linux/arch/ia64/include/asm/sn/shubio.h
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1992 - 1997, 2000-2005 Silicon Graphics, Inc. All rights reserved.
   7 */
   8
   9#ifndef _ASM_IA64_SN_SHUBIO_H
  10#define _ASM_IA64_SN_SHUBIO_H
  11
  12#define HUB_WIDGET_ID_MAX       0xf
  13#define IIO_NUM_ITTES           7
  14#define HUB_NUM_BIG_WINDOW      (IIO_NUM_ITTES - 1)
  15
  16#define         IIO_WID                 0x00400000      /* Crosstalk Widget Identification */
  17                                                        /* This register is also accessible from
  18                                                         * Crosstalk at address 0x0.  */
  19#define         IIO_WSTAT               0x00400008      /* Crosstalk Widget Status */
  20#define         IIO_WCR                 0x00400020      /* Crosstalk Widget Control Register */
  21#define         IIO_ILAPR               0x00400100      /* IO Local Access Protection Register */
  22#define         IIO_ILAPO               0x00400108      /* IO Local Access Protection Override */
  23#define         IIO_IOWA                0x00400110      /* IO Outbound Widget Access */
  24#define         IIO_IIWA                0x00400118      /* IO Inbound Widget Access */
  25#define         IIO_IIDEM               0x00400120      /* IO Inbound Device Error Mask */
  26#define         IIO_ILCSR               0x00400128      /* IO LLP Control and Status Register */
  27#define         IIO_ILLR                0x00400130      /* IO LLP Log Register    */
  28#define         IIO_IIDSR               0x00400138      /* IO Interrupt Destination */
  29
  30#define         IIO_IGFX0               0x00400140      /* IO Graphics Node-Widget Map 0 */
  31#define         IIO_IGFX1               0x00400148      /* IO Graphics Node-Widget Map 1 */
  32
  33#define         IIO_ISCR0               0x00400150      /* IO Scratch Register 0 */
  34#define         IIO_ISCR1               0x00400158      /* IO Scratch Register 1 */
  35
  36#define         IIO_ITTE1               0x00400160      /* IO Translation Table Entry 1 */
  37#define         IIO_ITTE2               0x00400168      /* IO Translation Table Entry 2 */
  38#define         IIO_ITTE3               0x00400170      /* IO Translation Table Entry 3 */
  39#define         IIO_ITTE4               0x00400178      /* IO Translation Table Entry 4 */
  40#define         IIO_ITTE5               0x00400180      /* IO Translation Table Entry 5 */
  41#define         IIO_ITTE6               0x00400188      /* IO Translation Table Entry 6 */
  42#define         IIO_ITTE7               0x00400190      /* IO Translation Table Entry 7 */
  43
  44#define         IIO_IPRB0               0x00400198      /* IO PRB Entry 0   */
  45#define         IIO_IPRB8               0x004001A0      /* IO PRB Entry 8   */
  46#define         IIO_IPRB9               0x004001A8      /* IO PRB Entry 9   */
  47#define         IIO_IPRBA               0x004001B0      /* IO PRB Entry A   */
  48#define         IIO_IPRBB               0x004001B8      /* IO PRB Entry B   */
  49#define         IIO_IPRBC               0x004001C0      /* IO PRB Entry C   */
  50#define         IIO_IPRBD               0x004001C8      /* IO PRB Entry D   */
  51#define         IIO_IPRBE               0x004001D0      /* IO PRB Entry E   */
  52#define         IIO_IPRBF               0x004001D8      /* IO PRB Entry F   */
  53
  54#define         IIO_IXCC                0x004001E0      /* IO Crosstalk Credit Count Timeout */
  55#define         IIO_IMEM                0x004001E8      /* IO Miscellaneous Error Mask */
  56#define         IIO_IXTT                0x004001F0      /* IO Crosstalk Timeout Threshold */
  57#define         IIO_IECLR               0x004001F8      /* IO Error Clear Register */
  58#define         IIO_IBCR                0x00400200      /* IO BTE Control Register */
  59
  60#define         IIO_IXSM                0x00400208      /* IO Crosstalk Spurious Message */
  61#define         IIO_IXSS                0x00400210      /* IO Crosstalk Spurious Sideband */
  62
  63#define         IIO_ILCT                0x00400218      /* IO LLP Channel Test    */
  64
  65#define         IIO_IIEPH1              0x00400220      /* IO Incoming Error Packet Header, Part 1 */
  66#define         IIO_IIEPH2              0x00400228      /* IO Incoming Error Packet Header, Part 2 */
  67
  68#define         IIO_ISLAPR              0x00400230      /* IO SXB Local Access Protection Regster */
  69#define         IIO_ISLAPO              0x00400238      /* IO SXB Local Access Protection Override */
  70
  71#define         IIO_IWI                 0x00400240      /* IO Wrapper Interrupt Register */
  72#define         IIO_IWEL                0x00400248      /* IO Wrapper Error Log Register */
  73#define         IIO_IWC                 0x00400250      /* IO Wrapper Control Register */
  74#define         IIO_IWS                 0x00400258      /* IO Wrapper Status Register */
  75#define         IIO_IWEIM               0x00400260      /* IO Wrapper Error Interrupt Masking Register */
  76
  77#define         IIO_IPCA                0x00400300      /* IO PRB Counter Adjust */
  78
  79#define         IIO_IPRTE0_A            0x00400308      /* IO PIO Read Address Table Entry 0, Part A */
  80#define         IIO_IPRTE1_A            0x00400310      /* IO PIO Read Address Table Entry 1, Part A */
  81#define         IIO_IPRTE2_A            0x00400318      /* IO PIO Read Address Table Entry 2, Part A */
  82#define         IIO_IPRTE3_A            0x00400320      /* IO PIO Read Address Table Entry 3, Part A */
  83#define         IIO_IPRTE4_A            0x00400328      /* IO PIO Read Address Table Entry 4, Part A */
  84#define         IIO_IPRTE5_A            0x00400330      /* IO PIO Read Address Table Entry 5, Part A */
  85#define         IIO_IPRTE6_A            0x00400338      /* IO PIO Read Address Table Entry 6, Part A */
  86#define         IIO_IPRTE7_A            0x00400340      /* IO PIO Read Address Table Entry 7, Part A */
  87
  88#define         IIO_IPRTE0_B            0x00400348      /* IO PIO Read Address Table Entry 0, Part B */
  89#define         IIO_IPRTE1_B            0x00400350      /* IO PIO Read Address Table Entry 1, Part B */
  90#define         IIO_IPRTE2_B            0x00400358      /* IO PIO Read Address Table Entry 2, Part B */
  91#define         IIO_IPRTE3_B            0x00400360      /* IO PIO Read Address Table Entry 3, Part B */
  92#define         IIO_IPRTE4_B            0x00400368      /* IO PIO Read Address Table Entry 4, Part B */
  93#define         IIO_IPRTE5_B            0x00400370      /* IO PIO Read Address Table Entry 5, Part B */
  94#define         IIO_IPRTE6_B            0x00400378      /* IO PIO Read Address Table Entry 6, Part B */
  95#define         IIO_IPRTE7_B            0x00400380      /* IO PIO Read Address Table Entry 7, Part B */
  96
  97#define         IIO_IPDR                0x00400388      /* IO PIO Deallocation Register */
  98#define         IIO_ICDR                0x00400390      /* IO CRB Entry Deallocation Register */
  99#define         IIO_IFDR                0x00400398      /* IO IOQ FIFO Depth Register */
 100#define         IIO_IIAP                0x004003A0      /* IO IIQ Arbitration Parameters */
 101#define         IIO_ICMR                0x004003A8      /* IO CRB Management Register */
 102#define         IIO_ICCR                0x004003B0      /* IO CRB Control Register */
 103#define         IIO_ICTO                0x004003B8      /* IO CRB Timeout   */
 104#define         IIO_ICTP                0x004003C0      /* IO CRB Timeout Prescalar */
 105
 106#define         IIO_ICRB0_A             0x00400400      /* IO CRB Entry 0_A */
 107#define         IIO_ICRB0_B             0x00400408      /* IO CRB Entry 0_B */
 108#define         IIO_ICRB0_C             0x00400410      /* IO CRB Entry 0_C */
 109#define         IIO_ICRB0_D             0x00400418      /* IO CRB Entry 0_D */
 110#define         IIO_ICRB0_E             0x00400420      /* IO CRB Entry 0_E */
 111
 112#define         IIO_ICRB1_A             0x00400430      /* IO CRB Entry 1_A */
 113#define         IIO_ICRB1_B             0x00400438      /* IO CRB Entry 1_B */
 114#define         IIO_ICRB1_C             0x00400440      /* IO CRB Entry 1_C */
 115#define         IIO_ICRB1_D             0x00400448      /* IO CRB Entry 1_D */
 116#define         IIO_ICRB1_E             0x00400450      /* IO CRB Entry 1_E */
 117
 118#define         IIO_ICRB2_A             0x00400460      /* IO CRB Entry 2_A */
 119#define         IIO_ICRB2_B             0x00400468      /* IO CRB Entry 2_B */
 120#define         IIO_ICRB2_C             0x00400470      /* IO CRB Entry 2_C */
 121#define         IIO_ICRB2_D             0x00400478      /* IO CRB Entry 2_D */
 122#define         IIO_ICRB2_E             0x00400480      /* IO CRB Entry 2_E */
 123
 124#define         IIO_ICRB3_A             0x00400490      /* IO CRB Entry 3_A */
 125#define         IIO_ICRB3_B             0x00400498      /* IO CRB Entry 3_B */
 126#define         IIO_ICRB3_C             0x004004a0      /* IO CRB Entry 3_C */
 127#define         IIO_ICRB3_D             0x004004a8      /* IO CRB Entry 3_D */
 128#define         IIO_ICRB3_E             0x004004b0      /* IO CRB Entry 3_E */
 129
 130#define         IIO_ICRB4_A             0x004004c0      /* IO CRB Entry 4_A */
 131#define         IIO_ICRB4_B             0x004004c8      /* IO CRB Entry 4_B */
 132#define         IIO_ICRB4_C             0x004004d0      /* IO CRB Entry 4_C */
 133#define         IIO_ICRB4_D             0x004004d8      /* IO CRB Entry 4_D */
 134#define         IIO_ICRB4_E             0x004004e0      /* IO CRB Entry 4_E */
 135
 136#define         IIO_ICRB5_A             0x004004f0      /* IO CRB Entry 5_A */
 137#define         IIO_ICRB5_B             0x004004f8      /* IO CRB Entry 5_B */
 138#define         IIO_ICRB5_C             0x00400500      /* IO CRB Entry 5_C */
 139#define         IIO_ICRB5_D             0x00400508      /* IO CRB Entry 5_D */
 140#define         IIO_ICRB5_E             0x00400510      /* IO CRB Entry 5_E */
 141
 142#define         IIO_ICRB6_A             0x00400520      /* IO CRB Entry 6_A */
 143#define         IIO_ICRB6_B             0x00400528      /* IO CRB Entry 6_B */
 144#define         IIO_ICRB6_C             0x00400530      /* IO CRB Entry 6_C */
 145#define         IIO_ICRB6_D             0x00400538      /* IO CRB Entry 6_D */
 146#define         IIO_ICRB6_E             0x00400540      /* IO CRB Entry 6_E */
 147
 148#define         IIO_ICRB7_A             0x00400550      /* IO CRB Entry 7_A */
 149#define         IIO_ICRB7_B             0x00400558      /* IO CRB Entry 7_B */
 150#define         IIO_ICRB7_C             0x00400560      /* IO CRB Entry 7_C */
 151#define         IIO_ICRB7_D             0x00400568      /* IO CRB Entry 7_D */
 152#define         IIO_ICRB7_E             0x00400570      /* IO CRB Entry 7_E */
 153
 154#define         IIO_ICRB8_A             0x00400580      /* IO CRB Entry 8_A */
 155#define         IIO_ICRB8_B             0x00400588      /* IO CRB Entry 8_B */
 156#define         IIO_ICRB8_C             0x00400590      /* IO CRB Entry 8_C */
 157#define         IIO_ICRB8_D             0x00400598      /* IO CRB Entry 8_D */
 158#define         IIO_ICRB8_E             0x004005a0      /* IO CRB Entry 8_E */
 159
 160#define         IIO_ICRB9_A             0x004005b0      /* IO CRB Entry 9_A */
 161#define         IIO_ICRB9_B             0x004005b8      /* IO CRB Entry 9_B */
 162#define         IIO_ICRB9_C             0x004005c0      /* IO CRB Entry 9_C */
 163#define         IIO_ICRB9_D             0x004005c8      /* IO CRB Entry 9_D */
 164#define         IIO_ICRB9_E             0x004005d0      /* IO CRB Entry 9_E */
 165
 166#define         IIO_ICRBA_A             0x004005e0      /* IO CRB Entry A_A */
 167#define         IIO_ICRBA_B             0x004005e8      /* IO CRB Entry A_B */
 168#define         IIO_ICRBA_C             0x004005f0      /* IO CRB Entry A_C */
 169#define         IIO_ICRBA_D             0x004005f8      /* IO CRB Entry A_D */
 170#define         IIO_ICRBA_E             0x00400600      /* IO CRB Entry A_E */
 171
 172#define         IIO_ICRBB_A             0x00400610      /* IO CRB Entry B_A */
 173#define         IIO_ICRBB_B             0x00400618      /* IO CRB Entry B_B */
 174#define         IIO_ICRBB_C             0x00400620      /* IO CRB Entry B_C */
 175#define         IIO_ICRBB_D             0x00400628      /* IO CRB Entry B_D */
 176#define         IIO_ICRBB_E             0x00400630      /* IO CRB Entry B_E */
 177
 178#define         IIO_ICRBC_A             0x00400640      /* IO CRB Entry C_A */
 179#define         IIO_ICRBC_B             0x00400648      /* IO CRB Entry C_B */
 180#define         IIO_ICRBC_C             0x00400650      /* IO CRB Entry C_C */
 181#define         IIO_ICRBC_D             0x00400658      /* IO CRB Entry C_D */
 182#define         IIO_ICRBC_E             0x00400660      /* IO CRB Entry C_E */
 183
 184#define         IIO_ICRBD_A             0x00400670      /* IO CRB Entry D_A */
 185#define         IIO_ICRBD_B             0x00400678      /* IO CRB Entry D_B */
 186#define         IIO_ICRBD_C             0x00400680      /* IO CRB Entry D_C */
 187#define         IIO_ICRBD_D             0x00400688      /* IO CRB Entry D_D */
 188#define         IIO_ICRBD_E             0x00400690      /* IO CRB Entry D_E */
 189
 190#define         IIO_ICRBE_A             0x004006a0      /* IO CRB Entry E_A */
 191#define         IIO_ICRBE_B             0x004006a8      /* IO CRB Entry E_B */
 192#define         IIO_ICRBE_C             0x004006b0      /* IO CRB Entry E_C */
 193#define         IIO_ICRBE_D             0x004006b8      /* IO CRB Entry E_D */
 194#define         IIO_ICRBE_E             0x004006c0      /* IO CRB Entry E_E */
 195
 196#define         IIO_ICSML               0x00400700      /* IO CRB Spurious Message Low */
 197#define         IIO_ICSMM               0x00400708      /* IO CRB Spurious Message Middle */
 198#define         IIO_ICSMH               0x00400710      /* IO CRB Spurious Message High */
 199
 200#define         IIO_IDBSS               0x00400718      /* IO Debug Submenu Select */
 201
 202#define         IIO_IBLS0               0x00410000      /* IO BTE Length Status 0 */
 203#define         IIO_IBSA0               0x00410008      /* IO BTE Source Address 0 */
 204#define         IIO_IBDA0               0x00410010      /* IO BTE Destination Address 0 */
 205#define         IIO_IBCT0               0x00410018      /* IO BTE Control Terminate 0 */
 206#define         IIO_IBNA0               0x00410020      /* IO BTE Notification Address 0 */
 207#define         IIO_IBIA0               0x00410028      /* IO BTE Interrupt Address 0 */
 208#define         IIO_IBLS1               0x00420000      /* IO BTE Length Status 1 */
 209#define         IIO_IBSA1               0x00420008      /* IO BTE Source Address 1 */
 210#define         IIO_IBDA1               0x00420010      /* IO BTE Destination Address 1 */
 211#define         IIO_IBCT1               0x00420018      /* IO BTE Control Terminate 1 */
 212#define         IIO_IBNA1               0x00420020      /* IO BTE Notification Address 1 */
 213#define         IIO_IBIA1               0x00420028      /* IO BTE Interrupt Address 1 */
 214
 215#define         IIO_IPCR                0x00430000      /* IO Performance Control */
 216#define         IIO_IPPR                0x00430008      /* IO Performance Profiling */
 217
 218/************************************************************************
 219 *                                                                      *
 220 * Description:  This register echoes some information from the         *
 221 * LB_REV_ID register. It is available through Crosstalk as described   *
 222 * above. The REV_NUM and MFG_NUM fields receive their values from      *
 223 * the REVISION and MANUFACTURER fields in the LB_REV_ID register.      *
 224 * The PART_NUM field's value is the Crosstalk device ID number that    *
 225 * Steve Miller assigned to the SHub chip.                              *
 226 *                                                                      *
 227 ************************************************************************/
 228
 229typedef union ii_wid_u {
 230        u64 ii_wid_regval;
 231        struct {
 232                u64 w_rsvd_1:1;
 233                u64 w_mfg_num:11;
 234                u64 w_part_num:16;
 235                u64 w_rev_num:4;
 236                u64 w_rsvd:32;
 237        } ii_wid_fld_s;
 238} ii_wid_u_t;
 239
 240/************************************************************************
 241 *                                                                      *
 242 *  The fields in this register are set upon detection of an error      *
 243 * and cleared by various mechanisms, as explained in the               *
 244 * description.                                                         *
 245 *                                                                      *
 246 ************************************************************************/
 247
 248typedef union ii_wstat_u {
 249        u64 ii_wstat_regval;
 250        struct {
 251                u64 w_pending:4;
 252                u64 w_xt_crd_to:1;
 253                u64 w_xt_tail_to:1;
 254                u64 w_rsvd_3:3;
 255                u64 w_tx_mx_rty:1;
 256                u64 w_rsvd_2:6;
 257                u64 w_llp_tx_cnt:8;
 258                u64 w_rsvd_1:8;
 259                u64 w_crazy:1;
 260                u64 w_rsvd:31;
 261        } ii_wstat_fld_s;
 262} ii_wstat_u_t;
 263
 264/************************************************************************
 265 *                                                                      *
 266 * Description:  This is a read-write enabled register. It controls     *
 267 * various aspects of the Crosstalk flow control.                       *
 268 *                                                                      *
 269 ************************************************************************/
 270
 271typedef union ii_wcr_u {
 272        u64 ii_wcr_regval;
 273        struct {
 274                u64 w_wid:4;
 275                u64 w_tag:1;
 276                u64 w_rsvd_1:8;
 277                u64 w_dst_crd:3;
 278                u64 w_f_bad_pkt:1;
 279                u64 w_dir_con:1;
 280                u64 w_e_thresh:5;
 281                u64 w_rsvd:41;
 282        } ii_wcr_fld_s;
 283} ii_wcr_u_t;
 284
 285/************************************************************************
 286 *                                                                      *
 287 * Description:  This register's value is a bit vector that guards      *
 288 * access to local registers within the II as well as to external       *
 289 * Crosstalk widgets. Each bit in the register corresponds to a         *
 290 * particular region in the system; a region consists of one, two or    *
 291 * four nodes (depending on the value of the REGION_SIZE field in the   *
 292 * LB_REV_ID register, which is documented in Section 8.3.1.1). The     *
 293 * protection provided by this register applies to PIO read             *
 294 * operations as well as PIO write operations. The II will perform a    *
 295 * PIO read or write request only if the bit for the requestor's        *
 296 * region is set; otherwise, the II will not perform the requested      *
 297 * operation and will return an error response. When a PIO read or      *
 298 * write request targets an external Crosstalk widget, then not only    *
 299 * must the bit for the requestor's region be set in the ILAPR, but     *
 300 * also the target widget's bit in the IOWA register must be set in     *
 301 * order for the II to perform the requested operation; otherwise,      *
 302 * the II will return an error response. Hence, the protection          *
 303 * provided by the IOWA register supplements the protection provided    *
 304 * by the ILAPR for requests that target external Crosstalk widgets.    *
 305 * This register itself can be accessed only by the nodes whose         *
 306 * region ID bits are enabled in this same register. It can also be     *
 307 * accessed through the IAlias space by the local processors.           *
 308 * The reset value of this register allows access by all nodes.         *
 309 *                                                                      *
 310 ************************************************************************/
 311
 312typedef union ii_ilapr_u {
 313        u64 ii_ilapr_regval;
 314        struct {
 315                u64 i_region:64;
 316        } ii_ilapr_fld_s;
 317} ii_ilapr_u_t;
 318
 319/************************************************************************
 320 *                                                                      *
 321 * Description:  A write to this register of the 64-bit value           *
 322 * "SGIrules" in ASCII, will cause the bit in the ILAPR register        *
 323 * corresponding to the region of the requestor to be set (allow        *
 324 * access). A write of any other value will be ignored. Access          *
 325 * protection for this register is "SGIrules".                          *
 326 * This register can also be accessed through the IAlias space.         *
 327 * However, this access will not change the access permissions in the   *
 328 * ILAPR.                                                               *
 329 *                                                                      *
 330 ************************************************************************/
 331
 332typedef union ii_ilapo_u {
 333        u64 ii_ilapo_regval;
 334        struct {
 335                u64 i_io_ovrride:64;
 336        } ii_ilapo_fld_s;
 337} ii_ilapo_u_t;
 338
 339/************************************************************************
 340 *                                                                      *
 341 *  This register qualifies all the PIO and Graphics writes launched    *
 342 * from the SHUB towards a widget.                                      *
 343 *                                                                      *
 344 ************************************************************************/
 345
 346typedef union ii_iowa_u {
 347        u64 ii_iowa_regval;
 348        struct {
 349                u64 i_w0_oac:1;
 350                u64 i_rsvd_1:7;
 351                u64 i_wx_oac:8;
 352                u64 i_rsvd:48;
 353        } ii_iowa_fld_s;
 354} ii_iowa_u_t;
 355
 356/************************************************************************
 357 *                                                                      *
 358 * Description:  This register qualifies all the requests launched      *
 359 * from a widget towards the Shub. This register is intended to be      *
 360 * used by software in case of misbehaving widgets.                     *
 361 *                                                                      *
 362 *                                                                      *
 363 ************************************************************************/
 364
 365typedef union ii_iiwa_u {
 366        u64 ii_iiwa_regval;
 367        struct {
 368                u64 i_w0_iac:1;
 369                u64 i_rsvd_1:7;
 370                u64 i_wx_iac:8;
 371                u64 i_rsvd:48;
 372        } ii_iiwa_fld_s;
 373} ii_iiwa_u_t;
 374
 375/************************************************************************
 376 *                                                                      *
 377 * Description:  This register qualifies all the operations launched    *
 378 * from a widget towards the SHub. It allows individual access          *
 379 * control for up to 8 devices per widget. A device refers to           *
 380 * individual DMA master hosted by a widget.                            *
 381 * The bits in each field of this register are cleared by the Shub      *
 382 * upon detection of an error which requires the device to be           *
 383 * disabled. These fields assume that 0=TNUM=7 (i.e., Bridge-centric    *
 384 * Crosstalk). Whether or not a device has access rights to this        *
 385 * Shub is determined by an AND of the device enable bit in the         *
 386 * appropriate field of this register and the corresponding bit in      *
 387 * the Wx_IAC field (for the widget which this device belongs to).      *
 388 * The bits in this field are set by writing a 1 to them. Incoming      *
 389 * replies from Crosstalk are not subject to this access control        *
 390 * mechanism.                                                           *
 391 *                                                                      *
 392 ************************************************************************/
 393
 394typedef union ii_iidem_u {
 395        u64 ii_iidem_regval;
 396        struct {
 397                u64 i_w8_dxs:8;
 398                u64 i_w9_dxs:8;
 399                u64 i_wa_dxs:8;
 400                u64 i_wb_dxs:8;
 401                u64 i_wc_dxs:8;
 402                u64 i_wd_dxs:8;
 403                u64 i_we_dxs:8;
 404                u64 i_wf_dxs:8;
 405        } ii_iidem_fld_s;
 406} ii_iidem_u_t;
 407
 408/************************************************************************
 409 *                                                                      *
 410 *  This register contains the various programmable fields necessary    *
 411 * for controlling and observing the LLP signals.                       *
 412 *                                                                      *
 413 ************************************************************************/
 414
 415typedef union ii_ilcsr_u {
 416        u64 ii_ilcsr_regval;
 417        struct {
 418                u64 i_nullto:6;
 419                u64 i_rsvd_4:2;
 420                u64 i_wrmrst:1;
 421                u64 i_rsvd_3:1;
 422                u64 i_llp_en:1;
 423                u64 i_bm8:1;
 424                u64 i_llp_stat:2;
 425                u64 i_remote_power:1;
 426                u64 i_rsvd_2:1;
 427                u64 i_maxrtry:10;
 428                u64 i_d_avail_sel:2;
 429                u64 i_rsvd_1:4;
 430                u64 i_maxbrst:10;
 431                u64 i_rsvd:22;
 432
 433        } ii_ilcsr_fld_s;
 434} ii_ilcsr_u_t;
 435
 436/************************************************************************
 437 *                                                                      *
 438 *  This is simply a status registers that monitors the LLP error       *
 439 * rate.                                                                *
 440 *                                                                      *
 441 ************************************************************************/
 442
 443typedef union ii_illr_u {
 444        u64 ii_illr_regval;
 445        struct {
 446                u64 i_sn_cnt:16;
 447                u64 i_cb_cnt:16;
 448                u64 i_rsvd:32;
 449        } ii_illr_fld_s;
 450} ii_illr_u_t;
 451
 452/************************************************************************
 453 *                                                                      *
 454 * Description:  All II-detected non-BTE error interrupts are           *
 455 * specified via this register.                                         *
 456 * NOTE: The PI interrupt register address is hardcoded in the II. If   *
 457 * PI_ID==0, then the II sends an interrupt request (Duplonet PWRI      *
 458 * packet) to address offset 0x0180_0090 within the local register      *
 459 * address space of PI0 on the node specified by the NODE field. If     *
 460 * PI_ID==1, then the II sends the interrupt request to address         *
 461 * offset 0x01A0_0090 within the local register address space of PI1    *
 462 * on the node specified by the NODE field.                             *
 463 *                                                                      *
 464 ************************************************************************/
 465
 466typedef union ii_iidsr_u {
 467        u64 ii_iidsr_regval;
 468        struct {
 469                u64 i_level:8;
 470                u64 i_pi_id:1;
 471                u64 i_node:11;
 472                u64 i_rsvd_3:4;
 473                u64 i_enable:1;
 474                u64 i_rsvd_2:3;
 475                u64 i_int_sent:2;
 476                u64 i_rsvd_1:2;
 477                u64 i_pi0_forward_int:1;
 478                u64 i_pi1_forward_int:1;
 479                u64 i_rsvd:30;
 480        } ii_iidsr_fld_s;
 481} ii_iidsr_u_t;
 482
 483/************************************************************************
 484 *                                                                      *
 485 *  There are two instances of this register. This register is used     *
 486 * for matching up the incoming responses from the graphics widget to   *
 487 * the processor that initiated the graphics operation. The             *
 488 * write-responses are converted to graphics credits and returned to    *
 489 * the processor so that the processor interface can manage the flow    *
 490 * control.                                                             *
 491 *                                                                      *
 492 ************************************************************************/
 493
 494typedef union ii_igfx0_u {
 495        u64 ii_igfx0_regval;
 496        struct {
 497                u64 i_w_num:4;
 498                u64 i_pi_id:1;
 499                u64 i_n_num:12;
 500                u64 i_p_num:1;
 501                u64 i_rsvd:46;
 502        } ii_igfx0_fld_s;
 503} ii_igfx0_u_t;
 504
 505/************************************************************************
 506 *                                                                      *
 507 *  There are two instances of this register. This register is used     *
 508 * for matching up the incoming responses from the graphics widget to   *
 509 * the processor that initiated the graphics operation. The             *
 510 * write-responses are converted to graphics credits and returned to    *
 511 * the processor so that the processor interface can manage the flow    *
 512 * control.                                                             *
 513 *                                                                      *
 514 ************************************************************************/
 515
 516typedef union ii_igfx1_u {
 517        u64 ii_igfx1_regval;
 518        struct {
 519                u64 i_w_num:4;
 520                u64 i_pi_id:1;
 521                u64 i_n_num:12;
 522                u64 i_p_num:1;
 523                u64 i_rsvd:46;
 524        } ii_igfx1_fld_s;
 525} ii_igfx1_u_t;
 526
 527/************************************************************************
 528 *                                                                      *
 529 *  There are two instances of this registers. These registers are      *
 530 * used as scratch registers for software use.                          *
 531 *                                                                      *
 532 ************************************************************************/
 533
 534typedef union ii_iscr0_u {
 535        u64 ii_iscr0_regval;
 536        struct {
 537                u64 i_scratch:64;
 538        } ii_iscr0_fld_s;
 539} ii_iscr0_u_t;
 540
 541/************************************************************************
 542 *                                                                      *
 543 *  There are two instances of this registers. These registers are      *
 544 * used as scratch registers for software use.                          *
 545 *                                                                      *
 546 ************************************************************************/
 547
 548typedef union ii_iscr1_u {
 549        u64 ii_iscr1_regval;
 550        struct {
 551                u64 i_scratch:64;
 552        } ii_iscr1_fld_s;
 553} ii_iscr1_u_t;
 554
 555/************************************************************************
 556 *                                                                      *
 557 * Description:  There are seven instances of translation table entry   *
 558 * registers. Each register maps a Shub Big Window to a 48-bit          *
 559 * address on Crosstalk.                                                *
 560 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 561 * number) are used to select one of these 7 registers. The Widget      *
 562 * number field is then derived from the W_NUM field for synthesizing   *
 563 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 564 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 565 * are padded with zeros. Although the maximum Crosstalk space          *
 566 * addressable by the SHub is thus the lower 16 GBytes per widget       * 
 567 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 568 * space can be accessed.                                               *
 569 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 570 * Window number) are used to select one of these 7 registers. The      *
 571 * Widget number field is then derived from the W_NUM field for         *
 572 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 573 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 574 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 575 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 576 * Crosstalk space addressable by the Shub is thus the lower            *
 577 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 578 * of this space can be accessed.                                       *
 579 *                                                                      *
 580 ************************************************************************/
 581
 582typedef union ii_itte1_u {
 583        u64 ii_itte1_regval;
 584        struct {
 585                u64 i_offset:5;
 586                u64 i_rsvd_1:3;
 587                u64 i_w_num:4;
 588                u64 i_iosp:1;
 589                u64 i_rsvd:51;
 590        } ii_itte1_fld_s;
 591} ii_itte1_u_t;
 592
 593/************************************************************************
 594 *                                                                      *
 595 * Description:  There are seven instances of translation table entry   *
 596 * registers. Each register maps a Shub Big Window to a 48-bit          *
 597 * address on Crosstalk.                                                *
 598 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 599 * number) are used to select one of these 7 registers. The Widget      *
 600 * number field is then derived from the W_NUM field for synthesizing   *
 601 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 602 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 603 * are padded with zeros. Although the maximum Crosstalk space          *
 604 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 605 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 606 * space can be accessed.                                               *
 607 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 608 * Window number) are used to select one of these 7 registers. The      *
 609 * Widget number field is then derived from the W_NUM field for         *
 610 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 611 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 612 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 613 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 614 * Crosstalk space addressable by the Shub is thus the lower            *
 615 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 616 * of this space can be accessed.                                       *
 617 *                                                                      *
 618 ************************************************************************/
 619
 620typedef union ii_itte2_u {
 621        u64 ii_itte2_regval;
 622        struct {
 623                u64 i_offset:5;
 624                u64 i_rsvd_1:3;
 625                u64 i_w_num:4;
 626                u64 i_iosp:1;
 627                u64 i_rsvd:51;
 628        } ii_itte2_fld_s;
 629} ii_itte2_u_t;
 630
 631/************************************************************************
 632 *                                                                      *
 633 * Description:  There are seven instances of translation table entry   *
 634 * registers. Each register maps a Shub Big Window to a 48-bit          *
 635 * address on Crosstalk.                                                *
 636 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 637 * number) are used to select one of these 7 registers. The Widget      *
 638 * number field is then derived from the W_NUM field for synthesizing   *
 639 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 640 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 641 * are padded with zeros. Although the maximum Crosstalk space          *
 642 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 643 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 644 * space can be accessed.                                               *
 645 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 646 * Window number) are used to select one of these 7 registers. The      *
 647 * Widget number field is then derived from the W_NUM field for         *
 648 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 649 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 650 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 651 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 652 * Crosstalk space addressable by the SHub is thus the lower            *
 653 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 654 * of this space can be accessed.                                       *
 655 *                                                                      *
 656 ************************************************************************/
 657
 658typedef union ii_itte3_u {
 659        u64 ii_itte3_regval;
 660        struct {
 661                u64 i_offset:5;
 662                u64 i_rsvd_1:3;
 663                u64 i_w_num:4;
 664                u64 i_iosp:1;
 665                u64 i_rsvd:51;
 666        } ii_itte3_fld_s;
 667} ii_itte3_u_t;
 668
 669/************************************************************************
 670 *                                                                      *
 671 * Description:  There are seven instances of translation table entry   *
 672 * registers. Each register maps a SHub Big Window to a 48-bit          *
 673 * address on Crosstalk.                                                *
 674 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 675 * number) are used to select one of these 7 registers. The Widget      *
 676 * number field is then derived from the W_NUM field for synthesizing   *
 677 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 678 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 679 * are padded with zeros. Although the maximum Crosstalk space          *
 680 * addressable by the SHub is thus the lower 16 GBytes per widget       *
 681 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 682 * space can be accessed.                                               *
 683 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 684 * Window number) are used to select one of these 7 registers. The      *
 685 * Widget number field is then derived from the W_NUM field for         *
 686 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 687 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 688 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 689 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 690 * Crosstalk space addressable by the SHub is thus the lower            *
 691 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 692 * of this space can be accessed.                                       *
 693 *                                                                      *
 694 ************************************************************************/
 695
 696typedef union ii_itte4_u {
 697        u64 ii_itte4_regval;
 698        struct {
 699                u64 i_offset:5;
 700                u64 i_rsvd_1:3;
 701                u64 i_w_num:4;
 702                u64 i_iosp:1;
 703                u64 i_rsvd:51;
 704        } ii_itte4_fld_s;
 705} ii_itte4_u_t;
 706
 707/************************************************************************
 708 *                                                                      *
 709 * Description:  There are seven instances of translation table entry   *
 710 * registers. Each register maps a SHub Big Window to a 48-bit          *
 711 * address on Crosstalk.                                                *
 712 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 713 * number) are used to select one of these 7 registers. The Widget      *
 714 * number field is then derived from the W_NUM field for synthesizing   *
 715 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 716 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 717 * are padded with zeros. Although the maximum Crosstalk space          *
 718 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 719 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 720 * space can be accessed.                                               *
 721 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 722 * Window number) are used to select one of these 7 registers. The      *
 723 * Widget number field is then derived from the W_NUM field for         *
 724 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 725 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 726 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 727 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 728 * Crosstalk space addressable by the Shub is thus the lower            *
 729 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 730 * of this space can be accessed.                                       *
 731 *                                                                      *
 732 ************************************************************************/
 733
 734typedef union ii_itte5_u {
 735        u64 ii_itte5_regval;
 736        struct {
 737                u64 i_offset:5;
 738                u64 i_rsvd_1:3;
 739                u64 i_w_num:4;
 740                u64 i_iosp:1;
 741                u64 i_rsvd:51;
 742        } ii_itte5_fld_s;
 743} ii_itte5_u_t;
 744
 745/************************************************************************
 746 *                                                                      *
 747 * Description:  There are seven instances of translation table entry   *
 748 * registers. Each register maps a Shub Big Window to a 48-bit          *
 749 * address on Crosstalk.                                                *
 750 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 751 * number) are used to select one of these 7 registers. The Widget      *
 752 * number field is then derived from the W_NUM field for synthesizing   *
 753 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 754 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 755 * are padded with zeros. Although the maximum Crosstalk space          *
 756 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 757 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 758 * space can be accessed.                                               *
 759 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 760 * Window number) are used to select one of these 7 registers. The      *
 761 * Widget number field is then derived from the W_NUM field for         *
 762 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 763 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 764 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 765 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 766 * Crosstalk space addressable by the Shub is thus the lower            *
 767 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 768 * of this space can be accessed.                                       *
 769 *                                                                      *
 770 ************************************************************************/
 771
 772typedef union ii_itte6_u {
 773        u64 ii_itte6_regval;
 774        struct {
 775                u64 i_offset:5;
 776                u64 i_rsvd_1:3;
 777                u64 i_w_num:4;
 778                u64 i_iosp:1;
 779                u64 i_rsvd:51;
 780        } ii_itte6_fld_s;
 781} ii_itte6_u_t;
 782
 783/************************************************************************
 784 *                                                                      *
 785 * Description:  There are seven instances of translation table entry   *
 786 * registers. Each register maps a Shub Big Window to a 48-bit          *
 787 * address on Crosstalk.                                                *
 788 * For M-mode (128 nodes, 8 GBytes/node), SysAD[31:29] (Big Window      *
 789 * number) are used to select one of these 7 registers. The Widget      *
 790 * number field is then derived from the W_NUM field for synthesizing   *
 791 * a Crosstalk packet. The 5 bits of OFFSET are concatenated with       *
 792 * SysAD[28:0] to form Crosstalk[33:0]. The upper Crosstalk[47:34]      *
 793 * are padded with zeros. Although the maximum Crosstalk space          *
 794 * addressable by the Shub is thus the lower 16 GBytes per widget       *
 795 * (M-mode), however only <SUP >7</SUP>/<SUB >32nds</SUB> of this       *
 796 * space can be accessed.                                               *
 797 * For the N-mode (256 nodes, 4 GBytes/node), SysAD[30:28] (Big         *
 798 * Window number) are used to select one of these 7 registers. The      *
 799 * Widget number field is then derived from the W_NUM field for         *
 800 * synthesizing a Crosstalk packet. The 5 bits of OFFSET are            *
 801 * concatenated with SysAD[27:0] to form Crosstalk[33:0]. The IOSP      *
 802 * field is used as Crosstalk[47], and remainder of the Crosstalk       *
 803 * address bits (Crosstalk[46:34]) are always zero. While the maximum   *
 804 * Crosstalk space addressable by the SHub is thus the lower            *
 805 * 8-GBytes per widget (N-mode), only <SUP >7</SUP>/<SUB >32nds</SUB>   *
 806 * of this space can be accessed.                                       *
 807 *                                                                      *
 808 ************************************************************************/
 809
 810typedef union ii_itte7_u {
 811        u64 ii_itte7_regval;
 812        struct {
 813                u64 i_offset:5;
 814                u64 i_rsvd_1:3;
 815                u64 i_w_num:4;
 816                u64 i_iosp:1;
 817                u64 i_rsvd:51;
 818        } ii_itte7_fld_s;
 819} ii_itte7_u_t;
 820
 821/************************************************************************
 822 *                                                                      *
 823 * Description:  There are 9 instances of this register, one per        *
 824 * actual widget in this implementation of SHub and Crossbow.           *
 825 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 826 * refers to Crossbow's internal space.                                 *
 827 * This register contains the state elements per widget that are        *
 828 * necessary to manage the PIO flow control on Crosstalk and on the     *
 829 * Router Network. See the PIO Flow Control chapter for a complete      *
 830 * description of this register                                         *
 831 * The SPUR_WR bit requires some explanation. When this register is     *
 832 * written, the new value of the C field is captured in an internal     *
 833 * register so the hardware can remember what the programmer wrote      *
 834 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 835 * increments above this stored value, which indicates that there       *
 836 * have been more responses received than requests sent. The SPUR_WR    *
 837 * bit cannot be cleared until a value is written to the IPRBx          *
 838 * register; the write will correct the C field and capture its new     *
 839 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 840 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 841 * .                                                                    *
 842 *                                                                      *
 843 ************************************************************************/
 844
 845typedef union ii_iprb0_u {
 846        u64 ii_iprb0_regval;
 847        struct {
 848                u64 i_c:8;
 849                u64 i_na:14;
 850                u64 i_rsvd_2:2;
 851                u64 i_nb:14;
 852                u64 i_rsvd_1:2;
 853                u64 i_m:2;
 854                u64 i_f:1;
 855                u64 i_of_cnt:5;
 856                u64 i_error:1;
 857                u64 i_rd_to:1;
 858                u64 i_spur_wr:1;
 859                u64 i_spur_rd:1;
 860                u64 i_rsvd:11;
 861                u64 i_mult_err:1;
 862        } ii_iprb0_fld_s;
 863} ii_iprb0_u_t;
 864
 865/************************************************************************
 866 *                                                                      *
 867 * Description:  There are 9 instances of this register, one per        *
 868 * actual widget in this implementation of SHub and Crossbow.           *
 869 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 870 * refers to Crossbow's internal space.                                 *
 871 * This register contains the state elements per widget that are        *
 872 * necessary to manage the PIO flow control on Crosstalk and on the     *
 873 * Router Network. See the PIO Flow Control chapter for a complete      *
 874 * description of this register                                         *
 875 * The SPUR_WR bit requires some explanation. When this register is     *
 876 * written, the new value of the C field is captured in an internal     *
 877 * register so the hardware can remember what the programmer wrote      *
 878 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 879 * increments above this stored value, which indicates that there       *
 880 * have been more responses received than requests sent. The SPUR_WR    *
 881 * bit cannot be cleared until a value is written to the IPRBx          *
 882 * register; the write will correct the C field and capture its new     *
 883 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 884 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 885 * .                                                                    *
 886 *                                                                      *
 887 ************************************************************************/
 888
 889typedef union ii_iprb8_u {
 890        u64 ii_iprb8_regval;
 891        struct {
 892                u64 i_c:8;
 893                u64 i_na:14;
 894                u64 i_rsvd_2:2;
 895                u64 i_nb:14;
 896                u64 i_rsvd_1:2;
 897                u64 i_m:2;
 898                u64 i_f:1;
 899                u64 i_of_cnt:5;
 900                u64 i_error:1;
 901                u64 i_rd_to:1;
 902                u64 i_spur_wr:1;
 903                u64 i_spur_rd:1;
 904                u64 i_rsvd:11;
 905                u64 i_mult_err:1;
 906        } ii_iprb8_fld_s;
 907} ii_iprb8_u_t;
 908
 909/************************************************************************
 910 *                                                                      *
 911 * Description:  There are 9 instances of this register, one per        *
 912 * actual widget in this implementation of SHub and Crossbow.           *
 913 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 914 * refers to Crossbow's internal space.                                 *
 915 * This register contains the state elements per widget that are        *
 916 * necessary to manage the PIO flow control on Crosstalk and on the     *
 917 * Router Network. See the PIO Flow Control chapter for a complete      *
 918 * description of this register                                         *
 919 * The SPUR_WR bit requires some explanation. When this register is     *
 920 * written, the new value of the C field is captured in an internal     *
 921 * register so the hardware can remember what the programmer wrote      *
 922 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 923 * increments above this stored value, which indicates that there       *
 924 * have been more responses received than requests sent. The SPUR_WR    *
 925 * bit cannot be cleared until a value is written to the IPRBx          *
 926 * register; the write will correct the C field and capture its new     *
 927 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 928 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 929 * .                                                                    *
 930 *                                                                      *
 931 ************************************************************************/
 932
 933typedef union ii_iprb9_u {
 934        u64 ii_iprb9_regval;
 935        struct {
 936                u64 i_c:8;
 937                u64 i_na:14;
 938                u64 i_rsvd_2:2;
 939                u64 i_nb:14;
 940                u64 i_rsvd_1:2;
 941                u64 i_m:2;
 942                u64 i_f:1;
 943                u64 i_of_cnt:5;
 944                u64 i_error:1;
 945                u64 i_rd_to:1;
 946                u64 i_spur_wr:1;
 947                u64 i_spur_rd:1;
 948                u64 i_rsvd:11;
 949                u64 i_mult_err:1;
 950        } ii_iprb9_fld_s;
 951} ii_iprb9_u_t;
 952
 953/************************************************************************
 954 *                                                                      *
 955 * Description:  There are 9 instances of this register, one per        *
 956 * actual widget in this implementation of SHub and Crossbow.        *
 957 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
 958 * refers to Crossbow's internal space.                                 *
 959 * This register contains the state elements per widget that are        *
 960 * necessary to manage the PIO flow control on Crosstalk and on the     *
 961 * Router Network. See the PIO Flow Control chapter for a complete      *
 962 * description of this register                                         *
 963 * The SPUR_WR bit requires some explanation. When this register is     *
 964 * written, the new value of the C field is captured in an internal     *
 965 * register so the hardware can remember what the programmer wrote      *
 966 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
 967 * increments above this stored value, which indicates that there       *
 968 * have been more responses received than requests sent. The SPUR_WR    *
 969 * bit cannot be cleared until a value is written to the IPRBx          *
 970 * register; the write will correct the C field and capture its new     *
 971 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
 972 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
 973 *                                                                      *
 974 *                                                                      *
 975 ************************************************************************/
 976
 977typedef union ii_iprba_u {
 978        u64 ii_iprba_regval;
 979        struct {
 980                u64 i_c:8;
 981                u64 i_na:14;
 982                u64 i_rsvd_2:2;
 983                u64 i_nb:14;
 984                u64 i_rsvd_1:2;
 985                u64 i_m:2;
 986                u64 i_f:1;
 987                u64 i_of_cnt:5;
 988                u64 i_error:1;
 989                u64 i_rd_to:1;
 990                u64 i_spur_wr:1;
 991                u64 i_spur_rd:1;
 992                u64 i_rsvd:11;
 993                u64 i_mult_err:1;
 994        } ii_iprba_fld_s;
 995} ii_iprba_u_t;
 996
 997/************************************************************************
 998 *                                                                      *
 999 * Description:  There are 9 instances of this register, one per        *
1000 * actual widget in this implementation of SHub and Crossbow.           *
1001 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1002 * refers to Crossbow's internal space.                                 *
1003 * This register contains the state elements per widget that are        *
1004 * necessary to manage the PIO flow control on Crosstalk and on the     *
1005 * Router Network. See the PIO Flow Control chapter for a complete      *
1006 * description of this register                                         *
1007 * The SPUR_WR bit requires some explanation. When this register is     *
1008 * written, the new value of the C field is captured in an internal     *
1009 * register so the hardware can remember what the programmer wrote      *
1010 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1011 * increments above this stored value, which indicates that there       *
1012 * have been more responses received than requests sent. The SPUR_WR    *
1013 * bit cannot be cleared until a value is written to the IPRBx          *
1014 * register; the write will correct the C field and capture its new     *
1015 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1016 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1017 * .                                                                    *
1018 *                                                                      *
1019 ************************************************************************/
1020
1021typedef union ii_iprbb_u {
1022        u64 ii_iprbb_regval;
1023        struct {
1024                u64 i_c:8;
1025                u64 i_na:14;
1026                u64 i_rsvd_2:2;
1027                u64 i_nb:14;
1028                u64 i_rsvd_1:2;
1029                u64 i_m:2;
1030                u64 i_f:1;
1031                u64 i_of_cnt:5;
1032                u64 i_error:1;
1033                u64 i_rd_to:1;
1034                u64 i_spur_wr:1;
1035                u64 i_spur_rd:1;
1036                u64 i_rsvd:11;
1037                u64 i_mult_err:1;
1038        } ii_iprbb_fld_s;
1039} ii_iprbb_u_t;
1040
1041/************************************************************************
1042 *                                                                      *
1043 * Description:  There are 9 instances of this register, one per        *
1044 * actual widget in this implementation of SHub and Crossbow.           *
1045 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1046 * refers to Crossbow's internal space.                                 *
1047 * This register contains the state elements per widget that are        *
1048 * necessary to manage the PIO flow control on Crosstalk and on the     *
1049 * Router Network. See the PIO Flow Control chapter for a complete      *
1050 * description of this register                                         *
1051 * The SPUR_WR bit requires some explanation. When this register is     *
1052 * written, the new value of the C field is captured in an internal     *
1053 * register so the hardware can remember what the programmer wrote      *
1054 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1055 * increments above this stored value, which indicates that there       *
1056 * have been more responses received than requests sent. The SPUR_WR    *
1057 * bit cannot be cleared until a value is written to the IPRBx          *
1058 * register; the write will correct the C field and capture its new     *
1059 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1060 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1061 * .                                                                    *
1062 *                                                                      *
1063 ************************************************************************/
1064
1065typedef union ii_iprbc_u {
1066        u64 ii_iprbc_regval;
1067        struct {
1068                u64 i_c:8;
1069                u64 i_na:14;
1070                u64 i_rsvd_2:2;
1071                u64 i_nb:14;
1072                u64 i_rsvd_1:2;
1073                u64 i_m:2;
1074                u64 i_f:1;
1075                u64 i_of_cnt:5;
1076                u64 i_error:1;
1077                u64 i_rd_to:1;
1078                u64 i_spur_wr:1;
1079                u64 i_spur_rd:1;
1080                u64 i_rsvd:11;
1081                u64 i_mult_err:1;
1082        } ii_iprbc_fld_s;
1083} ii_iprbc_u_t;
1084
1085/************************************************************************
1086 *                                                                      *
1087 * Description:  There are 9 instances of this register, one per        *
1088 * actual widget in this implementation of SHub and Crossbow.           *
1089 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1090 * refers to Crossbow's internal space.                                 *
1091 * This register contains the state elements per widget that are        *
1092 * necessary to manage the PIO flow control on Crosstalk and on the     *
1093 * Router Network. See the PIO Flow Control chapter for a complete      *
1094 * description of this register                                         *
1095 * The SPUR_WR bit requires some explanation. When this register is     *
1096 * written, the new value of the C field is captured in an internal     *
1097 * register so the hardware can remember what the programmer wrote      *
1098 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1099 * increments above this stored value, which indicates that there       *
1100 * have been more responses received than requests sent. The SPUR_WR    *
1101 * bit cannot be cleared until a value is written to the IPRBx          *
1102 * register; the write will correct the C field and capture its new     *
1103 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1104 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1105 * .                                                                    *
1106 *                                                                      *
1107 ************************************************************************/
1108
1109typedef union ii_iprbd_u {
1110        u64 ii_iprbd_regval;
1111        struct {
1112                u64 i_c:8;
1113                u64 i_na:14;
1114                u64 i_rsvd_2:2;
1115                u64 i_nb:14;
1116                u64 i_rsvd_1:2;
1117                u64 i_m:2;
1118                u64 i_f:1;
1119                u64 i_of_cnt:5;
1120                u64 i_error:1;
1121                u64 i_rd_to:1;
1122                u64 i_spur_wr:1;
1123                u64 i_spur_rd:1;
1124                u64 i_rsvd:11;
1125                u64 i_mult_err:1;
1126        } ii_iprbd_fld_s;
1127} ii_iprbd_u_t;
1128
1129/************************************************************************
1130 *                                                                      *
1131 * Description:  There are 9 instances of this register, one per        *
1132 * actual widget in this implementation of SHub and Crossbow.           *
1133 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1134 * refers to Crossbow's internal space.                                 *
1135 * This register contains the state elements per widget that are        *
1136 * necessary to manage the PIO flow control on Crosstalk and on the     *
1137 * Router Network. See the PIO Flow Control chapter for a complete      *
1138 * description of this register                                         *
1139 * The SPUR_WR bit requires some explanation. When this register is     *
1140 * written, the new value of the C field is captured in an internal     *
1141 * register so the hardware can remember what the programmer wrote      *
1142 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1143 * increments above this stored value, which indicates that there       *
1144 * have been more responses received than requests sent. The SPUR_WR    *
1145 * bit cannot be cleared until a value is written to the IPRBx          *
1146 * register; the write will correct the C field and capture its new     *
1147 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1148 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1149 * .                                                                    *
1150 *                                                                      *
1151 ************************************************************************/
1152
1153typedef union ii_iprbe_u {
1154        u64 ii_iprbe_regval;
1155        struct {
1156                u64 i_c:8;
1157                u64 i_na:14;
1158                u64 i_rsvd_2:2;
1159                u64 i_nb:14;
1160                u64 i_rsvd_1:2;
1161                u64 i_m:2;
1162                u64 i_f:1;
1163                u64 i_of_cnt:5;
1164                u64 i_error:1;
1165                u64 i_rd_to:1;
1166                u64 i_spur_wr:1;
1167                u64 i_spur_rd:1;
1168                u64 i_rsvd:11;
1169                u64 i_mult_err:1;
1170        } ii_iprbe_fld_s;
1171} ii_iprbe_u_t;
1172
1173/************************************************************************
1174 *                                                                      *
1175 * Description:  There are 9 instances of this register, one per        *
1176 * actual widget in this implementation of Shub and Crossbow.           *
1177 * Note: Crossbow only has ports for Widgets 8 through F, widget 0      *
1178 * refers to Crossbow's internal space.                                 *
1179 * This register contains the state elements per widget that are        *
1180 * necessary to manage the PIO flow control on Crosstalk and on the     *
1181 * Router Network. See the PIO Flow Control chapter for a complete      *
1182 * description of this register                                         *
1183 * The SPUR_WR bit requires some explanation. When this register is     *
1184 * written, the new value of the C field is captured in an internal     *
1185 * register so the hardware can remember what the programmer wrote      *
1186 * into the credit counter. The SPUR_WR bit sets whenever the C field   *
1187 * increments above this stored value, which indicates that there       *
1188 * have been more responses received than requests sent. The SPUR_WR    *
1189 * bit cannot be cleared until a value is written to the IPRBx          *
1190 * register; the write will correct the C field and capture its new     *
1191 * value in the internal register. Even if IECLR[E_PRB_x] is set, the   *
1192 * SPUR_WR bit will persist if IPRBx hasn't yet been written.           *
1193 * .                                                                    *
1194 *                                                                      *
1195 ************************************************************************/
1196
1197typedef union ii_iprbf_u {
1198        u64 ii_iprbf_regval;
1199        struct {
1200                u64 i_c:8;
1201                u64 i_na:14;
1202                u64 i_rsvd_2:2;
1203                u64 i_nb:14;
1204                u64 i_rsvd_1:2;
1205                u64 i_m:2;
1206                u64 i_f:1;
1207                u64 i_of_cnt:5;
1208                u64 i_error:1;
1209                u64 i_rd_to:1;
1210                u64 i_spur_wr:1;
1211                u64 i_spur_rd:1;
1212                u64 i_rsvd:11;
1213                u64 i_mult_err:1;
1214        } ii_iprbe_fld_s;
1215} ii_iprbf_u_t;
1216
1217/************************************************************************
1218 *                                                                      *
1219 *  This register specifies the timeout value to use for monitoring     *
1220 * Crosstalk credits which are used outbound to Crosstalk. An           *
1221 * internal counter called the Crosstalk Credit Timeout Counter         *
1222 * increments every 128 II clocks. The counter starts counting          *
1223 * anytime the credit count drops below a threshold, and resets to      *
1224 * zero (stops counting) anytime the credit count is at or above the    *
1225 * threshold. The threshold is 1 credit in direct connect mode and 2    *
1226 * in Crossbow connect mode. When the internal Crosstalk Credit         *
1227 * Timeout Counter reaches the value programmed in this register, a     *
1228 * Crosstalk Credit Timeout has occurred. The internal counter is not   *
1229 * readable from software, and stops counting at its maximum value,     *
1230 * so it cannot cause more than one interrupt.                          *
1231 *                                                                      *
1232 ************************************************************************/
1233
1234typedef union ii_ixcc_u {
1235        u64 ii_ixcc_regval;
1236        struct {
1237                u64 i_time_out:26;
1238                u64 i_rsvd:38;
1239        } ii_ixcc_fld_s;
1240} ii_ixcc_u_t;
1241
1242/************************************************************************
1243 *                                                                      *
1244 * Description:  This register qualifies all the PIO and DMA            *
1245 * operations launched from widget 0 towards the SHub. In               *
1246 * addition, it also qualifies accesses by the BTE streams.             *
1247 * The bits in each field of this register are cleared by the SHub      *
1248 * upon detection of an error which requires widget 0 or the BTE        *
1249 * streams to be terminated. Whether or not widget x has access         *
1250 * rights to this SHub is determined by an AND of the device            *
1251 * enable bit in the appropriate field of this register and bit 0 in    *
1252 * the Wx_IAC field. The bits in this field are set by writing a 1 to   *
1253 * them. Incoming replies from Crosstalk are not subject to this        *
1254 * access control mechanism.                                            *
1255 *                                                                      *
1256 ************************************************************************/
1257
1258typedef union ii_imem_u {
1259        u64 ii_imem_regval;
1260        struct {
1261                u64 i_w0_esd:1;
1262                u64 i_rsvd_3:3;
1263                u64 i_b0_esd:1;
1264                u64 i_rsvd_2:3;
1265                u64 i_b1_esd:1;
1266                u64 i_rsvd_1:3;
1267                u64 i_clr_precise:1;
1268                u64 i_rsvd:51;
1269        } ii_imem_fld_s;
1270} ii_imem_u_t;
1271
1272/************************************************************************
1273 *                                                                      *
1274 * Description:  This register specifies the timeout value to use for   *
1275 * monitoring Crosstalk tail flits coming into the Shub in the          *
1276 * TAIL_TO field. An internal counter associated with this register     *
1277 * is incremented every 128 II internal clocks (7 bits). The counter    *
1278 * starts counting anytime a header micropacket is received and stops   *
1279 * counting (and resets to zero) any time a micropacket with a Tail     *
1280 * bit is received. Once the counter reaches the threshold value        *
1281 * programmed in this register, it generates an interrupt to the        *
1282 * processor that is programmed into the IIDSR. The counter saturates   *
1283 * (does not roll over) at its maximum value, so it cannot cause        *
1284 * another interrupt until after it is cleared.                         *
1285 * The register also contains the Read Response Timeout values. The     *
1286 * Prescalar is 23 bits, and counts II clocks. An internal counter      *
1287 * increments on every II clock and when it reaches the value in the    *
1288 * Prescalar field, all IPRTE registers with their valid bits set       *
1289 * have their Read Response timers bumped. Whenever any of them match   *
1290 * the value in the RRSP_TO field, a Read Response Timeout has          *
1291 * occurred, and error handling occurs as described in the Error        *
1292 * Handling section of this document.                                   *
1293 *                                                                      *
1294 ************************************************************************/
1295
1296typedef union ii_ixtt_u {
1297        u64 ii_ixtt_regval;
1298        struct {
1299                u64 i_tail_to:26;
1300                u64 i_rsvd_1:6;
1301                u64 i_rrsp_ps:23;
1302                u64 i_rrsp_to:5;
1303                u64 i_rsvd:4;
1304        } ii_ixtt_fld_s;
1305} ii_ixtt_u_t;
1306
1307/************************************************************************
1308 *                                                                      *
1309 *  Writing a 1 to the fields of this register clears the appropriate   *
1310 * error bits in other areas of SHub. Note that when the                *
1311 * E_PRB_x bits are used to clear error bits in PRB registers,          *
1312 * SPUR_RD and SPUR_WR may persist, because they require additional     *
1313 * action to clear them. See the IPRBx and IXSS Register                *
1314 * specifications.                                                      *
1315 *                                                                      *
1316 ************************************************************************/
1317
1318typedef union ii_ieclr_u {
1319        u64 ii_ieclr_regval;
1320        struct {
1321                u64 i_e_prb_0:1;
1322                u64 i_rsvd:7;
1323                u64 i_e_prb_8:1;
1324                u64 i_e_prb_9:1;
1325                u64 i_e_prb_a:1;
1326                u64 i_e_prb_b:1;
1327                u64 i_e_prb_c:1;
1328                u64 i_e_prb_d:1;
1329                u64 i_e_prb_e:1;
1330                u64 i_e_prb_f:1;
1331                u64 i_e_crazy:1;
1332                u64 i_e_bte_0:1;
1333                u64 i_e_bte_1:1;
1334                u64 i_reserved_1:10;
1335                u64 i_spur_rd_hdr:1;
1336                u64 i_cam_intr_to:1;
1337                u64 i_cam_overflow:1;
1338                u64 i_cam_read_miss:1;
1339                u64 i_ioq_rep_underflow:1;
1340                u64 i_ioq_req_underflow:1;
1341                u64 i_ioq_rep_overflow:1;
1342                u64 i_ioq_req_overflow:1;
1343                u64 i_iiq_rep_overflow:1;
1344                u64 i_iiq_req_overflow:1;
1345                u64 i_ii_xn_rep_cred_overflow:1;
1346                u64 i_ii_xn_req_cred_overflow:1;
1347                u64 i_ii_xn_invalid_cmd:1;
1348                u64 i_xn_ii_invalid_cmd:1;
1349                u64 i_reserved_2:21;
1350        } ii_ieclr_fld_s;
1351} ii_ieclr_u_t;
1352
1353/************************************************************************
1354 *                                                                      *
1355 *  This register controls both BTEs. SOFT_RESET is intended for        *
1356 * recovery after an error. COUNT controls the total number of CRBs     *
1357 * that both BTEs (combined) can use, which affects total BTE           *
1358 * bandwidth.                                                           *
1359 *                                                                      *
1360 ************************************************************************/
1361
1362typedef union ii_ibcr_u {
1363        u64 ii_ibcr_regval;
1364        struct {
1365                u64 i_count:4;
1366                u64 i_rsvd_1:4;
1367                u64 i_soft_reset:1;
1368                u64 i_rsvd:55;
1369        } ii_ibcr_fld_s;
1370} ii_ibcr_u_t;
1371
1372/************************************************************************
1373 *                                                                      *
1374 *  This register contains the header of a spurious read response       *
1375 * received from Crosstalk. A spurious read response is defined as a    *
1376 * read response received by II from a widget for which (1) the SIDN    *
1377 * has a value between 1 and 7, inclusive (II never sends requests to   *
1378 * these widgets (2) there is no valid IPRTE register which             *
1379 * corresponds to the TNUM, or (3) the widget indicated in SIDN is      *
1380 * not the same as the widget recorded in the IPRTE register            *
1381 * referenced by the TNUM. If this condition is true, and if the        *
1382 * IXSS[VALID] bit is clear, then the header of the spurious read       *
1383 * response is capture in IXSM and IXSS, and IXSS[VALID] is set. The    *
1384 * errant header is thereby captured, and no further spurious read      *
1385 * respones are captured until IXSS[VALID] is cleared by setting the    *
1386 * appropriate bit in IECLR. Every time a spurious read response is     *
1387 * detected, the SPUR_RD bit of the PRB corresponding to the incoming   *
1388 * message's SIDN field is set. This always happens, regarless of       *
1389 * whether a header is captured. The programmer should check            *
1390 * IXSM[SIDN] to determine which widget sent the spurious response,     *
1391 * because there may be more than one SPUR_RD bit set in the PRB        *
1392 * registers. The widget indicated by IXSM[SIDN] was the first          *
1393 * spurious read response to be received since the last time            *
1394 * IXSS[VALID] was clear. The SPUR_RD bit of the corresponding PRB      *
1395 * will be set. Any SPUR_RD bits in any other PRB registers indicate    *
1396 * spurious messages from other widets which were detected after the    *
1397 * header was captured..                                                *
1398 *                                                                      *
1399 ************************************************************************/
1400
1401typedef union ii_ixsm_u {
1402        u64 ii_ixsm_regval;
1403        struct {
1404                u64 i_byte_en:32;
1405                u64 i_reserved:1;
1406                u64 i_tag:3;
1407                u64 i_alt_pactyp:4;
1408                u64 i_bo:1;
1409                u64 i_error:1;
1410                u64 i_vbpm:1;
1411                u64 i_gbr:1;
1412                u64 i_ds:2;
1413                u64 i_ct:1;
1414                u64 i_tnum:5;
1415                u64 i_pactyp:4;
1416                u64 i_sidn:4;
1417                u64 i_didn:4;
1418        } ii_ixsm_fld_s;
1419} ii_ixsm_u_t;
1420
1421/************************************************************************
1422 *                                                                      *
1423 *  This register contains the sideband bits of a spurious read         *
1424 * response received from Crosstalk.                                    *
1425 *                                                                      *
1426 ************************************************************************/
1427
1428typedef union ii_ixss_u {
1429        u64 ii_ixss_regval;
1430        struct {
1431                u64 i_sideband:8;
1432                u64 i_rsvd:55;
1433                u64 i_valid:1;
1434        } ii_ixss_fld_s;
1435} ii_ixss_u_t;
1436
1437/************************************************************************
1438 *                                                                      *
1439 *  This register enables software to access the II LLP's test port.    *
1440 * Refer to the LLP 2.5 documentation for an explanation of the test    *
1441 * port. Software can write to this register to program the values      *
1442 * for the control fields (TestErrCapture, TestClear, TestFlit,         *
1443 * TestMask and TestSeed). Similarly, software can read from this       *
1444 * register to obtain the values of the test port's status outputs      *
1445 * (TestCBerr, TestValid and TestData).                                 *
1446 *                                                                      *
1447 ************************************************************************/
1448
1449typedef union ii_ilct_u {
1450        u64 ii_ilct_regval;
1451        struct {
1452                u64 i_test_seed:20;
1453                u64 i_test_mask:8;
1454                u64 i_test_data:20;
1455                u64 i_test_valid:1;
1456                u64 i_test_cberr:1;
1457                u64 i_test_flit:3;
1458                u64 i_test_clear:1;
1459                u64 i_test_err_capture:1;
1460                u64 i_rsvd:9;
1461        } ii_ilct_fld_s;
1462} ii_ilct_u_t;
1463
1464/************************************************************************
1465 *                                                                      *
1466 *  If the II detects an illegal incoming Duplonet packet (request or   *
1467 * reply) when VALID==0 in the IIEPH1 register, then it saves the       *
1468 * contents of the packet's header flit in the IIEPH1 and IIEPH2        *
1469 * registers, sets the VALID bit in IIEPH1, clears the OVERRUN bit,     *
1470 * and assigns a value to the ERR_TYPE field which indicates the        *
1471 * specific nature of the error. The II recognizes four different       *
1472 * types of errors: short request packets (ERR_TYPE==2), short reply    *
1473 * packets (ERR_TYPE==3), long request packets (ERR_TYPE==4) and long   *
1474 * reply packets (ERR_TYPE==5). The encodings for these types of        *
1475 * errors were chosen to be consistent with the same types of errors    *
1476 * indicated by the ERR_TYPE field in the LB_ERROR_HDR1 register (in    *
1477 * the LB unit). If the II detects an illegal incoming Duplonet         *
1478 * packet when VALID==1 in the IIEPH1 register, then it merely sets     *
1479 * the OVERRUN bit to indicate that a subsequent error has happened,    *
1480 * and does nothing further.                                            *
1481 *                                                                      *
1482 ************************************************************************/
1483
1484typedef union ii_iieph1_u {
1485        u64 ii_iieph1_regval;
1486        struct {
1487                u64 i_command:7;
1488                u64 i_rsvd_5:1;
1489                u64 i_suppl:14;
1490                u64 i_rsvd_4:1;
1491                u64 i_source:14;
1492                u64 i_rsvd_3:1;
1493                u64 i_err_type:4;
1494                u64 i_rsvd_2:4;
1495                u64 i_overrun:1;
1496                u64 i_rsvd_1:3;
1497                u64 i_valid:1;
1498                u64 i_rsvd:13;
1499        } ii_iieph1_fld_s;
1500} ii_iieph1_u_t;
1501
1502/************************************************************************
1503 *                                                                      *
1504 *  This register holds the Address field from the header flit of an    *
1505 * incoming erroneous Duplonet packet, along with the tail bit which    *
1506 * accompanied this header flit. This register is essentially an        *
1507 * extension of IIEPH1. Two registers were necessary because the 64     *
1508 * bits available in only a single register were insufficient to        *
1509 * capture the entire header flit of an erroneous packet.               *
1510 *                                                                      *
1511 ************************************************************************/
1512
1513typedef union ii_iieph2_u {
1514        u64 ii_iieph2_regval;
1515        struct {
1516                u64 i_rsvd_0:3;
1517                u64 i_address:47;
1518                u64 i_rsvd_1:10;
1519                u64 i_tail:1;
1520                u64 i_rsvd:3;
1521        } ii_iieph2_fld_s;
1522} ii_iieph2_u_t;
1523
1524/******************************/
1525
1526/************************************************************************
1527 *                                                                      *
1528 *  This register's value is a bit vector that guards access from SXBs  *
1529 * to local registers within the II as well as to external Crosstalk    *
1530 * widgets                                                              *
1531 *                                                                      *
1532 ************************************************************************/
1533
1534typedef union ii_islapr_u {
1535        u64 ii_islapr_regval;
1536        struct {
1537                u64 i_region:64;
1538        } ii_islapr_fld_s;
1539} ii_islapr_u_t;
1540
1541/************************************************************************
1542 *                                                                      *
1543 *  A write to this register of the 56-bit value "Pup+Bun" will cause   *
1544 * the bit in the ISLAPR register corresponding to the region of the    *
1545 * requestor to be set (access allowed).                                (
1546 *                                                                      *
1547 ************************************************************************/
1548
1549typedef union ii_islapo_u {
1550        u64 ii_islapo_regval;
1551        struct {
1552                u64 i_io_sbx_ovrride:56;
1553                u64 i_rsvd:8;
1554        } ii_islapo_fld_s;
1555} ii_islapo_u_t;
1556
1557/************************************************************************
1558 *                                                                      *
1559 *  Determines how long the wrapper will wait aftr an interrupt is      *
1560 * initially issued from the II before it times out the outstanding     *
1561 * interrupt and drops it from the interrupt queue.                     * 
1562 *                                                                      *
1563 ************************************************************************/
1564
1565typedef union ii_iwi_u {
1566        u64 ii_iwi_regval;
1567        struct {
1568                u64 i_prescale:24;
1569                u64 i_rsvd:8;
1570                u64 i_timeout:8;
1571                u64 i_rsvd1:8;
1572                u64 i_intrpt_retry_period:8;
1573                u64 i_rsvd2:8;
1574        } ii_iwi_fld_s;
1575} ii_iwi_u_t;
1576
1577/************************************************************************
1578 *                                                                      *
1579 *  Log errors which have occurred in the II wrapper. The errors are    *
1580 * cleared by writing to the IECLR register.                            * 
1581 *                                                                      *
1582 ************************************************************************/
1583
1584typedef union ii_iwel_u {
1585        u64 ii_iwel_regval;
1586        struct {
1587                u64 i_intr_timed_out:1;
1588                u64 i_rsvd:7;
1589                u64 i_cam_overflow:1;
1590                u64 i_cam_read_miss:1;
1591                u64 i_rsvd1:2;
1592                u64 i_ioq_rep_underflow:1;
1593                u64 i_ioq_req_underflow:1;
1594                u64 i_ioq_rep_overflow:1;
1595                u64 i_ioq_req_overflow:1;
1596                u64 i_iiq_rep_overflow:1;
1597                u64 i_iiq_req_overflow:1;
1598                u64 i_rsvd2:6;
1599                u64 i_ii_xn_rep_cred_over_under:1;
1600                u64 i_ii_xn_req_cred_over_under:1;
1601                u64 i_rsvd3:6;
1602                u64 i_ii_xn_invalid_cmd:1;
1603                u64 i_xn_ii_invalid_cmd:1;
1604                u64 i_rsvd4:30;
1605        } ii_iwel_fld_s;
1606} ii_iwel_u_t;
1607
1608/************************************************************************
1609 *                                                                      *
1610 *  Controls the II wrapper.                                            * 
1611 *                                                                      *
1612 ************************************************************************/
1613
1614typedef union ii_iwc_u {
1615        u64 ii_iwc_regval;
1616        struct {
1617                u64 i_dma_byte_swap:1;
1618                u64 i_rsvd:3;
1619                u64 i_cam_read_lines_reset:1;
1620                u64 i_rsvd1:3;
1621                u64 i_ii_xn_cred_over_under_log:1;
1622                u64 i_rsvd2:19;
1623                u64 i_xn_rep_iq_depth:5;
1624                u64 i_rsvd3:3;
1625                u64 i_xn_req_iq_depth:5;
1626                u64 i_rsvd4:3;
1627                u64 i_iiq_depth:6;
1628                u64 i_rsvd5:12;
1629                u64 i_force_rep_cred:1;
1630                u64 i_force_req_cred:1;
1631        } ii_iwc_fld_s;
1632} ii_iwc_u_t;
1633
1634/************************************************************************
1635 *                                                                      *
1636 *  Status in the II wrapper.                                           * 
1637 *                                                                      *
1638 ************************************************************************/
1639
1640typedef union ii_iws_u {
1641        u64 ii_iws_regval;
1642        struct {
1643                u64 i_xn_rep_iq_credits:5;
1644                u64 i_rsvd:3;
1645                u64 i_xn_req_iq_credits:5;
1646                u64 i_rsvd1:51;
1647        } ii_iws_fld_s;
1648} ii_iws_u_t;
1649
1650/************************************************************************
1651 *                                                                      *
1652 *  Masks errors in the IWEL register.                                  *
1653 *                                                                      *
1654 ************************************************************************/
1655
1656typedef union ii_iweim_u {
1657        u64 ii_iweim_regval;
1658        struct {
1659                u64 i_intr_timed_out:1;
1660                u64 i_rsvd:7;
1661                u64 i_cam_overflow:1;
1662                u64 i_cam_read_miss:1;
1663                u64 i_rsvd1:2;
1664                u64 i_ioq_rep_underflow:1;
1665                u64 i_ioq_req_underflow:1;
1666                u64 i_ioq_rep_overflow:1;
1667                u64 i_ioq_req_overflow:1;
1668                u64 i_iiq_rep_overflow:1;
1669                u64 i_iiq_req_overflow:1;
1670                u64 i_rsvd2:6;
1671                u64 i_ii_xn_rep_cred_overflow:1;
1672                u64 i_ii_xn_req_cred_overflow:1;
1673                u64 i_rsvd3:6;
1674                u64 i_ii_xn_invalid_cmd:1;
1675                u64 i_xn_ii_invalid_cmd:1;
1676                u64 i_rsvd4:30;
1677        } ii_iweim_fld_s;
1678} ii_iweim_u_t;
1679
1680/************************************************************************
1681 *                                                                      *
1682 *  A write to this register causes a particular field in the           *
1683 * corresponding widget's PRB entry to be adjusted up or down by 1.     *
1684 * This counter should be used when recovering from error and reset     *
1685 * conditions. Note that software would be capable of causing           *
1686 * inadvertent overflow or underflow of these counters.                 *
1687 *                                                                      *
1688 ************************************************************************/
1689
1690typedef union ii_ipca_u {
1691        u64 ii_ipca_regval;
1692        struct {
1693                u64 i_wid:4;
1694                u64 i_adjust:1;
1695                u64 i_rsvd_1:3;
1696                u64 i_field:2;
1697                u64 i_rsvd:54;
1698        } ii_ipca_fld_s;
1699} ii_ipca_u_t;
1700
1701/************************************************************************
1702 *                                                                      *
1703 *  There are 8 instances of this register. This register contains      *
1704 * the information that the II has to remember once it has launched a   *
1705 * PIO Read operation. The contents are used to form the correct        *
1706 * Router Network packet and direct the Crosstalk reply to the          *
1707 * appropriate processor.                                               *
1708 *                                                                      *
1709 ************************************************************************/
1710
1711typedef union ii_iprte0a_u {
1712        u64 ii_iprte0a_regval;
1713        struct {
1714                u64 i_rsvd_1:54;
1715                u64 i_widget:4;
1716                u64 i_to_cnt:5;
1717                u64 i_vld:1;
1718        } ii_iprte0a_fld_s;
1719} ii_iprte0a_u_t;
1720
1721/************************************************************************
1722 *                                                                      *
1723 *  There are 8 instances of this register. This register contains      *
1724 * the information that the II has to remember once it has launched a   *
1725 * PIO Read operation. The contents are used to form the correct        *
1726 * Router Network packet and direct the Crosstalk reply to the          *
1727 * appropriate processor.                                               *
1728 *                                                                      *
1729 ************************************************************************/
1730
1731typedef union ii_iprte1a_u {
1732        u64 ii_iprte1a_regval;
1733        struct {
1734                u64 i_rsvd_1:54;
1735                u64 i_widget:4;
1736                u64 i_to_cnt:5;
1737                u64 i_vld:1;
1738        } ii_iprte1a_fld_s;
1739} ii_iprte1a_u_t;
1740
1741/************************************************************************
1742 *                                                                      *
1743 *  There are 8 instances of this register. This register contains      *
1744 * the information that the II has to remember once it has launched a   *
1745 * PIO Read operation. The contents are used to form the correct        *
1746 * Router Network packet and direct the Crosstalk reply to the          *
1747 * appropriate processor.                                               *
1748 *                                                                      *
1749 ************************************************************************/
1750
1751typedef union ii_iprte2a_u {
1752        u64 ii_iprte2a_regval;
1753        struct {
1754                u64 i_rsvd_1:54;
1755                u64 i_widget:4;
1756                u64 i_to_cnt:5;
1757                u64 i_vld:1;
1758        } ii_iprte2a_fld_s;
1759} ii_iprte2a_u_t;
1760
1761/************************************************************************
1762 *                                                                      *
1763 *  There are 8 instances of this register. This register contains      *
1764 * the information that the II has to remember once it has launched a   *
1765 * PIO Read operation. The contents are used to form the correct        *
1766 * Router Network packet and direct the Crosstalk reply to the          *
1767 * appropriate processor.                                               *
1768 *                                                                      *
1769 ************************************************************************/
1770
1771typedef union ii_iprte3a_u {
1772        u64 ii_iprte3a_regval;
1773        struct {
1774                u64 i_rsvd_1:54;
1775                u64 i_widget:4;
1776                u64 i_to_cnt:5;
1777                u64 i_vld:1;
1778        } ii_iprte3a_fld_s;
1779} ii_iprte3a_u_t;
1780
1781/************************************************************************
1782 *                                                                      *
1783 *  There are 8 instances of this register. This register contains      *
1784 * the information that the II has to remember once it has launched a   *
1785 * PIO Read operation. The contents are used to form the correct        *
1786 * Router Network packet and direct the Crosstalk reply to the          *
1787 * appropriate processor.                                               *
1788 *                                                                      *
1789 ************************************************************************/
1790
1791typedef union ii_iprte4a_u {
1792        u64 ii_iprte4a_regval;
1793        struct {
1794                u64 i_rsvd_1:54;
1795                u64 i_widget:4;
1796                u64 i_to_cnt:5;
1797                u64 i_vld:1;
1798        } ii_iprte4a_fld_s;
1799} ii_iprte4a_u_t;
1800
1801/************************************************************************
1802 *                                                                      *
1803 *  There are 8 instances of this register. This register contains      *
1804 * the information that the II has to remember once it has launched a   *
1805 * PIO Read operation. The contents are used to form the correct        *
1806 * Router Network packet and direct the Crosstalk reply to the          *
1807 * appropriate processor.                                               *
1808 *                                                                      *
1809 ************************************************************************/
1810
1811typedef union ii_iprte5a_u {
1812        u64 ii_iprte5a_regval;
1813        struct {
1814                u64 i_rsvd_1:54;
1815                u64 i_widget:4;
1816                u64 i_to_cnt:5;
1817                u64 i_vld:1;
1818        } ii_iprte5a_fld_s;
1819} ii_iprte5a_u_t;
1820
1821/************************************************************************
1822 *                                                                      *
1823 *  There are 8 instances of this register. This register contains      *
1824 * the information that the II has to remember once it has launched a   *
1825 * PIO Read operation. The contents are used to form the correct        *
1826 * Router Network packet and direct the Crosstalk reply to the          *
1827 * appropriate processor.                                               *
1828 *                                                                      *
1829 ************************************************************************/
1830
1831typedef union ii_iprte6a_u {
1832        u64 ii_iprte6a_regval;
1833        struct {
1834                u64 i_rsvd_1:54;
1835                u64 i_widget:4;
1836                u64 i_to_cnt:5;
1837                u64 i_vld:1;
1838        } ii_iprte6a_fld_s;
1839} ii_iprte6a_u_t;
1840
1841/************************************************************************
1842 *                                                                      *
1843 *  There are 8 instances of this register. This register contains      *
1844 * the information that the II has to remember once it has launched a   *
1845 * PIO Read operation. The contents are used to form the correct        *
1846 * Router Network packet and direct the Crosstalk reply to the          *
1847 * appropriate processor.                                               *
1848 *                                                                      *
1849 ************************************************************************/
1850
1851typedef union ii_iprte7a_u {
1852        u64 ii_iprte7a_regval;
1853        struct {
1854                u64 i_rsvd_1:54;
1855                u64 i_widget:4;
1856                u64 i_to_cnt:5;
1857                u64 i_vld:1;
1858        } ii_iprtea7_fld_s;
1859} ii_iprte7a_u_t;
1860
1861/************************************************************************
1862 *                                                                      *
1863 *  There are 8 instances of this register. This register contains      *
1864 * the information that the II has to remember once it has launched a   *
1865 * PIO Read operation. The contents are used to form the correct        *
1866 * Router Network packet and direct the Crosstalk reply to the          *
1867 * appropriate processor.                                               *
1868 *                                                                      *
1869 ************************************************************************/
1870
1871typedef union ii_iprte0b_u {
1872        u64 ii_iprte0b_regval;
1873        struct {
1874                u64 i_rsvd_1:3;
1875                u64 i_address:47;
1876                u64 i_init:3;
1877                u64 i_source:11;
1878        } ii_iprte0b_fld_s;
1879} ii_iprte0b_u_t;
1880
1881/************************************************************************
1882 *                                                                      *
1883 *  There are 8 instances of this register. This register contains      *
1884 * the information that the II has to remember once it has launched a   *
1885 * PIO Read operation. The contents are used to form the correct        *
1886 * Router Network packet and direct the Crosstalk reply to the          *
1887 * appropriate processor.                                               *
1888 *                                                                      *
1889 ************************************************************************/
1890
1891typedef union ii_iprte1b_u {
1892        u64 ii_iprte1b_regval;
1893        struct {
1894                u64 i_rsvd_1:3;
1895                u64 i_address:47;
1896                u64 i_init:3;
1897                u64 i_source:11;
1898        } ii_iprte1b_fld_s;
1899} ii_iprte1b_u_t;
1900
1901/************************************************************************
1902 *                                                                      *
1903 *  There are 8 instances of this register. This register contains      *
1904 * the information that the II has to remember once it has launched a   *
1905 * PIO Read operation. The contents are used to form the correct        *
1906 * Router Network packet and direct the Crosstalk reply to the          *
1907 * appropriate processor.                                               *
1908 *                                                                      *
1909 ************************************************************************/
1910
1911typedef union ii_iprte2b_u {
1912        u64 ii_iprte2b_regval;
1913        struct {
1914                u64 i_rsvd_1:3;
1915                u64 i_address:47;
1916                u64 i_init:3;
1917                u64 i_source:11;
1918        } ii_iprte2b_fld_s;
1919} ii_iprte2b_u_t;
1920
1921/************************************************************************
1922 *                                                                      *
1923 *  There are 8 instances of this register. This register contains      *
1924 * the information that the II has to remember once it has launched a   *
1925 * PIO Read operation. The contents are used to form the correct        *
1926 * Router Network packet and direct the Crosstalk reply to the          *
1927 * appropriate processor.                                               *
1928 *                                                                      *
1929 ************************************************************************/
1930
1931typedef union ii_iprte3b_u {
1932        u64 ii_iprte3b_regval;
1933        struct {
1934                u64 i_rsvd_1:3;
1935                u64 i_address:47;
1936                u64 i_init:3;
1937                u64 i_source:11;
1938        } ii_iprte3b_fld_s;
1939} ii_iprte3b_u_t;
1940
1941/************************************************************************
1942 *                                                                      *
1943 *  There are 8 instances of this register. This register contains      *
1944 * the information that the II has to remember once it has launched a   *
1945 * PIO Read operation. The contents are used to form the correct        *
1946 * Router Network packet and direct the Crosstalk reply to the          *
1947 * appropriate processor.                                               *
1948 *                                                                      *
1949 ************************************************************************/
1950
1951typedef union ii_iprte4b_u {
1952        u64 ii_iprte4b_regval;
1953        struct {
1954                u64 i_rsvd_1:3;
1955                u64 i_address:47;
1956                u64 i_init:3;
1957                u64 i_source:11;
1958        } ii_iprte4b_fld_s;
1959} ii_iprte4b_u_t;
1960
1961/************************************************************************
1962 *                                                                      *
1963 *  There are 8 instances of this register. This register contains      *
1964 * the information that the II has to remember once it has launched a   *
1965 * PIO Read operation. The contents are used to form the correct        *
1966 * Router Network packet and direct the Crosstalk reply to the          *
1967 * appropriate processor.                                               *
1968 *                                                                      *
1969 ************************************************************************/
1970
1971typedef union ii_iprte5b_u {
1972        u64 ii_iprte5b_regval;
1973        struct {
1974                u64 i_rsvd_1:3;
1975                u64 i_address:47;
1976                u64 i_init:3;
1977                u64 i_source:11;
1978        } ii_iprte5b_fld_s;
1979} ii_iprte5b_u_t;
1980
1981/************************************************************************
1982 *                                                                      *
1983 *  There are 8 instances of this register. This register contains      *
1984 * the information that the II has to remember once it has launched a   *
1985 * PIO Read operation. The contents are used to form the correct        *
1986 * Router Network packet and direct the Crosstalk reply to the          *
1987 * appropriate processor.                                               *
1988 *                                                                      *
1989 ************************************************************************/
1990
1991typedef union ii_iprte6b_u {
1992        u64 ii_iprte6b_regval;
1993        struct {
1994                u64 i_rsvd_1:3;
1995                u64 i_address:47;
1996                u64 i_init:3;
1997                u64 i_source:11;
1998
1999        } ii_iprte6b_fld_s;
2000} ii_iprte6b_u_t;
2001
2002/************************************************************************
2003 *                                                                      *
2004 *  There are 8 instances of this register. This register contains      *
2005 * the information that the II has to remember once it has launched a   *
2006 * PIO Read operation. The contents are used to form the correct        *
2007 * Router Network packet and direct the Crosstalk reply to the          *
2008 * appropriate processor.                                               *
2009 *                                                                      *
2010 ************************************************************************/
2011
2012typedef union ii_iprte7b_u {
2013        u64 ii_iprte7b_regval;
2014        struct {
2015                u64 i_rsvd_1:3;
2016                u64 i_address:47;
2017                u64 i_init:3;
2018                u64 i_source:11;
2019        } ii_iprte7b_fld_s;
2020} ii_iprte7b_u_t;
2021
2022/************************************************************************
2023 *                                                                      *
2024 * Description:  SHub II contains a feature which did not exist in      *
2025 * the Hub which automatically cleans up after a Read Response          *
2026 * timeout, including deallocation of the IPRTE and recovery of IBuf    *
2027 * space. The inclusion of this register in SHub is for backward        *
2028 * compatibility                                                        *
2029 * A write to this register causes an entry from the table of           *
2030 * outstanding PIO Read Requests to be freed and returned to the        *
2031 * stack of free entries. This register is used in handling the         *
2032 * timeout errors that result in a PIO Reply never returning from       *
2033 * Crosstalk.                                                           *
2034 * Note that this register does not affect the contents of the IPRTE    *
2035 * registers. The Valid bits in those registers have to be              *
2036 * specifically turned off by software.                                 *
2037 *                                                                      *
2038 ************************************************************************/
2039
2040typedef union ii_ipdr_u {
2041        u64 ii_ipdr_regval;
2042        struct {
2043                u64 i_te:3;
2044                u64 i_rsvd_1:1;
2045                u64 i_pnd:1;
2046                u64 i_init_rpcnt:1;
2047                u64 i_rsvd:58;
2048        } ii_ipdr_fld_s;
2049} ii_ipdr_u_t;
2050
2051/************************************************************************
2052 *                                                                      *
2053 *  A write to this register causes a CRB entry to be returned to the   *
2054 * queue of free CRBs. The entry should have previously been cleared    *
2055 * (mark bit) via backdoor access to the pertinent CRB entry. This      *
2056 * register is used in the last step of handling the errors that are    *
2057 * captured and marked in CRB entries.  Briefly: 1) first error for     *
2058 * DMA write from a particular device, and first error for a            *
2059 * particular BTE stream, lead to a marked CRB entry, and processor     *
2060 * interrupt, 2) software reads the error information captured in the   *
2061 * CRB entry, and presumably takes some corrective action, 3)           *
2062 * software clears the mark bit, and finally 4) software writes to      *
2063 * the ICDR register to return the CRB entry to the list of free CRB    *
2064 * entries.                                                             *
2065 *                                                                      *
2066 ************************************************************************/
2067
2068typedef union ii_icdr_u {
2069        u64 ii_icdr_regval;
2070        struct {
2071                u64 i_crb_num:4;
2072                u64 i_pnd:1;
2073                u64 i_rsvd:59;
2074        } ii_icdr_fld_s;
2075} ii_icdr_u_t;
2076
2077/************************************************************************
2078 *                                                                      *
2079 *  This register provides debug access to two FIFOs inside of II.      *
2080 * Both IOQ_MAX* fields of this register contain the instantaneous      *
2081 * depth (in units of the number of available entries) of the           *
2082 * associated IOQ FIFO.  A read of this register will return the        *
2083 * number of free entries on each FIFO at the time of the read.  So     *
2084 * when a FIFO is idle, the associated field contains the maximum       *
2085 * depth of the FIFO.  This register is writable for debug reasons      *
2086 * and is intended to be written with the maximum desired FIFO depth    *
2087 * while the FIFO is idle. Software must assure that II is idle when    *
2088 * this register is written. If there are any active entries in any     *
2089 * of these FIFOs when this register is written, the results are        *
2090 * undefined.                                                           *
2091 *                                                                      *
2092 ************************************************************************/
2093
2094typedef union ii_ifdr_u {
2095        u64 ii_ifdr_regval;
2096        struct {
2097                u64 i_ioq_max_rq:7;
2098                u64 i_set_ioq_rq:1;
2099                u64 i_ioq_max_rp:7;
2100                u64 i_set_ioq_rp:1;
2101                u64 i_rsvd:48;
2102        } ii_ifdr_fld_s;
2103} ii_ifdr_u_t;
2104
2105/************************************************************************
2106 *                                                                      *
2107 *  This register allows the II to become sluggish in removing          *
2108 * messages from its inbound queue (IIQ). This will cause messages to   *
2109 * back up in either virtual channel. Disabling the "molasses" mode     *
2110 * subsequently allows the II to be tested under stress. In the         *
2111 * sluggish ("Molasses") mode, the localized effects of congestion      *
2112 * can be observed.                                                     *
2113 *                                                                      *
2114 ************************************************************************/
2115
2116typedef union ii_iiap_u {
2117        u64 ii_iiap_regval;
2118        struct {
2119                u64 i_rq_mls:6;
2120                u64 i_rsvd_1:2;
2121                u64 i_rp_mls:6;
2122                u64 i_rsvd:50;
2123        } ii_iiap_fld_s;
2124} ii_iiap_u_t;
2125
2126/************************************************************************
2127 *                                                                      *
2128 *  This register allows several parameters of CRB operation to be      *
2129 * set. Note that writing to this register can have catastrophic side   *
2130 * effects, if the CRB is not quiescent, i.e. if the CRB is             *
2131 * processing protocol messages when the write occurs.                  *
2132 *                                                                      *
2133 ************************************************************************/
2134
2135typedef union ii_icmr_u {
2136        u64 ii_icmr_regval;
2137        struct {
2138                u64 i_sp_msg:1;
2139                u64 i_rd_hdr:1;
2140                u64 i_rsvd_4:2;
2141                u64 i_c_cnt:4;
2142                u64 i_rsvd_3:4;
2143                u64 i_clr_rqpd:1;
2144                u64 i_clr_rppd:1;
2145                u64 i_rsvd_2:2;
2146                u64 i_fc_cnt:4;
2147                u64 i_crb_vld:15;
2148                u64 i_crb_mark:15;
2149                u64 i_rsvd_1:2;
2150                u64 i_precise:1;
2151                u64 i_rsvd:11;
2152        } ii_icmr_fld_s;
2153} ii_icmr_u_t;
2154
2155/************************************************************************
2156 *                                                                      *
2157 *  This register allows control of the table portion of the CRB        *
2158 * logic via software. Control operations from this register have       *
2159 * priority over all incoming Crosstalk or BTE requests.                *
2160 *                                                                      *
2161 ************************************************************************/
2162
2163typedef union ii_iccr_u {
2164        u64 ii_iccr_regval;
2165        struct {
2166                u64 i_crb_num:4;
2167                u64 i_rsvd_1:4;
2168                u64 i_cmd:8;
2169                u64 i_pending:1;
2170                u64 i_rsvd:47;
2171        } ii_iccr_fld_s;
2172} ii_iccr_u_t;
2173
2174/************************************************************************
2175 *                                                                      *
2176 *  This register allows the maximum timeout value to be programmed.    *
2177 *                                                                      *
2178 ************************************************************************/
2179
2180typedef union ii_icto_u {
2181        u64 ii_icto_regval;
2182        struct {
2183                u64 i_timeout:8;
2184                u64 i_rsvd:56;
2185        } ii_icto_fld_s;
2186} ii_icto_u_t;
2187
2188/************************************************************************
2189 *                                                                      *
2190 *  This register allows the timeout prescalar to be programmed. An     *
2191 * internal counter is associated with this register. When the          *
2192 * internal counter reaches the value of the PRESCALE field, the        *
2193 * timer registers in all valid CRBs are incremented (CRBx_D[TIMEOUT]   *
2194 * field). The internal counter resets to zero, and then continues      *
2195 * counting.                                                            *
2196 *                                                                      *
2197 ************************************************************************/
2198
2199typedef union ii_ictp_u {
2200        u64 ii_ictp_regval;
2201        struct {
2202                u64 i_prescale:24;
2203                u64 i_rsvd:40;
2204        } ii_ictp_fld_s;
2205} ii_ictp_u_t;
2206
2207/************************************************************************
2208 *                                                                      *
2209 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2210 * used for Crosstalk operations (both cacheline and partial            *
2211 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2212 * registers (_A to _E) are required to read and write each entry.      *
2213 * The CRB Entry registers can be conceptualized as rows and columns    *
2214 * (illustrated in the table above). Each row contains the 4            *
2215 * registers required for a single CRB Entry. The first doubleword      *
2216 * (column) for each entry is labeled A, and the second doubleword      *
2217 * (higher address) is labeled B, the third doubleword is labeled C,    *
2218 * the fourth doubleword is labeled D and the fifth doubleword is       *
2219 * labeled E. All CRB entries have their addresses on a quarter         *
2220 * cacheline aligned boundary.                   *
2221 * Upon reset, only the following fields are initialized: valid         *
2222 * (VLD), priority count, timeout, timeout valid, and context valid.    *
2223 * All other bits should be cleared by software before use (after       *
2224 * recovering any potential error state from before the reset).         *
2225 * The following four tables summarize the format for the four          *
2226 * registers that are used for each ICRB# Entry.                        *
2227 *                                                                      *
2228 ************************************************************************/
2229
2230typedef union ii_icrb0_a_u {
2231        u64 ii_icrb0_a_regval;
2232        struct {
2233                u64 ia_iow:1;
2234                u64 ia_vld:1;
2235                u64 ia_addr:47;
2236                u64 ia_tnum:5;
2237                u64 ia_sidn:4;
2238                u64 ia_rsvd:6;
2239        } ii_icrb0_a_fld_s;
2240} ii_icrb0_a_u_t;
2241
2242/************************************************************************
2243 *                                                                      *
2244 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2245 * used for Crosstalk operations (both cacheline and partial            *
2246 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2247 * registers (_A to _E) are required to read and write each entry.      *
2248 *                                                                      *
2249 ************************************************************************/
2250
2251typedef union ii_icrb0_b_u {
2252        u64 ii_icrb0_b_regval;
2253        struct {
2254                u64 ib_xt_err:1;
2255                u64 ib_mark:1;
2256                u64 ib_ln_uce:1;
2257                u64 ib_errcode:3;
2258                u64 ib_error:1;
2259                u64 ib_stall__bte_1:1;
2260                u64 ib_stall__bte_0:1;
2261                u64 ib_stall__intr:1;
2262                u64 ib_stall_ib:1;
2263                u64 ib_intvn:1;
2264                u64 ib_wb:1;
2265                u64 ib_hold:1;
2266                u64 ib_ack:1;
2267                u64 ib_resp:1;
2268                u64 ib_ack_cnt:11;
2269                u64 ib_rsvd:7;
2270                u64 ib_exc:5;
2271                u64 ib_init:3;
2272                u64 ib_imsg:8;
2273                u64 ib_imsgtype:2;
2274                u64 ib_use_old:1;
2275                u64 ib_rsvd_1:11;
2276        } ii_icrb0_b_fld_s;
2277} ii_icrb0_b_u_t;
2278
2279/************************************************************************
2280 *                                                                      *
2281 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2282 * used for Crosstalk operations (both cacheline and partial            *
2283 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2284 * registers (_A to _E) are required to read and write each entry.      *
2285 *                                                                      *
2286 ************************************************************************/
2287
2288typedef union ii_icrb0_c_u {
2289        u64 ii_icrb0_c_regval;
2290        struct {
2291                u64 ic_source:15;
2292                u64 ic_size:2;
2293                u64 ic_ct:1;
2294                u64 ic_bte_num:1;
2295                u64 ic_gbr:1;
2296                u64 ic_resprqd:1;
2297                u64 ic_bo:1;
2298                u64 ic_suppl:15;
2299                u64 ic_rsvd:27;
2300        } ii_icrb0_c_fld_s;
2301} ii_icrb0_c_u_t;
2302
2303/************************************************************************
2304 *                                                                      *
2305 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2306 * used for Crosstalk operations (both cacheline and partial            *
2307 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2308 * registers (_A to _E) are required to read and write each entry.      *
2309 *                                                                      *
2310 ************************************************************************/
2311
2312typedef union ii_icrb0_d_u {
2313        u64 ii_icrb0_d_regval;
2314        struct {
2315                u64 id_pa_be:43;
2316                u64 id_bte_op:1;
2317                u64 id_pr_psc:4;
2318                u64 id_pr_cnt:4;
2319                u64 id_sleep:1;
2320                u64 id_rsvd:11;
2321        } ii_icrb0_d_fld_s;
2322} ii_icrb0_d_u_t;
2323
2324/************************************************************************
2325 *                                                                      *
2326 * Description:  There are 15 CRB Entries (ICRB0 to ICRBE) that are     *
2327 * used for Crosstalk operations (both cacheline and partial            *
2328 * operations) or BTE/IO. Because the CRB entries are very wide, five   *
2329 * registers (_A to _E) are required to read and write each entry.      *
2330 *                                                                      *
2331 ************************************************************************/
2332
2333typedef union ii_icrb0_e_u {
2334        u64 ii_icrb0_e_regval;
2335        struct {
2336                u64 ie_timeout:8;
2337                u64 ie_context:15;
2338                u64 ie_rsvd:1;
2339                u64 ie_tvld:1;
2340                u64 ie_cvld:1;
2341                u64 ie_rsvd_0:38;
2342        } ii_icrb0_e_fld_s;
2343} ii_icrb0_e_u_t;
2344
2345/************************************************************************
2346 *                                                                      *
2347 *  This register contains the lower 64 bits of the header of the       *
2348 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2349 * register is set.                                                     *
2350 *                                                                      *
2351 ************************************************************************/
2352
2353typedef union ii_icsml_u {
2354        u64 ii_icsml_regval;
2355        struct {
2356                u64 i_tt_addr:47;
2357                u64 i_newsuppl_ex:14;
2358                u64 i_reserved:2;
2359                u64 i_overflow:1;
2360        } ii_icsml_fld_s;
2361} ii_icsml_u_t;
2362
2363/************************************************************************
2364 *                                                                      *
2365 *  This register contains the middle 64 bits of the header of the      *
2366 * spurious message captured by II. Valid when the SP_MSG bit in ICMR   *
2367 * register is set.                                                     *
2368 *                                                                      *
2369 ************************************************************************/
2370
2371typedef union ii_icsmm_u {
2372        u64 ii_icsmm_regval;
2373        struct {
2374                u64 i_tt_ack_cnt:11;
2375                u64 i_reserved:53;
2376        } ii_icsmm_fld_s;
2377} ii_icsmm_u_t;
2378
2379/************************************************************************
2380 *                                                                      *
2381 *  This register contains the microscopic state, all the inputs to     *
2382 * the protocol table, captured with the spurious message. Valid when   *
2383 * the SP_MSG bit in the ICMR register is set.                          *
2384 *                                                                      *
2385 ************************************************************************/
2386
2387typedef union ii_icsmh_u {
2388        u64 ii_icsmh_regval;
2389        struct {
2390                u64 i_tt_vld:1;
2391                u64 i_xerr:1;
2392                u64 i_ft_cwact_o:1;
2393                u64 i_ft_wact_o:1;
2394                u64 i_ft_active_o:1;
2395                u64 i_sync:1;
2396                u64 i_mnusg:1;
2397                u64 i_mnusz:1;
2398                u64 i_plusz:1;
2399                u64 i_plusg:1;
2400                u64 i_tt_exc:5;
2401                u64 i_tt_wb:1;
2402                u64 i_tt_hold:1;
2403                u64 i_tt_ack:1;
2404                u64 i_tt_resp:1;
2405                u64 i_tt_intvn:1;
2406                u64 i_g_stall_bte1:1;
2407                u64 i_g_stall_bte0:1;
2408                u64 i_g_stall_il:1;
2409                u64 i_g_stall_ib:1;
2410                u64 i_tt_imsg:8;
2411                u64 i_tt_imsgtype:2;
2412                u64 i_tt_use_old:1;
2413                u64 i_tt_respreqd:1;
2414                u64 i_tt_bte_num:1;
2415                u64 i_cbn:1;
2416                u64 i_match:1;
2417                u64 i_rpcnt_lt_34:1;
2418                u64 i_rpcnt_ge_34:1;
2419                u64 i_rpcnt_lt_18:1;
2420                u64 i_rpcnt_ge_18:1;
2421                u64 i_rpcnt_lt_2:1;
2422                u64 i_rpcnt_ge_2:1;
2423                u64 i_rqcnt_lt_18:1;
2424                u64 i_rqcnt_ge_18:1;
2425                u64 i_rqcnt_lt_2:1;
2426                u64 i_rqcnt_ge_2:1;
2427                u64 i_tt_device:7;
2428                u64 i_tt_init:3;
2429                u64 i_reserved:5;
2430        } ii_icsmh_fld_s;
2431} ii_icsmh_u_t;
2432
2433/************************************************************************
2434 *                                                                      *
2435 *  The Shub DEBUG unit provides a 3-bit selection signal to the        *
2436 * II core and a 3-bit selection signal to the fsbclk domain in the II  *
2437 * wrapper.                                                             *
2438 *                                                                      *
2439 ************************************************************************/
2440
2441typedef union ii_idbss_u {
2442        u64 ii_idbss_regval;
2443        struct {
2444                u64 i_iioclk_core_submenu:3;
2445                u64 i_rsvd:5;
2446                u64 i_fsbclk_wrapper_submenu:3;
2447                u64 i_rsvd_1:5;
2448                u64 i_iioclk_menu:5;
2449                u64 i_rsvd_2:43;
2450        } ii_idbss_fld_s;
2451} ii_idbss_u_t;
2452
2453/************************************************************************
2454 *                                                                      *
2455 * Description:  This register is used to set up the length for a       *
2456 * transfer and then to monitor the progress of that transfer. This     *
2457 * register needs to be initialized before a transfer is started. A     *
2458 * legitimate write to this register will set the Busy bit, clear the   *
2459 * Error bit, and initialize the length to the value desired.           *
2460 * While the transfer is in progress, hardware will decrement the       *
2461 * length field with each successful block that is copied. Once the     *
2462 * transfer completes, hardware will clear the Busy bit. The length     *
2463 * field will also contain the number of cache lines left to be         *
2464 * transferred.                                                         *
2465 *                                                                      *
2466 ************************************************************************/
2467
2468typedef union ii_ibls0_u {
2469        u64 ii_ibls0_regval;
2470        struct {
2471                u64 i_length:16;
2472                u64 i_error:1;
2473                u64 i_rsvd_1:3;
2474                u64 i_busy:1;
2475                u64 i_rsvd:43;
2476        } ii_ibls0_fld_s;
2477} ii_ibls0_u_t;
2478
2479/************************************************************************
2480 *                                                                      *
2481 *  This register should be loaded before a transfer is started. The    *
2482 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2483 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2484 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2485 * transfers are always cacheline-aligned.                              *
2486 *                                                                      *
2487 ************************************************************************/
2488
2489typedef union ii_ibsa0_u {
2490        u64 ii_ibsa0_regval;
2491        struct {
2492                u64 i_rsvd_1:7;
2493                u64 i_addr:42;
2494                u64 i_rsvd:15;
2495        } ii_ibsa0_fld_s;
2496} ii_ibsa0_u_t;
2497
2498/************************************************************************
2499 *                                                                      *
2500 *  This register should be loaded before a transfer is started. The    *
2501 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2502 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2503 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2504 * transfers are always cacheline-aligned.                              *
2505 *                                                                      *
2506 ************************************************************************/
2507
2508typedef union ii_ibda0_u {
2509        u64 ii_ibda0_regval;
2510        struct {
2511                u64 i_rsvd_1:7;
2512                u64 i_addr:42;
2513                u64 i_rsvd:15;
2514        } ii_ibda0_fld_s;
2515} ii_ibda0_u_t;
2516
2517/************************************************************************
2518 *                                                                      *
2519 *  Writing to this register sets up the attributes of the transfer     *
2520 * and initiates the transfer operation. Reading this register has      *
2521 * the side effect of terminating any transfer in progress. Note:       *
2522 * stopping a transfer midstream could have an adverse impact on the    *
2523 * other BTE. If a BTE stream has to be stopped (due to error           *
2524 * handling for example), both BTE streams should be stopped and        *
2525 * their transfers discarded.                                           *
2526 *                                                                      *
2527 ************************************************************************/
2528
2529typedef union ii_ibct0_u {
2530        u64 ii_ibct0_regval;
2531        struct {
2532                u64 i_zerofill:1;
2533                u64 i_rsvd_2:3;
2534                u64 i_notify:1;
2535                u64 i_rsvd_1:3;
2536                u64 i_poison:1;
2537                u64 i_rsvd:55;
2538        } ii_ibct0_fld_s;
2539} ii_ibct0_u_t;
2540
2541/************************************************************************
2542 *                                                                      *
2543 *  This register contains the address to which the WINV is sent.       *
2544 * This address has to be cache line aligned.                           *
2545 *                                                                      *
2546 ************************************************************************/
2547
2548typedef union ii_ibna0_u {
2549        u64 ii_ibna0_regval;
2550        struct {
2551                u64 i_rsvd_1:7;
2552                u64 i_addr:42;
2553                u64 i_rsvd:15;
2554        } ii_ibna0_fld_s;
2555} ii_ibna0_u_t;
2556
2557/************************************************************************
2558 *                                                                      *
2559 *  This register contains the programmable level as well as the node   *
2560 * ID and PI unit of the processor to which the interrupt will be       *
2561 * sent.                                                                *
2562 *                                                                      *
2563 ************************************************************************/
2564
2565typedef union ii_ibia0_u {
2566        u64 ii_ibia0_regval;
2567        struct {
2568                u64 i_rsvd_2:1;
2569                u64 i_node_id:11;
2570                u64 i_rsvd_1:4;
2571                u64 i_level:7;
2572                u64 i_rsvd:41;
2573        } ii_ibia0_fld_s;
2574} ii_ibia0_u_t;
2575
2576/************************************************************************
2577 *                                                                      *
2578 * Description:  This register is used to set up the length for a       *
2579 * transfer and then to monitor the progress of that transfer. This     *
2580 * register needs to be initialized before a transfer is started. A     *
2581 * legitimate write to this register will set the Busy bit, clear the   *
2582 * Error bit, and initialize the length to the value desired.           *
2583 * While the transfer is in progress, hardware will decrement the       *
2584 * length field with each successful block that is copied. Once the     *
2585 * transfer completes, hardware will clear the Busy bit. The length     *
2586 * field will also contain the number of cache lines left to be         *
2587 * transferred.                                                         *
2588 *                                                                      *
2589 ************************************************************************/
2590
2591typedef union ii_ibls1_u {
2592        u64 ii_ibls1_regval;
2593        struct {
2594                u64 i_length:16;
2595                u64 i_error:1;
2596                u64 i_rsvd_1:3;
2597                u64 i_busy:1;
2598                u64 i_rsvd:43;
2599        } ii_ibls1_fld_s;
2600} ii_ibls1_u_t;
2601
2602/************************************************************************
2603 *                                                                      *
2604 *  This register should be loaded before a transfer is started. The    *
2605 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2606 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2607 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2608 * transfers are always cacheline-aligned.                              *
2609 *                                                                      *
2610 ************************************************************************/
2611
2612typedef union ii_ibsa1_u {
2613        u64 ii_ibsa1_regval;
2614        struct {
2615                u64 i_rsvd_1:7;
2616                u64 i_addr:33;
2617                u64 i_rsvd:24;
2618        } ii_ibsa1_fld_s;
2619} ii_ibsa1_u_t;
2620
2621/************************************************************************
2622 *                                                                      *
2623 *  This register should be loaded before a transfer is started. The    *
2624 * address to be loaded in bits 39:0 is the 40-bit TRex+ physical       *
2625 * address as described in Section 1.3, Figure2 and Figure3. Since      *
2626 * the bottom 7 bits of the address are always taken to be zero, BTE    *
2627 * transfers are always cacheline-aligned.                              *
2628 *                                                                      *
2629 ************************************************************************/
2630
2631typedef union ii_ibda1_u {
2632        u64 ii_ibda1_regval;
2633        struct {
2634                u64 i_rsvd_1:7;
2635                u64 i_addr:33;
2636                u64 i_rsvd:24;
2637        } ii_ibda1_fld_s;
2638} ii_ibda1_u_t;
2639
2640/************************************************************************
2641 *                                                                      *
2642 *  Writing to this register sets up the attributes of the transfer     *
2643 * and initiates the transfer operation. Reading this register has      *
2644 * the side effect of terminating any transfer in progress. Note:       *
2645 * stopping a transfer midstream could have an adverse impact on the    *
2646 * other BTE. If a BTE stream has to be stopped (due to error           *
2647 * handling for example), both BTE streams should be stopped and        *
2648 * their transfers discarded.                                           *
2649 *                                                                      *
2650 ************************************************************************/
2651
2652typedef union ii_ibct1_u {
2653        u64 ii_ibct1_regval;
2654        struct {
2655                u64 i_zerofill:1;
2656                u64 i_rsvd_2:3;
2657                u64 i_notify:1;
2658                u64 i_rsvd_1:3;
2659                u64 i_poison:1;
2660                u64 i_rsvd:55;
2661        } ii_ibct1_fld_s;
2662} ii_ibct1_u_t;
2663
2664/************************************************************************
2665 *                                                                      *
2666 *  This register contains the address to which the WINV is sent.       *
2667 * This address has to be cache line aligned.                           *
2668 *                                                                      *
2669 ************************************************************************/
2670
2671typedef union ii_ibna1_u {
2672        u64 ii_ibna1_regval;
2673        struct {
2674                u64 i_rsvd_1:7;
2675                u64 i_addr:33;
2676                u64 i_rsvd:24;
2677        } ii_ibna1_fld_s;
2678} ii_ibna1_u_t;
2679
2680/************************************************************************
2681 *                                                                      *
2682 *  This register contains the programmable level as well as the node   *
2683 * ID and PI unit of the processor to which the interrupt will be       *
2684 * sent.                                                                *
2685 *                                                                      *
2686 ************************************************************************/
2687
2688typedef union ii_ibia1_u {
2689        u64 ii_ibia1_regval;
2690        struct {
2691                u64 i_pi_id:1;
2692                u64 i_node_id:8;
2693                u64 i_rsvd_1:7;
2694                u64 i_level:7;
2695                u64 i_rsvd:41;
2696        } ii_ibia1_fld_s;
2697} ii_ibia1_u_t;
2698
2699/************************************************************************
2700 *                                                                      *
2701 *  This register defines the resources that feed information into      *
2702 * the two performance counters located in the IO Performance           *
2703 * Profiling Register. There are 17 different quantities that can be    *
2704 * measured. Given these 17 different options, the two performance      *
2705 * counters have 15 of them in common; menu selections 0 through 0xE    *
2706 * are identical for each performance counter. As for the other two     *
2707 * options, one is available from one performance counter and the       *
2708 * other is available from the other performance counter. Hence, the    *
2709 * II supports all 17*16=272 possible combinations of quantities to     *
2710 * measure.                                                             *
2711 *                                                                      *
2712 ************************************************************************/
2713
2714typedef union ii_ipcr_u {
2715        u64 ii_ipcr_regval;
2716        struct {
2717                u64 i_ippr0_c:4;
2718                u64 i_ippr1_c:4;
2719                u64 i_icct:8;
2720                u64 i_rsvd:48;
2721        } ii_ipcr_fld_s;
2722} ii_ipcr_u_t;
2723
2724/************************************************************************
2725 *                                                                      *
2726 *                                                                      *
2727 *                                                                      *
2728 ************************************************************************/
2729
2730typedef union ii_ippr_u {
2731        u64 ii_ippr_regval;
2732        struct {
2733                u64 i_ippr0:32;
2734                u64 i_ippr1:32;
2735        } ii_ippr_fld_s;
2736} ii_ippr_u_t;
2737
2738/************************************************************************
2739 *                                                                      *
2740 * The following defines which were not formed into structures are      *
2741 * probably identical to another register, and the name of the          *
2742 * register is provided against each of these registers. This           *
2743 * information needs to be checked carefully                            *
2744 *                                                                      *
2745 *              IIO_ICRB1_A             IIO_ICRB0_A                     *
2746 *              IIO_ICRB1_B             IIO_ICRB0_B                     *
2747 *              IIO_ICRB1_C             IIO_ICRB0_C                     *
2748 *              IIO_ICRB1_D             IIO_ICRB0_D                     *
2749 *              IIO_ICRB1_E             IIO_ICRB0_E                     *
2750 *              IIO_ICRB2_A             IIO_ICRB0_A                     *
2751 *              IIO_ICRB2_B             IIO_ICRB0_B                     *
2752 *              IIO_ICRB2_C             IIO_ICRB0_C                     *
2753 *              IIO_ICRB2_D             IIO_ICRB0_D                     *
2754 *              IIO_ICRB2_E             IIO_ICRB0_E                     *
2755 *              IIO_ICRB3_A             IIO_ICRB0_A                     *
2756 *              IIO_ICRB3_B             IIO_ICRB0_B                     *
2757 *              IIO_ICRB3_C             IIO_ICRB0_C                     *
2758 *              IIO_ICRB3_D             IIO_ICRB0_D                     *
2759 *              IIO_ICRB3_E             IIO_ICRB0_E                     *
2760 *              IIO_ICRB4_A             IIO_ICRB0_A                     *
2761 *              IIO_ICRB4_B             IIO_ICRB0_B                     *
2762 *              IIO_ICRB4_C             IIO_ICRB0_C                     *
2763 *              IIO_ICRB4_D             IIO_ICRB0_D                     *
2764 *              IIO_ICRB4_E             IIO_ICRB0_E                     *
2765 *              IIO_ICRB5_A             IIO_ICRB0_A                     *
2766 *              IIO_ICRB5_B             IIO_ICRB0_B                     *
2767 *              IIO_ICRB5_C             IIO_ICRB0_C                     *
2768 *              IIO_ICRB5_D             IIO_ICRB0_D                     *
2769 *              IIO_ICRB5_E             IIO_ICRB0_E                     *
2770 *              IIO_ICRB6_A             IIO_ICRB0_A                     *
2771 *              IIO_ICRB6_B             IIO_ICRB0_B                     *
2772 *              IIO_ICRB6_C             IIO_ICRB0_C                     *
2773 *              IIO_ICRB6_D             IIO_ICRB0_D                     *
2774 *              IIO_ICRB6_E             IIO_ICRB0_E                     *
2775 *              IIO_ICRB7_A             IIO_ICRB0_A                     *
2776 *              IIO_ICRB7_B             IIO_ICRB0_B                     *
2777 *              IIO_ICRB7_C             IIO_ICRB0_C                     *
2778 *              IIO_ICRB7_D             IIO_ICRB0_D                     *
2779 *              IIO_ICRB7_E             IIO_ICRB0_E                     *
2780 *              IIO_ICRB8_A             IIO_ICRB0_A                     *
2781 *              IIO_ICRB8_B             IIO_ICRB0_B                     *
2782 *              IIO_ICRB8_C             IIO_ICRB0_C                     *
2783 *              IIO_ICRB8_D             IIO_ICRB0_D                     *
2784 *              IIO_ICRB8_E             IIO_ICRB0_E                     *
2785 *              IIO_ICRB9_A             IIO_ICRB0_A                     *
2786 *              IIO_ICRB9_B             IIO_ICRB0_B                     *
2787 *              IIO_ICRB9_C             IIO_ICRB0_C                     *
2788 *              IIO_ICRB9_D             IIO_ICRB0_D                     *
2789 *              IIO_ICRB9_E             IIO_ICRB0_E                     *
2790 *              IIO_ICRBA_A             IIO_ICRB0_A                     *
2791 *              IIO_ICRBA_B             IIO_ICRB0_B                     *
2792 *              IIO_ICRBA_C             IIO_ICRB0_C                     *
2793 *              IIO_ICRBA_D             IIO_ICRB0_D                     *
2794 *              IIO_ICRBA_E             IIO_ICRB0_E                     *
2795 *              IIO_ICRBB_A             IIO_ICRB0_A                     *
2796 *              IIO_ICRBB_B             IIO_ICRB0_B                     *
2797 *              IIO_ICRBB_C             IIO_ICRB0_C                     *
2798 *              IIO_ICRBB_D             IIO_ICRB0_D                     *
2799 *              IIO_ICRBB_E             IIO_ICRB0_E                     *
2800 *              IIO_ICRBC_A             IIO_ICRB0_A                     *
2801 *              IIO_ICRBC_B             IIO_ICRB0_B                     *
2802 *              IIO_ICRBC_C             IIO_ICRB0_C                     *
2803 *              IIO_ICRBC_D             IIO_ICRB0_D                     *
2804 *              IIO_ICRBC_E             IIO_ICRB0_E                     *
2805 *              IIO_ICRBD_A             IIO_ICRB0_A                     *
2806 *              IIO_ICRBD_B             IIO_ICRB0_B                     *
2807 *              IIO_ICRBD_C             IIO_ICRB0_C                     *
2808 *              IIO_ICRBD_D             IIO_ICRB0_D                     *
2809 *              IIO_ICRBD_E             IIO_ICRB0_E                     *
2810 *              IIO_ICRBE_A             IIO_ICRB0_A                     *
2811 *              IIO_ICRBE_B             IIO_ICRB0_B                     *
2812 *              IIO_ICRBE_C             IIO_ICRB0_C                     *
2813 *              IIO_ICRBE_D             IIO_ICRB0_D                     *
2814 *              IIO_ICRBE_E             IIO_ICRB0_E                     *
2815 *                                                                      *
2816 ************************************************************************/
2817
2818/*
2819 * Slightly friendlier names for some common registers.
2820 */
2821#define IIO_WIDGET              IIO_WID         /* Widget identification */
2822#define IIO_WIDGET_STAT         IIO_WSTAT       /* Widget status register */
2823#define IIO_WIDGET_CTRL         IIO_WCR         /* Widget control register */
2824#define IIO_PROTECT             IIO_ILAPR       /* IO interface protection */
2825#define IIO_PROTECT_OVRRD       IIO_ILAPO       /* IO protect override */
2826#define IIO_OUTWIDGET_ACCESS    IIO_IOWA        /* Outbound widget access */
2827#define IIO_INWIDGET_ACCESS     IIO_IIWA        /* Inbound widget access */
2828#define IIO_INDEV_ERR_MASK      IIO_IIDEM       /* Inbound device error mask */
2829#define IIO_LLP_CSR             IIO_ILCSR       /* LLP control and status */
2830#define IIO_LLP_LOG             IIO_ILLR        /* LLP log */
2831#define IIO_XTALKCC_TOUT        IIO_IXCC        /* Xtalk credit count timeout */
2832#define IIO_XTALKTT_TOUT        IIO_IXTT        /* Xtalk tail timeout */
2833#define IIO_IO_ERR_CLR          IIO_IECLR       /* IO error clear */
2834#define IIO_IGFX_0              IIO_IGFX0
2835#define IIO_IGFX_1              IIO_IGFX1
2836#define IIO_IBCT_0              IIO_IBCT0
2837#define IIO_IBCT_1              IIO_IBCT1
2838#define IIO_IBLS_0              IIO_IBLS0
2839#define IIO_IBLS_1              IIO_IBLS1
2840#define IIO_IBSA_0              IIO_IBSA0
2841#define IIO_IBSA_1              IIO_IBSA1
2842#define IIO_IBDA_0              IIO_IBDA0
2843#define IIO_IBDA_1              IIO_IBDA1
2844#define IIO_IBNA_0              IIO_IBNA0
2845#define IIO_IBNA_1              IIO_IBNA1
2846#define IIO_IBIA_0              IIO_IBIA0
2847#define IIO_IBIA_1              IIO_IBIA1
2848#define IIO_IOPRB_0             IIO_IPRB0
2849
2850#define IIO_PRTE_A(_x)          (IIO_IPRTE0_A + (8 * (_x)))
2851#define IIO_PRTE_B(_x)          (IIO_IPRTE0_B + (8 * (_x)))
2852#define IIO_NUM_PRTES           8       /* Total number of PRB table entries */
2853#define IIO_WIDPRTE_A(x)        IIO_PRTE_A(((x) - 8))   /* widget ID to its PRTE num */
2854#define IIO_WIDPRTE_B(x)        IIO_PRTE_B(((x) - 8))   /* widget ID to its PRTE num */
2855
2856#define IIO_NUM_IPRBS           9
2857
2858#define IIO_LLP_CSR_IS_UP               0x00002000
2859#define IIO_LLP_CSR_LLP_STAT_MASK       0x00003000
2860#define IIO_LLP_CSR_LLP_STAT_SHFT       12
2861
2862#define IIO_LLP_CB_MAX  0xffff  /* in ILLR CB_CNT, Max Check Bit errors */
2863#define IIO_LLP_SN_MAX  0xffff  /* in ILLR SN_CNT, Max Sequence Number errors */
2864
2865/* key to IIO_PROTECT_OVRRD */
2866#define IIO_PROTECT_OVRRD_KEY   0x53474972756c6573ull   /* "SGIrules" */
2867
2868/* BTE register names */
2869#define IIO_BTE_STAT_0          IIO_IBLS_0      /* Also BTE length/status 0 */
2870#define IIO_BTE_SRC_0           IIO_IBSA_0      /* Also BTE source address  0 */
2871#define IIO_BTE_DEST_0          IIO_IBDA_0      /* Also BTE dest. address 0 */
2872#define IIO_BTE_CTRL_0          IIO_IBCT_0      /* Also BTE control/terminate 0 */
2873#define IIO_BTE_NOTIFY_0        IIO_IBNA_0      /* Also BTE notification 0 */
2874#define IIO_BTE_INT_0           IIO_IBIA_0      /* Also BTE interrupt 0 */
2875#define IIO_BTE_OFF_0           0       /* Base offset from BTE 0 regs. */
2876#define IIO_BTE_OFF_1           (IIO_IBLS_1 - IIO_IBLS_0)       /* Offset from base to BTE 1 */
2877
2878/* BTE register offsets from base */
2879#define BTEOFF_STAT             0
2880#define BTEOFF_SRC              (IIO_BTE_SRC_0 - IIO_BTE_STAT_0)
2881#define BTEOFF_DEST             (IIO_BTE_DEST_0 - IIO_BTE_STAT_0)
2882#define BTEOFF_CTRL             (IIO_BTE_CTRL_0 - IIO_BTE_STAT_0)
2883#define BTEOFF_NOTIFY           (IIO_BTE_NOTIFY_0 - IIO_BTE_STAT_0)
2884#define BTEOFF_INT              (IIO_BTE_INT_0 - IIO_BTE_STAT_0)
2885
2886/* names used in shub diags */
2887#define IIO_BASE_BTE0   IIO_IBLS_0
2888#define IIO_BASE_BTE1   IIO_IBLS_1
2889
2890/*
2891 * Macro which takes the widget number, and returns the
2892 * IO PRB address of that widget.
2893 * value _x is expected to be a widget number in the range
2894 * 0, 8 - 0xF
2895 */
2896#define IIO_IOPRB(_x)   (IIO_IOPRB_0 + ( ( (_x) < HUB_WIDGET_ID_MIN ? \
2897                        (_x) : \
2898                        (_x) - (HUB_WIDGET_ID_MIN-1)) << 3) )
2899
2900/* GFX Flow Control Node/Widget Register */
2901#define IIO_IGFX_W_NUM_BITS     4       /* size of widget num field */
2902#define IIO_IGFX_W_NUM_MASK     ((1<<IIO_IGFX_W_NUM_BITS)-1)
2903#define IIO_IGFX_W_NUM_SHIFT    0
2904#define IIO_IGFX_PI_NUM_BITS    1       /* size of PI num field */
2905#define IIO_IGFX_PI_NUM_MASK    ((1<<IIO_IGFX_PI_NUM_BITS)-1)
2906#define IIO_IGFX_PI_NUM_SHIFT   4
2907#define IIO_IGFX_N_NUM_BITS     8       /* size of node num field */
2908#define IIO_IGFX_N_NUM_MASK     ((1<<IIO_IGFX_N_NUM_BITS)-1)
2909#define IIO_IGFX_N_NUM_SHIFT    5
2910#define IIO_IGFX_P_NUM_BITS     1       /* size of processor num field */
2911#define IIO_IGFX_P_NUM_MASK     ((1<<IIO_IGFX_P_NUM_BITS)-1)
2912#define IIO_IGFX_P_NUM_SHIFT    16
2913#define IIO_IGFX_INIT(widget, pi, node, cpu)                            (\
2914        (((widget) & IIO_IGFX_W_NUM_MASK) << IIO_IGFX_W_NUM_SHIFT) |     \
2915        (((pi)     & IIO_IGFX_PI_NUM_MASK)<< IIO_IGFX_PI_NUM_SHIFT)|     \
2916        (((node)   & IIO_IGFX_N_NUM_MASK) << IIO_IGFX_N_NUM_SHIFT) |     \
2917        (((cpu)    & IIO_IGFX_P_NUM_MASK) << IIO_IGFX_P_NUM_SHIFT))
2918
2919/* Scratch registers (all bits available) */
2920#define IIO_SCRATCH_REG0        IIO_ISCR0
2921#define IIO_SCRATCH_REG1        IIO_ISCR1
2922#define IIO_SCRATCH_MASK        0xffffffffffffffffUL
2923
2924#define IIO_SCRATCH_BIT0_0      0x0000000000000001UL
2925#define IIO_SCRATCH_BIT0_1      0x0000000000000002UL
2926#define IIO_SCRATCH_BIT0_2      0x0000000000000004UL
2927#define IIO_SCRATCH_BIT0_3      0x0000000000000008UL
2928#define IIO_SCRATCH_BIT0_4      0x0000000000000010UL
2929#define IIO_SCRATCH_BIT0_5      0x0000000000000020UL
2930#define IIO_SCRATCH_BIT0_6      0x0000000000000040UL
2931#define IIO_SCRATCH_BIT0_7      0x0000000000000080UL
2932#define IIO_SCRATCH_BIT0_8      0x0000000000000100UL
2933#define IIO_SCRATCH_BIT0_9      0x0000000000000200UL
2934#define IIO_SCRATCH_BIT0_A      0x0000000000000400UL
2935
2936#define IIO_SCRATCH_BIT1_0      0x0000000000000001UL
2937#define IIO_SCRATCH_BIT1_1      0x0000000000000002UL
2938/* IO Translation Table Entries */
2939#define IIO_NUM_ITTES   7       /* ITTEs numbered 0..6 */
2940                                        /* Hw manuals number them 1..7! */
2941/*
2942 * IIO_IMEM Register fields.
2943 */
2944#define IIO_IMEM_W0ESD  0x1UL   /* Widget 0 shut down due to error */
2945#define IIO_IMEM_B0ESD  (1UL << 4)      /* BTE 0 shut down due to error */
2946#define IIO_IMEM_B1ESD  (1UL << 8)      /* BTE 1 Shut down due to error */
2947
2948/*
2949 * As a permanent workaround for a bug in the PI side of the shub, we've
2950 * redefined big window 7 as small window 0.
2951 XXX does this still apply for SN1??
2952 */
2953#define HUB_NUM_BIG_WINDOW      (IIO_NUM_ITTES - 1)
2954
2955/*
2956 * Use the top big window as a surrogate for the first small window
2957 */
2958#define SWIN0_BIGWIN            HUB_NUM_BIG_WINDOW
2959
2960#define ILCSR_WARM_RESET        0x100
2961
2962/*
2963 * CRB manipulation macros
2964 *      The CRB macros are slightly complicated, since there are up to
2965 *      four registers associated with each CRB entry.
2966 */
2967#define IIO_NUM_CRBS            15      /* Number of CRBs */
2968#define IIO_NUM_PC_CRBS         4       /* Number of partial cache CRBs */
2969#define IIO_ICRB_OFFSET         8
2970#define IIO_ICRB_0              IIO_ICRB0_A
2971#define IIO_ICRB_ADDR_SHFT      2       /* Shift to get proper address */
2972/* XXX - This is now tuneable:
2973        #define IIO_FIRST_PC_ENTRY 12
2974 */
2975
2976#define IIO_ICRB_A(_x)  ((u64)(IIO_ICRB_0 + (6 * IIO_ICRB_OFFSET * (_x))))
2977#define IIO_ICRB_B(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 1*IIO_ICRB_OFFSET))
2978#define IIO_ICRB_C(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 2*IIO_ICRB_OFFSET))
2979#define IIO_ICRB_D(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 3*IIO_ICRB_OFFSET))
2980#define IIO_ICRB_E(_x)  ((u64)((char *)IIO_ICRB_A(_x) + 4*IIO_ICRB_OFFSET))
2981
2982#define TNUM_TO_WIDGET_DEV(_tnum)       (_tnum & 0x7)
2983
2984/*
2985 * values for "ecode" field
2986 */
2987#define IIO_ICRB_ECODE_DERR     0       /* Directory error due to IIO access */
2988#define IIO_ICRB_ECODE_PERR     1       /* Poison error on IO access */
2989#define IIO_ICRB_ECODE_WERR     2       /* Write error by IIO access
2990                                         * e.g. WINV to a Read only line. */
2991#define IIO_ICRB_ECODE_AERR     3       /* Access error caused by IIO access */
2992#define IIO_ICRB_ECODE_PWERR    4       /* Error on partial write */
2993#define IIO_ICRB_ECODE_PRERR    5       /* Error on partial read  */
2994#define IIO_ICRB_ECODE_TOUT     6       /* CRB timeout before deallocating */
2995#define IIO_ICRB_ECODE_XTERR    7       /* Incoming xtalk pkt had error bit */
2996
2997/*
2998 * Values for field imsgtype
2999 */
3000#define IIO_ICRB_IMSGT_XTALK    0       /* Incoming Meessage from Xtalk */
3001#define IIO_ICRB_IMSGT_BTE      1       /* Incoming message from BTE    */
3002#define IIO_ICRB_IMSGT_SN1NET   2       /* Incoming message from SN1 net */
3003#define IIO_ICRB_IMSGT_CRB      3       /* Incoming message from CRB ???  */
3004
3005/*
3006 * values for field initiator.
3007 */
3008#define IIO_ICRB_INIT_XTALK     0       /* Message originated in xtalk  */
3009#define IIO_ICRB_INIT_BTE0      0x1     /* Message originated in BTE 0  */
3010#define IIO_ICRB_INIT_SN1NET    0x2     /* Message originated in SN1net */
3011#define IIO_ICRB_INIT_CRB       0x3     /* Message originated in CRB ?  */
3012#define IIO_ICRB_INIT_BTE1      0x5     /* MEssage originated in BTE 1  */
3013
3014/*
3015 * Number of credits Hub widget has while sending req/response to
3016 * xbow.
3017 * Value of 3 is required by Xbow 1.1
3018 * We may be able to increase this to 4 with Xbow 1.2.
3019 */
3020#define            HUBII_XBOW_CREDIT       3
3021#define            HUBII_XBOW_REV2_CREDIT  4
3022
3023/*
3024 * Number of credits that xtalk devices should use when communicating
3025 * with a SHub (depth of SHub's queue).
3026 */
3027#define HUB_CREDIT 4
3028
3029/*
3030 * Some IIO_PRB fields
3031 */
3032#define IIO_PRB_MULTI_ERR       (1LL << 63)
3033#define IIO_PRB_SPUR_RD         (1LL << 51)
3034#define IIO_PRB_SPUR_WR         (1LL << 50)
3035#define IIO_PRB_RD_TO           (1LL << 49)
3036#define IIO_PRB_ERROR           (1LL << 48)
3037
3038/*************************************************************************
3039
3040 Some of the IIO field masks and shifts are defined here.
3041 This is in order to maintain compatibility in SN0 and SN1 code
3042 
3043**************************************************************************/
3044
3045/*
3046 * ICMR register fields
3047 * (Note: the IIO_ICMR_P_CNT and IIO_ICMR_PC_VLD from Hub are not
3048 * present in SHub)
3049 */
3050
3051#define IIO_ICMR_CRB_VLD_SHFT   20
3052#define IIO_ICMR_CRB_VLD_MASK   (0x7fffUL << IIO_ICMR_CRB_VLD_SHFT)
3053
3054#define IIO_ICMR_FC_CNT_SHFT    16
3055#define IIO_ICMR_FC_CNT_MASK    (0xf << IIO_ICMR_FC_CNT_SHFT)
3056
3057#define IIO_ICMR_C_CNT_SHFT     4
3058#define IIO_ICMR_C_CNT_MASK     (0xf << IIO_ICMR_C_CNT_SHFT)
3059
3060#define IIO_ICMR_PRECISE        (1UL << 52)
3061#define IIO_ICMR_CLR_RPPD       (1UL << 13)
3062#define IIO_ICMR_CLR_RQPD       (1UL << 12)
3063
3064/*
3065 * IIO PIO Deallocation register field masks : (IIO_IPDR)
3066 XXX present but not needed in bedrock?  See the manual.
3067 */
3068#define IIO_IPDR_PND            (1 << 4)
3069
3070/*
3071 * IIO CRB deallocation register field masks: (IIO_ICDR)
3072 */
3073#define IIO_ICDR_PND            (1 << 4)
3074
3075/* 
3076 * IO BTE Length/Status (IIO_IBLS) register bit field definitions
3077 */
3078#define IBLS_BUSY               (0x1UL << 20)
3079#define IBLS_ERROR_SHFT         16
3080#define IBLS_ERROR              (0x1UL << IBLS_ERROR_SHFT)
3081#define IBLS_LENGTH_MASK        0xffff
3082
3083/*
3084 * IO BTE Control/Terminate register (IBCT) register bit field definitions
3085 */
3086#define IBCT_POISON             (0x1UL << 8)
3087#define IBCT_NOTIFY             (0x1UL << 4)
3088#define IBCT_ZFIL_MODE          (0x1UL << 0)
3089
3090/*
3091 * IIO Incoming Error Packet Header (IIO_IIEPH1/IIO_IIEPH2)
3092 */
3093#define IIEPH1_VALID            (1UL << 44)
3094#define IIEPH1_OVERRUN          (1UL << 40)
3095#define IIEPH1_ERR_TYPE_SHFT    32
3096#define IIEPH1_ERR_TYPE_MASK    0xf
3097#define IIEPH1_SOURCE_SHFT      20
3098#define IIEPH1_SOURCE_MASK      11
3099#define IIEPH1_SUPPL_SHFT       8
3100#define IIEPH1_SUPPL_MASK       11
3101#define IIEPH1_CMD_SHFT         0
3102#define IIEPH1_CMD_MASK         7
3103
3104#define IIEPH2_TAIL             (1UL << 40)
3105#define IIEPH2_ADDRESS_SHFT     0
3106#define IIEPH2_ADDRESS_MASK     38
3107
3108#define IIEPH1_ERR_SHORT_REQ    2
3109#define IIEPH1_ERR_SHORT_REPLY  3
3110#define IIEPH1_ERR_LONG_REQ     4
3111#define IIEPH1_ERR_LONG_REPLY   5
3112
3113/*
3114 * IO Error Clear register bit field definitions
3115 */
3116#define IECLR_PI1_FWD_INT       (1UL << 31)     /* clear PI1_FORWARD_INT in iidsr */
3117#define IECLR_PI0_FWD_INT       (1UL << 30)     /* clear PI0_FORWARD_INT in iidsr */
3118#define IECLR_SPUR_RD_HDR       (1UL << 29)     /* clear valid bit in ixss reg */
3119#define IECLR_BTE1              (1UL << 18)     /* clear bte error 1 */
3120#define IECLR_BTE0              (1UL << 17)     /* clear bte error 0 */
3121#define IECLR_CRAZY             (1UL << 16)     /* clear crazy bit in wstat reg */
3122#define IECLR_PRB_F             (1UL << 15)     /* clear err bit in PRB_F reg */
3123#define IECLR_PRB_E             (1UL << 14)     /* clear err bit in PRB_E reg */
3124#define IECLR_PRB_D             (1UL << 13)     /* clear err bit in PRB_D reg */
3125#define IECLR_PRB_C             (1UL << 12)     /* clear err bit in PRB_C reg */
3126#define IECLR_PRB_B             (1UL << 11)     /* clear err bit in PRB_B reg */
3127#define IECLR_PRB_A             (1UL << 10)     /* clear err bit in PRB_A reg */
3128#define IECLR_PRB_9             (1UL << 9)      /* clear err bit in PRB_9 reg */
3129#define IECLR_PRB_8             (1UL << 8)      /* clear err bit in PRB_8 reg */
3130#define IECLR_PRB_0             (1UL << 0)      /* clear err bit in PRB_0 reg */
3131
3132/*
3133 * IIO CRB control register Fields: IIO_ICCR 
3134 */
3135#define IIO_ICCR_PENDING        0x10000
3136#define IIO_ICCR_CMD_MASK       0xFF
3137#define IIO_ICCR_CMD_SHFT       7
3138#define IIO_ICCR_CMD_NOP        0x0     /* No Op */
3139#define IIO_ICCR_CMD_WAKE       0x100   /* Reactivate CRB entry and process */
3140#define IIO_ICCR_CMD_TIMEOUT    0x200   /* Make CRB timeout & mark invalid */
3141#define IIO_ICCR_CMD_EJECT      0x400   /* Contents of entry written to memory
3142                                         * via a WB
3143                                         */
3144#define IIO_ICCR_CMD_FLUSH      0x800
3145
3146/*
3147 *
3148 * CRB Register description.
3149 *
3150 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3151 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3152 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3153 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3154 * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING
3155 *
3156 * Many of the fields in CRB are status bits used by hardware
3157 * for implementation of the protocol. It's very dangerous to
3158 * mess around with the CRB registers.
3159 *
3160 * It's OK to read the CRB registers and try to make sense out of the
3161 * fields in CRB.
3162 *
3163 * Updating CRB requires all activities in Hub IIO to be quiesced.
3164 * otherwise, a write to CRB could corrupt other CRB entries.
3165 * CRBs are here only as a back door peek to shub IIO's status.
3166 * Quiescing implies  no dmas no PIOs
3167 * either directly from the cpu or from sn0net.
3168 * this is not something that can be done easily. So, AVOID updating
3169 * CRBs.
3170 */
3171
3172/*
3173 * Easy access macros for CRBs, all 5 registers (A-E)
3174 */
3175typedef ii_icrb0_a_u_t icrba_t;
3176#define a_sidn          ii_icrb0_a_fld_s.ia_sidn
3177#define a_tnum          ii_icrb0_a_fld_s.ia_tnum
3178#define a_addr          ii_icrb0_a_fld_s.ia_addr
3179#define a_valid         ii_icrb0_a_fld_s.ia_vld
3180#define a_iow           ii_icrb0_a_fld_s.ia_iow
3181#define a_regvalue      ii_icrb0_a_regval
3182
3183typedef ii_icrb0_b_u_t icrbb_t;
3184#define b_use_old       ii_icrb0_b_fld_s.ib_use_old
3185#define b_imsgtype      ii_icrb0_b_fld_s.ib_imsgtype
3186#define b_imsg          ii_icrb0_b_fld_s.ib_imsg
3187#define b_initiator     ii_icrb0_b_fld_s.ib_init
3188#define b_exc           ii_icrb0_b_fld_s.ib_exc
3189#define b_ackcnt        ii_icrb0_b_fld_s.ib_ack_cnt
3190#define b_resp          ii_icrb0_b_fld_s.ib_resp
3191#define b_ack           ii_icrb0_b_fld_s.ib_ack
3192#define b_hold          ii_icrb0_b_fld_s.ib_hold
3193#define b_wb            ii_icrb0_b_fld_s.ib_wb
3194#define b_intvn         ii_icrb0_b_fld_s.ib_intvn
3195#define b_stall_ib      ii_icrb0_b_fld_s.ib_stall_ib
3196#define b_stall_int     ii_icrb0_b_fld_s.ib_stall__intr
3197#define b_stall_bte_0   ii_icrb0_b_fld_s.ib_stall__bte_0
3198#define b_stall_bte_1   ii_icrb0_b_fld_s.ib_stall__bte_1
3199#define b_error         ii_icrb0_b_fld_s.ib_error
3200#define b_ecode         ii_icrb0_b_fld_s.ib_errcode
3201#define b_lnetuce       ii_icrb0_b_fld_s.ib_ln_uce
3202#define b_mark          ii_icrb0_b_fld_s.ib_mark
3203#define b_xerr          ii_icrb0_b_fld_s.ib_xt_err
3204#define b_regvalue      ii_icrb0_b_regval
3205
3206typedef ii_icrb0_c_u_t icrbc_t;
3207#define c_suppl         ii_icrb0_c_fld_s.ic_suppl
3208#define c_barrop        ii_icrb0_c_fld_s.ic_bo
3209#define c_doresp        ii_icrb0_c_fld_s.ic_resprqd
3210#define c_gbr           ii_icrb0_c_fld_s.ic_gbr
3211#define c_btenum        ii_icrb0_c_fld_s.ic_bte_num
3212#define c_cohtrans      ii_icrb0_c_fld_s.ic_ct
3213#define c_xtsize        ii_icrb0_c_fld_s.ic_size
3214#define c_source        ii_icrb0_c_fld_s.ic_source
3215#define c_regvalue      ii_icrb0_c_regval
3216
3217typedef ii_icrb0_d_u_t icrbd_t;
3218#define d_sleep         ii_icrb0_d_fld_s.id_sleep
3219#define d_pricnt        ii_icrb0_d_fld_s.id_pr_cnt
3220#define d_pripsc        ii_icrb0_d_fld_s.id_pr_psc
3221#define d_bteop         ii_icrb0_d_fld_s.id_bte_op
3222#define d_bteaddr       ii_icrb0_d_fld_s.id_pa_be       /* ic_pa_be fld has 2 names */
3223#define d_benable       ii_icrb0_d_fld_s.id_pa_be       /* ic_pa_be fld has 2 names */
3224#define d_regvalue      ii_icrb0_d_regval
3225
3226typedef ii_icrb0_e_u_t icrbe_t;
3227#define icrbe_ctxtvld   ii_icrb0_e_fld_s.ie_cvld
3228#define icrbe_toutvld   ii_icrb0_e_fld_s.ie_tvld
3229#define icrbe_context   ii_icrb0_e_fld_s.ie_context
3230#define icrbe_timeout   ii_icrb0_e_fld_s.ie_timeout
3231#define e_regvalue      ii_icrb0_e_regval
3232
3233/* Number of widgets supported by shub */
3234#define HUB_NUM_WIDGET          9
3235#define HUB_WIDGET_ID_MIN       0x8
3236#define HUB_WIDGET_ID_MAX       0xf
3237
3238#define HUB_WIDGET_PART_NUM     0xc120
3239#define MAX_HUBS_PER_XBOW       2
3240
3241/* A few more #defines for backwards compatibility */
3242#define iprb_t          ii_iprb0_u_t
3243#define iprb_regval     ii_iprb0_regval
3244#define iprb_mult_err   ii_iprb0_fld_s.i_mult_err
3245#define iprb_spur_rd    ii_iprb0_fld_s.i_spur_rd
3246#define iprb_spur_wr    ii_iprb0_fld_s.i_spur_wr
3247#define iprb_rd_to      ii_iprb0_fld_s.i_rd_to
3248#define iprb_ovflow     ii_iprb0_fld_s.i_of_cnt
3249#define iprb_error      ii_iprb0_fld_s.i_error
3250#define iprb_ff         ii_iprb0_fld_s.i_f
3251#define iprb_mode       ii_iprb0_fld_s.i_m
3252#define iprb_bnakctr    ii_iprb0_fld_s.i_nb
3253#define iprb_anakctr    ii_iprb0_fld_s.i_na
3254#define iprb_xtalkctr   ii_iprb0_fld_s.i_c
3255
3256#define LNK_STAT_WORKING        0x2             /* LLP is working */
3257
3258#define IIO_WSTAT_ECRAZY        (1ULL << 32)    /* Hub gone crazy */
3259#define IIO_WSTAT_TXRETRY       (1ULL << 9)     /* Hub Tx Retry timeout */
3260#define IIO_WSTAT_TXRETRY_MASK  0x7F            /* should be 0xFF?? */
3261#define IIO_WSTAT_TXRETRY_SHFT  16
3262#define IIO_WSTAT_TXRETRY_CNT(w)        (((w) >> IIO_WSTAT_TXRETRY_SHFT) & \
3263                                        IIO_WSTAT_TXRETRY_MASK)
3264
3265/* Number of II perf. counters we can multiplex at once */
3266
3267#define IO_PERF_SETS    32
3268
3269/* Bit for the widget in inbound access register */
3270#define IIO_IIWA_WIDGET(_w)     ((u64)(1ULL << _w))
3271/* Bit for the widget in outbound access register */
3272#define IIO_IOWA_WIDGET(_w)     ((u64)(1ULL << _w))
3273
3274/* NOTE: The following define assumes that we are going to get
3275 * widget numbers from 8 thru F and the device numbers within
3276 * widget from 0 thru 7.
3277 */
3278#define IIO_IIDEM_WIDGETDEV_MASK(w, d)  ((u64)(1ULL << (8 * ((w) - 8) + (d))))
3279
3280/* IO Interrupt Destination Register */
3281#define IIO_IIDSR_SENT_SHIFT    28
3282#define IIO_IIDSR_SENT_MASK     0x30000000
3283#define IIO_IIDSR_ENB_SHIFT     24
3284#define IIO_IIDSR_ENB_MASK      0x01000000
3285#define IIO_IIDSR_NODE_SHIFT    9
3286#define IIO_IIDSR_NODE_MASK     0x000ff700
3287#define IIO_IIDSR_PI_ID_SHIFT   8
3288#define IIO_IIDSR_PI_ID_MASK    0x00000100
3289#define IIO_IIDSR_LVL_SHIFT     0
3290#define IIO_IIDSR_LVL_MASK      0x000000ff
3291
3292/* Xtalk timeout threshold register (IIO_IXTT) */
3293#define IXTT_RRSP_TO_SHFT       55      /* read response timeout */
3294#define IXTT_RRSP_TO_MASK       (0x1FULL << IXTT_RRSP_TO_SHFT)
3295#define IXTT_RRSP_PS_SHFT       32      /* read responsed TO prescalar */
3296#define IXTT_RRSP_PS_MASK       (0x7FFFFFULL << IXTT_RRSP_PS_SHFT)
3297#define IXTT_TAIL_TO_SHFT       0       /* tail timeout counter threshold */
3298#define IXTT_TAIL_TO_MASK       (0x3FFFFFFULL << IXTT_TAIL_TO_SHFT)
3299
3300/*
3301 * The IO LLP control status register and widget control register
3302 */
3303
3304typedef union hubii_wcr_u {
3305        u64 wcr_reg_value;
3306        struct {
3307                u64 wcr_widget_id:4,    /* LLP crossbar credit */
3308                 wcr_tag_mode:1,        /* Tag mode */
3309                 wcr_rsvd1:8,   /* Reserved */
3310                 wcr_xbar_crd:3,        /* LLP crossbar credit */
3311                 wcr_f_bad_pkt:1,       /* Force bad llp pkt enable */
3312                 wcr_dir_con:1, /* widget direct connect */
3313                 wcr_e_thresh:5,        /* elasticity threshold */
3314                 wcr_rsvd:41;   /* unused */
3315        } wcr_fields_s;
3316} hubii_wcr_t;
3317
3318#define iwcr_dir_con    wcr_fields_s.wcr_dir_con
3319
3320/* The structures below are defined to extract and modify the ii
3321performance registers */
3322
3323/* io_perf_sel allows the caller to specify what tests will be
3324   performed */
3325
3326typedef union io_perf_sel {
3327        u64 perf_sel_reg;
3328        struct {
3329                u64 perf_ippr0:4, perf_ippr1:4, perf_icct:8, perf_rsvd:48;
3330        } perf_sel_bits;
3331} io_perf_sel_t;
3332
3333/* io_perf_cnt is to extract the count from the shub registers. Due to
3334   hardware problems there is only one counter, not two. */
3335
3336typedef union io_perf_cnt {
3337        u64 perf_cnt;
3338        struct {
3339                u64 perf_cnt:20, perf_rsvd2:12, perf_rsvd1:32;
3340        } perf_cnt_bits;
3341
3342} io_perf_cnt_t;
3343
3344typedef union iprte_a {
3345        u64 entry;
3346        struct {
3347                u64 i_rsvd_1:3;
3348                u64 i_addr:38;
3349                u64 i_init:3;
3350                u64 i_source:8;
3351                u64 i_rsvd:2;
3352                u64 i_widget:4;
3353                u64 i_to_cnt:5;
3354                u64 i_vld:1;
3355        } iprte_fields;
3356} iprte_a_t;
3357
3358#endif                          /* _ASM_IA64_SN_SHUBIO_H */
3359