linux/arch/powerpc/kernel/fadump.c
<<
>>
Prefs
   1/*
   2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
   3 * dump with assistance from firmware. This approach does not use kexec,
   4 * instead firmware assists in booting the kdump kernel while preserving
   5 * memory contents. The most of the code implementation has been adapted
   6 * from phyp assisted dump implementation written by Linas Vepstas and
   7 * Manish Ahuja
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22 *
  23 * Copyright 2011 IBM Corporation
  24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
  25 */
  26
  27#undef DEBUG
  28#define pr_fmt(fmt) "fadump: " fmt
  29
  30#include <linux/string.h>
  31#include <linux/memblock.h>
  32#include <linux/delay.h>
  33#include <linux/debugfs.h>
  34#include <linux/seq_file.h>
  35#include <linux/crash_dump.h>
  36#include <linux/kobject.h>
  37#include <linux/sysfs.h>
  38#include <linux/slab.h>
  39
  40#include <asm/page.h>
  41#include <asm/prom.h>
  42#include <asm/rtas.h>
  43#include <asm/fadump.h>
  44#include <asm/debug.h>
  45#include <asm/setup.h>
  46
  47static struct fw_dump fw_dump;
  48static struct fadump_mem_struct fdm;
  49static const struct fadump_mem_struct *fdm_active;
  50
  51static DEFINE_MUTEX(fadump_mutex);
  52struct fad_crash_memory_ranges *crash_memory_ranges;
  53int crash_memory_ranges_size;
  54int crash_mem_ranges;
  55int max_crash_mem_ranges;
  56
  57/* Scan the Firmware Assisted dump configuration details. */
  58int __init early_init_dt_scan_fw_dump(unsigned long node,
  59                        const char *uname, int depth, void *data)
  60{
  61        __be32 *sections;
  62        int i, num_sections;
  63        unsigned long size;
  64        const __be32 *token;
  65
  66        if (depth != 1 || strcmp(uname, "rtas") != 0)
  67                return 0;
  68
  69        /*
  70         * Check if Firmware Assisted dump is supported. if yes, check
  71         * if dump has been initiated on last reboot.
  72         */
  73        token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
  74        if (!token)
  75                return 1;
  76
  77        fw_dump.fadump_supported = 1;
  78        fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
  79
  80        /*
  81         * The 'ibm,kernel-dump' rtas node is present only if there is
  82         * dump data waiting for us.
  83         */
  84        fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
  85        if (fdm_active)
  86                fw_dump.dump_active = 1;
  87
  88        /* Get the sizes required to store dump data for the firmware provided
  89         * dump sections.
  90         * For each dump section type supported, a 32bit cell which defines
  91         * the ID of a supported section followed by two 32 bit cells which
  92         * gives teh size of the section in bytes.
  93         */
  94        sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
  95                                        &size);
  96
  97        if (!sections)
  98                return 1;
  99
 100        num_sections = size / (3 * sizeof(u32));
 101
 102        for (i = 0; i < num_sections; i++, sections += 3) {
 103                u32 type = (u32)of_read_number(sections, 1);
 104
 105                switch (type) {
 106                case FADUMP_CPU_STATE_DATA:
 107                        fw_dump.cpu_state_data_size =
 108                                        of_read_ulong(&sections[1], 2);
 109                        break;
 110                case FADUMP_HPTE_REGION:
 111                        fw_dump.hpte_region_size =
 112                                        of_read_ulong(&sections[1], 2);
 113                        break;
 114                }
 115        }
 116
 117        return 1;
 118}
 119
 120int is_fadump_enabled(void)
 121{
 122        return fw_dump.fadump_enabled;
 123}
 124
 125/*
 126 *  * If fadump is registered, check if the memory provided
 127 *   * falls within boot memory area.
 128 *    */
 129int is_fadump_boot_memory_area(u64 addr, ulong size)
 130{
 131                if (!fw_dump.dump_registered)
 132                                        return 0;
 133
 134                        return (addr + size) > RMA_START && addr <= fw_dump.boot_memory_size;
 135}
 136
 137int is_fadump_active(void)
 138{
 139        return fw_dump.dump_active;
 140}
 141
 142/*
 143 * Returns 1, if there are no holes in boot memory area,
 144 * 0 otherwise.
 145 */
 146static int is_boot_memory_area_contiguous(void)
 147{
 148        struct memblock_region *reg;
 149        unsigned long tstart, tend;
 150        unsigned long start_pfn = PHYS_PFN(RMA_START);
 151        unsigned long end_pfn = PHYS_PFN(RMA_START + fw_dump.boot_memory_size);
 152        unsigned int ret = 0;
 153
 154        for_each_memblock(memory, reg) {
 155                tstart = max(start_pfn, memblock_region_memory_base_pfn(reg));
 156                tend = min(end_pfn, memblock_region_memory_end_pfn(reg));
 157                if (tstart < tend) {
 158                        /* Memory hole from start_pfn to tstart */
 159                        if (tstart > start_pfn)
 160                                break;
 161
 162                        if (tend == end_pfn) {
 163                                ret = 1;
 164                                break;
 165                        }
 166
 167                        start_pfn = tend + 1;
 168                }
 169        }
 170
 171        return ret;
 172}
 173
 174/* Print firmware assisted dump configurations for debugging purpose. */
 175static void fadump_show_config(void)
 176{
 177        pr_debug("Support for firmware-assisted dump (fadump): %s\n",
 178                        (fw_dump.fadump_supported ? "present" : "no support"));
 179
 180        if (!fw_dump.fadump_supported)
 181                return;
 182
 183        pr_debug("Fadump enabled    : %s\n",
 184                                (fw_dump.fadump_enabled ? "yes" : "no"));
 185        pr_debug("Dump Active       : %s\n",
 186                                (fw_dump.dump_active ? "yes" : "no"));
 187        pr_debug("Dump section sizes:\n");
 188        pr_debug("    CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
 189        pr_debug("    HPTE region size   : %lx\n", fw_dump.hpte_region_size);
 190        pr_debug("Boot memory size  : %lx\n", fw_dump.boot_memory_size);
 191}
 192
 193static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
 194                                unsigned long addr)
 195{
 196        if (!fdm)
 197                return 0;
 198
 199        memset(fdm, 0, sizeof(struct fadump_mem_struct));
 200        addr = addr & PAGE_MASK;
 201
 202        fdm->header.dump_format_version = cpu_to_be32(0x00000001);
 203        fdm->header.dump_num_sections = cpu_to_be16(3);
 204        fdm->header.dump_status_flag = 0;
 205        fdm->header.offset_first_dump_section =
 206                cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
 207
 208        /*
 209         * Fields for disk dump option.
 210         * We are not using disk dump option, hence set these fields to 0.
 211         */
 212        fdm->header.dd_block_size = 0;
 213        fdm->header.dd_block_offset = 0;
 214        fdm->header.dd_num_blocks = 0;
 215        fdm->header.dd_offset_disk_path = 0;
 216
 217        /* set 0 to disable an automatic dump-reboot. */
 218        fdm->header.max_time_auto = 0;
 219
 220        /* Kernel dump sections */
 221        /* cpu state data section. */
 222        fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 223        fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
 224        fdm->cpu_state_data.source_address = 0;
 225        fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
 226        fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
 227        addr += fw_dump.cpu_state_data_size;
 228
 229        /* hpte region section */
 230        fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 231        fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
 232        fdm->hpte_region.source_address = 0;
 233        fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
 234        fdm->hpte_region.destination_address = cpu_to_be64(addr);
 235        addr += fw_dump.hpte_region_size;
 236
 237        /* RMA region section */
 238        fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
 239        fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
 240        fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
 241        fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
 242        fdm->rmr_region.destination_address = cpu_to_be64(addr);
 243        addr += fw_dump.boot_memory_size;
 244
 245        return addr;
 246}
 247
 248/**
 249 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
 250 *
 251 * Function to find the largest memory size we need to reserve during early
 252 * boot process. This will be the size of the memory that is required for a
 253 * kernel to boot successfully.
 254 *
 255 * This function has been taken from phyp-assisted dump feature implementation.
 256 *
 257 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
 258 *
 259 * TODO: Come up with better approach to find out more accurate memory size
 260 * that is required for a kernel to boot successfully.
 261 *
 262 */
 263static inline unsigned long fadump_calculate_reserve_size(void)
 264{
 265        int ret;
 266        unsigned long long base, size;
 267
 268        if (fw_dump.reserve_bootvar)
 269                pr_warn("'fadump_reserve_mem=' parameter is deprecated in "
 270                        "favor of 'crashkernel=' parameter.\n");
 271
 272        /*
 273         * Check if the size is specified through crashkernel= cmdline
 274         * option. If yes, then use that but ignore base as fadump reserves
 275         * memory at a predefined offset.
 276         */
 277        ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 278                                &size, &base);
 279        if (ret == 0 && size > 0) {
 280                if (fw_dump.reserve_bootvar)
 281                        pr_info("Using 'crashkernel=' parameter for"
 282                                " memory reservation.\n");
 283
 284                fw_dump.reserve_bootvar = (unsigned long)size;
 285                return fw_dump.reserve_bootvar;
 286        } else if (fw_dump.reserve_bootvar) {
 287                /*
 288                 * 'fadump_reserve_mem=' is being used to reserve memory
 289                 * for firmware-assisted dump.
 290                 */
 291                return fw_dump.reserve_bootvar;
 292        }
 293
 294        return fadump_default_reserve_size();
 295}
 296
 297unsigned long long fadump_default_reserve_size(void)
 298{
 299        unsigned long long size;
 300
 301        /* divide by 20 to get 5% of value */
 302        size = memblock_end_of_DRAM() / 20;
 303
 304        /* round it down in multiples of 256 */
 305        size = size & ~0x0FFFFFFFUL;
 306
 307        /* Truncate to memory_limit. We don't want to over reserve the memory.*/
 308        if (memory_limit && size > memory_limit)
 309                size = memory_limit;
 310
 311        return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
 312}
 313
 314/*
 315 * Calculate the total memory size required to be reserved for
 316 * firmware-assisted dump registration.
 317 */
 318static unsigned long get_fadump_area_size(void)
 319{
 320        unsigned long size = 0;
 321
 322        size += fw_dump.cpu_state_data_size;
 323        size += fw_dump.hpte_region_size;
 324        size += fw_dump.boot_memory_size;
 325        size += sizeof(struct fadump_crash_info_header);
 326        size += sizeof(struct elfhdr); /* ELF core header.*/
 327        size += sizeof(struct elf_phdr); /* place holder for cpu notes */
 328        /* Program headers for crash memory regions. */
 329        size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
 330
 331        size = PAGE_ALIGN(size);
 332        return size;
 333}
 334
 335static void __init fadump_reserve_crash_area(unsigned long base,
 336                                             unsigned long size)
 337{
 338        struct memblock_region *reg;
 339        unsigned long mstart, mend, msize;
 340
 341        for_each_memblock(memory, reg) {
 342                mstart = max_t(unsigned long, base, reg->base);
 343                mend = reg->base + reg->size;
 344                mend = min(base + size, mend);
 345
 346                if (mstart < mend) {
 347                        msize = mend - mstart;
 348                        memblock_reserve(mstart, msize);
 349                        pr_info("Reserved %ldMB of memory at %#016lx for saving crash dump\n",
 350                                (msize >> 20), mstart);
 351                }
 352        }
 353}
 354
 355int __init fadump_reserve_mem(void)
 356{
 357        unsigned long base, size, memory_boundary;
 358
 359        if (!fw_dump.fadump_enabled)
 360                return 0;
 361
 362        if (!fw_dump.fadump_supported) {
 363                printk(KERN_INFO "Firmware-assisted dump is not supported on"
 364                                " this hardware\n");
 365                fw_dump.fadump_enabled = 0;
 366                return 0;
 367        }
 368        /*
 369         * Initialize boot memory size
 370         * If dump is active then we have already calculated the size during
 371         * first kernel.
 372         */
 373        if (fdm_active)
 374                fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
 375        else
 376                fw_dump.boot_memory_size = fadump_calculate_reserve_size();
 377
 378        /*
 379         * Calculate the memory boundary.
 380         * If memory_limit is less than actual memory boundary then reserve
 381         * the memory for fadump beyond the memory_limit and adjust the
 382         * memory_limit accordingly, so that the running kernel can run with
 383         * specified memory_limit.
 384         */
 385        if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
 386                size = get_fadump_area_size();
 387                if ((memory_limit + size) < memblock_end_of_DRAM())
 388                        memory_limit += size;
 389                else
 390                        memory_limit = memblock_end_of_DRAM();
 391                printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
 392                                " dump, now %#016llx\n", memory_limit);
 393        }
 394        if (memory_limit)
 395                memory_boundary = memory_limit;
 396        else
 397                memory_boundary = memblock_end_of_DRAM();
 398
 399        if (fw_dump.dump_active) {
 400                pr_info("Firmware-assisted dump is active.\n");
 401
 402#ifdef CONFIG_HUGETLB_PAGE
 403                /*
 404                 * FADump capture kernel doesn't care much about hugepages.
 405                 * In fact, handling hugepages in capture kernel is asking for
 406                 * trouble. So, disable HugeTLB support when fadump is active.
 407                 */
 408                hugetlb_disabled = true;
 409#endif
 410                /*
 411                 * If last boot has crashed then reserve all the memory
 412                 * above boot_memory_size so that we don't touch it until
 413                 * dump is written to disk by userspace tool. This memory
 414                 * will be released for general use once the dump is saved.
 415                 */
 416                base = fw_dump.boot_memory_size;
 417                size = memory_boundary - base;
 418                fadump_reserve_crash_area(base, size);
 419
 420                fw_dump.fadumphdr_addr =
 421                                be64_to_cpu(fdm_active->rmr_region.destination_address) +
 422                                be64_to_cpu(fdm_active->rmr_region.source_len);
 423                pr_debug("fadumphdr_addr = %p\n",
 424                                (void *) fw_dump.fadumphdr_addr);
 425        } else {
 426                size = get_fadump_area_size();
 427
 428                /*
 429                 * Reserve memory at an offset closer to bottom of the RAM to
 430                 * minimize the impact of memory hot-remove operation. We can't
 431                 * use memblock_find_in_range() here since it doesn't allocate
 432                 * from bottom to top.
 433                 */
 434                for (base = fw_dump.boot_memory_size;
 435                     base <= (memory_boundary - size);
 436                     base += size) {
 437                        if (memblock_is_region_memory(base, size) &&
 438                            !memblock_is_region_reserved(base, size))
 439                                break;
 440                }
 441                if ((base > (memory_boundary - size)) ||
 442                    memblock_reserve(base, size)) {
 443                        pr_err("Failed to reserve memory\n");
 444                        return 0;
 445                }
 446
 447                pr_info("Reserved %ldMB of memory at %ldMB for firmware-"
 448                        "assisted dump (System RAM: %ldMB)\n",
 449                        (unsigned long)(size >> 20),
 450                        (unsigned long)(base >> 20),
 451                        (unsigned long)(memblock_phys_mem_size() >> 20));
 452        }
 453
 454        fw_dump.reserve_dump_area_start = base;
 455        fw_dump.reserve_dump_area_size = size;
 456        return 1;
 457}
 458
 459/* Look for fadump= cmdline option. */
 460static int __init early_fadump_param(char *p)
 461{
 462        if (!p)
 463                return 1;
 464
 465        if (strncmp(p, "on", 2) == 0)
 466                fw_dump.fadump_enabled = 1;
 467        else if (strncmp(p, "off", 3) == 0)
 468                fw_dump.fadump_enabled = 0;
 469
 470        return 0;
 471}
 472early_param("fadump", early_fadump_param);
 473
 474/*
 475 * Look for fadump_reserve_mem= cmdline option
 476 * TODO: Remove references to 'fadump_reserve_mem=' parameter,
 477 *       the sooner 'crashkernel=' parameter is accustomed to.
 478 */
 479static int __init early_fadump_reserve_mem(char *p)
 480{
 481        if (p)
 482                fw_dump.reserve_bootvar = memparse(p, &p);
 483        return 0;
 484}
 485early_param("fadump_reserve_mem", early_fadump_reserve_mem);
 486
 487static int register_fw_dump(struct fadump_mem_struct *fdm)
 488{
 489        int rc, err;
 490        unsigned int wait_time;
 491
 492        pr_debug("Registering for firmware-assisted kernel dump...\n");
 493
 494        /* TODO: Add upper time limit for the delay */
 495        do {
 496                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
 497                        FADUMP_REGISTER, fdm,
 498                        sizeof(struct fadump_mem_struct));
 499
 500                wait_time = rtas_busy_delay_time(rc);
 501                if (wait_time)
 502                        mdelay(wait_time);
 503
 504        } while (wait_time);
 505
 506        err = -EIO;
 507        switch (rc) {
 508        default:
 509                pr_err("Failed to register. Unknown Error(%d).\n", rc);
 510                break;
 511        case -1:
 512                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 513                        " dump. Hardware Error(%d).\n", rc);
 514                break;
 515        case -3:
 516                if (!is_boot_memory_area_contiguous())
 517                        pr_err("Can't have holes in boot memory area while "
 518                               "registering fadump\n");
 519                printk(KERN_ERR "Failed to register firmware-assisted kernel"
 520                        " dump. Parameter Error(%d).\n", rc);
 521                err = -EINVAL;
 522                break;
 523        case -9:
 524                printk(KERN_ERR "firmware-assisted kernel dump is already "
 525                        " registered.");
 526                fw_dump.dump_registered = 1;
 527                err = -EEXIST;
 528                break;
 529        case 0:
 530                printk(KERN_INFO "firmware-assisted kernel dump registration"
 531                        " is successful\n");
 532                fw_dump.dump_registered = 1;
 533                err = 0;
 534                break;
 535        }
 536        return err;
 537}
 538
 539void crash_fadump(struct pt_regs *regs, const char *str)
 540{
 541        struct fadump_crash_info_header *fdh = NULL;
 542        int old_cpu, this_cpu;
 543
 544        if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
 545                return;
 546
 547        /*
 548         * old_cpu == -1 means this is the first CPU which has come here,
 549         * go ahead and trigger fadump.
 550         *
 551         * old_cpu != -1 means some other CPU has already on it's way
 552         * to trigger fadump, just keep looping here.
 553         */
 554        this_cpu = smp_processor_id();
 555        old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
 556
 557        if (old_cpu != -1) {
 558                /*
 559                 * We can't loop here indefinitely. Wait as long as fadump
 560                 * is in force. If we race with fadump un-registration this
 561                 * loop will break and then we go down to normal panic path
 562                 * and reboot. If fadump is in force the first crashing
 563                 * cpu will definitely trigger fadump.
 564                 */
 565                while (fw_dump.dump_registered)
 566                        cpu_relax();
 567                return;
 568        }
 569
 570        fdh = __va(fw_dump.fadumphdr_addr);
 571        fdh->crashing_cpu = crashing_cpu;
 572        crash_save_vmcoreinfo();
 573
 574        if (regs)
 575                fdh->regs = *regs;
 576        else
 577                ppc_save_regs(&fdh->regs);
 578
 579        fdh->cpu_online_mask = *cpu_online_mask;
 580
 581        /* Call ibm,os-term rtas call to trigger firmware assisted dump */
 582        rtas_os_term((char *)str);
 583}
 584
 585#define GPR_MASK        0xffffff0000000000
 586static inline int fadump_gpr_index(u64 id)
 587{
 588        int i = -1;
 589        char str[3];
 590
 591        if ((id & GPR_MASK) == REG_ID("GPR")) {
 592                /* get the digits at the end */
 593                id &= ~GPR_MASK;
 594                id >>= 24;
 595                str[2] = '\0';
 596                str[1] = id & 0xff;
 597                str[0] = (id >> 8) & 0xff;
 598                sscanf(str, "%d", &i);
 599                if (i > 31)
 600                        i = -1;
 601        }
 602        return i;
 603}
 604
 605static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
 606                                                                u64 reg_val)
 607{
 608        int i;
 609
 610        i = fadump_gpr_index(reg_id);
 611        if (i >= 0)
 612                regs->gpr[i] = (unsigned long)reg_val;
 613        else if (reg_id == REG_ID("NIA"))
 614                regs->nip = (unsigned long)reg_val;
 615        else if (reg_id == REG_ID("MSR"))
 616                regs->msr = (unsigned long)reg_val;
 617        else if (reg_id == REG_ID("CTR"))
 618                regs->ctr = (unsigned long)reg_val;
 619        else if (reg_id == REG_ID("LR"))
 620                regs->link = (unsigned long)reg_val;
 621        else if (reg_id == REG_ID("XER"))
 622                regs->xer = (unsigned long)reg_val;
 623        else if (reg_id == REG_ID("CR"))
 624                regs->ccr = (unsigned long)reg_val;
 625        else if (reg_id == REG_ID("DAR"))
 626                regs->dar = (unsigned long)reg_val;
 627        else if (reg_id == REG_ID("DSISR"))
 628                regs->dsisr = (unsigned long)reg_val;
 629}
 630
 631static struct fadump_reg_entry*
 632fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
 633{
 634        memset(regs, 0, sizeof(struct pt_regs));
 635
 636        while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
 637                fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
 638                                        be64_to_cpu(reg_entry->reg_value));
 639                reg_entry++;
 640        }
 641        reg_entry++;
 642        return reg_entry;
 643}
 644
 645static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
 646{
 647        struct elf_prstatus prstatus;
 648
 649        memset(&prstatus, 0, sizeof(prstatus));
 650        /*
 651         * FIXME: How do i get PID? Do I really need it?
 652         * prstatus.pr_pid = ????
 653         */
 654        elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
 655        buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
 656                              &prstatus, sizeof(prstatus));
 657        return buf;
 658}
 659
 660static void fadump_update_elfcore_header(char *bufp)
 661{
 662        struct elfhdr *elf;
 663        struct elf_phdr *phdr;
 664
 665        elf = (struct elfhdr *)bufp;
 666        bufp += sizeof(struct elfhdr);
 667
 668        /* First note is a place holder for cpu notes info. */
 669        phdr = (struct elf_phdr *)bufp;
 670
 671        if (phdr->p_type == PT_NOTE) {
 672                phdr->p_paddr = fw_dump.cpu_notes_buf;
 673                phdr->p_offset  = phdr->p_paddr;
 674                phdr->p_filesz  = fw_dump.cpu_notes_buf_size;
 675                phdr->p_memsz = fw_dump.cpu_notes_buf_size;
 676        }
 677        return;
 678}
 679
 680static void *fadump_cpu_notes_buf_alloc(unsigned long size)
 681{
 682        void *vaddr;
 683        struct page *page;
 684        unsigned long order, count, i;
 685
 686        order = get_order(size);
 687        vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
 688        if (!vaddr)
 689                return NULL;
 690
 691        count = 1 << order;
 692        page = virt_to_page(vaddr);
 693        for (i = 0; i < count; i++)
 694                SetPageReserved(page + i);
 695        return vaddr;
 696}
 697
 698static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
 699{
 700        struct page *page;
 701        unsigned long order, count, i;
 702
 703        order = get_order(size);
 704        count = 1 << order;
 705        page = virt_to_page(vaddr);
 706        for (i = 0; i < count; i++)
 707                ClearPageReserved(page + i);
 708        __free_pages(page, order);
 709}
 710
 711/*
 712 * Read CPU state dump data and convert it into ELF notes.
 713 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
 714 * used to access the data to allow for additional fields to be added without
 715 * affecting compatibility. Each list of registers for a CPU starts with
 716 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
 717 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
 718 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
 719 * of register value. For more details refer to PAPR document.
 720 *
 721 * Only for the crashing cpu we ignore the CPU dump data and get exact
 722 * state from fadump crash info structure populated by first kernel at the
 723 * time of crash.
 724 */
 725static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
 726{
 727        struct fadump_reg_save_area_header *reg_header;
 728        struct fadump_reg_entry *reg_entry;
 729        struct fadump_crash_info_header *fdh = NULL;
 730        void *vaddr;
 731        unsigned long addr;
 732        u32 num_cpus, *note_buf;
 733        struct pt_regs regs;
 734        int i, rc = 0, cpu = 0;
 735
 736        if (!fdm->cpu_state_data.bytes_dumped)
 737                return -EINVAL;
 738
 739        addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
 740        vaddr = __va(addr);
 741
 742        reg_header = vaddr;
 743        if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
 744                printk(KERN_ERR "Unable to read register save area.\n");
 745                return -ENOENT;
 746        }
 747        pr_debug("--------CPU State Data------------\n");
 748        pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
 749        pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
 750
 751        vaddr += be32_to_cpu(reg_header->num_cpu_offset);
 752        num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
 753        pr_debug("NumCpus     : %u\n", num_cpus);
 754        vaddr += sizeof(u32);
 755        reg_entry = (struct fadump_reg_entry *)vaddr;
 756
 757        /* Allocate buffer to hold cpu crash notes. */
 758        fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
 759        fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
 760        note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
 761        if (!note_buf) {
 762                printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
 763                        "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
 764                return -ENOMEM;
 765        }
 766        fw_dump.cpu_notes_buf = __pa(note_buf);
 767
 768        pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
 769                        (num_cpus * sizeof(note_buf_t)), note_buf);
 770
 771        if (fw_dump.fadumphdr_addr)
 772                fdh = __va(fw_dump.fadumphdr_addr);
 773
 774        for (i = 0; i < num_cpus; i++) {
 775                if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
 776                        printk(KERN_ERR "Unable to read CPU state data\n");
 777                        rc = -ENOENT;
 778                        goto error_out;
 779                }
 780                /* Lower 4 bytes of reg_value contains logical cpu id */
 781                cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
 782                if (fdh && !cpumask_test_cpu(cpu, &fdh->cpu_online_mask)) {
 783                        SKIP_TO_NEXT_CPU(reg_entry);
 784                        continue;
 785                }
 786                pr_debug("Reading register data for cpu %d...\n", cpu);
 787                if (fdh && fdh->crashing_cpu == cpu) {
 788                        regs = fdh->regs;
 789                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 790                        SKIP_TO_NEXT_CPU(reg_entry);
 791                } else {
 792                        reg_entry++;
 793                        reg_entry = fadump_read_registers(reg_entry, &regs);
 794                        note_buf = fadump_regs_to_elf_notes(note_buf, &regs);
 795                }
 796        }
 797        final_note(note_buf);
 798
 799        if (fdh) {
 800                pr_debug("Updating elfcore header (%llx) with cpu notes\n",
 801                                                        fdh->elfcorehdr_addr);
 802                fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
 803        }
 804        return 0;
 805
 806error_out:
 807        fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
 808                                        fw_dump.cpu_notes_buf_size);
 809        fw_dump.cpu_notes_buf = 0;
 810        fw_dump.cpu_notes_buf_size = 0;
 811        return rc;
 812
 813}
 814
 815/*
 816 * Validate and process the dump data stored by firmware before exporting
 817 * it through '/proc/vmcore'.
 818 */
 819static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
 820{
 821        struct fadump_crash_info_header *fdh;
 822        int rc = 0;
 823
 824        if (!fdm_active || !fw_dump.fadumphdr_addr)
 825                return -EINVAL;
 826
 827        /* Check if the dump data is valid. */
 828        if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
 829                        (fdm_active->cpu_state_data.error_flags != 0) ||
 830                        (fdm_active->rmr_region.error_flags != 0)) {
 831                printk(KERN_ERR "Dump taken by platform is not valid\n");
 832                return -EINVAL;
 833        }
 834        if ((fdm_active->rmr_region.bytes_dumped !=
 835                        fdm_active->rmr_region.source_len) ||
 836                        !fdm_active->cpu_state_data.bytes_dumped) {
 837                printk(KERN_ERR "Dump taken by platform is incomplete\n");
 838                return -EINVAL;
 839        }
 840
 841        /* Validate the fadump crash info header */
 842        fdh = __va(fw_dump.fadumphdr_addr);
 843        if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
 844                printk(KERN_ERR "Crash info header is not valid.\n");
 845                return -EINVAL;
 846        }
 847
 848        rc = fadump_build_cpu_notes(fdm_active);
 849        if (rc)
 850                return rc;
 851
 852        /*
 853         * We are done validating dump info and elfcore header is now ready
 854         * to be exported. set elfcorehdr_addr so that vmcore module will
 855         * export the elfcore header through '/proc/vmcore'.
 856         */
 857        elfcorehdr_addr = fdh->elfcorehdr_addr;
 858
 859        return 0;
 860}
 861
 862static void free_crash_memory_ranges(void)
 863{
 864        kfree(crash_memory_ranges);
 865        crash_memory_ranges = NULL;
 866        crash_memory_ranges_size = 0;
 867        max_crash_mem_ranges = 0;
 868}
 869
 870/*
 871 * Allocate or reallocate crash memory ranges array in incremental units
 872 * of PAGE_SIZE.
 873 */
 874static int allocate_crash_memory_ranges(void)
 875{
 876        struct fad_crash_memory_ranges *new_array;
 877        u64 new_size;
 878
 879        new_size = crash_memory_ranges_size + PAGE_SIZE;
 880        pr_debug("Allocating %llu bytes of memory for crash memory ranges\n",
 881                 new_size);
 882
 883        new_array = krealloc(crash_memory_ranges, new_size, GFP_KERNEL);
 884        if (new_array == NULL) {
 885                pr_err("Insufficient memory for setting up crash memory ranges\n");
 886                free_crash_memory_ranges();
 887                return -ENOMEM;
 888        }
 889
 890        crash_memory_ranges = new_array;
 891        crash_memory_ranges_size = new_size;
 892        max_crash_mem_ranges = (new_size /
 893                                sizeof(struct fad_crash_memory_ranges));
 894        return 0;
 895}
 896
 897static inline int fadump_add_crash_memory(unsigned long long base,
 898                                          unsigned long long end)
 899{
 900        u64  start, size;
 901        bool is_adjacent = false;
 902
 903        if (base == end)
 904                return 0;
 905
 906        /*
 907         * Fold adjacent memory ranges to bring down the memory ranges/
 908         * PT_LOAD segments count.
 909         */
 910        if (crash_mem_ranges) {
 911                start = crash_memory_ranges[crash_mem_ranges - 1].base;
 912                size = crash_memory_ranges[crash_mem_ranges - 1].size;
 913
 914                if ((start + size) == base)
 915                        is_adjacent = true;
 916        }
 917        if (!is_adjacent) {
 918                /* resize the array on reaching the limit */
 919                if (crash_mem_ranges == max_crash_mem_ranges) {
 920                        int ret;
 921
 922                        ret = allocate_crash_memory_ranges();
 923                        if (ret)
 924                                return ret;
 925                }
 926
 927                start = base;
 928                crash_memory_ranges[crash_mem_ranges].base = start;
 929                crash_mem_ranges++;
 930        }
 931
 932        crash_memory_ranges[crash_mem_ranges - 1].size = (end - start);
 933        pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
 934                (crash_mem_ranges - 1), start, end - 1, (end - start));
 935        return 0;
 936}
 937
 938static int fadump_exclude_reserved_area(unsigned long long start,
 939                                        unsigned long long end)
 940{
 941        unsigned long long ra_start, ra_end;
 942        int ret = 0;
 943
 944        ra_start = fw_dump.reserve_dump_area_start;
 945        ra_end = ra_start + fw_dump.reserve_dump_area_size;
 946
 947        if ((ra_start < end) && (ra_end > start)) {
 948                if ((start < ra_start) && (end > ra_end)) {
 949                        ret = fadump_add_crash_memory(start, ra_start);
 950                        if (ret)
 951                                return ret;
 952
 953                        ret = fadump_add_crash_memory(ra_end, end);
 954                } else if (start < ra_start) {
 955                        ret = fadump_add_crash_memory(start, ra_start);
 956                } else if (ra_end < end) {
 957                        ret = fadump_add_crash_memory(ra_end, end);
 958                }
 959        } else
 960                ret = fadump_add_crash_memory(start, end);
 961
 962        return ret;
 963}
 964
 965static int fadump_init_elfcore_header(char *bufp)
 966{
 967        struct elfhdr *elf;
 968
 969        elf = (struct elfhdr *) bufp;
 970        bufp += sizeof(struct elfhdr);
 971        memcpy(elf->e_ident, ELFMAG, SELFMAG);
 972        elf->e_ident[EI_CLASS] = ELF_CLASS;
 973        elf->e_ident[EI_DATA] = ELF_DATA;
 974        elf->e_ident[EI_VERSION] = EV_CURRENT;
 975        elf->e_ident[EI_OSABI] = ELF_OSABI;
 976        memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
 977        elf->e_type = ET_CORE;
 978        elf->e_machine = ELF_ARCH;
 979        elf->e_version = EV_CURRENT;
 980        elf->e_entry = 0;
 981        elf->e_phoff = sizeof(struct elfhdr);
 982        elf->e_shoff = 0;
 983        elf->e_flags = ELF_CORE_EFLAGS;
 984        elf->e_ehsize = sizeof(struct elfhdr);
 985        elf->e_phentsize = sizeof(struct elf_phdr);
 986        elf->e_phnum = 0;
 987        elf->e_shentsize = 0;
 988        elf->e_shnum = 0;
 989        elf->e_shstrndx = 0;
 990
 991        return 0;
 992}
 993
 994/*
 995 * Traverse through memblock structure and setup crash memory ranges. These
 996 * ranges will be used create PT_LOAD program headers in elfcore header.
 997 */
 998static int fadump_setup_crash_memory_ranges(void)
 999{
1000        struct memblock_region *reg;
1001        unsigned long long start, end;
1002        int ret;
1003
1004        pr_debug("Setup crash memory ranges.\n");
1005        crash_mem_ranges = 0;
1006
1007        /*
1008         * add the first memory chunk (RMA_START through boot_memory_size) as
1009         * a separate memory chunk. The reason is, at the time crash firmware
1010         * will move the content of this memory chunk to different location
1011         * specified during fadump registration. We need to create a separate
1012         * program header for this chunk with the correct offset.
1013         */
1014        ret = fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
1015        if (ret)
1016                return ret;
1017
1018        for_each_memblock(memory, reg) {
1019                start = (unsigned long long)reg->base;
1020                end = start + (unsigned long long)reg->size;
1021
1022                /*
1023                 * skip the first memory chunk that is already added (RMA_START
1024                 * through boot_memory_size). This logic needs a relook if and
1025                 * when RMA_START changes to a non-zero value.
1026                 */
1027                BUILD_BUG_ON(RMA_START != 0);
1028                if (start < fw_dump.boot_memory_size) {
1029                        if (end > fw_dump.boot_memory_size)
1030                                start = fw_dump.boot_memory_size;
1031                        else
1032                                continue;
1033                }
1034
1035                /* add this range excluding the reserved dump area. */
1036                ret = fadump_exclude_reserved_area(start, end);
1037                if (ret)
1038                        return ret;
1039        }
1040
1041        return 0;
1042}
1043
1044/*
1045 * If the given physical address falls within the boot memory region then
1046 * return the relocated address that points to the dump region reserved
1047 * for saving initial boot memory contents.
1048 */
1049static inline unsigned long fadump_relocate(unsigned long paddr)
1050{
1051        if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
1052                return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
1053        else
1054                return paddr;
1055}
1056
1057static int fadump_create_elfcore_headers(char *bufp)
1058{
1059        struct elfhdr *elf;
1060        struct elf_phdr *phdr;
1061        int i;
1062
1063        fadump_init_elfcore_header(bufp);
1064        elf = (struct elfhdr *)bufp;
1065        bufp += sizeof(struct elfhdr);
1066
1067        /*
1068         * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
1069         * will be populated during second kernel boot after crash. Hence
1070         * this PT_NOTE will always be the first elf note.
1071         *
1072         * NOTE: Any new ELF note addition should be placed after this note.
1073         */
1074        phdr = (struct elf_phdr *)bufp;
1075        bufp += sizeof(struct elf_phdr);
1076        phdr->p_type = PT_NOTE;
1077        phdr->p_flags = 0;
1078        phdr->p_vaddr = 0;
1079        phdr->p_align = 0;
1080
1081        phdr->p_offset = 0;
1082        phdr->p_paddr = 0;
1083        phdr->p_filesz = 0;
1084        phdr->p_memsz = 0;
1085
1086        (elf->e_phnum)++;
1087
1088        /* setup ELF PT_NOTE for vmcoreinfo */
1089        phdr = (struct elf_phdr *)bufp;
1090        bufp += sizeof(struct elf_phdr);
1091        phdr->p_type    = PT_NOTE;
1092        phdr->p_flags   = 0;
1093        phdr->p_vaddr   = 0;
1094        phdr->p_align   = 0;
1095
1096        phdr->p_paddr   = fadump_relocate(paddr_vmcoreinfo_note());
1097        phdr->p_offset  = phdr->p_paddr;
1098        phdr->p_memsz   = vmcoreinfo_max_size;
1099        phdr->p_filesz  = vmcoreinfo_max_size;
1100
1101        /* Increment number of program headers. */
1102        (elf->e_phnum)++;
1103
1104        /* setup PT_LOAD sections. */
1105
1106        for (i = 0; i < crash_mem_ranges; i++) {
1107                unsigned long long mbase, msize;
1108                mbase = crash_memory_ranges[i].base;
1109                msize = crash_memory_ranges[i].size;
1110
1111                if (!msize)
1112                        continue;
1113
1114                phdr = (struct elf_phdr *)bufp;
1115                bufp += sizeof(struct elf_phdr);
1116                phdr->p_type    = PT_LOAD;
1117                phdr->p_flags   = PF_R|PF_W|PF_X;
1118                phdr->p_offset  = mbase;
1119
1120                if (mbase == RMA_START) {
1121                        /*
1122                         * The entire RMA region will be moved by firmware
1123                         * to the specified destination_address. Hence set
1124                         * the correct offset.
1125                         */
1126                        phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
1127                }
1128
1129                phdr->p_paddr = mbase;
1130                phdr->p_vaddr = (unsigned long)__va(mbase);
1131                phdr->p_filesz = msize;
1132                phdr->p_memsz = msize;
1133                phdr->p_align = 0;
1134
1135                /* Increment number of program headers. */
1136                (elf->e_phnum)++;
1137        }
1138        return 0;
1139}
1140
1141static unsigned long init_fadump_header(unsigned long addr)
1142{
1143        struct fadump_crash_info_header *fdh;
1144
1145        if (!addr)
1146                return 0;
1147
1148        fw_dump.fadumphdr_addr = addr;
1149        fdh = __va(addr);
1150        addr += sizeof(struct fadump_crash_info_header);
1151
1152        memset(fdh, 0, sizeof(struct fadump_crash_info_header));
1153        fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
1154        fdh->elfcorehdr_addr = addr;
1155        /* We will set the crashing cpu id in crash_fadump() during crash. */
1156        fdh->crashing_cpu = CPU_UNKNOWN;
1157
1158        return addr;
1159}
1160
1161static int register_fadump(void)
1162{
1163        unsigned long addr;
1164        void *vaddr;
1165        int ret;
1166
1167        /*
1168         * If no memory is reserved then we can not register for firmware-
1169         * assisted dump.
1170         */
1171        if (!fw_dump.reserve_dump_area_size)
1172                return -ENODEV;
1173
1174        ret = fadump_setup_crash_memory_ranges();
1175        if (ret)
1176                return ret;
1177
1178        addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
1179        /* Initialize fadump crash info header. */
1180        addr = init_fadump_header(addr);
1181        vaddr = __va(addr);
1182
1183        pr_debug("Creating ELF core headers at %#016lx\n", addr);
1184        fadump_create_elfcore_headers(vaddr);
1185
1186        /* register the future kernel dump with firmware. */
1187        return register_fw_dump(&fdm);
1188}
1189
1190static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
1191{
1192        int rc = 0;
1193        unsigned int wait_time;
1194
1195        pr_debug("Un-register firmware-assisted dump\n");
1196
1197        /* TODO: Add upper time limit for the delay */
1198        do {
1199                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1200                        FADUMP_UNREGISTER, fdm,
1201                        sizeof(struct fadump_mem_struct));
1202
1203                wait_time = rtas_busy_delay_time(rc);
1204                if (wait_time)
1205                        mdelay(wait_time);
1206        } while (wait_time);
1207
1208        if (rc) {
1209                printk(KERN_ERR "Failed to un-register firmware-assisted dump."
1210                        " unexpected error(%d).\n", rc);
1211                return rc;
1212        }
1213        fw_dump.dump_registered = 0;
1214        return 0;
1215}
1216
1217static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1218{
1219        int rc = 0;
1220        unsigned int wait_time;
1221
1222        pr_debug("Invalidating firmware-assisted dump registration\n");
1223
1224        /* TODO: Add upper time limit for the delay */
1225        do {
1226                rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1227                        FADUMP_INVALIDATE, fdm,
1228                        sizeof(struct fadump_mem_struct));
1229
1230                wait_time = rtas_busy_delay_time(rc);
1231                if (wait_time)
1232                        mdelay(wait_time);
1233        } while (wait_time);
1234
1235        if (rc) {
1236                printk(KERN_ERR "Failed to invalidate firmware-assisted dump "
1237                        "rgistration. unexpected error(%d).\n", rc);
1238                return rc;
1239        }
1240        fw_dump.dump_active = 0;
1241        fdm_active = NULL;
1242        return 0;
1243}
1244
1245void fadump_cleanup(void)
1246{
1247        /* Invalidate the registration only if dump is active. */
1248        if (fw_dump.dump_active) {
1249                init_fadump_mem_struct(&fdm,
1250                        be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1251                fadump_invalidate_dump(&fdm);
1252        } else if (fw_dump.dump_registered) {
1253                /* Un-register Firmware-assisted dump if it was registered. */
1254                fadump_unregister_dump(&fdm);
1255                free_crash_memory_ranges();
1256        }
1257}
1258
1259/*
1260 * Release the memory that was reserved in early boot to preserve the memory
1261 * contents. The released memory will be available for general use.
1262 */
1263static void fadump_release_memory(unsigned long begin, unsigned long end)
1264{
1265        unsigned long addr;
1266        unsigned long ra_start, ra_end;
1267
1268        ra_start = fw_dump.reserve_dump_area_start;
1269        ra_end = ra_start + fw_dump.reserve_dump_area_size;
1270
1271        for (addr = begin; addr < end; addr += PAGE_SIZE) {
1272                /*
1273                 * exclude the dump reserve area. Will reuse it for next
1274                 * fadump registration.
1275                 */
1276                if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1277                        continue;
1278
1279                free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1280        }
1281}
1282
1283static void fadump_invalidate_release_mem(void)
1284{
1285        unsigned long reserved_area_start, reserved_area_end;
1286        unsigned long destination_address;
1287
1288        mutex_lock(&fadump_mutex);
1289        if (!fw_dump.dump_active) {
1290                mutex_unlock(&fadump_mutex);
1291                return;
1292        }
1293
1294        destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1295        fadump_cleanup();
1296        mutex_unlock(&fadump_mutex);
1297
1298        /*
1299         * Save the current reserved memory bounds we will require them
1300         * later for releasing the memory for general use.
1301         */
1302        reserved_area_start = fw_dump.reserve_dump_area_start;
1303        reserved_area_end = reserved_area_start +
1304                        fw_dump.reserve_dump_area_size;
1305        /*
1306         * Setup reserve_dump_area_start and its size so that we can
1307         * reuse this reserved memory for Re-registration.
1308         */
1309        fw_dump.reserve_dump_area_start = destination_address;
1310        fw_dump.reserve_dump_area_size = get_fadump_area_size();
1311
1312        fadump_release_memory(reserved_area_start, reserved_area_end);
1313        if (fw_dump.cpu_notes_buf) {
1314                fadump_cpu_notes_buf_free(
1315                                (unsigned long)__va(fw_dump.cpu_notes_buf),
1316                                fw_dump.cpu_notes_buf_size);
1317                fw_dump.cpu_notes_buf = 0;
1318                fw_dump.cpu_notes_buf_size = 0;
1319        }
1320        /* Initialize the kernel dump memory structure for FAD registration. */
1321        init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1322}
1323
1324static ssize_t fadump_release_memory_store(struct kobject *kobj,
1325                                        struct kobj_attribute *attr,
1326                                        const char *buf, size_t count)
1327{
1328        if (!fw_dump.dump_active)
1329                return -EPERM;
1330
1331        if (buf[0] == '1') {
1332                /*
1333                 * Take away the '/proc/vmcore'. We are releasing the dump
1334                 * memory, hence it will not be valid anymore.
1335                 */
1336                vmcore_cleanup();
1337                fadump_invalidate_release_mem();
1338
1339        } else
1340                return -EINVAL;
1341        return count;
1342}
1343
1344static ssize_t fadump_enabled_show(struct kobject *kobj,
1345                                        struct kobj_attribute *attr,
1346                                        char *buf)
1347{
1348        return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1349}
1350
1351static ssize_t fadump_register_show(struct kobject *kobj,
1352                                        struct kobj_attribute *attr,
1353                                        char *buf)
1354{
1355        return sprintf(buf, "%d\n", fw_dump.dump_registered);
1356}
1357
1358static ssize_t fadump_register_store(struct kobject *kobj,
1359                                        struct kobj_attribute *attr,
1360                                        const char *buf, size_t count)
1361{
1362        int ret = 0;
1363
1364        if (!fw_dump.fadump_enabled || fdm_active)
1365                return -EPERM;
1366
1367        mutex_lock(&fadump_mutex);
1368
1369        switch (buf[0]) {
1370        case '0':
1371                if (fw_dump.dump_registered == 0) {
1372                        goto unlock_out;
1373                }
1374                /* Un-register Firmware-assisted dump */
1375                fadump_unregister_dump(&fdm);
1376                break;
1377        case '1':
1378                if (fw_dump.dump_registered == 1) {
1379                        /* Un-register Firmware-assisted dump */
1380                        fadump_unregister_dump(&fdm);
1381                }
1382                /* Register Firmware-assisted dump */
1383                ret = register_fadump();
1384                break;
1385        default:
1386                ret = -EINVAL;
1387                break;
1388        }
1389
1390unlock_out:
1391        mutex_unlock(&fadump_mutex);
1392        return ret < 0 ? ret : count;
1393}
1394
1395static int fadump_region_show(struct seq_file *m, void *private)
1396{
1397        const struct fadump_mem_struct *fdm_ptr;
1398
1399        if (!fw_dump.fadump_enabled)
1400                return 0;
1401
1402        mutex_lock(&fadump_mutex);
1403        if (fdm_active)
1404                fdm_ptr = fdm_active;
1405        else {
1406                mutex_unlock(&fadump_mutex);
1407                fdm_ptr = &fdm;
1408        }
1409
1410        seq_printf(m,
1411                        "CPU : [%#016llx-%#016llx] %#llx bytes, "
1412                        "Dumped: %#llx\n",
1413                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1414                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1415                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1416                        be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1417                        be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1418        seq_printf(m,
1419                        "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1420                        "Dumped: %#llx\n",
1421                        be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1422                        be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1423                        be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1424                        be64_to_cpu(fdm_ptr->hpte_region.source_len),
1425                        be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1426        seq_printf(m,
1427                        "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1428                        "Dumped: %#llx\n",
1429                        be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1430                        be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1431                        be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1432                        be64_to_cpu(fdm_ptr->rmr_region.source_len),
1433                        be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1434
1435        if (!fdm_active ||
1436                (fw_dump.reserve_dump_area_start ==
1437                be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1438                goto out;
1439
1440        /* Dump is active. Show reserved memory region. */
1441        seq_printf(m,
1442                        "    : [%#016llx-%#016llx] %#llx bytes, "
1443                        "Dumped: %#llx\n",
1444                        (unsigned long long)fw_dump.reserve_dump_area_start,
1445                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1446                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1447                        fw_dump.reserve_dump_area_start,
1448                        be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1449                        fw_dump.reserve_dump_area_start);
1450out:
1451        if (fdm_active)
1452                mutex_unlock(&fadump_mutex);
1453        return 0;
1454}
1455
1456static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1457                                                0200, NULL,
1458                                                fadump_release_memory_store);
1459static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1460                                                0444, fadump_enabled_show,
1461                                                NULL);
1462static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1463                                                0644, fadump_register_show,
1464                                                fadump_register_store);
1465
1466static int fadump_region_open(struct inode *inode, struct file *file)
1467{
1468        return single_open(file, fadump_region_show, inode->i_private);
1469}
1470
1471static const struct file_operations fadump_region_fops = {
1472        .open    = fadump_region_open,
1473        .read    = seq_read,
1474        .llseek  = seq_lseek,
1475        .release = single_release,
1476};
1477
1478static void fadump_init_files(void)
1479{
1480        struct dentry *debugfs_file;
1481        int rc = 0;
1482
1483        rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1484        if (rc)
1485                printk(KERN_ERR "fadump: unable to create sysfs file"
1486                        " fadump_enabled (%d)\n", rc);
1487
1488        rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1489        if (rc)
1490                printk(KERN_ERR "fadump: unable to create sysfs file"
1491                        " fadump_registered (%d)\n", rc);
1492
1493        debugfs_file = debugfs_create_file("fadump_region", 0444,
1494                                        powerpc_debugfs_root, NULL,
1495                                        &fadump_region_fops);
1496        if (!debugfs_file)
1497                printk(KERN_ERR "fadump: unable to create debugfs file"
1498                                " fadump_region\n");
1499
1500        if (fw_dump.dump_active) {
1501                rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1502                if (rc)
1503                        printk(KERN_ERR "fadump: unable to create sysfs file"
1504                                " fadump_release_mem (%d)\n", rc);
1505        }
1506        return;
1507}
1508
1509/*
1510 * Prepare for firmware-assisted dump.
1511 */
1512int __init setup_fadump(void)
1513{
1514        if (!fw_dump.fadump_enabled)
1515                return 0;
1516
1517        if (!fw_dump.fadump_supported) {
1518                printk(KERN_ERR "Firmware-assisted dump is not supported on"
1519                        " this hardware\n");
1520                return 0;
1521        }
1522
1523        fadump_show_config();
1524        /*
1525         * If dump data is available then see if it is valid and prepare for
1526         * saving it to the disk.
1527         */
1528        if (fw_dump.dump_active) {
1529                /*
1530                 * if dump process fails then invalidate the registration
1531                 * and release memory before proceeding for re-registration.
1532                 */
1533                if (process_fadump(fdm_active) < 0)
1534                        fadump_invalidate_release_mem();
1535        }
1536        /* Initialize the kernel dump memory structure for FAD registration. */
1537        else if (fw_dump.reserve_dump_area_size)
1538                init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1539        fadump_init_files();
1540
1541        return 1;
1542}
1543subsys_initcall(setup_fadump);
1544