linux/drivers/mtd/nand/denali.c
<<
>>
Prefs
   1/*
   2 * NAND Flash Controller Device Driver
   3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.,
  16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17 *
  18 */
  19#include <linux/interrupt.h>
  20#include <linux/delay.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/wait.h>
  23#include <linux/mutex.h>
  24#include <linux/slab.h>
  25#include <linux/mtd/mtd.h>
  26#include <linux/module.h>
  27
  28#include "denali.h"
  29
  30MODULE_LICENSE("GPL");
  31
  32/* We define a module parameter that allows the user to override
  33 * the hardware and decide what timing mode should be used.
  34 */
  35#define NAND_DEFAULT_TIMINGS    -1
  36
  37static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
  38module_param(onfi_timing_mode, int, S_IRUGO);
  39MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
  40                        " -1 indicates use default timings");
  41
  42#define DENALI_NAND_NAME    "denali-nand"
  43
  44/* We define a macro here that combines all interrupts this driver uses into
  45 * a single constant value, for convenience. */
  46#define DENALI_IRQ_ALL  (INTR_STATUS__DMA_CMD_COMP | \
  47                        INTR_STATUS__ECC_TRANSACTION_DONE | \
  48                        INTR_STATUS__ECC_ERR | \
  49                        INTR_STATUS__PROGRAM_FAIL | \
  50                        INTR_STATUS__LOAD_COMP | \
  51                        INTR_STATUS__PROGRAM_COMP | \
  52                        INTR_STATUS__TIME_OUT | \
  53                        INTR_STATUS__ERASE_FAIL | \
  54                        INTR_STATUS__RST_COMP | \
  55                        INTR_STATUS__ERASE_COMP)
  56
  57/* indicates whether or not the internal value for the flash bank is
  58 * valid or not */
  59#define CHIP_SELECT_INVALID     -1
  60
  61#define SUPPORT_8BITECC         1
  62
  63/* This macro divides two integers and rounds fractional values up
  64 * to the nearest integer value. */
  65#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
  66
  67/* this macro allows us to convert from an MTD structure to our own
  68 * device context (denali) structure.
  69 */
  70#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
  71
  72/* These constants are defined by the driver to enable common driver
  73 * configuration options. */
  74#define SPARE_ACCESS            0x41
  75#define MAIN_ACCESS             0x42
  76#define MAIN_SPARE_ACCESS       0x43
  77
  78#define DENALI_READ     0
  79#define DENALI_WRITE    0x100
  80
  81/* types of device accesses. We can issue commands and get status */
  82#define COMMAND_CYCLE   0
  83#define ADDR_CYCLE      1
  84#define STATUS_CYCLE    2
  85
  86/* this is a helper macro that allows us to
  87 * format the bank into the proper bits for the controller */
  88#define BANK(x) ((x) << 24)
  89
  90/* forward declarations */
  91static void clear_interrupts(struct denali_nand_info *denali);
  92static uint32_t wait_for_irq(struct denali_nand_info *denali,
  93                                                        uint32_t irq_mask);
  94static void denali_irq_enable(struct denali_nand_info *denali,
  95                                                        uint32_t int_mask);
  96static uint32_t read_interrupt_status(struct denali_nand_info *denali);
  97
  98/* Certain operations for the denali NAND controller use
  99 * an indexed mode to read/write data. The operation is
 100 * performed by writing the address value of the command
 101 * to the device memory followed by the data. This function
 102 * abstracts this common operation.
 103*/
 104static void index_addr(struct denali_nand_info *denali,
 105                                uint32_t address, uint32_t data)
 106{
 107        iowrite32(address, denali->flash_mem);
 108        iowrite32(data, denali->flash_mem + 0x10);
 109}
 110
 111/* Perform an indexed read of the device */
 112static void index_addr_read_data(struct denali_nand_info *denali,
 113                                 uint32_t address, uint32_t *pdata)
 114{
 115        iowrite32(address, denali->flash_mem);
 116        *pdata = ioread32(denali->flash_mem + 0x10);
 117}
 118
 119/* We need to buffer some data for some of the NAND core routines.
 120 * The operations manage buffering that data. */
 121static void reset_buf(struct denali_nand_info *denali)
 122{
 123        denali->buf.head = denali->buf.tail = 0;
 124}
 125
 126static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
 127{
 128        BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
 129        denali->buf.buf[denali->buf.tail++] = byte;
 130}
 131
 132/* reads the status of the device */
 133static void read_status(struct denali_nand_info *denali)
 134{
 135        uint32_t cmd = 0x0;
 136
 137        /* initialize the data buffer to store status */
 138        reset_buf(denali);
 139
 140        cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
 141        if (cmd)
 142                write_byte_to_buf(denali, NAND_STATUS_WP);
 143        else
 144                write_byte_to_buf(denali, 0);
 145}
 146
 147/* resets a specific device connected to the core */
 148static void reset_bank(struct denali_nand_info *denali)
 149{
 150        uint32_t irq_status = 0;
 151        uint32_t irq_mask = INTR_STATUS__RST_COMP |
 152                            INTR_STATUS__TIME_OUT;
 153
 154        clear_interrupts(denali);
 155
 156        iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
 157
 158        irq_status = wait_for_irq(denali, irq_mask);
 159
 160        if (irq_status & INTR_STATUS__TIME_OUT)
 161                dev_err(denali->dev, "reset bank failed.\n");
 162}
 163
 164/* Reset the flash controller */
 165static uint16_t denali_nand_reset(struct denali_nand_info *denali)
 166{
 167        uint32_t i;
 168
 169        dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
 170                       __FILE__, __LINE__, __func__);
 171
 172        for (i = 0 ; i < denali->max_banks; i++)
 173                iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
 174                denali->flash_reg + INTR_STATUS(i));
 175
 176        for (i = 0 ; i < denali->max_banks; i++) {
 177                iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
 178                while (!(ioread32(denali->flash_reg +
 179                                INTR_STATUS(i)) &
 180                        (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
 181                        cpu_relax();
 182                if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
 183                        INTR_STATUS__TIME_OUT)
 184                        dev_dbg(denali->dev,
 185                        "NAND Reset operation timed out on bank %d\n", i);
 186        }
 187
 188        for (i = 0; i < denali->max_banks; i++)
 189                iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
 190                        denali->flash_reg + INTR_STATUS(i));
 191
 192        return PASS;
 193}
 194
 195/* this routine calculates the ONFI timing values for a given mode and
 196 * programs the clocking register accordingly. The mode is determined by
 197 * the get_onfi_nand_para routine.
 198 */
 199static void nand_onfi_timing_set(struct denali_nand_info *denali,
 200                                                                uint16_t mode)
 201{
 202        uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
 203        uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
 204        uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
 205        uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
 206        uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
 207        uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
 208        uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
 209        uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
 210        uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
 211        uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
 212        uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
 213        uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
 214
 215        uint16_t TclsRising = 1;
 216        uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
 217        uint16_t dv_window = 0;
 218        uint16_t en_lo, en_hi;
 219        uint16_t acc_clks;
 220        uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
 221
 222        dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
 223                       __FILE__, __LINE__, __func__);
 224
 225        en_lo = CEIL_DIV(Trp[mode], CLK_X);
 226        en_hi = CEIL_DIV(Treh[mode], CLK_X);
 227#if ONFI_BLOOM_TIME
 228        if ((en_hi * CLK_X) < (Treh[mode] + 2))
 229                en_hi++;
 230#endif
 231
 232        if ((en_lo + en_hi) * CLK_X < Trc[mode])
 233                en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
 234
 235        if ((en_lo + en_hi) < CLK_MULTI)
 236                en_lo += CLK_MULTI - en_lo - en_hi;
 237
 238        while (dv_window < 8) {
 239                data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
 240
 241                data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
 242
 243                data_invalid =
 244                    data_invalid_rhoh <
 245                    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
 246
 247                dv_window = data_invalid - Trea[mode];
 248
 249                if (dv_window < 8)
 250                        en_lo++;
 251        }
 252
 253        acc_clks = CEIL_DIV(Trea[mode], CLK_X);
 254
 255        while (((acc_clks * CLK_X) - Trea[mode]) < 3)
 256                acc_clks++;
 257
 258        if ((data_invalid - acc_clks * CLK_X) < 2)
 259                dev_warn(denali->dev, "%s, Line %d: Warning!\n",
 260                        __FILE__, __LINE__);
 261
 262        addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
 263        re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
 264        re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
 265        we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
 266        cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
 267        if (!TclsRising)
 268                cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
 269        if (cs_cnt == 0)
 270                cs_cnt = 1;
 271
 272        if (Tcea[mode]) {
 273                while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
 274                        cs_cnt++;
 275        }
 276
 277#if MODE5_WORKAROUND
 278        if (mode == 5)
 279                acc_clks = 5;
 280#endif
 281
 282        /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
 283        if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
 284                (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
 285                acc_clks = 6;
 286
 287        iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
 288        iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
 289        iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
 290        iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
 291        iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
 292        iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
 293        iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
 294        iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
 295}
 296
 297/* queries the NAND device to see what ONFI modes it supports. */
 298static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
 299{
 300        int i;
 301        /* we needn't to do a reset here because driver has already
 302         * reset all the banks before
 303         * */
 304        if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
 305                ONFI_TIMING_MODE__VALUE))
 306                return FAIL;
 307
 308        for (i = 5; i > 0; i--) {
 309                if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
 310                        (0x01 << i))
 311                        break;
 312        }
 313
 314        nand_onfi_timing_set(denali, i);
 315
 316        /* By now, all the ONFI devices we know support the page cache */
 317        /* rw feature. So here we enable the pipeline_rw_ahead feature */
 318        /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
 319        /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
 320
 321        return PASS;
 322}
 323
 324static void get_samsung_nand_para(struct denali_nand_info *denali,
 325                                                        uint8_t device_id)
 326{
 327        if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
 328                /* Set timing register values according to datasheet */
 329                iowrite32(5, denali->flash_reg + ACC_CLKS);
 330                iowrite32(20, denali->flash_reg + RE_2_WE);
 331                iowrite32(12, denali->flash_reg + WE_2_RE);
 332                iowrite32(14, denali->flash_reg + ADDR_2_DATA);
 333                iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
 334                iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
 335                iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
 336        }
 337}
 338
 339static void get_toshiba_nand_para(struct denali_nand_info *denali)
 340{
 341        uint32_t tmp;
 342
 343        /* Workaround to fix a controller bug which reports a wrong */
 344        /* spare area size for some kind of Toshiba NAND device */
 345        if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
 346                (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
 347                iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 348                tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
 349                        ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 350                iowrite32(tmp,
 351                                denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
 352#if SUPPORT_15BITECC
 353                iowrite32(15, denali->flash_reg + ECC_CORRECTION);
 354#elif SUPPORT_8BITECC
 355                iowrite32(8, denali->flash_reg + ECC_CORRECTION);
 356#endif
 357        }
 358}
 359
 360static void get_hynix_nand_para(struct denali_nand_info *denali,
 361                                                        uint8_t device_id)
 362{
 363        uint32_t main_size, spare_size;
 364
 365        switch (device_id) {
 366        case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
 367        case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
 368                iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
 369                iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
 370                iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
 371                main_size = 4096 *
 372                        ioread32(denali->flash_reg + DEVICES_CONNECTED);
 373                spare_size = 224 *
 374                        ioread32(denali->flash_reg + DEVICES_CONNECTED);
 375                iowrite32(main_size,
 376                                denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
 377                iowrite32(spare_size,
 378                                denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
 379                iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
 380#if SUPPORT_15BITECC
 381                iowrite32(15, denali->flash_reg + ECC_CORRECTION);
 382#elif SUPPORT_8BITECC
 383                iowrite32(8, denali->flash_reg + ECC_CORRECTION);
 384#endif
 385                break;
 386        default:
 387                dev_warn(denali->dev,
 388                        "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
 389                        "Will use default parameter values instead.\n",
 390                        device_id);
 391        }
 392}
 393
 394/* determines how many NAND chips are connected to the controller. Note for
 395 * Intel CE4100 devices we don't support more than one device.
 396 */
 397static void find_valid_banks(struct denali_nand_info *denali)
 398{
 399        uint32_t id[denali->max_banks];
 400        int i;
 401
 402        denali->total_used_banks = 1;
 403        for (i = 0; i < denali->max_banks; i++) {
 404                index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
 405                index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
 406                index_addr_read_data(denali,
 407                                (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
 408
 409                dev_dbg(denali->dev,
 410                        "Return 1st ID for bank[%d]: %x\n", i, id[i]);
 411
 412                if (i == 0) {
 413                        if (!(id[i] & 0x0ff))
 414                                break; /* WTF? */
 415                } else {
 416                        if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
 417                                denali->total_used_banks++;
 418                        else
 419                                break;
 420                }
 421        }
 422
 423        if (denali->platform == INTEL_CE4100) {
 424                /* Platform limitations of the CE4100 device limit
 425                 * users to a single chip solution for NAND.
 426                 * Multichip support is not enabled.
 427                 */
 428                if (denali->total_used_banks != 1) {
 429                        dev_err(denali->dev,
 430                                        "Sorry, Intel CE4100 only supports "
 431                                        "a single NAND device.\n");
 432                        BUG();
 433                }
 434        }
 435        dev_dbg(denali->dev,
 436                "denali->total_used_banks: %d\n", denali->total_used_banks);
 437}
 438
 439/*
 440 * Use the configuration feature register to determine the maximum number of
 441 * banks that the hardware supports.
 442 */
 443static void detect_max_banks(struct denali_nand_info *denali)
 444{
 445        uint32_t features = ioread32(denali->flash_reg + FEATURES);
 446
 447        denali->max_banks = 2 << (features & FEATURES__N_BANKS);
 448}
 449
 450static void detect_partition_feature(struct denali_nand_info *denali)
 451{
 452        /* For MRST platform, denali->fwblks represent the
 453         * number of blocks firmware is taken,
 454         * FW is in protect partition and MTD driver has no
 455         * permission to access it. So let driver know how many
 456         * blocks it can't touch.
 457         * */
 458        if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
 459                if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
 460                        PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
 461                        denali->fwblks =
 462                            ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
 463                              MIN_MAX_BANK__MIN_VALUE) *
 464                             denali->blksperchip)
 465                            +
 466                            (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
 467                            MIN_BLK_ADDR__VALUE);
 468                } else
 469                        denali->fwblks = SPECTRA_START_BLOCK;
 470        } else
 471                denali->fwblks = SPECTRA_START_BLOCK;
 472}
 473
 474static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
 475{
 476        uint16_t status = PASS;
 477        uint32_t id_bytes[5], addr;
 478        uint8_t i, maf_id, device_id;
 479
 480        dev_dbg(denali->dev,
 481                        "%s, Line %d, Function: %s\n",
 482                        __FILE__, __LINE__, __func__);
 483
 484        /* Use read id method to get device ID and other
 485         * params. For some NAND chips, controller can't
 486         * report the correct device ID by reading from
 487         * DEVICE_ID register
 488         * */
 489        addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
 490        index_addr(denali, (uint32_t)addr | 0, 0x90);
 491        index_addr(denali, (uint32_t)addr | 1, 0);
 492        for (i = 0; i < 5; i++)
 493                index_addr_read_data(denali, addr | 2, &id_bytes[i]);
 494        maf_id = id_bytes[0];
 495        device_id = id_bytes[1];
 496
 497        if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
 498                ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
 499                if (FAIL == get_onfi_nand_para(denali))
 500                        return FAIL;
 501        } else if (maf_id == 0xEC) { /* Samsung NAND */
 502                get_samsung_nand_para(denali, device_id);
 503        } else if (maf_id == 0x98) { /* Toshiba NAND */
 504                get_toshiba_nand_para(denali);
 505        } else if (maf_id == 0xAD) { /* Hynix NAND */
 506                get_hynix_nand_para(denali, device_id);
 507        }
 508
 509        dev_info(denali->dev,
 510                        "Dump timing register values:"
 511                        "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
 512                        "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
 513                        "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
 514                        ioread32(denali->flash_reg + ACC_CLKS),
 515                        ioread32(denali->flash_reg + RE_2_WE),
 516                        ioread32(denali->flash_reg + RE_2_RE),
 517                        ioread32(denali->flash_reg + WE_2_RE),
 518                        ioread32(denali->flash_reg + ADDR_2_DATA),
 519                        ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
 520                        ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
 521                        ioread32(denali->flash_reg + CS_SETUP_CNT));
 522
 523        find_valid_banks(denali);
 524
 525        detect_partition_feature(denali);
 526
 527        /* If the user specified to override the default timings
 528         * with a specific ONFI mode, we apply those changes here.
 529         */
 530        if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
 531                nand_onfi_timing_set(denali, onfi_timing_mode);
 532
 533        return status;
 534}
 535
 536static void denali_set_intr_modes(struct denali_nand_info *denali,
 537                                        uint16_t INT_ENABLE)
 538{
 539        dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
 540                       __FILE__, __LINE__, __func__);
 541
 542        if (INT_ENABLE)
 543                iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
 544        else
 545                iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
 546}
 547
 548/* validation function to verify that the controlling software is making
 549 * a valid request
 550 */
 551static inline bool is_flash_bank_valid(int flash_bank)
 552{
 553        return (flash_bank >= 0 && flash_bank < 4);
 554}
 555
 556static void denali_irq_init(struct denali_nand_info *denali)
 557{
 558        uint32_t int_mask = 0;
 559        int i;
 560
 561        /* Disable global interrupts */
 562        denali_set_intr_modes(denali, false);
 563
 564        int_mask = DENALI_IRQ_ALL;
 565
 566        /* Clear all status bits */
 567        for (i = 0; i < denali->max_banks; ++i)
 568                iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
 569
 570        denali_irq_enable(denali, int_mask);
 571}
 572
 573static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
 574{
 575        denali_set_intr_modes(denali, false);
 576        free_irq(irqnum, denali);
 577}
 578
 579static void denali_irq_enable(struct denali_nand_info *denali,
 580                                                        uint32_t int_mask)
 581{
 582        int i;
 583
 584        for (i = 0; i < denali->max_banks; ++i)
 585                iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
 586}
 587
 588/* This function only returns when an interrupt that this driver cares about
 589 * occurs. This is to reduce the overhead of servicing interrupts
 590 */
 591static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
 592{
 593        return read_interrupt_status(denali) & DENALI_IRQ_ALL;
 594}
 595
 596/* Interrupts are cleared by writing a 1 to the appropriate status bit */
 597static inline void clear_interrupt(struct denali_nand_info *denali,
 598                                                        uint32_t irq_mask)
 599{
 600        uint32_t intr_status_reg = 0;
 601
 602        intr_status_reg = INTR_STATUS(denali->flash_bank);
 603
 604        iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
 605}
 606
 607static void clear_interrupts(struct denali_nand_info *denali)
 608{
 609        uint32_t status = 0x0;
 610        spin_lock_irq(&denali->irq_lock);
 611
 612        status = read_interrupt_status(denali);
 613        clear_interrupt(denali, status);
 614
 615        denali->irq_status = 0x0;
 616        spin_unlock_irq(&denali->irq_lock);
 617}
 618
 619static uint32_t read_interrupt_status(struct denali_nand_info *denali)
 620{
 621        uint32_t intr_status_reg = 0;
 622
 623        intr_status_reg = INTR_STATUS(denali->flash_bank);
 624
 625        return ioread32(denali->flash_reg + intr_status_reg);
 626}
 627
 628/* This is the interrupt service routine. It handles all interrupts
 629 * sent to this device. Note that on CE4100, this is a shared
 630 * interrupt.
 631 */
 632static irqreturn_t denali_isr(int irq, void *dev_id)
 633{
 634        struct denali_nand_info *denali = dev_id;
 635        uint32_t irq_status = 0x0;
 636        irqreturn_t result = IRQ_NONE;
 637
 638        spin_lock(&denali->irq_lock);
 639
 640        /* check to see if a valid NAND chip has
 641         * been selected.
 642         */
 643        if (is_flash_bank_valid(denali->flash_bank)) {
 644                /* check to see if controller generated
 645                 * the interrupt, since this is a shared interrupt */
 646                irq_status = denali_irq_detected(denali);
 647                if (irq_status != 0) {
 648                        /* handle interrupt */
 649                        /* first acknowledge it */
 650                        clear_interrupt(denali, irq_status);
 651                        /* store the status in the device context for someone
 652                           to read */
 653                        denali->irq_status |= irq_status;
 654                        /* notify anyone who cares that it happened */
 655                        complete(&denali->complete);
 656                        /* tell the OS that we've handled this */
 657                        result = IRQ_HANDLED;
 658                }
 659        }
 660        spin_unlock(&denali->irq_lock);
 661        return result;
 662}
 663#define BANK(x) ((x) << 24)
 664
 665static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
 666{
 667        unsigned long comp_res = 0;
 668        uint32_t intr_status = 0;
 669        bool retry = false;
 670        unsigned long timeout = msecs_to_jiffies(1000);
 671
 672        do {
 673                comp_res =
 674                        wait_for_completion_timeout(&denali->complete, timeout);
 675                spin_lock_irq(&denali->irq_lock);
 676                intr_status = denali->irq_status;
 677
 678                if (intr_status & irq_mask) {
 679                        denali->irq_status &= ~irq_mask;
 680                        spin_unlock_irq(&denali->irq_lock);
 681                        /* our interrupt was detected */
 682                        break;
 683                } else {
 684                        /* these are not the interrupts you are looking for -
 685                         * need to wait again */
 686                        spin_unlock_irq(&denali->irq_lock);
 687                        retry = true;
 688                }
 689        } while (comp_res != 0);
 690
 691        if (comp_res == 0) {
 692                /* timeout */
 693                pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
 694                                intr_status, irq_mask);
 695
 696                intr_status = 0;
 697        }
 698        return intr_status;
 699}
 700
 701/* This helper function setups the registers for ECC and whether or not
 702 * the spare area will be transferred. */
 703static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
 704                                bool transfer_spare)
 705{
 706        int ecc_en_flag = 0, transfer_spare_flag = 0;
 707
 708        /* set ECC, transfer spare bits if needed */
 709        ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
 710        transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
 711
 712        /* Enable spare area/ECC per user's request. */
 713        iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
 714        iowrite32(transfer_spare_flag,
 715                        denali->flash_reg + TRANSFER_SPARE_REG);
 716}
 717
 718/* sends a pipeline command operation to the controller. See the Denali NAND
 719 * controller's user guide for more information (section 4.2.3.6).
 720 */
 721static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
 722                                                        bool ecc_en,
 723                                                        bool transfer_spare,
 724                                                        int access_type,
 725                                                        int op)
 726{
 727        int status = PASS;
 728        uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
 729                 irq_mask = 0;
 730
 731        if (op == DENALI_READ)
 732                irq_mask = INTR_STATUS__LOAD_COMP;
 733        else if (op == DENALI_WRITE)
 734                irq_mask = 0;
 735        else
 736                BUG();
 737
 738        setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
 739
 740        /* clear interrupts */
 741        clear_interrupts(denali);
 742
 743        addr = BANK(denali->flash_bank) | denali->page;
 744
 745        if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
 746                cmd = MODE_01 | addr;
 747                iowrite32(cmd, denali->flash_mem);
 748        } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
 749                /* read spare area */
 750                cmd = MODE_10 | addr;
 751                index_addr(denali, (uint32_t)cmd, access_type);
 752
 753                cmd = MODE_01 | addr;
 754                iowrite32(cmd, denali->flash_mem);
 755        } else if (op == DENALI_READ) {
 756                /* setup page read request for access type */
 757                cmd = MODE_10 | addr;
 758                index_addr(denali, (uint32_t)cmd, access_type);
 759
 760                /* page 33 of the NAND controller spec indicates we should not
 761                   use the pipeline commands in Spare area only mode. So we
 762                   don't.
 763                 */
 764                if (access_type == SPARE_ACCESS) {
 765                        cmd = MODE_01 | addr;
 766                        iowrite32(cmd, denali->flash_mem);
 767                } else {
 768                        index_addr(denali, (uint32_t)cmd,
 769                                        0x2000 | op | page_count);
 770
 771                        /* wait for command to be accepted
 772                         * can always use status0 bit as the
 773                         * mask is identical for each
 774                         * bank. */
 775                        irq_status = wait_for_irq(denali, irq_mask);
 776
 777                        if (irq_status == 0) {
 778                                dev_err(denali->dev,
 779                                                "cmd, page, addr on timeout "
 780                                                "(0x%x, 0x%x, 0x%x)\n",
 781                                                cmd, denali->page, addr);
 782                                status = FAIL;
 783                        } else {
 784                                cmd = MODE_01 | addr;
 785                                iowrite32(cmd, denali->flash_mem);
 786                        }
 787                }
 788        }
 789        return status;
 790}
 791
 792/* helper function that simply writes a buffer to the flash */
 793static int write_data_to_flash_mem(struct denali_nand_info *denali,
 794                                                        const uint8_t *buf,
 795                                                        int len)
 796{
 797        uint32_t i = 0, *buf32;
 798
 799        /* verify that the len is a multiple of 4. see comment in
 800         * read_data_from_flash_mem() */
 801        BUG_ON((len % 4) != 0);
 802
 803        /* write the data to the flash memory */
 804        buf32 = (uint32_t *)buf;
 805        for (i = 0; i < len / 4; i++)
 806                iowrite32(*buf32++, denali->flash_mem + 0x10);
 807        return i*4; /* intent is to return the number of bytes read */
 808}
 809
 810/* helper function that simply reads a buffer from the flash */
 811static int read_data_from_flash_mem(struct denali_nand_info *denali,
 812                                                                uint8_t *buf,
 813                                                                int len)
 814{
 815        uint32_t i = 0, *buf32;
 816
 817        /* we assume that len will be a multiple of 4, if not
 818         * it would be nice to know about it ASAP rather than
 819         * have random failures...
 820         * This assumption is based on the fact that this
 821         * function is designed to be used to read flash pages,
 822         * which are typically multiples of 4...
 823         */
 824
 825        BUG_ON((len % 4) != 0);
 826
 827        /* transfer the data from the flash */
 828        buf32 = (uint32_t *)buf;
 829        for (i = 0; i < len / 4; i++)
 830                *buf32++ = ioread32(denali->flash_mem + 0x10);
 831        return i*4; /* intent is to return the number of bytes read */
 832}
 833
 834/* writes OOB data to the device */
 835static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
 836{
 837        struct denali_nand_info *denali = mtd_to_denali(mtd);
 838        uint32_t irq_status = 0;
 839        uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
 840                                                INTR_STATUS__PROGRAM_FAIL;
 841        int status = 0;
 842
 843        denali->page = page;
 844
 845        if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
 846                                                        DENALI_WRITE) == PASS) {
 847                write_data_to_flash_mem(denali, buf, mtd->oobsize);
 848
 849                /* wait for operation to complete */
 850                irq_status = wait_for_irq(denali, irq_mask);
 851
 852                if (irq_status == 0) {
 853                        dev_err(denali->dev, "OOB write failed\n");
 854                        status = -EIO;
 855                }
 856        } else {
 857                dev_err(denali->dev, "unable to send pipeline command\n");
 858                status = -EIO;
 859        }
 860        return status;
 861}
 862
 863/* reads OOB data from the device */
 864static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
 865{
 866        struct denali_nand_info *denali = mtd_to_denali(mtd);
 867        uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
 868                         irq_status = 0, addr = 0x0, cmd = 0x0;
 869
 870        denali->page = page;
 871
 872        if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
 873                                                        DENALI_READ) == PASS) {
 874                read_data_from_flash_mem(denali, buf, mtd->oobsize);
 875
 876                /* wait for command to be accepted
 877                 * can always use status0 bit as the mask is identical for each
 878                 * bank. */
 879                irq_status = wait_for_irq(denali, irq_mask);
 880
 881                if (irq_status == 0)
 882                        dev_err(denali->dev, "page on OOB timeout %d\n",
 883                                        denali->page);
 884
 885                /* We set the device back to MAIN_ACCESS here as I observed
 886                 * instability with the controller if you do a block erase
 887                 * and the last transaction was a SPARE_ACCESS. Block erase
 888                 * is reliable (according to the MTD test infrastructure)
 889                 * if you are in MAIN_ACCESS.
 890                 */
 891                addr = BANK(denali->flash_bank) | denali->page;
 892                cmd = MODE_10 | addr;
 893                index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
 894        }
 895}
 896
 897/* this function examines buffers to see if they contain data that
 898 * indicate that the buffer is part of an erased region of flash.
 899 */
 900bool is_erased(uint8_t *buf, int len)
 901{
 902        int i = 0;
 903        for (i = 0; i < len; i++)
 904                if (buf[i] != 0xFF)
 905                        return false;
 906        return true;
 907}
 908#define ECC_SECTOR_SIZE 512
 909
 910#define ECC_SECTOR(x)   (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
 911#define ECC_BYTE(x)     (((x) & ECC_ERROR_ADDRESS__OFFSET))
 912#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
 913#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
 914#define ECC_ERR_DEVICE(x)       (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
 915#define ECC_LAST_ERR(x)         ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
 916
 917static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
 918                       uint32_t irq_status, unsigned int *max_bitflips)
 919{
 920        bool check_erased_page = false;
 921        unsigned int bitflips = 0;
 922
 923        if (irq_status & INTR_STATUS__ECC_ERR) {
 924                /* read the ECC errors. we'll ignore them for now */
 925                uint32_t err_address = 0, err_correction_info = 0;
 926                uint32_t err_byte = 0, err_sector = 0, err_device = 0;
 927                uint32_t err_correction_value = 0;
 928                denali_set_intr_modes(denali, false);
 929
 930                do {
 931                        err_address = ioread32(denali->flash_reg +
 932                                                ECC_ERROR_ADDRESS);
 933                        err_sector = ECC_SECTOR(err_address);
 934                        err_byte = ECC_BYTE(err_address);
 935
 936                        err_correction_info = ioread32(denali->flash_reg +
 937                                                ERR_CORRECTION_INFO);
 938                        err_correction_value =
 939                                ECC_CORRECTION_VALUE(err_correction_info);
 940                        err_device = ECC_ERR_DEVICE(err_correction_info);
 941
 942                        if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
 943                                /* If err_byte is larger than ECC_SECTOR_SIZE,
 944                                 * means error happened in OOB, so we ignore
 945                                 * it. It's no need for us to correct it
 946                                 * err_device is represented the NAND error
 947                                 * bits are happened in if there are more
 948                                 * than one NAND connected.
 949                                 * */
 950                                if (err_byte < ECC_SECTOR_SIZE) {
 951                                        int offset;
 952                                        offset = (err_sector *
 953                                                        ECC_SECTOR_SIZE +
 954                                                        err_byte) *
 955                                                        denali->devnum +
 956                                                        err_device;
 957                                        /* correct the ECC error */
 958                                        buf[offset] ^= err_correction_value;
 959                                        denali->mtd.ecc_stats.corrected++;
 960                                        bitflips++;
 961                                }
 962                        } else {
 963                                /* if the error is not correctable, need to
 964                                 * look at the page to see if it is an erased
 965                                 * page. if so, then it's not a real ECC error
 966                                 * */
 967                                check_erased_page = true;
 968                        }
 969                } while (!ECC_LAST_ERR(err_correction_info));
 970                /* Once handle all ecc errors, controller will triger
 971                 * a ECC_TRANSACTION_DONE interrupt, so here just wait
 972                 * for a while for this interrupt
 973                 * */
 974                while (!(read_interrupt_status(denali) &
 975                                INTR_STATUS__ECC_TRANSACTION_DONE))
 976                        cpu_relax();
 977                clear_interrupts(denali);
 978                denali_set_intr_modes(denali, true);
 979        }
 980        *max_bitflips = bitflips;
 981        return check_erased_page;
 982}
 983
 984/* programs the controller to either enable/disable DMA transfers */
 985static void denali_enable_dma(struct denali_nand_info *denali, bool en)
 986{
 987        uint32_t reg_val = 0x0;
 988
 989        if (en)
 990                reg_val = DMA_ENABLE__FLAG;
 991
 992        iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
 993        ioread32(denali->flash_reg + DMA_ENABLE);
 994}
 995
 996/* setups the HW to perform the data DMA */
 997static void denali_setup_dma(struct denali_nand_info *denali, int op)
 998{
 999        uint32_t mode = 0x0;
1000        const int page_count = 1;
1001        dma_addr_t addr = denali->buf.dma_buf;
1002
1003        mode = MODE_10 | BANK(denali->flash_bank);
1004
1005        /* DMA is a four step process */
1006
1007        /* 1. setup transfer type and # of pages */
1008        index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1009
1010        /* 2. set memory high address bits 23:8 */
1011        index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1012
1013        /* 3. set memory low address bits 23:8 */
1014        index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1015
1016        /* 4.  interrupt when complete, burst len = 64 bytes*/
1017        index_addr(denali, mode | 0x14000, 0x2400);
1018}
1019
1020/* writes a page. user specifies type, and this function handles the
1021 * configuration details. */
1022static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
1023                        const uint8_t *buf, bool raw_xfer)
1024{
1025        struct denali_nand_info *denali = mtd_to_denali(mtd);
1026
1027        dma_addr_t addr = denali->buf.dma_buf;
1028        size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1029
1030        uint32_t irq_status = 0;
1031        uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
1032                                                INTR_STATUS__PROGRAM_FAIL;
1033
1034        /* if it is a raw xfer, we want to disable ecc, and send
1035         * the spare area.
1036         * !raw_xfer - enable ecc
1037         * raw_xfer - transfer spare
1038         */
1039        setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1040
1041        /* copy buffer into DMA buffer */
1042        memcpy(denali->buf.buf, buf, mtd->writesize);
1043
1044        if (raw_xfer) {
1045                /* transfer the data to the spare area */
1046                memcpy(denali->buf.buf + mtd->writesize,
1047                        chip->oob_poi,
1048                        mtd->oobsize);
1049        }
1050
1051        dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
1052
1053        clear_interrupts(denali);
1054        denali_enable_dma(denali, true);
1055
1056        denali_setup_dma(denali, DENALI_WRITE);
1057
1058        /* wait for operation to complete */
1059        irq_status = wait_for_irq(denali, irq_mask);
1060
1061        if (irq_status == 0) {
1062                dev_err(denali->dev,
1063                                "timeout on write_page (type = %d)\n",
1064                                raw_xfer);
1065                denali->status =
1066                        (irq_status & INTR_STATUS__PROGRAM_FAIL) ?
1067                        NAND_STATUS_FAIL : PASS;
1068        }
1069
1070        denali_enable_dma(denali, false);
1071        dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
1072
1073        return 0;
1074}
1075
1076/* NAND core entry points */
1077
1078/* this is the callback that the NAND core calls to write a page. Since
1079 * writing a page with ECC or without is similar, all the work is done
1080 * by write_page above.
1081 * */
1082static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1083                                const uint8_t *buf, int oob_required)
1084{
1085        /* for regular page writes, we let HW handle all the ECC
1086         * data written to the device. */
1087        return write_page(mtd, chip, buf, false);
1088}
1089
1090/* This is the callback that the NAND core calls to write a page without ECC.
1091 * raw access is similar to ECC page writes, so all the work is done in the
1092 * write_page() function above.
1093 */
1094static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1095                                        const uint8_t *buf, int oob_required)
1096{
1097        /* for raw page writes, we want to disable ECC and simply write
1098           whatever data is in the buffer. */
1099        return write_page(mtd, chip, buf, true);
1100}
1101
1102static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1103                            int page)
1104{
1105        return write_oob_data(mtd, chip->oob_poi, page);
1106}
1107
1108static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1109                           int page)
1110{
1111        read_oob_data(mtd, chip->oob_poi, page);
1112
1113        return 0;
1114}
1115
1116static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1117                            uint8_t *buf, int oob_required, int page)
1118{
1119        unsigned int max_bitflips;
1120        struct denali_nand_info *denali = mtd_to_denali(mtd);
1121
1122        dma_addr_t addr = denali->buf.dma_buf;
1123        size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1124
1125        uint32_t irq_status = 0;
1126        uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
1127                            INTR_STATUS__ECC_ERR;
1128        bool check_erased_page = false;
1129
1130        if (page != denali->page) {
1131                dev_err(denali->dev, "IN %s: page %d is not"
1132                                " equal to denali->page %d, investigate!!",
1133                                __func__, page, denali->page);
1134                BUG();
1135        }
1136
1137        setup_ecc_for_xfer(denali, true, false);
1138
1139        denali_enable_dma(denali, true);
1140        dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1141
1142        clear_interrupts(denali);
1143        denali_setup_dma(denali, DENALI_READ);
1144
1145        /* wait for operation to complete */
1146        irq_status = wait_for_irq(denali, irq_mask);
1147
1148        dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1149
1150        memcpy(buf, denali->buf.buf, mtd->writesize);
1151
1152        check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
1153        denali_enable_dma(denali, false);
1154
1155        if (check_erased_page) {
1156                read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1157
1158                /* check ECC failures that may have occurred on erased pages */
1159                if (check_erased_page) {
1160                        if (!is_erased(buf, denali->mtd.writesize))
1161                                denali->mtd.ecc_stats.failed++;
1162                        if (!is_erased(buf, denali->mtd.oobsize))
1163                                denali->mtd.ecc_stats.failed++;
1164                }
1165        }
1166        return max_bitflips;
1167}
1168
1169static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1170                                uint8_t *buf, int oob_required, int page)
1171{
1172        struct denali_nand_info *denali = mtd_to_denali(mtd);
1173
1174        dma_addr_t addr = denali->buf.dma_buf;
1175        size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1176
1177        uint32_t irq_status = 0;
1178        uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
1179
1180        if (page != denali->page) {
1181                dev_err(denali->dev, "IN %s: page %d is not"
1182                                " equal to denali->page %d, investigate!!",
1183                                __func__, page, denali->page);
1184                BUG();
1185        }
1186
1187        setup_ecc_for_xfer(denali, false, true);
1188        denali_enable_dma(denali, true);
1189
1190        dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
1191
1192        clear_interrupts(denali);
1193        denali_setup_dma(denali, DENALI_READ);
1194
1195        /* wait for operation to complete */
1196        irq_status = wait_for_irq(denali, irq_mask);
1197
1198        dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
1199
1200        denali_enable_dma(denali, false);
1201
1202        memcpy(buf, denali->buf.buf, mtd->writesize);
1203        memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1204
1205        return 0;
1206}
1207
1208static uint8_t denali_read_byte(struct mtd_info *mtd)
1209{
1210        struct denali_nand_info *denali = mtd_to_denali(mtd);
1211        uint8_t result = 0xff;
1212
1213        if (denali->buf.head < denali->buf.tail)
1214                result = denali->buf.buf[denali->buf.head++];
1215
1216        return result;
1217}
1218
1219static void denali_select_chip(struct mtd_info *mtd, int chip)
1220{
1221        struct denali_nand_info *denali = mtd_to_denali(mtd);
1222
1223        spin_lock_irq(&denali->irq_lock);
1224        denali->flash_bank = chip;
1225        spin_unlock_irq(&denali->irq_lock);
1226}
1227
1228static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1229{
1230        struct denali_nand_info *denali = mtd_to_denali(mtd);
1231        int status = denali->status;
1232        denali->status = 0;
1233
1234        return status;
1235}
1236
1237static void denali_erase(struct mtd_info *mtd, int page)
1238{
1239        struct denali_nand_info *denali = mtd_to_denali(mtd);
1240
1241        uint32_t cmd = 0x0, irq_status = 0;
1242
1243        /* clear interrupts */
1244        clear_interrupts(denali);
1245
1246        /* setup page read request for access type */
1247        cmd = MODE_10 | BANK(denali->flash_bank) | page;
1248        index_addr(denali, (uint32_t)cmd, 0x1);
1249
1250        /* wait for erase to complete or failure to occur */
1251        irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
1252                                        INTR_STATUS__ERASE_FAIL);
1253
1254        denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
1255                                                NAND_STATUS_FAIL : PASS;
1256}
1257
1258static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1259                           int page)
1260{
1261        struct denali_nand_info *denali = mtd_to_denali(mtd);
1262        uint32_t addr, id;
1263        int i;
1264
1265        switch (cmd) {
1266        case NAND_CMD_PAGEPROG:
1267                break;
1268        case NAND_CMD_STATUS:
1269                read_status(denali);
1270                break;
1271        case NAND_CMD_READID:
1272        case NAND_CMD_PARAM:
1273                reset_buf(denali);
1274                /*sometimes ManufactureId read from register is not right
1275                 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1276                 * So here we send READID cmd to NAND insteand
1277                 * */
1278                addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1279                index_addr(denali, (uint32_t)addr | 0, 0x90);
1280                index_addr(denali, (uint32_t)addr | 1, 0);
1281                for (i = 0; i < 5; i++) {
1282                        index_addr_read_data(denali,
1283                                                (uint32_t)addr | 2,
1284                                                &id);
1285                        write_byte_to_buf(denali, id);
1286                }
1287                break;
1288        case NAND_CMD_READ0:
1289        case NAND_CMD_SEQIN:
1290                denali->page = page;
1291                break;
1292        case NAND_CMD_RESET:
1293                reset_bank(denali);
1294                break;
1295        case NAND_CMD_READOOB:
1296                /* TODO: Read OOB data */
1297                break;
1298        default:
1299                pr_err(": unsupported command received 0x%x\n", cmd);
1300                break;
1301        }
1302}
1303
1304/* stubs for ECC functions not used by the NAND core */
1305static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1306                                uint8_t *ecc_code)
1307{
1308        struct denali_nand_info *denali = mtd_to_denali(mtd);
1309        dev_err(denali->dev,
1310                        "denali_ecc_calculate called unexpectedly\n");
1311        BUG();
1312        return -EIO;
1313}
1314
1315static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1316                                uint8_t *read_ecc, uint8_t *calc_ecc)
1317{
1318        struct denali_nand_info *denali = mtd_to_denali(mtd);
1319        dev_err(denali->dev,
1320                        "denali_ecc_correct called unexpectedly\n");
1321        BUG();
1322        return -EIO;
1323}
1324
1325static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1326{
1327        struct denali_nand_info *denali = mtd_to_denali(mtd);
1328        dev_err(denali->dev,
1329                        "denali_ecc_hwctl called unexpectedly\n");
1330        BUG();
1331}
1332/* end NAND core entry points */
1333
1334/* Initialization code to bring the device up to a known good state */
1335static void denali_hw_init(struct denali_nand_info *denali)
1336{
1337        /* tell driver how many bit controller will skip before
1338         * writing ECC code in OOB, this register may be already
1339         * set by firmware. So we read this value out.
1340         * if this value is 0, just let it be.
1341         * */
1342        denali->bbtskipbytes = ioread32(denali->flash_reg +
1343                                                SPARE_AREA_SKIP_BYTES);
1344        detect_max_banks(denali);
1345        denali_nand_reset(denali);
1346        iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1347        iowrite32(CHIP_EN_DONT_CARE__FLAG,
1348                        denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1349
1350        iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1351
1352        /* Should set value for these registers when init */
1353        iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1354        iowrite32(1, denali->flash_reg + ECC_ENABLE);
1355        denali_nand_timing_set(denali);
1356        denali_irq_init(denali);
1357}
1358
1359/* Althogh controller spec said SLC ECC is forceb to be 4bit,
1360 * but denali controller in MRST only support 15bit and 8bit ECC
1361 * correction
1362 * */
1363#define ECC_8BITS       14
1364static struct nand_ecclayout nand_8bit_oob = {
1365        .eccbytes = 14,
1366};
1367
1368#define ECC_15BITS      26
1369static struct nand_ecclayout nand_15bit_oob = {
1370        .eccbytes = 26,
1371};
1372
1373static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1374static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1375
1376static struct nand_bbt_descr bbt_main_descr = {
1377        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1378                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1379        .offs = 8,
1380        .len = 4,
1381        .veroffs = 12,
1382        .maxblocks = 4,
1383        .pattern = bbt_pattern,
1384};
1385
1386static struct nand_bbt_descr bbt_mirror_descr = {
1387        .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1388                | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1389        .offs = 8,
1390        .len = 4,
1391        .veroffs = 12,
1392        .maxblocks = 4,
1393        .pattern = mirror_pattern,
1394};
1395
1396/* initialize driver data structures */
1397void denali_drv_init(struct denali_nand_info *denali)
1398{
1399        denali->idx = 0;
1400
1401        /* setup interrupt handler */
1402        /* the completion object will be used to notify
1403         * the callee that the interrupt is done */
1404        init_completion(&denali->complete);
1405
1406        /* the spinlock will be used to synchronize the ISR
1407         * with any element that might be access shared
1408         * data (interrupt status) */
1409        spin_lock_init(&denali->irq_lock);
1410
1411        /* indicate that MTD has not selected a valid bank yet */
1412        denali->flash_bank = CHIP_SELECT_INVALID;
1413
1414        /* initialize our irq_status variable to indicate no interrupts */
1415        denali->irq_status = 0;
1416}
1417
1418int denali_init(struct denali_nand_info *denali)
1419{
1420        int ret;
1421
1422        if (denali->platform == INTEL_CE4100) {
1423                /* Due to a silicon limitation, we can only support
1424                 * ONFI timing mode 1 and below.
1425                 */
1426                if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1427                        pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1428                        return -EINVAL;
1429                }
1430        }
1431
1432        /* Is 32-bit DMA supported? */
1433        ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
1434        if (ret) {
1435                pr_err("Spectra: no usable DMA configuration\n");
1436                return ret;
1437        }
1438        denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
1439                                             DENALI_BUF_SIZE,
1440                                             DMA_BIDIRECTIONAL);
1441
1442        if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
1443                dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
1444                return -EIO;
1445        }
1446        denali->mtd.dev.parent = denali->dev;
1447        denali_hw_init(denali);
1448        denali_drv_init(denali);
1449
1450        /* denali_isr register is done after all the hardware
1451         * initilization is finished*/
1452        if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
1453                        DENALI_NAND_NAME, denali)) {
1454                pr_err("Spectra: Unable to allocate IRQ\n");
1455                return -ENODEV;
1456        }
1457
1458        /* now that our ISR is registered, we can enable interrupts */
1459        denali_set_intr_modes(denali, true);
1460        denali->mtd.name = "denali-nand";
1461        denali->mtd.owner = THIS_MODULE;
1462        denali->mtd.priv = &denali->nand;
1463
1464        /* register the driver with the NAND core subsystem */
1465        denali->nand.select_chip = denali_select_chip;
1466        denali->nand.cmdfunc = denali_cmdfunc;
1467        denali->nand.read_byte = denali_read_byte;
1468        denali->nand.waitfunc = denali_waitfunc;
1469
1470        /* scan for NAND devices attached to the controller
1471         * this is the first stage in a two step process to register
1472         * with the nand subsystem */
1473        if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
1474                ret = -ENXIO;
1475                goto failed_req_irq;
1476        }
1477
1478        /* MTD supported page sizes vary by kernel. We validate our
1479         * kernel supports the device here.
1480         */
1481        if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1482                ret = -ENODEV;
1483                pr_err("Spectra: device size not supported by this version of MTD.");
1484                goto failed_req_irq;
1485        }
1486
1487        /* support for multi nand
1488         * MTD known nothing about multi nand,
1489         * so we should tell it the real pagesize
1490         * and anything necessery
1491         */
1492        denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1493        denali->nand.chipsize <<= (denali->devnum - 1);
1494        denali->nand.page_shift += (denali->devnum - 1);
1495        denali->nand.pagemask = (denali->nand.chipsize >>
1496                                                denali->nand.page_shift) - 1;
1497        denali->nand.bbt_erase_shift += (denali->devnum - 1);
1498        denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1499        denali->nand.chip_shift += (denali->devnum - 1);
1500        denali->mtd.writesize <<= (denali->devnum - 1);
1501        denali->mtd.oobsize <<= (denali->devnum - 1);
1502        denali->mtd.erasesize <<= (denali->devnum - 1);
1503        denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1504        denali->bbtskipbytes *= denali->devnum;
1505
1506        /* second stage of the NAND scan
1507         * this stage requires information regarding ECC and
1508         * bad block management. */
1509
1510        /* Bad block management */
1511        denali->nand.bbt_td = &bbt_main_descr;
1512        denali->nand.bbt_md = &bbt_mirror_descr;
1513
1514        /* skip the scan for now until we have OOB read and write support */
1515        denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
1516        denali->nand.options |= NAND_SKIP_BBTSCAN;
1517        denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1518
1519        /* Denali Controller only support 15bit and 8bit ECC in MRST,
1520         * so just let controller do 15bit ECC for MLC and 8bit ECC for
1521         * SLC if possible.
1522         * */
1523        if (denali->nand.cellinfo & 0xc &&
1524                        (denali->mtd.oobsize > (denali->bbtskipbytes +
1525                        ECC_15BITS * (denali->mtd.writesize /
1526                        ECC_SECTOR_SIZE)))) {
1527                /* if MLC OOB size is large enough, use 15bit ECC*/
1528                denali->nand.ecc.strength = 15;
1529                denali->nand.ecc.layout = &nand_15bit_oob;
1530                denali->nand.ecc.bytes = ECC_15BITS;
1531                iowrite32(15, denali->flash_reg + ECC_CORRECTION);
1532        } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1533                        ECC_8BITS * (denali->mtd.writesize /
1534                        ECC_SECTOR_SIZE))) {
1535                pr_err("Your NAND chip OOB is not large enough to \
1536                                contain 8bit ECC correction codes");
1537                goto failed_req_irq;
1538        } else {
1539                denali->nand.ecc.strength = 8;
1540                denali->nand.ecc.layout = &nand_8bit_oob;
1541                denali->nand.ecc.bytes = ECC_8BITS;
1542                iowrite32(8, denali->flash_reg + ECC_CORRECTION);
1543        }
1544
1545        denali->nand.ecc.bytes *= denali->devnum;
1546        denali->nand.ecc.strength *= denali->devnum;
1547        denali->nand.ecc.layout->eccbytes *=
1548                denali->mtd.writesize / ECC_SECTOR_SIZE;
1549        denali->nand.ecc.layout->oobfree[0].offset =
1550                denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1551        denali->nand.ecc.layout->oobfree[0].length =
1552                denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1553                denali->bbtskipbytes;
1554
1555        /* Let driver know the total blocks number and
1556         * how many blocks contained by each nand chip.
1557         * blksperchip will help driver to know how many
1558         * blocks is taken by FW.
1559         * */
1560        denali->totalblks = denali->mtd.size >>
1561                                denali->nand.phys_erase_shift;
1562        denali->blksperchip = denali->totalblks / denali->nand.numchips;
1563
1564        /* These functions are required by the NAND core framework, otherwise,
1565         * the NAND core will assert. However, we don't need them, so we'll stub
1566         * them out. */
1567        denali->nand.ecc.calculate = denali_ecc_calculate;
1568        denali->nand.ecc.correct = denali_ecc_correct;
1569        denali->nand.ecc.hwctl = denali_ecc_hwctl;
1570
1571        /* override the default read operations */
1572        denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1573        denali->nand.ecc.read_page = denali_read_page;
1574        denali->nand.ecc.read_page_raw = denali_read_page_raw;
1575        denali->nand.ecc.write_page = denali_write_page;
1576        denali->nand.ecc.write_page_raw = denali_write_page_raw;
1577        denali->nand.ecc.read_oob = denali_read_oob;
1578        denali->nand.ecc.write_oob = denali_write_oob;
1579        denali->nand.erase_cmd = denali_erase;
1580
1581        if (nand_scan_tail(&denali->mtd)) {
1582                ret = -ENXIO;
1583                goto failed_req_irq;
1584        }
1585
1586        ret = mtd_device_register(&denali->mtd, NULL, 0);
1587        if (ret) {
1588                dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
1589                                ret);
1590                goto failed_req_irq;
1591        }
1592        return 0;
1593
1594failed_req_irq:
1595        denali_irq_cleanup(denali->irq, denali);
1596
1597        return ret;
1598}
1599EXPORT_SYMBOL(denali_init);
1600
1601/* driver exit point */
1602void denali_remove(struct denali_nand_info *denali)
1603{
1604        denali_irq_cleanup(denali->irq, denali);
1605        dma_unmap_single(denali->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1606                        DMA_BIDIRECTIONAL);
1607}
1608EXPORT_SYMBOL(denali_remove);
1609