linux/arch/powerpc/kernel/nvram_64.c
<<
>>
Prefs
   1/*
   2 *  c 2001 PPC 64 Team, IBM Corp
   3 *
   4 *      This program is free software; you can redistribute it and/or
   5 *      modify it under the terms of the GNU General Public License
   6 *      as published by the Free Software Foundation; either version
   7 *      2 of the License, or (at your option) any later version.
   8 *
   9 * /dev/nvram driver for PPC64
  10 *
  11 * This perhaps should live in drivers/char
  12 *
  13 * TODO: Split the /dev/nvram part (that one can use
  14 *       drivers/char/generic_nvram.c) from the arch & partition
  15 *       parsing code.
  16 */
  17
  18#include <linux/module.h>
  19
  20#include <linux/types.h>
  21#include <linux/errno.h>
  22#include <linux/fs.h>
  23#include <linux/miscdevice.h>
  24#include <linux/fcntl.h>
  25#include <linux/nvram.h>
  26#include <linux/init.h>
  27#include <linux/slab.h>
  28#include <linux/spinlock.h>
  29#include <linux/kmsg_dump.h>
  30#include <linux/pstore.h>
  31#include <linux/zlib.h>
  32#include <asm/uaccess.h>
  33#include <asm/nvram.h>
  34#include <asm/rtas.h>
  35#include <asm/prom.h>
  36#include <asm/machdep.h>
  37
  38#undef DEBUG_NVRAM
  39
  40#define NVRAM_HEADER_LEN        sizeof(struct nvram_header)
  41#define NVRAM_BLOCK_LEN         NVRAM_HEADER_LEN
  42
  43/* If change this size, then change the size of NVNAME_LEN */
  44struct nvram_header {
  45        unsigned char signature;
  46        unsigned char checksum;
  47        unsigned short length;
  48        /* Terminating null required only for names < 12 chars. */
  49        char name[12];
  50};
  51
  52struct nvram_partition {
  53        struct list_head partition;
  54        struct nvram_header header;
  55        unsigned int index;
  56};
  57
  58static LIST_HEAD(nvram_partitions);
  59
  60#ifdef CONFIG_PPC_PSERIES
  61struct nvram_os_partition rtas_log_partition = {
  62        .name = "ibm,rtas-log",
  63        .req_size = 2079,
  64        .min_size = 1055,
  65        .index = -1,
  66        .os_partition = true
  67};
  68#endif
  69
  70struct nvram_os_partition oops_log_partition = {
  71        .name = "lnx,oops-log",
  72        .req_size = 4000,
  73        .min_size = 2000,
  74        .index = -1,
  75        .os_partition = true
  76};
  77
  78static const char *nvram_os_partitions[] = {
  79#ifdef CONFIG_PPC_PSERIES
  80        "ibm,rtas-log",
  81#endif
  82        "lnx,oops-log",
  83        NULL
  84};
  85
  86static void oops_to_nvram(struct kmsg_dumper *dumper,
  87                          enum kmsg_dump_reason reason);
  88
  89static struct kmsg_dumper nvram_kmsg_dumper = {
  90        .dump = oops_to_nvram
  91};
  92
  93/*
  94 * For capturing and compressing an oops or panic report...
  95
  96 * big_oops_buf[] holds the uncompressed text we're capturing.
  97 *
  98 * oops_buf[] holds the compressed text, preceded by a oops header.
  99 * oops header has u16 holding the version of oops header (to differentiate
 100 * between old and new format header) followed by u16 holding the length of
 101 * the compressed* text (*Or uncompressed, if compression fails.) and u64
 102 * holding the timestamp. oops_buf[] gets written to NVRAM.
 103 *
 104 * oops_log_info points to the header. oops_data points to the compressed text.
 105 *
 106 * +- oops_buf
 107 * |                                   +- oops_data
 108 * v                                   v
 109 * +-----------+-----------+-----------+------------------------+
 110 * | version   | length    | timestamp | text                   |
 111 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
 112 * +-----------+-----------+-----------+------------------------+
 113 * ^
 114 * +- oops_log_info
 115 *
 116 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
 117 */
 118static size_t big_oops_buf_sz;
 119static char *big_oops_buf, *oops_buf;
 120static char *oops_data;
 121static size_t oops_data_sz;
 122
 123/* Compression parameters */
 124#define COMPR_LEVEL 6
 125#define WINDOW_BITS 12
 126#define MEM_LEVEL 4
 127static struct z_stream_s stream;
 128
 129#ifdef CONFIG_PSTORE
 130#ifdef CONFIG_PPC_POWERNV
 131static struct nvram_os_partition skiboot_partition = {
 132        .name = "ibm,skiboot",
 133        .index = -1,
 134        .os_partition = false
 135};
 136#endif
 137
 138#ifdef CONFIG_PPC_PSERIES
 139static struct nvram_os_partition of_config_partition = {
 140        .name = "of-config",
 141        .index = -1,
 142        .os_partition = false
 143};
 144#endif
 145
 146static struct nvram_os_partition common_partition = {
 147        .name = "common",
 148        .index = -1,
 149        .os_partition = false
 150};
 151
 152static enum pstore_type_id nvram_type_ids[] = {
 153        PSTORE_TYPE_DMESG,
 154        PSTORE_TYPE_PPC_COMMON,
 155        -1,
 156        -1,
 157        -1
 158};
 159static int read_type;
 160#endif
 161
 162/* nvram_write_os_partition
 163 *
 164 * We need to buffer the error logs into nvram to ensure that we have
 165 * the failure information to decode.  If we have a severe error there
 166 * is no way to guarantee that the OS or the machine is in a state to
 167 * get back to user land and write the error to disk.  For example if
 168 * the SCSI device driver causes a Machine Check by writing to a bad
 169 * IO address, there is no way of guaranteeing that the device driver
 170 * is in any state that is would also be able to write the error data
 171 * captured to disk, thus we buffer it in NVRAM for analysis on the
 172 * next boot.
 173 *
 174 * In NVRAM the partition containing the error log buffer will looks like:
 175 * Header (in bytes):
 176 * +-----------+----------+--------+------------+------------------+
 177 * | signature | checksum | length | name       | data             |
 178 * |0          |1         |2      3|4         15|16        length-1|
 179 * +-----------+----------+--------+------------+------------------+
 180 *
 181 * The 'data' section would look like (in bytes):
 182 * +--------------+------------+-----------------------------------+
 183 * | event_logged | sequence # | error log                         |
 184 * |0            3|4          7|8                  error_log_size-1|
 185 * +--------------+------------+-----------------------------------+
 186 *
 187 * event_logged: 0 if event has not been logged to syslog, 1 if it has
 188 * sequence #: The unique sequence # for each event. (until it wraps)
 189 * error log: The error log from event_scan
 190 */
 191int nvram_write_os_partition(struct nvram_os_partition *part,
 192                             char *buff, int length,
 193                             unsigned int err_type,
 194                             unsigned int error_log_cnt)
 195{
 196        int rc;
 197        loff_t tmp_index;
 198        struct err_log_info info;
 199
 200        if (part->index == -1)
 201                return -ESPIPE;
 202
 203        if (length > part->size)
 204                length = part->size;
 205
 206        info.error_type = cpu_to_be32(err_type);
 207        info.seq_num = cpu_to_be32(error_log_cnt);
 208
 209        tmp_index = part->index;
 210
 211        rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
 212                                &tmp_index);
 213        if (rc <= 0) {
 214                pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
 215                return rc;
 216        }
 217
 218        rc = ppc_md.nvram_write(buff, length, &tmp_index);
 219        if (rc <= 0) {
 220                pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
 221                return rc;
 222        }
 223
 224        return 0;
 225}
 226
 227/* nvram_read_partition
 228 *
 229 * Reads nvram partition for at most 'length'
 230 */
 231int nvram_read_partition(struct nvram_os_partition *part, char *buff,
 232                         int length, unsigned int *err_type,
 233                         unsigned int *error_log_cnt)
 234{
 235        int rc;
 236        loff_t tmp_index;
 237        struct err_log_info info;
 238
 239        if (part->index == -1)
 240                return -1;
 241
 242        if (length > part->size)
 243                length = part->size;
 244
 245        tmp_index = part->index;
 246
 247        if (part->os_partition) {
 248                rc = ppc_md.nvram_read((char *)&info,
 249                                        sizeof(struct err_log_info),
 250                                        &tmp_index);
 251                if (rc <= 0) {
 252                        pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
 253                        return rc;
 254                }
 255        }
 256
 257        rc = ppc_md.nvram_read(buff, length, &tmp_index);
 258        if (rc <= 0) {
 259                pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
 260                return rc;
 261        }
 262
 263        if (part->os_partition) {
 264                *error_log_cnt = be32_to_cpu(info.seq_num);
 265                *err_type = be32_to_cpu(info.error_type);
 266        }
 267
 268        return 0;
 269}
 270
 271/* nvram_init_os_partition
 272 *
 273 * This sets up a partition with an "OS" signature.
 274 *
 275 * The general strategy is the following:
 276 * 1.) If a partition with the indicated name already exists...
 277 *      - If it's large enough, use it.
 278 *      - Otherwise, recycle it and keep going.
 279 * 2.) Search for a free partition that is large enough.
 280 * 3.) If there's not a free partition large enough, recycle any obsolete
 281 * OS partitions and try again.
 282 * 4.) Will first try getting a chunk that will satisfy the requested size.
 283 * 5.) If a chunk of the requested size cannot be allocated, then try finding
 284 * a chunk that will satisfy the minum needed.
 285 *
 286 * Returns 0 on success, else -1.
 287 */
 288int __init nvram_init_os_partition(struct nvram_os_partition *part)
 289{
 290        loff_t p;
 291        int size;
 292
 293        /* Look for ours */
 294        p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
 295
 296        /* Found one but too small, remove it */
 297        if (p && size < part->min_size) {
 298                pr_info("nvram: Found too small %s partition,"
 299                                        " removing it...\n", part->name);
 300                nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
 301                p = 0;
 302        }
 303
 304        /* Create one if we didn't find */
 305        if (!p) {
 306                p = nvram_create_partition(part->name, NVRAM_SIG_OS,
 307                                        part->req_size, part->min_size);
 308                if (p == -ENOSPC) {
 309                        pr_info("nvram: No room to create %s partition, "
 310                                "deleting any obsolete OS partitions...\n",
 311                                part->name);
 312                        nvram_remove_partition(NULL, NVRAM_SIG_OS,
 313                                        nvram_os_partitions);
 314                        p = nvram_create_partition(part->name, NVRAM_SIG_OS,
 315                                        part->req_size, part->min_size);
 316                }
 317        }
 318
 319        if (p <= 0) {
 320                pr_err("nvram: Failed to find or create %s"
 321                       " partition, err %d\n", part->name, (int)p);
 322                return -1;
 323        }
 324
 325        part->index = p;
 326        part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
 327
 328        return 0;
 329}
 330
 331/* Derived from logfs_compress() */
 332static int nvram_compress(const void *in, void *out, size_t inlen,
 333                                                        size_t outlen)
 334{
 335        int err, ret;
 336
 337        ret = -EIO;
 338        err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
 339                                                MEM_LEVEL, Z_DEFAULT_STRATEGY);
 340        if (err != Z_OK)
 341                goto error;
 342
 343        stream.next_in = in;
 344        stream.avail_in = inlen;
 345        stream.total_in = 0;
 346        stream.next_out = out;
 347        stream.avail_out = outlen;
 348        stream.total_out = 0;
 349
 350        err = zlib_deflate(&stream, Z_FINISH);
 351        if (err != Z_STREAM_END)
 352                goto error;
 353
 354        err = zlib_deflateEnd(&stream);
 355        if (err != Z_OK)
 356                goto error;
 357
 358        if (stream.total_out >= stream.total_in)
 359                goto error;
 360
 361        ret = stream.total_out;
 362error:
 363        return ret;
 364}
 365
 366/* Compress the text from big_oops_buf into oops_buf. */
 367static int zip_oops(size_t text_len)
 368{
 369        struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
 370        int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
 371                                                                oops_data_sz);
 372        if (zipped_len < 0) {
 373                pr_err("nvram: compression failed; returned %d\n", zipped_len);
 374                pr_err("nvram: logging uncompressed oops/panic report\n");
 375                return -1;
 376        }
 377        oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 378        oops_hdr->report_length = cpu_to_be16(zipped_len);
 379        oops_hdr->timestamp = cpu_to_be64(get_seconds());
 380        return 0;
 381}
 382
 383#ifdef CONFIG_PSTORE
 384static int nvram_pstore_open(struct pstore_info *psi)
 385{
 386        /* Reset the iterator to start reading partitions again */
 387        read_type = -1;
 388        return 0;
 389}
 390
 391/**
 392 * nvram_pstore_write - pstore write callback for nvram
 393 * @type:               Type of message logged
 394 * @reason:             reason behind dump (oops/panic)
 395 * @id:                 identifier to indicate the write performed
 396 * @part:               pstore writes data to registered buffer in parts,
 397 *                      part number will indicate the same.
 398 * @count:              Indicates oops count
 399 * @compressed:         Flag to indicate the log is compressed
 400 * @size:               number of bytes written to the registered buffer
 401 * @psi:                registered pstore_info structure
 402 *
 403 * Called by pstore_dump() when an oops or panic report is logged in the
 404 * printk buffer.
 405 * Returns 0 on successful write.
 406 */
 407static int nvram_pstore_write(enum pstore_type_id type,
 408                                enum kmsg_dump_reason reason,
 409                                u64 *id, unsigned int part, int count,
 410                                bool compressed, size_t size,
 411                                struct pstore_info *psi)
 412{
 413        int rc;
 414        unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
 415        struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
 416
 417        /* part 1 has the recent messages from printk buffer */
 418        if (part > 1 || (type != PSTORE_TYPE_DMESG))
 419                return -1;
 420
 421        if (clobbering_unread_rtas_event())
 422                return -1;
 423
 424        oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 425        oops_hdr->report_length = cpu_to_be16(size);
 426        oops_hdr->timestamp = cpu_to_be64(get_seconds());
 427
 428        if (compressed)
 429                err_type = ERR_TYPE_KERNEL_PANIC_GZ;
 430
 431        rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
 432                (int) (sizeof(*oops_hdr) + size), err_type, count);
 433
 434        if (rc != 0)
 435                return rc;
 436
 437        *id = part;
 438        return 0;
 439}
 440
 441/*
 442 * Reads the oops/panic report, rtas, of-config and common partition.
 443 * Returns the length of the data we read from each partition.
 444 * Returns 0 if we've been called before.
 445 */
 446static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
 447                                int *count, struct timespec *time, char **buf,
 448                                bool *compressed, struct pstore_info *psi)
 449{
 450        struct oops_log_info *oops_hdr;
 451        unsigned int err_type, id_no, size = 0;
 452        struct nvram_os_partition *part = NULL;
 453        char *buff = NULL;
 454        int sig = 0;
 455        loff_t p;
 456
 457        read_type++;
 458
 459        switch (nvram_type_ids[read_type]) {
 460        case PSTORE_TYPE_DMESG:
 461                part = &oops_log_partition;
 462                *type = PSTORE_TYPE_DMESG;
 463                break;
 464        case PSTORE_TYPE_PPC_COMMON:
 465                sig = NVRAM_SIG_SYS;
 466                part = &common_partition;
 467                *type = PSTORE_TYPE_PPC_COMMON;
 468                *id = PSTORE_TYPE_PPC_COMMON;
 469                time->tv_sec = 0;
 470                time->tv_nsec = 0;
 471                break;
 472#ifdef CONFIG_PPC_PSERIES
 473        case PSTORE_TYPE_PPC_RTAS:
 474                part = &rtas_log_partition;
 475                *type = PSTORE_TYPE_PPC_RTAS;
 476                time->tv_sec = last_rtas_event;
 477                time->tv_nsec = 0;
 478                break;
 479        case PSTORE_TYPE_PPC_OF:
 480                sig = NVRAM_SIG_OF;
 481                part = &of_config_partition;
 482                *type = PSTORE_TYPE_PPC_OF;
 483                *id = PSTORE_TYPE_PPC_OF;
 484                time->tv_sec = 0;
 485                time->tv_nsec = 0;
 486                break;
 487#endif
 488#ifdef CONFIG_PPC_POWERNV
 489        case PSTORE_TYPE_PPC_OPAL:
 490                sig = NVRAM_SIG_FW;
 491                part = &skiboot_partition;
 492                *type = PSTORE_TYPE_PPC_OPAL;
 493                *id = PSTORE_TYPE_PPC_OPAL;
 494                time->tv_sec = 0;
 495                time->tv_nsec = 0;
 496                break;
 497#endif
 498        default:
 499                return 0;
 500        }
 501
 502        if (!part->os_partition) {
 503                p = nvram_find_partition(part->name, sig, &size);
 504                if (p <= 0) {
 505                        pr_err("nvram: Failed to find partition %s, "
 506                                "err %d\n", part->name, (int)p);
 507                        return 0;
 508                }
 509                part->index = p;
 510                part->size = size;
 511        }
 512
 513        buff = kmalloc(part->size, GFP_KERNEL);
 514
 515        if (!buff)
 516                return -ENOMEM;
 517
 518        if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
 519                kfree(buff);
 520                return 0;
 521        }
 522
 523        *count = 0;
 524
 525        if (part->os_partition)
 526                *id = id_no;
 527
 528        if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
 529                size_t length, hdr_size;
 530
 531                oops_hdr = (struct oops_log_info *)buff;
 532                if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
 533                        /* Old format oops header had 2-byte record size */
 534                        hdr_size = sizeof(u16);
 535                        length = be16_to_cpu(oops_hdr->version);
 536                        time->tv_sec = 0;
 537                        time->tv_nsec = 0;
 538                } else {
 539                        hdr_size = sizeof(*oops_hdr);
 540                        length = be16_to_cpu(oops_hdr->report_length);
 541                        time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
 542                        time->tv_nsec = 0;
 543                }
 544                *buf = kmalloc(length, GFP_KERNEL);
 545                if (*buf == NULL)
 546                        return -ENOMEM;
 547                memcpy(*buf, buff + hdr_size, length);
 548                kfree(buff);
 549
 550                if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
 551                        *compressed = true;
 552                else
 553                        *compressed = false;
 554                return length;
 555        }
 556
 557        *buf = buff;
 558        return part->size;
 559}
 560
 561static struct pstore_info nvram_pstore_info = {
 562        .owner = THIS_MODULE,
 563        .name = "nvram",
 564        .open = nvram_pstore_open,
 565        .read = nvram_pstore_read,
 566        .write = nvram_pstore_write,
 567};
 568
 569static int nvram_pstore_init(void)
 570{
 571        int rc = 0;
 572
 573        if (machine_is(pseries)) {
 574                nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
 575                nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
 576        } else
 577                nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
 578
 579        nvram_pstore_info.buf = oops_data;
 580        nvram_pstore_info.bufsize = oops_data_sz;
 581
 582        spin_lock_init(&nvram_pstore_info.buf_lock);
 583
 584        rc = pstore_register(&nvram_pstore_info);
 585        if (rc != 0)
 586                pr_err("nvram: pstore_register() failed, defaults to "
 587                                "kmsg_dump; returned %d\n", rc);
 588
 589        return rc;
 590}
 591#else
 592static int nvram_pstore_init(void)
 593{
 594        return -1;
 595}
 596#endif
 597
 598void __init nvram_init_oops_partition(int rtas_partition_exists)
 599{
 600        int rc;
 601
 602        rc = nvram_init_os_partition(&oops_log_partition);
 603        if (rc != 0) {
 604#ifdef CONFIG_PPC_PSERIES
 605                if (!rtas_partition_exists) {
 606                        pr_err("nvram: Failed to initialize oops partition!");
 607                        return;
 608                }
 609                pr_notice("nvram: Using %s partition to log both"
 610                        " RTAS errors and oops/panic reports\n",
 611                        rtas_log_partition.name);
 612                memcpy(&oops_log_partition, &rtas_log_partition,
 613                                                sizeof(rtas_log_partition));
 614#else
 615                pr_err("nvram: Failed to initialize oops partition!");
 616                return;
 617#endif
 618        }
 619        oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
 620        if (!oops_buf) {
 621                pr_err("nvram: No memory for %s partition\n",
 622                                                oops_log_partition.name);
 623                return;
 624        }
 625        oops_data = oops_buf + sizeof(struct oops_log_info);
 626        oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
 627
 628        rc = nvram_pstore_init();
 629
 630        if (!rc)
 631                return;
 632
 633        /*
 634         * Figure compression (preceded by elimination of each line's <n>
 635         * severity prefix) will reduce the oops/panic report to at most
 636         * 45% of its original size.
 637         */
 638        big_oops_buf_sz = (oops_data_sz * 100) / 45;
 639        big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
 640        if (big_oops_buf) {
 641                stream.workspace =  kmalloc(zlib_deflate_workspacesize(
 642                                        WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
 643                if (!stream.workspace) {
 644                        pr_err("nvram: No memory for compression workspace; "
 645                                "skipping compression of %s partition data\n",
 646                                oops_log_partition.name);
 647                        kfree(big_oops_buf);
 648                        big_oops_buf = NULL;
 649                }
 650        } else {
 651                pr_err("No memory for uncompressed %s data; "
 652                        "skipping compression\n", oops_log_partition.name);
 653                stream.workspace = NULL;
 654        }
 655
 656        rc = kmsg_dump_register(&nvram_kmsg_dumper);
 657        if (rc != 0) {
 658                pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
 659                kfree(oops_buf);
 660                kfree(big_oops_buf);
 661                kfree(stream.workspace);
 662        }
 663}
 664
 665/*
 666 * This is our kmsg_dump callback, called after an oops or panic report
 667 * has been written to the printk buffer.  We want to capture as much
 668 * of the printk buffer as possible.  First, capture as much as we can
 669 * that we think will compress sufficiently to fit in the lnx,oops-log
 670 * partition.  If that's too much, go back and capture uncompressed text.
 671 */
 672static void oops_to_nvram(struct kmsg_dumper *dumper,
 673                          enum kmsg_dump_reason reason)
 674{
 675        struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
 676        static unsigned int oops_count = 0;
 677        static bool panicking = false;
 678        static DEFINE_SPINLOCK(lock);
 679        unsigned long flags;
 680        size_t text_len;
 681        unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
 682        int rc = -1;
 683
 684        switch (reason) {
 685        case KMSG_DUMP_RESTART:
 686        case KMSG_DUMP_HALT:
 687        case KMSG_DUMP_POWEROFF:
 688                /* These are almost always orderly shutdowns. */
 689                return;
 690        case KMSG_DUMP_OOPS:
 691                break;
 692        case KMSG_DUMP_PANIC:
 693                panicking = true;
 694                break;
 695        case KMSG_DUMP_EMERG:
 696                if (panicking)
 697                        /* Panic report already captured. */
 698                        return;
 699                break;
 700        default:
 701                pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
 702                       __func__, (int) reason);
 703                return;
 704        }
 705
 706        if (clobbering_unread_rtas_event())
 707                return;
 708
 709        if (!spin_trylock_irqsave(&lock, flags))
 710                return;
 711
 712        if (big_oops_buf) {
 713                kmsg_dump_get_buffer(dumper, false,
 714                                     big_oops_buf, big_oops_buf_sz, &text_len);
 715                rc = zip_oops(text_len);
 716        }
 717        if (rc != 0) {
 718                kmsg_dump_rewind(dumper);
 719                kmsg_dump_get_buffer(dumper, false,
 720                                     oops_data, oops_data_sz, &text_len);
 721                err_type = ERR_TYPE_KERNEL_PANIC;
 722                oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
 723                oops_hdr->report_length = cpu_to_be16(text_len);
 724                oops_hdr->timestamp = cpu_to_be64(get_seconds());
 725        }
 726
 727        (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
 728                (int) (sizeof(*oops_hdr) + text_len), err_type,
 729                ++oops_count);
 730
 731        spin_unlock_irqrestore(&lock, flags);
 732}
 733
 734static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
 735{
 736        int size;
 737
 738        if (ppc_md.nvram_size == NULL)
 739                return -ENODEV;
 740        size = ppc_md.nvram_size();
 741
 742        switch (origin) {
 743        case 1:
 744                offset += file->f_pos;
 745                break;
 746        case 2:
 747                offset += size;
 748                break;
 749        }
 750        if (offset < 0)
 751                return -EINVAL;
 752        file->f_pos = offset;
 753        return file->f_pos;
 754}
 755
 756
 757static ssize_t dev_nvram_read(struct file *file, char __user *buf,
 758                          size_t count, loff_t *ppos)
 759{
 760        ssize_t ret;
 761        char *tmp = NULL;
 762        ssize_t size;
 763
 764        if (!ppc_md.nvram_size) {
 765                ret = -ENODEV;
 766                goto out;
 767        }
 768
 769        size = ppc_md.nvram_size();
 770        if (size < 0) {
 771                ret = size;
 772                goto out;
 773        }
 774
 775        if (*ppos >= size) {
 776                ret = 0;
 777                goto out;
 778        }
 779
 780        count = min_t(size_t, count, size - *ppos);
 781        count = min(count, PAGE_SIZE);
 782
 783        tmp = kmalloc(count, GFP_KERNEL);
 784        if (!tmp) {
 785                ret = -ENOMEM;
 786                goto out;
 787        }
 788
 789        ret = ppc_md.nvram_read(tmp, count, ppos);
 790        if (ret <= 0)
 791                goto out;
 792
 793        if (copy_to_user(buf, tmp, ret))
 794                ret = -EFAULT;
 795
 796out:
 797        kfree(tmp);
 798        return ret;
 799
 800}
 801
 802static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
 803                          size_t count, loff_t *ppos)
 804{
 805        ssize_t ret;
 806        char *tmp = NULL;
 807        ssize_t size;
 808
 809        ret = -ENODEV;
 810        if (!ppc_md.nvram_size)
 811                goto out;
 812
 813        ret = 0;
 814        size = ppc_md.nvram_size();
 815        if (*ppos >= size || size < 0)
 816                goto out;
 817
 818        count = min_t(size_t, count, size - *ppos);
 819        count = min(count, PAGE_SIZE);
 820
 821        ret = -ENOMEM;
 822        tmp = kmalloc(count, GFP_KERNEL);
 823        if (!tmp)
 824                goto out;
 825
 826        ret = -EFAULT;
 827        if (copy_from_user(tmp, buf, count))
 828                goto out;
 829
 830        ret = ppc_md.nvram_write(tmp, count, ppos);
 831
 832out:
 833        kfree(tmp);
 834        return ret;
 835
 836}
 837
 838static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
 839                            unsigned long arg)
 840{
 841        switch(cmd) {
 842#ifdef CONFIG_PPC_PMAC
 843        case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
 844                printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
 845        case IOC_NVRAM_GET_OFFSET: {
 846                int part, offset;
 847
 848                if (!machine_is(powermac))
 849                        return -EINVAL;
 850                if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
 851                        return -EFAULT;
 852                if (part < pmac_nvram_OF || part > pmac_nvram_NR)
 853                        return -EINVAL;
 854                offset = pmac_get_partition(part);
 855                if (offset < 0)
 856                        return offset;
 857                if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
 858                        return -EFAULT;
 859                return 0;
 860        }
 861#endif /* CONFIG_PPC_PMAC */
 862        default:
 863                return -EINVAL;
 864        }
 865}
 866
 867static const struct file_operations nvram_fops = {
 868        .owner          = THIS_MODULE,
 869        .llseek         = dev_nvram_llseek,
 870        .read           = dev_nvram_read,
 871        .write          = dev_nvram_write,
 872        .unlocked_ioctl = dev_nvram_ioctl,
 873};
 874
 875static struct miscdevice nvram_dev = {
 876        NVRAM_MINOR,
 877        "nvram",
 878        &nvram_fops
 879};
 880
 881
 882#ifdef DEBUG_NVRAM
 883static void __init nvram_print_partitions(char * label)
 884{
 885        struct nvram_partition * tmp_part;
 886        
 887        printk(KERN_WARNING "--------%s---------\n", label);
 888        printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
 889        list_for_each_entry(tmp_part, &nvram_partitions, partition) {
 890                printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
 891                       tmp_part->index, tmp_part->header.signature,
 892                       tmp_part->header.checksum, tmp_part->header.length,
 893                       tmp_part->header.name);
 894        }
 895}
 896#endif
 897
 898
 899static int __init nvram_write_header(struct nvram_partition * part)
 900{
 901        loff_t tmp_index;
 902        int rc;
 903        struct nvram_header phead;
 904
 905        memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
 906        phead.length = cpu_to_be16(phead.length);
 907
 908        tmp_index = part->index;
 909        rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
 910
 911        return rc;
 912}
 913
 914
 915static unsigned char __init nvram_checksum(struct nvram_header *p)
 916{
 917        unsigned int c_sum, c_sum2;
 918        unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
 919        c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
 920
 921        /* The sum may have spilled into the 3rd byte.  Fold it back. */
 922        c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
 923        /* The sum cannot exceed 2 bytes.  Fold it into a checksum */
 924        c_sum2 = (c_sum >> 8) + (c_sum << 8);
 925        c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
 926        return c_sum;
 927}
 928
 929/*
 930 * Per the criteria passed via nvram_remove_partition(), should this
 931 * partition be removed?  1=remove, 0=keep
 932 */
 933static int nvram_can_remove_partition(struct nvram_partition *part,
 934                const char *name, int sig, const char *exceptions[])
 935{
 936        if (part->header.signature != sig)
 937                return 0;
 938        if (name) {
 939                if (strncmp(name, part->header.name, 12))
 940                        return 0;
 941        } else if (exceptions) {
 942                const char **except;
 943                for (except = exceptions; *except; except++) {
 944                        if (!strncmp(*except, part->header.name, 12))
 945                                return 0;
 946                }
 947        }
 948        return 1;
 949}
 950
 951/**
 952 * nvram_remove_partition - Remove one or more partitions in nvram
 953 * @name: name of the partition to remove, or NULL for a
 954 *        signature only match
 955 * @sig: signature of the partition(s) to remove
 956 * @exceptions: When removing all partitions with a matching signature,
 957 *        leave these alone.
 958 */
 959
 960int __init nvram_remove_partition(const char *name, int sig,
 961                                                const char *exceptions[])
 962{
 963        struct nvram_partition *part, *prev, *tmp;
 964        int rc;
 965
 966        list_for_each_entry(part, &nvram_partitions, partition) {
 967                if (!nvram_can_remove_partition(part, name, sig, exceptions))
 968                        continue;
 969
 970                /* Make partition a free partition */
 971                part->header.signature = NVRAM_SIG_FREE;
 972                strncpy(part->header.name, "wwwwwwwwwwww", 12);
 973                part->header.checksum = nvram_checksum(&part->header);
 974                rc = nvram_write_header(part);
 975                if (rc <= 0) {
 976                        printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
 977                        return rc;
 978                }
 979        }
 980
 981        /* Merge contiguous ones */
 982        prev = NULL;
 983        list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
 984                if (part->header.signature != NVRAM_SIG_FREE) {
 985                        prev = NULL;
 986                        continue;
 987                }
 988                if (prev) {
 989                        prev->header.length += part->header.length;
 990                        prev->header.checksum = nvram_checksum(&part->header);
 991                        rc = nvram_write_header(part);
 992                        if (rc <= 0) {
 993                                printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
 994                                return rc;
 995                        }
 996                        list_del(&part->partition);
 997                        kfree(part);
 998                } else
 999                        prev = part;
1000        }
1001        
1002        return 0;
1003}
1004
1005/**
1006 * nvram_create_partition - Create a partition in nvram
1007 * @name: name of the partition to create
1008 * @sig: signature of the partition to create
1009 * @req_size: size of data to allocate in bytes
1010 * @min_size: minimum acceptable size (0 means req_size)
1011 *
1012 * Returns a negative error code or a positive nvram index
1013 * of the beginning of the data area of the newly created
1014 * partition. If you provided a min_size smaller than req_size
1015 * you need to query for the actual size yourself after the
1016 * call using nvram_partition_get_size().
1017 */
1018loff_t __init nvram_create_partition(const char *name, int sig,
1019                                     int req_size, int min_size)
1020{
1021        struct nvram_partition *part;
1022        struct nvram_partition *new_part;
1023        struct nvram_partition *free_part = NULL;
1024        static char nv_init_vals[16];
1025        loff_t tmp_index;
1026        long size = 0;
1027        int rc;
1028
1029        /* Convert sizes from bytes to blocks */
1030        req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1031        min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1032
1033        /* If no minimum size specified, make it the same as the
1034         * requested size
1035         */
1036        if (min_size == 0)
1037                min_size = req_size;
1038        if (min_size > req_size)
1039                return -EINVAL;
1040
1041        /* Now add one block to each for the header */
1042        req_size += 1;
1043        min_size += 1;
1044
1045        /* Find a free partition that will give us the maximum needed size 
1046           If can't find one that will give us the minimum size needed */
1047        list_for_each_entry(part, &nvram_partitions, partition) {
1048                if (part->header.signature != NVRAM_SIG_FREE)
1049                        continue;
1050
1051                if (part->header.length >= req_size) {
1052                        size = req_size;
1053                        free_part = part;
1054                        break;
1055                }
1056                if (part->header.length > size &&
1057                    part->header.length >= min_size) {
1058                        size = part->header.length;
1059                        free_part = part;
1060                }
1061        }
1062        if (!size)
1063                return -ENOSPC;
1064        
1065        /* Create our OS partition */
1066        new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1067        if (!new_part) {
1068                pr_err("nvram_create_os_partition: kmalloc failed\n");
1069                return -ENOMEM;
1070        }
1071
1072        new_part->index = free_part->index;
1073        new_part->header.signature = sig;
1074        new_part->header.length = size;
1075        strncpy(new_part->header.name, name, 12);
1076        new_part->header.checksum = nvram_checksum(&new_part->header);
1077
1078        rc = nvram_write_header(new_part);
1079        if (rc <= 0) {
1080                pr_err("nvram_create_os_partition: nvram_write_header "
1081                       "failed (%d)\n", rc);
1082                return rc;
1083        }
1084        list_add_tail(&new_part->partition, &free_part->partition);
1085
1086        /* Adjust or remove the partition we stole the space from */
1087        if (free_part->header.length > size) {
1088                free_part->index += size * NVRAM_BLOCK_LEN;
1089                free_part->header.length -= size;
1090                free_part->header.checksum = nvram_checksum(&free_part->header);
1091                rc = nvram_write_header(free_part);
1092                if (rc <= 0) {
1093                        pr_err("nvram_create_os_partition: nvram_write_header "
1094                               "failed (%d)\n", rc);
1095                        return rc;
1096                }
1097        } else {
1098                list_del(&free_part->partition);
1099                kfree(free_part);
1100        } 
1101
1102        /* Clear the new partition */
1103        for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1104             tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1105             tmp_index += NVRAM_BLOCK_LEN) {
1106                rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1107                if (rc <= 0) {
1108                        pr_err("nvram_create_partition: nvram_write failed (%d)\n", rc);
1109                        return rc;
1110                }
1111        }
1112        
1113        return new_part->index + NVRAM_HEADER_LEN;
1114}
1115
1116/**
1117 * nvram_get_partition_size - Get the data size of an nvram partition
1118 * @data_index: This is the offset of the start of the data of
1119 *              the partition. The same value that is returned by
1120 *              nvram_create_partition().
1121 */
1122int nvram_get_partition_size(loff_t data_index)
1123{
1124        struct nvram_partition *part;
1125        
1126        list_for_each_entry(part, &nvram_partitions, partition) {
1127                if (part->index + NVRAM_HEADER_LEN == data_index)
1128                        return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1129        }
1130        return -1;
1131}
1132
1133
1134/**
1135 * nvram_find_partition - Find an nvram partition by signature and name
1136 * @name: Name of the partition or NULL for any name
1137 * @sig: Signature to test against
1138 * @out_size: if non-NULL, returns the size of the data part of the partition
1139 */
1140loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1141{
1142        struct nvram_partition *p;
1143
1144        list_for_each_entry(p, &nvram_partitions, partition) {
1145                if (p->header.signature == sig &&
1146                    (!name || !strncmp(p->header.name, name, 12))) {
1147                        if (out_size)
1148                                *out_size = (p->header.length - 1) *
1149                                        NVRAM_BLOCK_LEN;
1150                        return p->index + NVRAM_HEADER_LEN;
1151                }
1152        }
1153        return 0;
1154}
1155
1156int __init nvram_scan_partitions(void)
1157{
1158        loff_t cur_index = 0;
1159        struct nvram_header phead;
1160        struct nvram_partition * tmp_part;
1161        unsigned char c_sum;
1162        char * header;
1163        int total_size;
1164        int err;
1165
1166        if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1167                return -ENODEV;
1168        total_size = ppc_md.nvram_size();
1169        
1170        header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1171        if (!header) {
1172                printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1173                return -ENOMEM;
1174        }
1175
1176        while (cur_index < total_size) {
1177
1178                err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1179                if (err != NVRAM_HEADER_LEN) {
1180                        printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1181                               "nvram partitions\n");
1182                        goto out;
1183                }
1184
1185                cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1186
1187                memcpy(&phead, header, NVRAM_HEADER_LEN);
1188
1189                phead.length = be16_to_cpu(phead.length);
1190
1191                err = 0;
1192                c_sum = nvram_checksum(&phead);
1193                if (c_sum != phead.checksum) {
1194                        printk(KERN_WARNING "WARNING: nvram partition checksum"
1195                               " was %02x, should be %02x!\n",
1196                               phead.checksum, c_sum);
1197                        printk(KERN_WARNING "Terminating nvram partition scan\n");
1198                        goto out;
1199                }
1200                if (!phead.length) {
1201                        printk(KERN_WARNING "WARNING: nvram corruption "
1202                               "detected: 0-length partition\n");
1203                        goto out;
1204                }
1205                tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1206                err = -ENOMEM;
1207                if (!tmp_part) {
1208                        printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1209                        goto out;
1210                }
1211                
1212                memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1213                tmp_part->index = cur_index;
1214                list_add_tail(&tmp_part->partition, &nvram_partitions);
1215                
1216                cur_index += phead.length * NVRAM_BLOCK_LEN;
1217        }
1218        err = 0;
1219
1220#ifdef DEBUG_NVRAM
1221        nvram_print_partitions("NVRAM Partitions");
1222#endif
1223
1224 out:
1225        kfree(header);
1226        return err;
1227}
1228
1229static int __init nvram_init(void)
1230{
1231        int rc;
1232        
1233        BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1234
1235        if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1236                return  -ENODEV;
1237
1238        rc = misc_register(&nvram_dev);
1239        if (rc != 0) {
1240                printk(KERN_ERR "nvram_init: failed to register device\n");
1241                return rc;
1242        }
1243        
1244        return rc;
1245}
1246
1247void __exit nvram_cleanup(void)
1248{
1249        misc_deregister( &nvram_dev );
1250}
1251
1252module_init(nvram_init);
1253module_exit(nvram_cleanup);
1254MODULE_LICENSE("GPL");
1255