linux/arch/arm/mach-omap2/vc.c
<<
>>
Prefs
   1/*
   2 * OMAP Voltage Controller (VC) interface
   3 *
   4 * Copyright (C) 2011 Texas Instruments, Inc.
   5 *
   6 * This file is licensed under the terms of the GNU General Public
   7 * License version 2. This program is licensed "as is" without any
   8 * warranty of any kind, whether express or implied.
   9 */
  10#include <linux/kernel.h>
  11#include <linux/delay.h>
  12#include <linux/init.h>
  13#include <linux/bug.h>
  14#include <linux/io.h>
  15
  16#include <asm/div64.h>
  17
  18#include "iomap.h"
  19#include "soc.h"
  20#include "voltage.h"
  21#include "vc.h"
  22#include "prm-regbits-34xx.h"
  23#include "prm-regbits-44xx.h"
  24#include "prm44xx.h"
  25#include "pm.h"
  26#include "scrm44xx.h"
  27#include "control.h"
  28
  29/**
  30 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
  31 * @sa: bit for slave address
  32 * @rav: bit for voltage configuration register
  33 * @rac: bit for command configuration register
  34 * @racen: enable bit for RAC
  35 * @cmd: bit for command value set selection
  36 *
  37 * Channel configuration bits, common for OMAP3+
  38 * OMAP3 register: PRM_VC_CH_CONF
  39 * OMAP4 register: PRM_VC_CFG_CHANNEL
  40 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
  41 */
  42struct omap_vc_channel_cfg {
  43        u8 sa;
  44        u8 rav;
  45        u8 rac;
  46        u8 racen;
  47        u8 cmd;
  48};
  49
  50static struct omap_vc_channel_cfg vc_default_channel_cfg = {
  51        .sa    = BIT(0),
  52        .rav   = BIT(1),
  53        .rac   = BIT(2),
  54        .racen = BIT(3),
  55        .cmd   = BIT(4),
  56};
  57
  58/*
  59 * On OMAP3+, all VC channels have the above default bitfield
  60 * configuration, except the OMAP4 MPU channel.  This appears
  61 * to be a freak accident as every other VC channel has the
  62 * default configuration, thus creating a mutant channel config.
  63 */
  64static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
  65        .sa    = BIT(0),
  66        .rav   = BIT(2),
  67        .rac   = BIT(3),
  68        .racen = BIT(4),
  69        .cmd   = BIT(1),
  70};
  71
  72static struct omap_vc_channel_cfg *vc_cfg_bits;
  73
  74/* Default I2C trace length on pcb, 6.3cm. Used for capacitance calculations. */
  75static u32 sr_i2c_pcb_length = 63;
  76#define CFG_CHANNEL_MASK 0x1f
  77
  78/**
  79 * omap_vc_config_channel - configure VC channel to PMIC mappings
  80 * @voltdm: pointer to voltagdomain defining the desired VC channel
  81 *
  82 * Configures the VC channel to PMIC mappings for the following
  83 * PMIC settings
  84 * - i2c slave address (SA)
  85 * - voltage configuration address (RAV)
  86 * - command configuration address (RAC) and enable bit (RACEN)
  87 * - command values for ON, ONLP, RET and OFF (CMD)
  88 *
  89 * This function currently only allows flexible configuration of the
  90 * non-default channel.  Starting with OMAP4, there are more than 2
  91 * channels, with one defined as the default (on OMAP4, it's MPU.)
  92 * Only the non-default channel can be configured.
  93 */
  94static int omap_vc_config_channel(struct voltagedomain *voltdm)
  95{
  96        struct omap_vc_channel *vc = voltdm->vc;
  97
  98        /*
  99         * For default channel, the only configurable bit is RACEN.
 100         * All others must stay at zero (see function comment above.)
 101         */
 102        if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
 103                vc->cfg_channel &= vc_cfg_bits->racen;
 104
 105        voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
 106                    vc->cfg_channel << vc->cfg_channel_sa_shift,
 107                    vc->cfg_channel_reg);
 108
 109        return 0;
 110}
 111
 112/* Voltage scale and accessory APIs */
 113int omap_vc_pre_scale(struct voltagedomain *voltdm,
 114                      unsigned long target_volt,
 115                      u8 *target_vsel, u8 *current_vsel)
 116{
 117        struct omap_vc_channel *vc = voltdm->vc;
 118        u32 vc_cmdval;
 119
 120        /* Check if sufficient pmic info is available for this vdd */
 121        if (!voltdm->pmic) {
 122                pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
 123                        __func__, voltdm->name);
 124                return -EINVAL;
 125        }
 126
 127        if (!voltdm->pmic->uv_to_vsel) {
 128                pr_err("%s: PMIC function to convert voltage in uV to vsel not registered. Hence unable to scale voltage for vdd_%s\n",
 129                       __func__, voltdm->name);
 130                return -ENODATA;
 131        }
 132
 133        if (!voltdm->read || !voltdm->write) {
 134                pr_err("%s: No read/write API for accessing vdd_%s regs\n",
 135                        __func__, voltdm->name);
 136                return -EINVAL;
 137        }
 138
 139        *target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
 140        *current_vsel = voltdm->pmic->uv_to_vsel(voltdm->nominal_volt);
 141
 142        /* Setting the ON voltage to the new target voltage */
 143        vc_cmdval = voltdm->read(vc->cmdval_reg);
 144        vc_cmdval &= ~vc->common->cmd_on_mask;
 145        vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
 146        voltdm->write(vc_cmdval, vc->cmdval_reg);
 147
 148        voltdm->vc_param->on = target_volt;
 149
 150        omap_vp_update_errorgain(voltdm, target_volt);
 151
 152        return 0;
 153}
 154
 155void omap_vc_post_scale(struct voltagedomain *voltdm,
 156                        unsigned long target_volt,
 157                        u8 target_vsel, u8 current_vsel)
 158{
 159        u32 smps_steps = 0, smps_delay = 0;
 160
 161        smps_steps = abs(target_vsel - current_vsel);
 162        /* SMPS slew rate / step size. 2us added as buffer. */
 163        smps_delay = ((smps_steps * voltdm->pmic->step_size) /
 164                        voltdm->pmic->slew_rate) + 2;
 165        udelay(smps_delay);
 166}
 167
 168/* vc_bypass_scale - VC bypass method of voltage scaling */
 169int omap_vc_bypass_scale(struct voltagedomain *voltdm,
 170                         unsigned long target_volt)
 171{
 172        struct omap_vc_channel *vc = voltdm->vc;
 173        u32 loop_cnt = 0, retries_cnt = 0;
 174        u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
 175        u8 target_vsel, current_vsel;
 176        int ret;
 177
 178        ret = omap_vc_pre_scale(voltdm, target_volt, &target_vsel, &current_vsel);
 179        if (ret)
 180                return ret;
 181
 182        vc_valid = vc->common->valid;
 183        vc_bypass_val_reg = vc->common->bypass_val_reg;
 184        vc_bypass_value = (target_vsel << vc->common->data_shift) |
 185                (vc->volt_reg_addr << vc->common->regaddr_shift) |
 186                (vc->i2c_slave_addr << vc->common->slaveaddr_shift);
 187
 188        voltdm->write(vc_bypass_value, vc_bypass_val_reg);
 189        voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
 190
 191        vc_bypass_value = voltdm->read(vc_bypass_val_reg);
 192        /*
 193         * Loop till the bypass command is acknowledged from the SMPS.
 194         * NOTE: This is legacy code. The loop count and retry count needs
 195         * to be revisited.
 196         */
 197        while (!(vc_bypass_value & vc_valid)) {
 198                loop_cnt++;
 199
 200                if (retries_cnt > 10) {
 201                        pr_warning("%s: Retry count exceeded\n", __func__);
 202                        return -ETIMEDOUT;
 203                }
 204
 205                if (loop_cnt > 50) {
 206                        retries_cnt++;
 207                        loop_cnt = 0;
 208                        udelay(10);
 209                }
 210                vc_bypass_value = voltdm->read(vc_bypass_val_reg);
 211        }
 212
 213        omap_vc_post_scale(voltdm, target_volt, target_vsel, current_vsel);
 214        return 0;
 215}
 216
 217/* Convert microsecond value to number of 32kHz clock cycles */
 218static inline u32 omap_usec_to_32k(u32 usec)
 219{
 220        return DIV_ROUND_UP_ULL(32768ULL * (u64)usec, 1000000ULL);
 221}
 222
 223/* Set oscillator setup time for omap3 */
 224static void omap3_set_clksetup(u32 usec, struct voltagedomain *voltdm)
 225{
 226        voltdm->write(omap_usec_to_32k(usec), OMAP3_PRM_CLKSETUP_OFFSET);
 227}
 228
 229/**
 230 * omap3_set_i2c_timings - sets i2c sleep timings for a channel
 231 * @voltdm: channel to configure
 232 * @off_mode: select whether retention or off mode values used
 233 *
 234 * Calculates and sets up voltage controller to use I2C based
 235 * voltage scaling for sleep modes. This can be used for either off mode
 236 * or retention. Off mode has additionally an option to use sys_off_mode
 237 * pad, which uses a global signal to program the whole power IC to
 238 * off-mode.
 239 */
 240static void omap3_set_i2c_timings(struct voltagedomain *voltdm, bool off_mode)
 241{
 242        unsigned long voltsetup1;
 243        u32 tgt_volt;
 244
 245        /*
 246         * Oscillator is shut down only if we are using sys_off_mode pad,
 247         * thus we set a minimal setup time here
 248         */
 249        omap3_set_clksetup(1, voltdm);
 250
 251        if (off_mode)
 252                tgt_volt = voltdm->vc_param->off;
 253        else
 254                tgt_volt = voltdm->vc_param->ret;
 255
 256        voltsetup1 = (voltdm->vc_param->on - tgt_volt) /
 257                        voltdm->pmic->slew_rate;
 258
 259        voltsetup1 = voltsetup1 * voltdm->sys_clk.rate / 8 / 1000000 + 1;
 260
 261        voltdm->rmw(voltdm->vfsm->voltsetup_mask,
 262                voltsetup1 << __ffs(voltdm->vfsm->voltsetup_mask),
 263                voltdm->vfsm->voltsetup_reg);
 264
 265        /*
 266         * pmic is not controlling the voltage scaling during retention,
 267         * thus set voltsetup2 to 0
 268         */
 269        voltdm->write(0, OMAP3_PRM_VOLTSETUP2_OFFSET);
 270}
 271
 272/**
 273 * omap3_set_off_timings - sets off-mode timings for a channel
 274 * @voltdm: channel to configure
 275 *
 276 * Calculates and sets up off-mode timings for a channel. Off-mode
 277 * can use either I2C based voltage scaling, or alternatively
 278 * sys_off_mode pad can be used to send a global command to power IC.
 279 * This function first checks which mode is being used, and calls
 280 * omap3_set_i2c_timings() if the system is using I2C control mode.
 281 * sys_off_mode has the additional benefit that voltages can be
 282 * scaled to zero volt level with TWL4030 / TWL5030, I2C can only
 283 * scale to 600mV.
 284 */
 285static void omap3_set_off_timings(struct voltagedomain *voltdm)
 286{
 287        unsigned long clksetup;
 288        unsigned long voltsetup2;
 289        unsigned long voltsetup2_old;
 290        u32 val;
 291        u32 tstart, tshut;
 292
 293        /* check if sys_off_mode is used to control off-mode voltages */
 294        val = voltdm->read(OMAP3_PRM_VOLTCTRL_OFFSET);
 295        if (!(val & OMAP3430_SEL_OFF_MASK)) {
 296                /* No, omap is controlling them over I2C */
 297                omap3_set_i2c_timings(voltdm, true);
 298                return;
 299        }
 300
 301        omap_pm_get_oscillator(&tstart, &tshut);
 302        omap3_set_clksetup(tstart, voltdm);
 303
 304        clksetup = voltdm->read(OMAP3_PRM_CLKSETUP_OFFSET);
 305
 306        /* voltsetup 2 in us */
 307        voltsetup2 = voltdm->vc_param->on / voltdm->pmic->slew_rate;
 308
 309        /* convert to 32k clk cycles */
 310        voltsetup2 = DIV_ROUND_UP(voltsetup2 * 32768, 1000000);
 311
 312        voltsetup2_old = voltdm->read(OMAP3_PRM_VOLTSETUP2_OFFSET);
 313
 314        /*
 315         * Update voltsetup2 if higher than current value (needed because
 316         * we have multiple channels with different ramp times), also
 317         * update voltoffset always to value recommended by TRM
 318         */
 319        if (voltsetup2 > voltsetup2_old) {
 320                voltdm->write(voltsetup2, OMAP3_PRM_VOLTSETUP2_OFFSET);
 321                voltdm->write(clksetup - voltsetup2,
 322                        OMAP3_PRM_VOLTOFFSET_OFFSET);
 323        } else
 324                voltdm->write(clksetup - voltsetup2_old,
 325                        OMAP3_PRM_VOLTOFFSET_OFFSET);
 326
 327        /*
 328         * omap is not controlling voltage scaling during off-mode,
 329         * thus set voltsetup1 to 0
 330         */
 331        voltdm->rmw(voltdm->vfsm->voltsetup_mask, 0,
 332                voltdm->vfsm->voltsetup_reg);
 333
 334        /* voltoffset must be clksetup minus voltsetup2 according to TRM */
 335        voltdm->write(clksetup - voltsetup2, OMAP3_PRM_VOLTOFFSET_OFFSET);
 336}
 337
 338static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
 339{
 340        omap3_set_off_timings(voltdm);
 341}
 342
 343/**
 344 * omap4_calc_volt_ramp - calculates voltage ramping delays on omap4
 345 * @voltdm: channel to calculate values for
 346 * @voltage_diff: voltage difference in microvolts
 347 *
 348 * Calculates voltage ramp prescaler + counter values for a voltage
 349 * difference on omap4. Returns a field value suitable for writing to
 350 * VOLTSETUP register for a channel in following format:
 351 * bits[8:9] prescaler ... bits[0:5] counter. See OMAP4 TRM for reference.
 352 */
 353static u32 omap4_calc_volt_ramp(struct voltagedomain *voltdm, u32 voltage_diff)
 354{
 355        u32 prescaler;
 356        u32 cycles;
 357        u32 time;
 358
 359        time = voltage_diff / voltdm->pmic->slew_rate;
 360
 361        cycles = voltdm->sys_clk.rate / 1000 * time / 1000;
 362
 363        cycles /= 64;
 364        prescaler = 0;
 365
 366        /* shift to next prescaler until no overflow */
 367
 368        /* scale for div 256 = 64 * 4 */
 369        if (cycles > 63) {
 370                cycles /= 4;
 371                prescaler++;
 372        }
 373
 374        /* scale for div 512 = 256 * 2 */
 375        if (cycles > 63) {
 376                cycles /= 2;
 377                prescaler++;
 378        }
 379
 380        /* scale for div 2048 = 512 * 4 */
 381        if (cycles > 63) {
 382                cycles /= 4;
 383                prescaler++;
 384        }
 385
 386        /* check for overflow => invalid ramp time */
 387        if (cycles > 63) {
 388                pr_warn("%s: invalid setuptime for vdd_%s\n", __func__,
 389                        voltdm->name);
 390                return 0;
 391        }
 392
 393        cycles++;
 394
 395        return (prescaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
 396                (cycles << OMAP4430_RAMP_UP_COUNT_SHIFT);
 397}
 398
 399/**
 400 * omap4_usec_to_val_scrm - convert microsecond value to SCRM module bitfield
 401 * @usec: microseconds
 402 * @shift: number of bits to shift left
 403 * @mask: bitfield mask
 404 *
 405 * Converts microsecond value to OMAP4 SCRM bitfield. Bitfield is
 406 * shifted to requested position, and checked agains the mask value.
 407 * If larger, forced to the max value of the field (i.e. the mask itself.)
 408 * Returns the SCRM bitfield value.
 409 */
 410static u32 omap4_usec_to_val_scrm(u32 usec, int shift, u32 mask)
 411{
 412        u32 val;
 413
 414        val = omap_usec_to_32k(usec) << shift;
 415
 416        /* Check for overflow, if yes, force to max value */
 417        if (val > mask)
 418                val = mask;
 419
 420        return val;
 421}
 422
 423/**
 424 * omap4_set_timings - set voltage ramp timings for a channel
 425 * @voltdm: channel to configure
 426 * @off_mode: whether off-mode values are used
 427 *
 428 * Calculates and sets the voltage ramp up / down values for a channel.
 429 */
 430static void omap4_set_timings(struct voltagedomain *voltdm, bool off_mode)
 431{
 432        u32 val;
 433        u32 ramp;
 434        int offset;
 435        u32 tstart, tshut;
 436
 437        if (off_mode) {
 438                ramp = omap4_calc_volt_ramp(voltdm,
 439                        voltdm->vc_param->on - voltdm->vc_param->off);
 440                offset = voltdm->vfsm->voltsetup_off_reg;
 441        } else {
 442                ramp = omap4_calc_volt_ramp(voltdm,
 443                        voltdm->vc_param->on - voltdm->vc_param->ret);
 444                offset = voltdm->vfsm->voltsetup_reg;
 445        }
 446
 447        if (!ramp)
 448                return;
 449
 450        val = voltdm->read(offset);
 451
 452        val |= ramp << OMAP4430_RAMP_DOWN_COUNT_SHIFT;
 453
 454        val |= ramp << OMAP4430_RAMP_UP_COUNT_SHIFT;
 455
 456        voltdm->write(val, offset);
 457
 458        omap_pm_get_oscillator(&tstart, &tshut);
 459
 460        val = omap4_usec_to_val_scrm(tstart, OMAP4_SETUPTIME_SHIFT,
 461                OMAP4_SETUPTIME_MASK);
 462        val |= omap4_usec_to_val_scrm(tshut, OMAP4_DOWNTIME_SHIFT,
 463                OMAP4_DOWNTIME_MASK);
 464
 465        __raw_writel(val, OMAP4_SCRM_CLKSETUPTIME);
 466}
 467
 468/* OMAP4 specific voltage init functions */
 469static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
 470{
 471        omap4_set_timings(voltdm, true);
 472        omap4_set_timings(voltdm, false);
 473}
 474
 475struct i2c_init_data {
 476        u8 loadbits;
 477        u8 load;
 478        u8 hsscll_38_4;
 479        u8 hsscll_26;
 480        u8 hsscll_19_2;
 481        u8 hsscll_16_8;
 482        u8 hsscll_12;
 483};
 484
 485static const __initdata struct i2c_init_data omap4_i2c_timing_data[] = {
 486        {
 487                .load = 50,
 488                .loadbits = 0x3,
 489                .hsscll_38_4 = 13,
 490                .hsscll_26 = 11,
 491                .hsscll_19_2 = 9,
 492                .hsscll_16_8 = 9,
 493                .hsscll_12 = 8,
 494        },
 495        {
 496                .load = 25,
 497                .loadbits = 0x2,
 498                .hsscll_38_4 = 13,
 499                .hsscll_26 = 11,
 500                .hsscll_19_2 = 9,
 501                .hsscll_16_8 = 9,
 502                .hsscll_12 = 8,
 503        },
 504        {
 505                .load = 12,
 506                .loadbits = 0x1,
 507                .hsscll_38_4 = 11,
 508                .hsscll_26 = 10,
 509                .hsscll_19_2 = 9,
 510                .hsscll_16_8 = 9,
 511                .hsscll_12 = 8,
 512        },
 513        {
 514                .load = 0,
 515                .loadbits = 0x0,
 516                .hsscll_38_4 = 12,
 517                .hsscll_26 = 10,
 518                .hsscll_19_2 = 9,
 519                .hsscll_16_8 = 8,
 520                .hsscll_12 = 8,
 521        },
 522};
 523
 524/**
 525 * omap4_vc_i2c_timing_init - sets up board I2C timing parameters
 526 * @voltdm: voltagedomain pointer to get data from
 527 *
 528 * Use PMIC + board supplied settings for calculating the total I2C
 529 * channel capacitance and set the timing parameters based on this.
 530 * Pre-calculated values are provided in data tables, as it is not
 531 * too straightforward to calculate these runtime.
 532 */
 533static void __init omap4_vc_i2c_timing_init(struct voltagedomain *voltdm)
 534{
 535        u32 capacitance;
 536        u32 val;
 537        u16 hsscll;
 538        const struct i2c_init_data *i2c_data;
 539
 540        if (!voltdm->pmic->i2c_high_speed) {
 541                pr_warn("%s: only high speed supported!\n", __func__);
 542                return;
 543        }
 544
 545        /* PCB trace capacitance, 0.125pF / mm => mm / 8 */
 546        capacitance = DIV_ROUND_UP(sr_i2c_pcb_length, 8);
 547
 548        /* OMAP pad capacitance */
 549        capacitance += 4;
 550
 551        /* PMIC pad capacitance */
 552        capacitance += voltdm->pmic->i2c_pad_load;
 553
 554        /* Search for capacitance match in the table */
 555        i2c_data = omap4_i2c_timing_data;
 556
 557        while (i2c_data->load > capacitance)
 558                i2c_data++;
 559
 560        /* Select proper values based on sysclk frequency */
 561        switch (voltdm->sys_clk.rate) {
 562        case 38400000:
 563                hsscll = i2c_data->hsscll_38_4;
 564                break;
 565        case 26000000:
 566                hsscll = i2c_data->hsscll_26;
 567                break;
 568        case 19200000:
 569                hsscll = i2c_data->hsscll_19_2;
 570                break;
 571        case 16800000:
 572                hsscll = i2c_data->hsscll_16_8;
 573                break;
 574        case 12000000:
 575                hsscll = i2c_data->hsscll_12;
 576                break;
 577        default:
 578                pr_warn("%s: unsupported sysclk rate: %d!\n", __func__,
 579                        voltdm->sys_clk.rate);
 580                return;
 581        }
 582
 583        /* Loadbits define pull setup for the I2C channels */
 584        val = i2c_data->loadbits << 25 | i2c_data->loadbits << 29;
 585
 586        /* Write to SYSCTRL_PADCONF_WKUP_CTRL_I2C_2 to setup I2C pull */
 587        __raw_writel(val, OMAP2_L4_IO_ADDRESS(OMAP4_CTRL_MODULE_PAD_WKUP +
 588                                OMAP4_CTRL_MODULE_PAD_WKUP_CONTROL_I2C_2));
 589
 590        /* HSSCLH can always be zero */
 591        val = hsscll << OMAP4430_HSSCLL_SHIFT;
 592        val |= (0x28 << OMAP4430_SCLL_SHIFT | 0x2c << OMAP4430_SCLH_SHIFT);
 593
 594        /* Write setup times to I2C config register */
 595        voltdm->write(val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
 596}
 597
 598
 599
 600/**
 601 * omap_vc_i2c_init - initialize I2C interface to PMIC
 602 * @voltdm: voltage domain containing VC data
 603 *
 604 * Use PMIC supplied settings for I2C high-speed mode and
 605 * master code (if set) and program the VC I2C configuration
 606 * register.
 607 *
 608 * The VC I2C configuration is common to all VC channels,
 609 * so this function only configures I2C for the first VC
 610 * channel registers.  All other VC channels will use the
 611 * same configuration.
 612 */
 613static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
 614{
 615        struct omap_vc_channel *vc = voltdm->vc;
 616        static bool initialized;
 617        static bool i2c_high_speed;
 618        u8 mcode;
 619
 620        if (initialized) {
 621                if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
 622                        pr_warn("%s: I2C config for vdd_%s does not match other channels (%u).\n",
 623                                __func__, voltdm->name, i2c_high_speed);
 624                return;
 625        }
 626
 627        i2c_high_speed = voltdm->pmic->i2c_high_speed;
 628        if (i2c_high_speed)
 629                voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
 630                            vc->common->i2c_cfg_hsen_mask,
 631                            vc->common->i2c_cfg_reg);
 632
 633        mcode = voltdm->pmic->i2c_mcode;
 634        if (mcode)
 635                voltdm->rmw(vc->common->i2c_mcode_mask,
 636                            mcode << __ffs(vc->common->i2c_mcode_mask),
 637                            vc->common->i2c_cfg_reg);
 638
 639        if (cpu_is_omap44xx())
 640                omap4_vc_i2c_timing_init(voltdm);
 641
 642        initialized = true;
 643}
 644
 645/**
 646 * omap_vc_calc_vsel - calculate vsel value for a channel
 647 * @voltdm: channel to calculate value for
 648 * @uvolt: microvolt value to convert to vsel
 649 *
 650 * Converts a microvolt value to vsel value for the used PMIC.
 651 * This checks whether the microvolt value is out of bounds, and
 652 * adjusts the value accordingly. If unsupported value detected,
 653 * warning is thrown.
 654 */
 655static u8 omap_vc_calc_vsel(struct voltagedomain *voltdm, u32 uvolt)
 656{
 657        if (voltdm->pmic->vddmin > uvolt)
 658                uvolt = voltdm->pmic->vddmin;
 659        if (voltdm->pmic->vddmax < uvolt) {
 660                WARN(1, "%s: voltage not supported by pmic: %u vs max %u\n",
 661                        __func__, uvolt, voltdm->pmic->vddmax);
 662                /* Lets try maximum value anyway */
 663                uvolt = voltdm->pmic->vddmax;
 664        }
 665
 666        return voltdm->pmic->uv_to_vsel(uvolt);
 667}
 668
 669#ifdef CONFIG_PM
 670/**
 671 * omap_pm_setup_sr_i2c_pcb_length - set length of SR I2C traces on PCB
 672 * @mm: length of the PCB trace in millimetres
 673 *
 674 * Sets the PCB trace length for the I2C channel. By default uses 63mm.
 675 * This is needed for properly calculating the capacitance value for
 676 * the PCB trace, and for setting the SR I2C channel timing parameters.
 677 */
 678void __init omap_pm_setup_sr_i2c_pcb_length(u32 mm)
 679{
 680        sr_i2c_pcb_length = mm;
 681}
 682#endif
 683
 684void __init omap_vc_init_channel(struct voltagedomain *voltdm)
 685{
 686        struct omap_vc_channel *vc = voltdm->vc;
 687        u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
 688        u32 val;
 689
 690        if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
 691                pr_err("%s: No PMIC info for vdd_%s\n", __func__, voltdm->name);
 692                return;
 693        }
 694
 695        if (!voltdm->read || !voltdm->write) {
 696                pr_err("%s: No read/write API for accessing vdd_%s regs\n",
 697                        __func__, voltdm->name);
 698                return;
 699        }
 700
 701        vc->cfg_channel = 0;
 702        if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
 703                vc_cfg_bits = &vc_mutant_channel_cfg;
 704        else
 705                vc_cfg_bits = &vc_default_channel_cfg;
 706
 707        /* get PMIC/board specific settings */
 708        vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
 709        vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
 710        vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
 711
 712        /* Configure the i2c slave address for this VC */
 713        voltdm->rmw(vc->smps_sa_mask,
 714                    vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
 715                    vc->smps_sa_reg);
 716        vc->cfg_channel |= vc_cfg_bits->sa;
 717
 718        /*
 719         * Configure the PMIC register addresses.
 720         */
 721        voltdm->rmw(vc->smps_volra_mask,
 722                    vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
 723                    vc->smps_volra_reg);
 724        vc->cfg_channel |= vc_cfg_bits->rav;
 725
 726        if (vc->cmd_reg_addr) {
 727                voltdm->rmw(vc->smps_cmdra_mask,
 728                            vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
 729                            vc->smps_cmdra_reg);
 730                vc->cfg_channel |= vc_cfg_bits->rac;
 731        }
 732
 733        if (vc->cmd_reg_addr == vc->volt_reg_addr)
 734                vc->cfg_channel |= vc_cfg_bits->racen;
 735
 736        /* Set up the on, inactive, retention and off voltage */
 737        on_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->on);
 738        onlp_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->onlp);
 739        ret_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->ret);
 740        off_vsel = omap_vc_calc_vsel(voltdm, voltdm->vc_param->off);
 741
 742        val = ((on_vsel << vc->common->cmd_on_shift) |
 743               (onlp_vsel << vc->common->cmd_onlp_shift) |
 744               (ret_vsel << vc->common->cmd_ret_shift) |
 745               (off_vsel << vc->common->cmd_off_shift));
 746        voltdm->write(val, vc->cmdval_reg);
 747        vc->cfg_channel |= vc_cfg_bits->cmd;
 748
 749        /* Channel configuration */
 750        omap_vc_config_channel(voltdm);
 751
 752        omap_vc_i2c_init(voltdm);
 753
 754        if (cpu_is_omap34xx())
 755                omap3_vc_init_channel(voltdm);
 756        else if (cpu_is_omap44xx())
 757                omap4_vc_init_channel(voltdm);
 758}
 759
 760