linux/drivers/net/wireless/ralink/rt2x00/rt2400pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19/*
  20        Module: rt2400pci
  21        Abstract: rt2400pci device specific routines.
  22        Supported chipsets: RT2460.
  23 */
  24
  25#include <linux/delay.h>
  26#include <linux/etherdevice.h>
  27#include <linux/kernel.h>
  28#include <linux/module.h>
  29#include <linux/pci.h>
  30#include <linux/eeprom_93cx6.h>
  31#include <linux/slab.h>
  32
  33#include "rt2x00.h"
  34#include "rt2x00mmio.h"
  35#include "rt2x00pci.h"
  36#include "rt2400pci.h"
  37
  38/*
  39 * Register access.
  40 * All access to the CSR registers will go through the methods
  41 * rt2x00mmio_register_read and rt2x00mmio_register_write.
  42 * BBP and RF register require indirect register access,
  43 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  44 * These indirect registers work with busy bits,
  45 * and we will try maximal REGISTER_BUSY_COUNT times to access
  46 * the register while taking a REGISTER_BUSY_DELAY us delay
  47 * between each attempt. When the busy bit is still set at that time,
  48 * the access attempt is considered to have failed,
  49 * and we will print an error.
  50 */
  51#define WAIT_FOR_BBP(__dev, __reg) \
  52        rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  53#define WAIT_FOR_RF(__dev, __reg) \
  54        rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  55
  56static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  57                                const unsigned int word, const u8 value)
  58{
  59        u32 reg;
  60
  61        mutex_lock(&rt2x00dev->csr_mutex);
  62
  63        /*
  64         * Wait until the BBP becomes available, afterwards we
  65         * can safely write the new data into the register.
  66         */
  67        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  68                reg = 0;
  69                rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  70                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  71                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  72                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  73
  74                rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
  75        }
  76
  77        mutex_unlock(&rt2x00dev->csr_mutex);
  78}
  79
  80static u8 rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  81                             const unsigned int word)
  82{
  83        u32 reg;
  84        u8 value;
  85
  86        mutex_lock(&rt2x00dev->csr_mutex);
  87
  88        /*
  89         * Wait until the BBP becomes available, afterwards we
  90         * can safely write the read request into the register.
  91         * After the data has been written, we wait until hardware
  92         * returns the correct value, if at any time the register
  93         * doesn't become available in time, reg will be 0xffffffff
  94         * which means we return 0xff to the caller.
  95         */
  96        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  97                reg = 0;
  98                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  99                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
 100                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 101
 102                rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
 103
 104                WAIT_FOR_BBP(rt2x00dev, &reg);
 105        }
 106
 107        value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 108
 109        mutex_unlock(&rt2x00dev->csr_mutex);
 110
 111        return value;
 112}
 113
 114static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
 115                               const unsigned int word, const u32 value)
 116{
 117        u32 reg;
 118
 119        mutex_lock(&rt2x00dev->csr_mutex);
 120
 121        /*
 122         * Wait until the RF becomes available, afterwards we
 123         * can safely write the new data into the register.
 124         */
 125        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 126                reg = 0;
 127                rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 128                rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 129                rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 130                rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 131
 132                rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
 133                rt2x00_rf_write(rt2x00dev, word, value);
 134        }
 135
 136        mutex_unlock(&rt2x00dev->csr_mutex);
 137}
 138
 139static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 140{
 141        struct rt2x00_dev *rt2x00dev = eeprom->data;
 142        u32 reg;
 143
 144        reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
 145
 146        eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 147        eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 148        eeprom->reg_data_clock =
 149            !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 150        eeprom->reg_chip_select =
 151            !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 152}
 153
 154static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 155{
 156        struct rt2x00_dev *rt2x00dev = eeprom->data;
 157        u32 reg = 0;
 158
 159        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 160        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 161        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 162                           !!eeprom->reg_data_clock);
 163        rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 164                           !!eeprom->reg_chip_select);
 165
 166        rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
 167}
 168
 169#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 170static const struct rt2x00debug rt2400pci_rt2x00debug = {
 171        .owner  = THIS_MODULE,
 172        .csr    = {
 173                .read           = rt2x00mmio_register_read,
 174                .write          = rt2x00mmio_register_write,
 175                .flags          = RT2X00DEBUGFS_OFFSET,
 176                .word_base      = CSR_REG_BASE,
 177                .word_size      = sizeof(u32),
 178                .word_count     = CSR_REG_SIZE / sizeof(u32),
 179        },
 180        .eeprom = {
 181                .read           = rt2x00_eeprom_read,
 182                .write          = rt2x00_eeprom_write,
 183                .word_base      = EEPROM_BASE,
 184                .word_size      = sizeof(u16),
 185                .word_count     = EEPROM_SIZE / sizeof(u16),
 186        },
 187        .bbp    = {
 188                .read           = rt2400pci_bbp_read,
 189                .write          = rt2400pci_bbp_write,
 190                .word_base      = BBP_BASE,
 191                .word_size      = sizeof(u8),
 192                .word_count     = BBP_SIZE / sizeof(u8),
 193        },
 194        .rf     = {
 195                .read           = rt2x00_rf_read,
 196                .write          = rt2400pci_rf_write,
 197                .word_base      = RF_BASE,
 198                .word_size      = sizeof(u32),
 199                .word_count     = RF_SIZE / sizeof(u32),
 200        },
 201};
 202#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 203
 204static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 205{
 206        u32 reg;
 207
 208        reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
 209        return rt2x00_get_field32(reg, GPIOCSR_VAL0);
 210}
 211
 212#ifdef CONFIG_RT2X00_LIB_LEDS
 213static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
 214                                     enum led_brightness brightness)
 215{
 216        struct rt2x00_led *led =
 217            container_of(led_cdev, struct rt2x00_led, led_dev);
 218        unsigned int enabled = brightness != LED_OFF;
 219        u32 reg;
 220
 221        reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 222
 223        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 224                rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 225        else if (led->type == LED_TYPE_ACTIVITY)
 226                rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 227
 228        rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 229}
 230
 231static int rt2400pci_blink_set(struct led_classdev *led_cdev,
 232                               unsigned long *delay_on,
 233                               unsigned long *delay_off)
 234{
 235        struct rt2x00_led *led =
 236            container_of(led_cdev, struct rt2x00_led, led_dev);
 237        u32 reg;
 238
 239        reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
 240        rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 241        rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 242        rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
 243
 244        return 0;
 245}
 246
 247static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
 248                               struct rt2x00_led *led,
 249                               enum led_type type)
 250{
 251        led->rt2x00dev = rt2x00dev;
 252        led->type = type;
 253        led->led_dev.brightness_set = rt2400pci_brightness_set;
 254        led->led_dev.blink_set = rt2400pci_blink_set;
 255        led->flags = LED_INITIALIZED;
 256}
 257#endif /* CONFIG_RT2X00_LIB_LEDS */
 258
 259/*
 260 * Configuration handlers.
 261 */
 262static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
 263                                    const unsigned int filter_flags)
 264{
 265        u32 reg;
 266
 267        /*
 268         * Start configuration steps.
 269         * Note that the version error will always be dropped
 270         * since there is no filter for it at this time.
 271         */
 272        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 273        rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 274                           !(filter_flags & FIF_FCSFAIL));
 275        rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 276                           !(filter_flags & FIF_PLCPFAIL));
 277        rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 278                           !(filter_flags & FIF_CONTROL));
 279        rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 280                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
 281        rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 282                           !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
 283                           !rt2x00dev->intf_ap_count);
 284        rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 285        rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 286}
 287
 288static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
 289                                  struct rt2x00_intf *intf,
 290                                  struct rt2x00intf_conf *conf,
 291                                  const unsigned int flags)
 292{
 293        unsigned int bcn_preload;
 294        u32 reg;
 295
 296        if (flags & CONFIG_UPDATE_TYPE) {
 297                /*
 298                 * Enable beacon config
 299                 */
 300                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 301                reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
 302                rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 303                rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
 304
 305                /*
 306                 * Enable synchronisation.
 307                 */
 308                reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 309                rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 310                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 311        }
 312
 313        if (flags & CONFIG_UPDATE_MAC)
 314                rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
 315                                               conf->mac, sizeof(conf->mac));
 316
 317        if (flags & CONFIG_UPDATE_BSSID)
 318                rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
 319                                               conf->bssid,
 320                                               sizeof(conf->bssid));
 321}
 322
 323static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
 324                                 struct rt2x00lib_erp *erp,
 325                                 u32 changed)
 326{
 327        int preamble_mask;
 328        u32 reg;
 329
 330        /*
 331         * When short preamble is enabled, we should set bit 0x08
 332         */
 333        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 334                preamble_mask = erp->short_preamble << 3;
 335
 336                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
 337                rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x1ff);
 338                rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0x13a);
 339                rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 340                rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 341                rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
 342
 343                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
 344                rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 345                rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 346                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 347                                   GET_DURATION(ACK_SIZE, 10));
 348                rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
 349
 350                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
 351                rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 352                rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 353                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 354                                   GET_DURATION(ACK_SIZE, 20));
 355                rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
 356
 357                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
 358                rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 359                rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 360                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 361                                   GET_DURATION(ACK_SIZE, 55));
 362                rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
 363
 364                reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
 365                rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 366                rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 367                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 368                                   GET_DURATION(ACK_SIZE, 110));
 369                rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
 370        }
 371
 372        if (changed & BSS_CHANGED_BASIC_RATES)
 373                rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 374
 375        if (changed & BSS_CHANGED_ERP_SLOT) {
 376                reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 377                rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 378                rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 379
 380                reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
 381                rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 382                rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 383                rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
 384
 385                reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
 386                rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 387                rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 388                rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
 389        }
 390
 391        if (changed & BSS_CHANGED_BEACON_INT) {
 392                reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
 393                rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 394                                   erp->beacon_int * 16);
 395                rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 396                                   erp->beacon_int * 16);
 397                rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
 398        }
 399}
 400
 401static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
 402                                 struct antenna_setup *ant)
 403{
 404        u8 r1;
 405        u8 r4;
 406
 407        /*
 408         * We should never come here because rt2x00lib is supposed
 409         * to catch this and send us the correct antenna explicitely.
 410         */
 411        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 412               ant->tx == ANTENNA_SW_DIVERSITY);
 413
 414        r4 = rt2400pci_bbp_read(rt2x00dev, 4);
 415        r1 = rt2400pci_bbp_read(rt2x00dev, 1);
 416
 417        /*
 418         * Configure the TX antenna.
 419         */
 420        switch (ant->tx) {
 421        case ANTENNA_HW_DIVERSITY:
 422                rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
 423                break;
 424        case ANTENNA_A:
 425                rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
 426                break;
 427        case ANTENNA_B:
 428        default:
 429                rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
 430                break;
 431        }
 432
 433        /*
 434         * Configure the RX antenna.
 435         */
 436        switch (ant->rx) {
 437        case ANTENNA_HW_DIVERSITY:
 438                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
 439                break;
 440        case ANTENNA_A:
 441                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
 442                break;
 443        case ANTENNA_B:
 444        default:
 445                rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
 446                break;
 447        }
 448
 449        rt2400pci_bbp_write(rt2x00dev, 4, r4);
 450        rt2400pci_bbp_write(rt2x00dev, 1, r1);
 451}
 452
 453static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
 454                                     struct rf_channel *rf)
 455{
 456        /*
 457         * Switch on tuning bits.
 458         */
 459        rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 460        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 461
 462        rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 463        rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
 464        rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 465
 466        /*
 467         * RF2420 chipset don't need any additional actions.
 468         */
 469        if (rt2x00_rf(rt2x00dev, RF2420))
 470                return;
 471
 472        /*
 473         * For the RT2421 chipsets we need to write an invalid
 474         * reference clock rate to activate auto_tune.
 475         * After that we set the value back to the correct channel.
 476         */
 477        rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 478        rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
 479        rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 480
 481        msleep(1);
 482
 483        rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 484        rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
 485        rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 486
 487        msleep(1);
 488
 489        /*
 490         * Switch off tuning bits.
 491         */
 492        rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 493        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 494
 495        rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
 496        rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
 497
 498        /*
 499         * Clear false CRC during channel switch.
 500         */
 501        rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
 502}
 503
 504static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
 505{
 506        rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
 507}
 508
 509static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 510                                         struct rt2x00lib_conf *libconf)
 511{
 512        u32 reg;
 513
 514        reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 515        rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 516                           libconf->conf->long_frame_max_tx_count);
 517        rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 518                           libconf->conf->short_frame_max_tx_count);
 519        rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 520}
 521
 522static void rt2400pci_config_ps(struct rt2x00_dev *rt2x00dev,
 523                                struct rt2x00lib_conf *libconf)
 524{
 525        enum dev_state state =
 526            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 527                STATE_SLEEP : STATE_AWAKE;
 528        u32 reg;
 529
 530        if (state == STATE_SLEEP) {
 531                reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 532                rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 533                                   (rt2x00dev->beacon_int - 20) * 16);
 534                rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 535                                   libconf->conf->listen_interval - 1);
 536
 537                /* We must first disable autowake before it can be enabled */
 538                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 539                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 540
 541                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 542                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 543        } else {
 544                reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
 545                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 546                rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
 547        }
 548
 549        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 550}
 551
 552static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
 553                             struct rt2x00lib_conf *libconf,
 554                             const unsigned int flags)
 555{
 556        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 557                rt2400pci_config_channel(rt2x00dev, &libconf->rf);
 558        if (flags & IEEE80211_CONF_CHANGE_POWER)
 559                rt2400pci_config_txpower(rt2x00dev,
 560                                         libconf->conf->power_level);
 561        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 562                rt2400pci_config_retry_limit(rt2x00dev, libconf);
 563        if (flags & IEEE80211_CONF_CHANGE_PS)
 564                rt2400pci_config_ps(rt2x00dev, libconf);
 565}
 566
 567static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
 568                                const int cw_min, const int cw_max)
 569{
 570        u32 reg;
 571
 572        reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
 573        rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
 574        rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
 575        rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
 576}
 577
 578/*
 579 * Link tuning
 580 */
 581static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
 582                                 struct link_qual *qual)
 583{
 584        u32 reg;
 585        u8 bbp;
 586
 587        /*
 588         * Update FCS error count from register.
 589         */
 590        reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 591        qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 592
 593        /*
 594         * Update False CCA count from register.
 595         */
 596        bbp = rt2400pci_bbp_read(rt2x00dev, 39);
 597        qual->false_cca = bbp;
 598}
 599
 600static inline void rt2400pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 601                                     struct link_qual *qual, u8 vgc_level)
 602{
 603        if (qual->vgc_level_reg != vgc_level) {
 604                rt2400pci_bbp_write(rt2x00dev, 13, vgc_level);
 605                qual->vgc_level = vgc_level;
 606                qual->vgc_level_reg = vgc_level;
 607        }
 608}
 609
 610static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 611                                  struct link_qual *qual)
 612{
 613        rt2400pci_set_vgc(rt2x00dev, qual, 0x08);
 614}
 615
 616static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 617                                 struct link_qual *qual, const u32 count)
 618{
 619        /*
 620         * The link tuner should not run longer then 60 seconds,
 621         * and should run once every 2 seconds.
 622         */
 623        if (count > 60 || !(count & 1))
 624                return;
 625
 626        /*
 627         * Base r13 link tuning on the false cca count.
 628         */
 629        if ((qual->false_cca > 512) && (qual->vgc_level < 0x20))
 630                rt2400pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level);
 631        else if ((qual->false_cca < 100) && (qual->vgc_level > 0x08))
 632                rt2400pci_set_vgc(rt2x00dev, qual, --qual->vgc_level);
 633}
 634
 635/*
 636 * Queue handlers.
 637 */
 638static void rt2400pci_start_queue(struct data_queue *queue)
 639{
 640        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 641        u32 reg;
 642
 643        switch (queue->qid) {
 644        case QID_RX:
 645                reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 646                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 647                rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 648                break;
 649        case QID_BEACON:
 650                reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 651                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 652                rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 653                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 654                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 655                break;
 656        default:
 657                break;
 658        }
 659}
 660
 661static void rt2400pci_kick_queue(struct data_queue *queue)
 662{
 663        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 664        u32 reg;
 665
 666        switch (queue->qid) {
 667        case QID_AC_VO:
 668                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 669                rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 670                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 671                break;
 672        case QID_AC_VI:
 673                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 674                rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 675                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 676                break;
 677        case QID_ATIM:
 678                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 679                rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 680                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 681                break;
 682        default:
 683                break;
 684        }
 685}
 686
 687static void rt2400pci_stop_queue(struct data_queue *queue)
 688{
 689        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 690        u32 reg;
 691
 692        switch (queue->qid) {
 693        case QID_AC_VO:
 694        case QID_AC_VI:
 695        case QID_ATIM:
 696                reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
 697                rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 698                rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
 699                break;
 700        case QID_RX:
 701                reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
 702                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 703                rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
 704                break;
 705        case QID_BEACON:
 706                reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 707                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 708                rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 709                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 710                rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 711
 712                /*
 713                 * Wait for possibly running tbtt tasklets.
 714                 */
 715                tasklet_kill(&rt2x00dev->tbtt_tasklet);
 716                break;
 717        default:
 718                break;
 719        }
 720}
 721
 722/*
 723 * Initialization functions.
 724 */
 725static bool rt2400pci_get_entry_state(struct queue_entry *entry)
 726{
 727        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 728        u32 word;
 729
 730        if (entry->queue->qid == QID_RX) {
 731                word = rt2x00_desc_read(entry_priv->desc, 0);
 732
 733                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 734        } else {
 735                word = rt2x00_desc_read(entry_priv->desc, 0);
 736
 737                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 738                        rt2x00_get_field32(word, TXD_W0_VALID));
 739        }
 740}
 741
 742static void rt2400pci_clear_entry(struct queue_entry *entry)
 743{
 744        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
 745        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 746        u32 word;
 747
 748        if (entry->queue->qid == QID_RX) {
 749                word = rt2x00_desc_read(entry_priv->desc, 2);
 750                rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
 751                rt2x00_desc_write(entry_priv->desc, 2, word);
 752
 753                word = rt2x00_desc_read(entry_priv->desc, 1);
 754                rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 755                rt2x00_desc_write(entry_priv->desc, 1, word);
 756
 757                word = rt2x00_desc_read(entry_priv->desc, 0);
 758                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 759                rt2x00_desc_write(entry_priv->desc, 0, word);
 760        } else {
 761                word = rt2x00_desc_read(entry_priv->desc, 0);
 762                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 763                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 764                rt2x00_desc_write(entry_priv->desc, 0, word);
 765        }
 766}
 767
 768static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
 769{
 770        struct queue_entry_priv_mmio *entry_priv;
 771        u32 reg;
 772
 773        /*
 774         * Initialize registers.
 775         */
 776        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
 777        rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 778        rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 779        rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 780        rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 781        rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
 782
 783        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 784        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
 785        rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 786                           entry_priv->desc_dma);
 787        rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
 788
 789        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 790        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
 791        rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 792                           entry_priv->desc_dma);
 793        rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
 794
 795        entry_priv = rt2x00dev->atim->entries[0].priv_data;
 796        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
 797        rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 798                           entry_priv->desc_dma);
 799        rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
 800
 801        entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 802        reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
 803        rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 804                           entry_priv->desc_dma);
 805        rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
 806
 807        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
 808        rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 809        rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 810        rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
 811
 812        entry_priv = rt2x00dev->rx->entries[0].priv_data;
 813        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
 814        rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 815                           entry_priv->desc_dma);
 816        rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
 817
 818        return 0;
 819}
 820
 821static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
 822{
 823        u32 reg;
 824
 825        rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
 826        rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
 827        rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00023f20);
 828        rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
 829
 830        reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
 831        rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 832        rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 833        rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 834        rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
 835
 836        reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
 837        rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 838                           (rt2x00dev->rx->data_size / 128));
 839        rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
 840
 841        reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
 842        rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 843        rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 844        rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 845        rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 846        rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 847        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 848        rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 849        rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 850        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
 851
 852        rt2x00mmio_register_write(rt2x00dev, CNT3, 0x3f080000);
 853
 854        reg = rt2x00mmio_register_read(rt2x00dev, ARCSR0);
 855        rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
 856        rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
 857        rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
 858        rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
 859        rt2x00mmio_register_write(rt2x00dev, ARCSR0, reg);
 860
 861        reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
 862        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
 863        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 864        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
 865        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 866        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
 867        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 868        rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
 869
 870        rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
 871
 872        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
 873                return -EBUSY;
 874
 875        rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00217223);
 876        rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
 877
 878        reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
 879        rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
 880        rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
 881
 882        reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
 883        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
 884        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
 885        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
 886        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
 887        rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
 888
 889        reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
 890        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
 891        rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
 892        rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
 893        rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
 894
 895        reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
 896        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
 897        rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
 898        rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
 899
 900        /*
 901         * We must clear the FCS and FIFO error count.
 902         * These registers are cleared on read,
 903         * so we may pass a useless variable to store the value.
 904         */
 905        reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
 906        reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
 907
 908        return 0;
 909}
 910
 911static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
 912{
 913        unsigned int i;
 914        u8 value;
 915
 916        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
 917                value = rt2400pci_bbp_read(rt2x00dev, 0);
 918                if ((value != 0xff) && (value != 0x00))
 919                        return 0;
 920                udelay(REGISTER_BUSY_DELAY);
 921        }
 922
 923        rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
 924        return -EACCES;
 925}
 926
 927static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
 928{
 929        unsigned int i;
 930        u16 eeprom;
 931        u8 reg_id;
 932        u8 value;
 933
 934        if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
 935                return -EACCES;
 936
 937        rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
 938        rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
 939        rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
 940        rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
 941        rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
 942        rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
 943        rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
 944        rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
 945        rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
 946        rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
 947        rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
 948        rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
 949        rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
 950        rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
 951
 952        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
 953                eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
 954
 955                if (eeprom != 0xffff && eeprom != 0x0000) {
 956                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
 957                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
 958                        rt2400pci_bbp_write(rt2x00dev, reg_id, value);
 959                }
 960        }
 961
 962        return 0;
 963}
 964
 965/*
 966 * Device state switch handlers.
 967 */
 968static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
 969                                 enum dev_state state)
 970{
 971        int mask = (state == STATE_RADIO_IRQ_OFF);
 972        u32 reg;
 973        unsigned long flags;
 974
 975        /*
 976         * When interrupts are being enabled, the interrupt registers
 977         * should clear the register to assure a clean state.
 978         */
 979        if (state == STATE_RADIO_IRQ_ON) {
 980                reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
 981                rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
 982        }
 983
 984        /*
 985         * Only toggle the interrupts bits we are going to use.
 986         * Non-checked interrupt bits are disabled by default.
 987         */
 988        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
 989
 990        reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
 991        rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
 992        rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
 993        rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
 994        rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
 995        rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
 996        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
 997
 998        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
 999
1000        if (state == STATE_RADIO_IRQ_OFF) {
1001                /*
1002                 * Ensure that all tasklets are finished before
1003                 * disabling the interrupts.
1004                 */
1005                tasklet_kill(&rt2x00dev->txstatus_tasklet);
1006                tasklet_kill(&rt2x00dev->rxdone_tasklet);
1007                tasklet_kill(&rt2x00dev->tbtt_tasklet);
1008        }
1009}
1010
1011static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1012{
1013        /*
1014         * Initialize all registers.
1015         */
1016        if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
1017                     rt2400pci_init_registers(rt2x00dev) ||
1018                     rt2400pci_init_bbp(rt2x00dev)))
1019                return -EIO;
1020
1021        return 0;
1022}
1023
1024static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1025{
1026        /*
1027         * Disable power
1028         */
1029        rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1030}
1031
1032static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
1033                               enum dev_state state)
1034{
1035        u32 reg, reg2;
1036        unsigned int i;
1037        char put_to_sleep;
1038        char bbp_state;
1039        char rf_state;
1040
1041        put_to_sleep = (state != STATE_AWAKE);
1042
1043        reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1044        rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1045        rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1046        rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1047        rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1048        rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1049
1050        /*
1051         * Device is not guaranteed to be in the requested state yet.
1052         * We must wait until the register indicates that the
1053         * device has entered the correct state.
1054         */
1055        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1056                reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1057                bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1058                rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1059                if (bbp_state == state && rf_state == state)
1060                        return 0;
1061                rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1062                msleep(10);
1063        }
1064
1065        return -EBUSY;
1066}
1067
1068static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1069                                      enum dev_state state)
1070{
1071        int retval = 0;
1072
1073        switch (state) {
1074        case STATE_RADIO_ON:
1075                retval = rt2400pci_enable_radio(rt2x00dev);
1076                break;
1077        case STATE_RADIO_OFF:
1078                rt2400pci_disable_radio(rt2x00dev);
1079                break;
1080        case STATE_RADIO_IRQ_ON:
1081        case STATE_RADIO_IRQ_OFF:
1082                rt2400pci_toggle_irq(rt2x00dev, state);
1083                break;
1084        case STATE_DEEP_SLEEP:
1085        case STATE_SLEEP:
1086        case STATE_STANDBY:
1087        case STATE_AWAKE:
1088                retval = rt2400pci_set_state(rt2x00dev, state);
1089                break;
1090        default:
1091                retval = -ENOTSUPP;
1092                break;
1093        }
1094
1095        if (unlikely(retval))
1096                rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1097                           state, retval);
1098
1099        return retval;
1100}
1101
1102/*
1103 * TX descriptor initialization
1104 */
1105static void rt2400pci_write_tx_desc(struct queue_entry *entry,
1106                                    struct txentry_desc *txdesc)
1107{
1108        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1109        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1110        __le32 *txd = entry_priv->desc;
1111        u32 word;
1112
1113        /*
1114         * Start writing the descriptor words.
1115         */
1116        word = rt2x00_desc_read(txd, 1);
1117        rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1118        rt2x00_desc_write(txd, 1, word);
1119
1120        word = rt2x00_desc_read(txd, 2);
1121        rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, txdesc->length);
1122        rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, txdesc->length);
1123        rt2x00_desc_write(txd, 2, word);
1124
1125        word = rt2x00_desc_read(txd, 3);
1126        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1127        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
1128        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
1129        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1130        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
1131        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
1132        rt2x00_desc_write(txd, 3, word);
1133
1134        word = rt2x00_desc_read(txd, 4);
1135        rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW,
1136                           txdesc->u.plcp.length_low);
1137        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
1138        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
1139        rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH,
1140                           txdesc->u.plcp.length_high);
1141        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
1142        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
1143        rt2x00_desc_write(txd, 4, word);
1144
1145        /*
1146         * Writing TXD word 0 must the last to prevent a race condition with
1147         * the device, whereby the device may take hold of the TXD before we
1148         * finished updating it.
1149         */
1150        word = rt2x00_desc_read(txd, 0);
1151        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1152        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1153        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1154                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1155        rt2x00_set_field32(&word, TXD_W0_ACK,
1156                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1157        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1158                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1159        rt2x00_set_field32(&word, TXD_W0_RTS,
1160                           test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1161        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1162        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1163                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1164        rt2x00_desc_write(txd, 0, word);
1165
1166        /*
1167         * Register descriptor details in skb frame descriptor.
1168         */
1169        skbdesc->desc = txd;
1170        skbdesc->desc_len = TXD_DESC_SIZE;
1171}
1172
1173/*
1174 * TX data initialization
1175 */
1176static void rt2400pci_write_beacon(struct queue_entry *entry,
1177                                   struct txentry_desc *txdesc)
1178{
1179        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1180        u32 reg;
1181
1182        /*
1183         * Disable beaconing while we are reloading the beacon data,
1184         * otherwise we might be sending out invalid data.
1185         */
1186        reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1187        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1188        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1189
1190        if (rt2x00queue_map_txskb(entry)) {
1191                rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1192                goto out;
1193        }
1194        /*
1195         * Enable beaconing again.
1196         */
1197        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1198        /*
1199         * Write the TX descriptor for the beacon.
1200         */
1201        rt2400pci_write_tx_desc(entry, txdesc);
1202
1203        /*
1204         * Dump beacon to userspace through debugfs.
1205         */
1206        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1207out:
1208        /*
1209         * Enable beaconing again.
1210         */
1211        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1212        rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1213}
1214
1215/*
1216 * RX control handlers
1217 */
1218static void rt2400pci_fill_rxdone(struct queue_entry *entry,
1219                                  struct rxdone_entry_desc *rxdesc)
1220{
1221        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1222        struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1223        u32 word0;
1224        u32 word2;
1225        u32 word3;
1226        u32 word4;
1227        u64 tsf;
1228        u32 rx_low;
1229        u32 rx_high;
1230
1231        word0 = rt2x00_desc_read(entry_priv->desc, 0);
1232        word2 = rt2x00_desc_read(entry_priv->desc, 2);
1233        word3 = rt2x00_desc_read(entry_priv->desc, 3);
1234        word4 = rt2x00_desc_read(entry_priv->desc, 4);
1235
1236        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1237                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1238        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1239                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1240
1241        /*
1242         * We only get the lower 32bits from the timestamp,
1243         * to get the full 64bits we must complement it with
1244         * the timestamp from get_tsf().
1245         * Note that when a wraparound of the lower 32bits
1246         * has occurred between the frame arrival and the get_tsf()
1247         * call, we must decrease the higher 32bits with 1 to get
1248         * to correct value.
1249         */
1250        tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw, NULL);
1251        rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
1252        rx_high = upper_32_bits(tsf);
1253
1254        if ((u32)tsf <= rx_low)
1255                rx_high--;
1256
1257        /*
1258         * Obtain the status about this packet.
1259         * The signal is the PLCP value, and needs to be stripped
1260         * of the preamble bit (0x08).
1261         */
1262        rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
1263        rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
1264        rxdesc->rssi = rt2x00_get_field32(word3, RXD_W3_RSSI) -
1265            entry->queue->rt2x00dev->rssi_offset;
1266        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1267
1268        rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1269        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1270                rxdesc->dev_flags |= RXDONE_MY_BSS;
1271}
1272
1273/*
1274 * Interrupt functions.
1275 */
1276static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
1277                             const enum data_queue_qid queue_idx)
1278{
1279        struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1280        struct queue_entry_priv_mmio *entry_priv;
1281        struct queue_entry *entry;
1282        struct txdone_entry_desc txdesc;
1283        u32 word;
1284
1285        while (!rt2x00queue_empty(queue)) {
1286                entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1287                entry_priv = entry->priv_data;
1288                word = rt2x00_desc_read(entry_priv->desc, 0);
1289
1290                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1291                    !rt2x00_get_field32(word, TXD_W0_VALID))
1292                        break;
1293
1294                /*
1295                 * Obtain the status about this packet.
1296                 */
1297                txdesc.flags = 0;
1298                switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1299                case 0: /* Success */
1300                case 1: /* Success with retry */
1301                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1302                        break;
1303                case 2: /* Failure, excessive retries */
1304                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1305                        /* Don't break, this is a failed frame! */
1306                default: /* Failure */
1307                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
1308                }
1309                txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1310
1311                rt2x00lib_txdone(entry, &txdesc);
1312        }
1313}
1314
1315static inline void rt2400pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1316                                              struct rt2x00_field32 irq_field)
1317{
1318        u32 reg;
1319
1320        /*
1321         * Enable a single interrupt. The interrupt mask register
1322         * access needs locking.
1323         */
1324        spin_lock_irq(&rt2x00dev->irqmask_lock);
1325
1326        reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1327        rt2x00_set_field32(&reg, irq_field, 0);
1328        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1329
1330        spin_unlock_irq(&rt2x00dev->irqmask_lock);
1331}
1332
1333static void rt2400pci_txstatus_tasklet(unsigned long data)
1334{
1335        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1336        u32 reg;
1337
1338        /*
1339         * Handle all tx queues.
1340         */
1341        rt2400pci_txdone(rt2x00dev, QID_ATIM);
1342        rt2400pci_txdone(rt2x00dev, QID_AC_VO);
1343        rt2400pci_txdone(rt2x00dev, QID_AC_VI);
1344
1345        /*
1346         * Enable all TXDONE interrupts again.
1347         */
1348        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1349                spin_lock_irq(&rt2x00dev->irqmask_lock);
1350
1351                reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1352                rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1353                rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1354                rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1355                rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1356
1357                spin_unlock_irq(&rt2x00dev->irqmask_lock);
1358        }
1359}
1360
1361static void rt2400pci_tbtt_tasklet(unsigned long data)
1362{
1363        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1364        rt2x00lib_beacondone(rt2x00dev);
1365        if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1366                rt2400pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1367}
1368
1369static void rt2400pci_rxdone_tasklet(unsigned long data)
1370{
1371        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1372        if (rt2x00mmio_rxdone(rt2x00dev))
1373                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1374        else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1375                rt2400pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1376}
1377
1378static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
1379{
1380        struct rt2x00_dev *rt2x00dev = dev_instance;
1381        u32 reg, mask;
1382
1383        /*
1384         * Get the interrupt sources & saved to local variable.
1385         * Write register value back to clear pending interrupts.
1386         */
1387        reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1388        rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1389
1390        if (!reg)
1391                return IRQ_NONE;
1392
1393        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1394                return IRQ_HANDLED;
1395
1396        mask = reg;
1397
1398        /*
1399         * Schedule tasklets for interrupt handling.
1400         */
1401        if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1402                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1403
1404        if (rt2x00_get_field32(reg, CSR7_RXDONE))
1405                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1406
1407        if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1408            rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1409            rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1410                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1411                /*
1412                 * Mask out all txdone interrupts.
1413                 */
1414                rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1415                rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1416                rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1417        }
1418
1419        /*
1420         * Disable all interrupts for which a tasklet was scheduled right now,
1421         * the tasklet will reenable the appropriate interrupts.
1422         */
1423        spin_lock(&rt2x00dev->irqmask_lock);
1424
1425        reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1426        reg |= mask;
1427        rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1428
1429        spin_unlock(&rt2x00dev->irqmask_lock);
1430
1431
1432
1433        return IRQ_HANDLED;
1434}
1435
1436/*
1437 * Device probe functions.
1438 */
1439static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1440{
1441        struct eeprom_93cx6 eeprom;
1442        u32 reg;
1443        u16 word;
1444        u8 *mac;
1445
1446        reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1447
1448        eeprom.data = rt2x00dev;
1449        eeprom.register_read = rt2400pci_eepromregister_read;
1450        eeprom.register_write = rt2400pci_eepromregister_write;
1451        eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1452            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1453        eeprom.reg_data_in = 0;
1454        eeprom.reg_data_out = 0;
1455        eeprom.reg_data_clock = 0;
1456        eeprom.reg_chip_select = 0;
1457
1458        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1459                               EEPROM_SIZE / sizeof(u16));
1460
1461        /*
1462         * Start validation of the data that has been read.
1463         */
1464        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1465        rt2x00lib_set_mac_address(rt2x00dev, mac);
1466
1467        word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1468        if (word == 0xffff) {
1469                rt2x00_err(rt2x00dev, "Invalid EEPROM data detected\n");
1470                return -EINVAL;
1471        }
1472
1473        return 0;
1474}
1475
1476static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1477{
1478        u32 reg;
1479        u16 value;
1480        u16 eeprom;
1481
1482        /*
1483         * Read EEPROM word for configuration.
1484         */
1485        eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1486
1487        /*
1488         * Identify RF chipset.
1489         */
1490        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1491        reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1492        rt2x00_set_chip(rt2x00dev, RT2460, value,
1493                        rt2x00_get_field32(reg, CSR0_REVISION));
1494
1495        if (!rt2x00_rf(rt2x00dev, RF2420) && !rt2x00_rf(rt2x00dev, RF2421)) {
1496                rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1497                return -ENODEV;
1498        }
1499
1500        /*
1501         * Identify default antenna configuration.
1502         */
1503        rt2x00dev->default_ant.tx =
1504            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1505        rt2x00dev->default_ant.rx =
1506            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1507
1508        /*
1509         * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1510         * I am not 100% sure about this, but the legacy drivers do not
1511         * indicate antenna swapping in software is required when
1512         * diversity is enabled.
1513         */
1514        if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1515                rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1516        if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1517                rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1518
1519        /*
1520         * Store led mode, for correct led behaviour.
1521         */
1522#ifdef CONFIG_RT2X00_LIB_LEDS
1523        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1524
1525        rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1526        if (value == LED_MODE_TXRX_ACTIVITY ||
1527            value == LED_MODE_DEFAULT ||
1528            value == LED_MODE_ASUS)
1529                rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1530                                   LED_TYPE_ACTIVITY);
1531#endif /* CONFIG_RT2X00_LIB_LEDS */
1532
1533        /*
1534         * Detect if this device has an hardware controlled radio.
1535         */
1536        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1537                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1538
1539        /*
1540         * Check if the BBP tuning should be enabled.
1541         */
1542        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
1543                __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1544
1545        return 0;
1546}
1547
1548/*
1549 * RF value list for RF2420 & RF2421
1550 * Supports: 2.4 GHz
1551 */
1552static const struct rf_channel rf_vals_b[] = {
1553        { 1,  0x00022058, 0x000c1fda, 0x00000101, 0 },
1554        { 2,  0x00022058, 0x000c1fee, 0x00000101, 0 },
1555        { 3,  0x00022058, 0x000c2002, 0x00000101, 0 },
1556        { 4,  0x00022058, 0x000c2016, 0x00000101, 0 },
1557        { 5,  0x00022058, 0x000c202a, 0x00000101, 0 },
1558        { 6,  0x00022058, 0x000c203e, 0x00000101, 0 },
1559        { 7,  0x00022058, 0x000c2052, 0x00000101, 0 },
1560        { 8,  0x00022058, 0x000c2066, 0x00000101, 0 },
1561        { 9,  0x00022058, 0x000c207a, 0x00000101, 0 },
1562        { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
1563        { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
1564        { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
1565        { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
1566        { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
1567};
1568
1569static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1570{
1571        struct hw_mode_spec *spec = &rt2x00dev->spec;
1572        struct channel_info *info;
1573        char *tx_power;
1574        unsigned int i;
1575
1576        /*
1577         * Initialize all hw fields.
1578         */
1579        ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1580        ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1581        ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1582        ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1583
1584        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1585        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1586                                rt2x00_eeprom_addr(rt2x00dev,
1587                                                   EEPROM_MAC_ADDR_0));
1588
1589        /*
1590         * Initialize hw_mode information.
1591         */
1592        spec->supported_bands = SUPPORT_BAND_2GHZ;
1593        spec->supported_rates = SUPPORT_RATE_CCK;
1594
1595        spec->num_channels = ARRAY_SIZE(rf_vals_b);
1596        spec->channels = rf_vals_b;
1597
1598        /*
1599         * Create channel information array
1600         */
1601        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1602        if (!info)
1603                return -ENOMEM;
1604
1605        spec->channels_info = info;
1606
1607        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1608        for (i = 0; i < 14; i++) {
1609                info[i].max_power = TXPOWER_FROM_DEV(MAX_TXPOWER);
1610                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1611        }
1612
1613        return 0;
1614}
1615
1616static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1617{
1618        int retval;
1619        u32 reg;
1620
1621        /*
1622         * Allocate eeprom data.
1623         */
1624        retval = rt2400pci_validate_eeprom(rt2x00dev);
1625        if (retval)
1626                return retval;
1627
1628        retval = rt2400pci_init_eeprom(rt2x00dev);
1629        if (retval)
1630                return retval;
1631
1632        /*
1633         * Enable rfkill polling by setting GPIO direction of the
1634         * rfkill switch GPIO pin correctly.
1635         */
1636        reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1637        rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1638        rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1639
1640        /*
1641         * Initialize hw specifications.
1642         */
1643        retval = rt2400pci_probe_hw_mode(rt2x00dev);
1644        if (retval)
1645                return retval;
1646
1647        /*
1648         * This device requires the atim queue and DMA-mapped skbs.
1649         */
1650        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1651        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1652        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1653
1654        /*
1655         * Set the rssi offset.
1656         */
1657        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1658
1659        return 0;
1660}
1661
1662/*
1663 * IEEE80211 stack callback functions.
1664 */
1665static int rt2400pci_conf_tx(struct ieee80211_hw *hw,
1666                             struct ieee80211_vif *vif, u16 queue,
1667                             const struct ieee80211_tx_queue_params *params)
1668{
1669        struct rt2x00_dev *rt2x00dev = hw->priv;
1670
1671        /*
1672         * We don't support variating cw_min and cw_max variables
1673         * per queue. So by default we only configure the TX queue,
1674         * and ignore all other configurations.
1675         */
1676        if (queue != 0)
1677                return -EINVAL;
1678
1679        if (rt2x00mac_conf_tx(hw, vif, queue, params))
1680                return -EINVAL;
1681
1682        /*
1683         * Write configuration to register.
1684         */
1685        rt2400pci_config_cw(rt2x00dev,
1686                            rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
1687
1688        return 0;
1689}
1690
1691static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw,
1692                             struct ieee80211_vif *vif)
1693{
1694        struct rt2x00_dev *rt2x00dev = hw->priv;
1695        u64 tsf;
1696        u32 reg;
1697
1698        reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1699        tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1700        reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1701        tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1702
1703        return tsf;
1704}
1705
1706static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
1707{
1708        struct rt2x00_dev *rt2x00dev = hw->priv;
1709        u32 reg;
1710
1711        reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
1712        return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1713}
1714
1715static const struct ieee80211_ops rt2400pci_mac80211_ops = {
1716        .tx                     = rt2x00mac_tx,
1717        .start                  = rt2x00mac_start,
1718        .stop                   = rt2x00mac_stop,
1719        .add_interface          = rt2x00mac_add_interface,
1720        .remove_interface       = rt2x00mac_remove_interface,
1721        .config                 = rt2x00mac_config,
1722        .configure_filter       = rt2x00mac_configure_filter,
1723        .sw_scan_start          = rt2x00mac_sw_scan_start,
1724        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1725        .get_stats              = rt2x00mac_get_stats,
1726        .bss_info_changed       = rt2x00mac_bss_info_changed,
1727        .conf_tx                = rt2400pci_conf_tx,
1728        .get_tsf                = rt2400pci_get_tsf,
1729        .tx_last_beacon         = rt2400pci_tx_last_beacon,
1730        .rfkill_poll            = rt2x00mac_rfkill_poll,
1731        .flush                  = rt2x00mac_flush,
1732        .set_antenna            = rt2x00mac_set_antenna,
1733        .get_antenna            = rt2x00mac_get_antenna,
1734        .get_ringparam          = rt2x00mac_get_ringparam,
1735        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
1736};
1737
1738static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
1739        .irq_handler            = rt2400pci_interrupt,
1740        .txstatus_tasklet       = rt2400pci_txstatus_tasklet,
1741        .tbtt_tasklet           = rt2400pci_tbtt_tasklet,
1742        .rxdone_tasklet         = rt2400pci_rxdone_tasklet,
1743        .probe_hw               = rt2400pci_probe_hw,
1744        .initialize             = rt2x00mmio_initialize,
1745        .uninitialize           = rt2x00mmio_uninitialize,
1746        .get_entry_state        = rt2400pci_get_entry_state,
1747        .clear_entry            = rt2400pci_clear_entry,
1748        .set_device_state       = rt2400pci_set_device_state,
1749        .rfkill_poll            = rt2400pci_rfkill_poll,
1750        .link_stats             = rt2400pci_link_stats,
1751        .reset_tuner            = rt2400pci_reset_tuner,
1752        .link_tuner             = rt2400pci_link_tuner,
1753        .start_queue            = rt2400pci_start_queue,
1754        .kick_queue             = rt2400pci_kick_queue,
1755        .stop_queue             = rt2400pci_stop_queue,
1756        .flush_queue            = rt2x00mmio_flush_queue,
1757        .write_tx_desc          = rt2400pci_write_tx_desc,
1758        .write_beacon           = rt2400pci_write_beacon,
1759        .fill_rxdone            = rt2400pci_fill_rxdone,
1760        .config_filter          = rt2400pci_config_filter,
1761        .config_intf            = rt2400pci_config_intf,
1762        .config_erp             = rt2400pci_config_erp,
1763        .config_ant             = rt2400pci_config_ant,
1764        .config                 = rt2400pci_config,
1765};
1766
1767static void rt2400pci_queue_init(struct data_queue *queue)
1768{
1769        switch (queue->qid) {
1770        case QID_RX:
1771                queue->limit = 24;
1772                queue->data_size = DATA_FRAME_SIZE;
1773                queue->desc_size = RXD_DESC_SIZE;
1774                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1775                break;
1776
1777        case QID_AC_VO:
1778        case QID_AC_VI:
1779        case QID_AC_BE:
1780        case QID_AC_BK:
1781                queue->limit = 24;
1782                queue->data_size = DATA_FRAME_SIZE;
1783                queue->desc_size = TXD_DESC_SIZE;
1784                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1785                break;
1786
1787        case QID_BEACON:
1788                queue->limit = 1;
1789                queue->data_size = MGMT_FRAME_SIZE;
1790                queue->desc_size = TXD_DESC_SIZE;
1791                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1792                break;
1793
1794        case QID_ATIM:
1795                queue->limit = 8;
1796                queue->data_size = DATA_FRAME_SIZE;
1797                queue->desc_size = TXD_DESC_SIZE;
1798                queue->priv_size = sizeof(struct queue_entry_priv_mmio);
1799                break;
1800
1801        default:
1802                BUG();
1803                break;
1804        }
1805}
1806
1807static const struct rt2x00_ops rt2400pci_ops = {
1808        .name                   = KBUILD_MODNAME,
1809        .max_ap_intf            = 1,
1810        .eeprom_size            = EEPROM_SIZE,
1811        .rf_size                = RF_SIZE,
1812        .tx_queues              = NUM_TX_QUEUES,
1813        .queue_init             = rt2400pci_queue_init,
1814        .lib                    = &rt2400pci_rt2x00_ops,
1815        .hw                     = &rt2400pci_mac80211_ops,
1816#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1817        .debugfs                = &rt2400pci_rt2x00debug,
1818#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1819};
1820
1821/*
1822 * RT2400pci module information.
1823 */
1824static const struct pci_device_id rt2400pci_device_table[] = {
1825        { PCI_DEVICE(0x1814, 0x0101) },
1826        { 0, }
1827};
1828
1829
1830MODULE_AUTHOR(DRV_PROJECT);
1831MODULE_VERSION(DRV_VERSION);
1832MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
1833MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
1834MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
1835MODULE_LICENSE("GPL");
1836
1837static int rt2400pci_probe(struct pci_dev *pci_dev,
1838                           const struct pci_device_id *id)
1839{
1840        return rt2x00pci_probe(pci_dev, &rt2400pci_ops);
1841}
1842
1843static struct pci_driver rt2400pci_driver = {
1844        .name           = KBUILD_MODNAME,
1845        .id_table       = rt2400pci_device_table,
1846        .probe          = rt2400pci_probe,
1847        .remove         = rt2x00pci_remove,
1848        .suspend        = rt2x00pci_suspend,
1849        .resume         = rt2x00pci_resume,
1850};
1851
1852module_pci_driver(rt2400pci_driver);
1853