525                ret = split_vma(mm, vma, start, 1);
 526                if (ret)
 527                        goto out;
 528        }
 529
 530        if (end != vma->vm_end) {
 531                ret = split_vma(mm, vma, end, 0);
 532                if (ret)
 533                        goto out;
 534        }
 535
 536success:
 537        /*
 538         * Keep track of amount of locked VM.
 539         */
 540        nr_pages = (end - start) >> PAGE_SHIFT;
 541        if (!lock)
 542                nr_pages = -nr_pages;
 543        else if (old_flags & VM_LOCKED)
 544                nr_pages = 0;
 545        mm->locked_vm += nr_pages;
 546
 547        /*
 548         * vm_flags is protected by the mmap_sem held in write mode.
 549         * It's okay if try_to_unmap_one unmaps a page just after we
 550         * set VM_LOCKED, populate_vma_page_range will bring it back.
 551         */
 552
 553        if (lock)
 554                vma->vm_flags = newflags;
 555        else
 556                munlock_vma_pages_range(vma, start, end);
 557
 558out:
 559        *prev = vma;
 560        return ret;
 561}
 562
 563static int apply_vma_lock_flags(unsigned long start, size_t len,
 564                                vm_flags_t flags)
 565{
 566        unsigned long nstart, end, tmp;
 567        struct vm_area_struct * vma, * prev;
 568        int error;
 569
 570        VM_BUG_ON(offset_in_page(start));
 571        VM_BUG_ON(len != PAGE_ALIGN(len));
 572        end = start + len;
 573        if (end < start)
 574                return -EINVAL;
 575        if (end == start)
 576                return 0;
 577        vma = find_vma(current->mm, start);
 578        if (!vma || vma->vm_start > start)
 579                return -ENOMEM;
 580
 581        prev = vma->vm_prev;
 582        if (start > vma->vm_start)
 583                prev = vma;
 584
 585        for (nstart = start ; ; ) {
 586                vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 587
 588                newflags |= flags;
 589
 590                /* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 591                tmp = vma->vm_end;
 592                if (tmp > end)
 593                        tmp = end;
 594                error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
 595                if (error)
 596                        break;
 597                nstart = tmp;
 598                if (nstart < prev->vm_end)
 599                        nstart = prev->vm_end;
 600                if (nstart >= end)
 601                        break;
 602
 603                vma = prev->vm_next;
 604                if (!vma || vma->vm_start != nstart) {
 605                        error = -ENOMEM;
 606                        break;
 607                }
 608        }
 609        return error;
 610}
 611
 612static int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
 613{
 614        unsigned long locked;
 615        unsigned long lock_limit;
 616        int error = -ENOMEM;
 617
 618        if (!can_do_mlock())
 619                return -EPERM;
 620
 621        len = PAGE_ALIGN(len + (offset_in_page(start)));
 622        start &= PAGE_MASK;
 623
 624        lock_limit = rlimit(RLIMIT_MEMLOCK);
 625        lock_limit >>= PAGE_SHIFT;
 626        locked = len >> PAGE_SHIFT;
 627
 628        down_write(&current->mm->mmap_sem);
 629
 630        locked += current->mm->locked_vm;
 631
 632        /* check against resource limits */
 633        if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
 634                error = apply_vma_lock_flags(start, len, flags);
 635
 636        up_write(&current->mm->mmap_sem);
 637        if (error)
 638                return error;
 639
 640        error = __mm_populate(start, len, 0);
 641        if (error)
 642                return __mlock_posix_error_return(error);
 643        return 0;
 644}
 645
 646SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
 647{
 648        return do_mlock(start, len, VM_LOCKED);
 649}
 650
 651SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
 652{
 653        vm_flags_t vm_flags = VM_LOCKED;
 654
 655        if (flags & ~MLOCK_ONFAULT)
 656                return -EINVAL;
 657
 658        if (flags & MLOCK_ONFAULT)
 659                vm_flags |= VM_LOCKONFAULT;
 660
 661        return do_mlock(start, len, vm_flags);
 662}
 663
 664SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
 665{
 666        int ret;
 667
 668        len = PAGE_ALIGN(len + (offset_in_page(start)));
 669        start &= PAGE_MASK;
 670
 671        down_write(&current->mm->mmap_sem);
 672        ret = apply_vma_lock_flags(start, len, 0);
 673        up_write(&current->mm->mmap_sem);
 674
 675        return ret;
 676}
 677
 678/*
 679 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
 680 * and translate into the appropriate modifications to mm->def_flags and/or the
 681 * flags for all current VMAs.
 682 *
 683 * There are a couple of subtleties with this.  If mlockall() is called multiple
 684 * times with different flags, the values do not necessarily stack.  If mlockall
 685 * is called once including the MCL_FUTURE flag and then a second time without
 686 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
 687 */
 688static int apply_mlockall_flags(int flags)
 689{
 690        struct vm_area_struct * vma, * prev = NULL;
 691        vm_flags_t to_add = 0;
 692
 693        current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
 694        if (flags & MCL_FUTURE) {
 695                current->mm->def_flags |= VM_LOCKED;
 696
 697                if (flags & MCL_ONFAULT)
 698                        current->mm->def_flags |= VM_LOCKONFAULT;
 699
 700                if (!(flags & MCL_CURRENT))
 701                        goto out;
 702        }
 703
 704        if (flags & MCL_CURRENT) {
 705                to_add |= VM_LOCKED;
 706                if (flags & MCL_ONFAULT)
 707                        to_add |= VM_LOCKONFAULT;
 708        }
 709
 710        for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
 711                vm_flags_t newflags;
 712
 713                newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
 714                newflags |= to_add;
 715
 716                /* Ignore errors */
 717                mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 718                cond_resched();
 719        }
 720out:
 721        return 0;
 722}
 723
 724SYSCALL_DEFINE1(mlockall, int, flags)
 725{
 726        unsigned long lock_limit;
 727        int ret;
 728
 729        if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
 730            flags == MCL_ONFAULT)
 731                return -EINVAL;
 732
 733        if (!can_do_mlock())
 734                return -EPERM;
 735
 736        lock_limit = rlimit(RLIMIT_MEMLOCK);
 737        lock_limit >>= PAGE_SHIFT;
 738
 739        ret = -ENOMEM;
 740        down_write(&current->mm->mmap_sem);
 741
 742        if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
 743            capable(CAP_IPC_LOCK))
 744                ret = apply_mlockall_flags(flags);
 745        up_write(&current->mm->mmap_sem);
 746        if (!ret && (flags & MCL_CURRENT))
 747                mm_populate(0, TASK_SIZE);
 748
 749        return ret;
 750}
 751
 752SYSCALL_DEFINE0(munlockall)
 753{
 754        int ret;
 755
 756        down_write(&current->mm->mmap_sem);
 757        ret = apply_mlockall_flags(0);
 758        up_write(&current->mm->mmap_sem);
 759        return ret;
 760}
 761
 762/*
 763 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
 764 * shm segments) get accounted against the user_struct instead.
 765 */
 766static DEFINE_SPINLOCK(shmlock_user_lock);
 767
 768int user_shm_lock(size_t size, struct user_struct *user)
 769{
 770        unsigned long lock_limit, locked;
 771        int allowed = 0;
 772
 773        locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 774        lock_limit = rlimit(RLIMIT_MEMLOCK);
 775        if (lock_limit == RLIM_INFINITY)
 776                allowed = 1;
 777        lock_limit >>= PAGE_SHIFT;
 778        spin_lock(&shmlock_user_lock);
 779        if (!allowed &&
 780            locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 781                goto out;
 782        get_uid(user);
 783        user->locked_shm += locked;
 784        allowed = 1;
 785out:
 786        spin_unlock(&shmlock_user_lock);
 787        return allowed;
 788}
 789
 790void user_shm_unlock(size_t size, struct user_struct *user)
 791{
 792        spin_lock(&shmlock_user_lock);
 793        user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 794        spin_unlock(&shmlock_user_lock);
 795        free_uid(user);
 796}
 797