linux/drivers/nvdimm/region_devs.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of version 2 of the GNU General Public License as
   6 * published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful, but
   9 * WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 */
  13#include <linux/scatterlist.h>
  14#include <linux/highmem.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/hash.h>
  18#include <linux/sort.h>
  19#include <linux/io.h>
  20#include <linux/nd.h>
  21#include "nd-core.h"
  22#include "nd.h"
  23
  24/*
  25 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
  26 * irrelevant.
  27 */
  28#include <asm-generic/io-64-nonatomic-hi-lo.h>
  29
  30static DEFINE_IDA(region_ida);
  31static DEFINE_PER_CPU(int, flush_idx);
  32
  33static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
  34                struct nd_region_data *ndrd)
  35{
  36        int i, j;
  37
  38        dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
  39                        nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
  40        for (i = 0; i < (1 << ndrd->hints_shift); i++) {
  41                struct resource *res = &nvdimm->flush_wpq[i];
  42                unsigned long pfn = PHYS_PFN(res->start);
  43                void __iomem *flush_page;
  44
  45                /* check if flush hints share a page */
  46                for (j = 0; j < i; j++) {
  47                        struct resource *res_j = &nvdimm->flush_wpq[j];
  48                        unsigned long pfn_j = PHYS_PFN(res_j->start);
  49
  50                        if (pfn == pfn_j)
  51                                break;
  52                }
  53
  54                if (j < i)
  55                        flush_page = (void __iomem *) ((unsigned long)
  56                                        ndrd_get_flush_wpq(ndrd, dimm, j)
  57                                        & PAGE_MASK);
  58                else
  59                        flush_page = devm_nvdimm_ioremap(dev,
  60                                        PFN_PHYS(pfn), PAGE_SIZE);
  61                if (!flush_page)
  62                        return -ENXIO;
  63                ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
  64                                + (res->start & ~PAGE_MASK));
  65        }
  66
  67        return 0;
  68}
  69
  70int nd_region_activate(struct nd_region *nd_region)
  71{
  72        int i, j, num_flush = 0;
  73        struct nd_region_data *ndrd;
  74        struct device *dev = &nd_region->dev;
  75        size_t flush_data_size = sizeof(void *);
  76
  77        nvdimm_bus_lock(&nd_region->dev);
  78        for (i = 0; i < nd_region->ndr_mappings; i++) {
  79                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
  80                struct nvdimm *nvdimm = nd_mapping->nvdimm;
  81
  82                if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
  83                        nvdimm_bus_unlock(&nd_region->dev);
  84                        return -EBUSY;
  85                }
  86
  87                /* at least one null hint slot per-dimm for the "no-hint" case */
  88                flush_data_size += sizeof(void *);
  89                num_flush = min_not_zero(num_flush, nvdimm->num_flush);
  90                if (!nvdimm->num_flush)
  91                        continue;
  92                flush_data_size += nvdimm->num_flush * sizeof(void *);
  93        }
  94        nvdimm_bus_unlock(&nd_region->dev);
  95
  96        ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
  97        if (!ndrd)
  98                return -ENOMEM;
  99        dev_set_drvdata(dev, ndrd);
 100
 101        if (!num_flush)
 102                return 0;
 103
 104        ndrd->hints_shift = ilog2(num_flush);
 105        for (i = 0; i < nd_region->ndr_mappings; i++) {
 106                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 107                struct nvdimm *nvdimm = nd_mapping->nvdimm;
 108                int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
 109
 110                if (rc)
 111                        return rc;
 112        }
 113
 114        /*
 115         * Clear out entries that are duplicates. This should prevent the
 116         * extra flushings.
 117         */
 118        for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
 119                /* ignore if NULL already */
 120                if (!ndrd_get_flush_wpq(ndrd, i, 0))
 121                        continue;
 122
 123                for (j = i + 1; j < nd_region->ndr_mappings; j++)
 124                        if (ndrd_get_flush_wpq(ndrd, i, 0) ==
 125                            ndrd_get_flush_wpq(ndrd, j, 0))
 126                                ndrd_set_flush_wpq(ndrd, j, 0, NULL);
 127        }
 128
 129        return 0;
 130}
 131
 132static void nd_region_release(struct device *dev)
 133{
 134        struct nd_region *nd_region = to_nd_region(dev);
 135        u16 i;
 136
 137        for (i = 0; i < nd_region->ndr_mappings; i++) {
 138                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 139                struct nvdimm *nvdimm = nd_mapping->nvdimm;
 140
 141                put_device(&nvdimm->dev);
 142        }
 143        free_percpu(nd_region->lane);
 144        ida_simple_remove(&region_ida, nd_region->id);
 145        if (is_nd_blk(dev))
 146                kfree(to_nd_blk_region(dev));
 147        else
 148                kfree(nd_region);
 149}
 150
 151static struct device_type nd_blk_device_type = {
 152        .name = "nd_blk",
 153        .release = nd_region_release,
 154};
 155
 156static struct device_type nd_pmem_device_type = {
 157        .name = "nd_pmem",
 158        .release = nd_region_release,
 159};
 160
 161static struct device_type nd_volatile_device_type = {
 162        .name = "nd_volatile",
 163        .release = nd_region_release,
 164};
 165
 166bool is_nd_pmem(struct device *dev)
 167{
 168        return dev ? dev->type == &nd_pmem_device_type : false;
 169}
 170
 171bool is_nd_blk(struct device *dev)
 172{
 173        return dev ? dev->type == &nd_blk_device_type : false;
 174}
 175
 176bool is_nd_volatile(struct device *dev)
 177{
 178        return dev ? dev->type == &nd_volatile_device_type : false;
 179}
 180
 181struct nd_region *to_nd_region(struct device *dev)
 182{
 183        struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
 184
 185        WARN_ON(dev->type->release != nd_region_release);
 186        return nd_region;
 187}
 188EXPORT_SYMBOL_GPL(to_nd_region);
 189
 190struct device *nd_region_dev(struct nd_region *nd_region)
 191{
 192        if (!nd_region)
 193                return NULL;
 194        return &nd_region->dev;
 195}
 196EXPORT_SYMBOL_GPL(nd_region_dev);
 197
 198struct nd_blk_region *to_nd_blk_region(struct device *dev)
 199{
 200        struct nd_region *nd_region = to_nd_region(dev);
 201
 202        WARN_ON(!is_nd_blk(dev));
 203        return container_of(nd_region, struct nd_blk_region, nd_region);
 204}
 205EXPORT_SYMBOL_GPL(to_nd_blk_region);
 206
 207void *nd_region_provider_data(struct nd_region *nd_region)
 208{
 209        return nd_region->provider_data;
 210}
 211EXPORT_SYMBOL_GPL(nd_region_provider_data);
 212
 213void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
 214{
 215        return ndbr->blk_provider_data;
 216}
 217EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
 218
 219void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
 220{
 221        ndbr->blk_provider_data = data;
 222}
 223EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
 224
 225/**
 226 * nd_region_to_nstype() - region to an integer namespace type
 227 * @nd_region: region-device to interrogate
 228 *
 229 * This is the 'nstype' attribute of a region as well, an input to the
 230 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
 231 * namespace devices with namespace drivers.
 232 */
 233int nd_region_to_nstype(struct nd_region *nd_region)
 234{
 235        if (is_memory(&nd_region->dev)) {
 236                u16 i, alias;
 237
 238                for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
 239                        struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 240                        struct nvdimm *nvdimm = nd_mapping->nvdimm;
 241
 242                        if (test_bit(NDD_ALIASING, &nvdimm->flags))
 243                                alias++;
 244                }
 245                if (alias)
 246                        return ND_DEVICE_NAMESPACE_PMEM;
 247                else
 248                        return ND_DEVICE_NAMESPACE_IO;
 249        } else if (is_nd_blk(&nd_region->dev)) {
 250                return ND_DEVICE_NAMESPACE_BLK;
 251        }
 252
 253        return 0;
 254}
 255EXPORT_SYMBOL(nd_region_to_nstype);
 256
 257static ssize_t size_show(struct device *dev,
 258                struct device_attribute *attr, char *buf)
 259{
 260        struct nd_region *nd_region = to_nd_region(dev);
 261        unsigned long long size = 0;
 262
 263        if (is_memory(dev)) {
 264                size = nd_region->ndr_size;
 265        } else if (nd_region->ndr_mappings == 1) {
 266                struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 267
 268                size = nd_mapping->size;
 269        }
 270
 271        return sprintf(buf, "%llu\n", size);
 272}
 273static DEVICE_ATTR_RO(size);
 274
 275static ssize_t deep_flush_show(struct device *dev,
 276                struct device_attribute *attr, char *buf)
 277{
 278        struct nd_region *nd_region = to_nd_region(dev);
 279
 280        /*
 281         * NOTE: in the nvdimm_has_flush() error case this attribute is
 282         * not visible.
 283         */
 284        return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
 285}
 286
 287static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
 288                const char *buf, size_t len)
 289{
 290        bool flush;
 291        int rc = strtobool(buf, &flush);
 292        struct nd_region *nd_region = to_nd_region(dev);
 293
 294        if (rc)
 295                return rc;
 296        if (!flush)
 297                return -EINVAL;
 298        nvdimm_flush(nd_region);
 299
 300        return len;
 301}
 302static DEVICE_ATTR_RW(deep_flush);
 303
 304static ssize_t mappings_show(struct device *dev,
 305                struct device_attribute *attr, char *buf)
 306{
 307        struct nd_region *nd_region = to_nd_region(dev);
 308
 309        return sprintf(buf, "%d\n", nd_region->ndr_mappings);
 310}
 311static DEVICE_ATTR_RO(mappings);
 312
 313static ssize_t nstype_show(struct device *dev,
 314                struct device_attribute *attr, char *buf)
 315{
 316        struct nd_region *nd_region = to_nd_region(dev);
 317
 318        return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
 319}
 320static DEVICE_ATTR_RO(nstype);
 321
 322static ssize_t set_cookie_show(struct device *dev,
 323                struct device_attribute *attr, char *buf)
 324{
 325        struct nd_region *nd_region = to_nd_region(dev);
 326        struct nd_interleave_set *nd_set = nd_region->nd_set;
 327        ssize_t rc = 0;
 328
 329        if (is_memory(dev) && nd_set)
 330                /* pass, should be precluded by region_visible */;
 331        else
 332                return -ENXIO;
 333
 334        /*
 335         * The cookie to show depends on which specification of the
 336         * labels we are using. If there are not labels then default to
 337         * the v1.1 namespace label cookie definition. To read all this
 338         * data we need to wait for probing to settle.
 339         */
 340        device_lock(dev);
 341        nvdimm_bus_lock(dev);
 342        wait_nvdimm_bus_probe_idle(dev);
 343        if (nd_region->ndr_mappings) {
 344                struct nd_mapping *nd_mapping = &nd_region->mapping[0];
 345                struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 346
 347                if (ndd) {
 348                        struct nd_namespace_index *nsindex;
 349
 350                        nsindex = to_namespace_index(ndd, ndd->ns_current);
 351                        rc = sprintf(buf, "%#llx\n",
 352                                        nd_region_interleave_set_cookie(nd_region,
 353                                                nsindex));
 354                }
 355        }
 356        nvdimm_bus_unlock(dev);
 357        device_unlock(dev);
 358
 359        if (rc)
 360                return rc;
 361        return sprintf(buf, "%#llx\n", nd_set->cookie1);
 362}
 363static DEVICE_ATTR_RO(set_cookie);
 364
 365resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
 366{
 367        resource_size_t blk_max_overlap = 0, available, overlap;
 368        int i;
 369
 370        WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 371
 372 retry:
 373        available = 0;
 374        overlap = blk_max_overlap;
 375        for (i = 0; i < nd_region->ndr_mappings; i++) {
 376                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 377                struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
 378
 379                /* if a dimm is disabled the available capacity is zero */
 380                if (!ndd)
 381                        return 0;
 382
 383                if (is_memory(&nd_region->dev)) {
 384                        available += nd_pmem_available_dpa(nd_region,
 385                                        nd_mapping, &overlap);
 386                        if (overlap > blk_max_overlap) {
 387                                blk_max_overlap = overlap;
 388                                goto retry;
 389                        }
 390                } else if (is_nd_blk(&nd_region->dev))
 391                        available += nd_blk_available_dpa(nd_region);
 392        }
 393
 394        return available;
 395}
 396
 397resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
 398{
 399        resource_size_t available = 0;
 400        int i;
 401
 402        if (is_memory(&nd_region->dev))
 403                available = (phys_addr_t)ULLONG_MAX;
 404
 405        WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
 406        for (i = 0; i < nd_region->ndr_mappings; i++) {
 407                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 408
 409                if (is_memory(&nd_region->dev))
 410                        available = min(available,
 411                                        nd_pmem_max_contiguous_dpa(nd_region,
 412                                                                   nd_mapping));
 413                else if (is_nd_blk(&nd_region->dev))
 414                        available += nd_blk_available_dpa(nd_region);
 415        }
 416        if (is_memory(&nd_region->dev))
 417                return available * nd_region->ndr_mappings;
 418        return available;
 419}
 420
 421static ssize_t available_size_show(struct device *dev,
 422                struct device_attribute *attr, char *buf)
 423{
 424        struct nd_region *nd_region = to_nd_region(dev);
 425        unsigned long long available = 0;
 426
 427        /*
 428         * Flush in-flight updates and grab a snapshot of the available
 429         * size.  Of course, this value is potentially invalidated the
 430         * memory nvdimm_bus_lock() is dropped, but that's userspace's
 431         * problem to not race itself.
 432         */
 433        nvdimm_bus_lock(dev);
 434        wait_nvdimm_bus_probe_idle(dev);
 435        available = nd_region_available_dpa(nd_region);
 436        nvdimm_bus_unlock(dev);
 437
 438        return sprintf(buf, "%llu\n", available);
 439}
 440static DEVICE_ATTR_RO(available_size);
 441
 442static ssize_t max_available_extent_show(struct device *dev,
 443                struct device_attribute *attr, char *buf)
 444{
 445        struct nd_region *nd_region = to_nd_region(dev);
 446        unsigned long long available = 0;
 447
 448        nvdimm_bus_lock(dev);
 449        wait_nvdimm_bus_probe_idle(dev);
 450        available = nd_region_allocatable_dpa(nd_region);
 451        nvdimm_bus_unlock(dev);
 452
 453        return sprintf(buf, "%llu\n", available);
 454}
 455static DEVICE_ATTR_RO(max_available_extent);
 456
 457static ssize_t init_namespaces_show(struct device *dev,
 458                struct device_attribute *attr, char *buf)
 459{
 460        struct nd_region_data *ndrd = dev_get_drvdata(dev);
 461        ssize_t rc;
 462
 463        nvdimm_bus_lock(dev);
 464        if (ndrd)
 465                rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
 466        else
 467                rc = -ENXIO;
 468        nvdimm_bus_unlock(dev);
 469
 470        return rc;
 471}
 472static DEVICE_ATTR_RO(init_namespaces);
 473
 474static ssize_t namespace_seed_show(struct device *dev,
 475                struct device_attribute *attr, char *buf)
 476{
 477        struct nd_region *nd_region = to_nd_region(dev);
 478        ssize_t rc;
 479
 480        nvdimm_bus_lock(dev);
 481        if (nd_region->ns_seed)
 482                rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
 483        else
 484                rc = sprintf(buf, "\n");
 485        nvdimm_bus_unlock(dev);
 486        return rc;
 487}
 488static DEVICE_ATTR_RO(namespace_seed);
 489
 490static ssize_t btt_seed_show(struct device *dev,
 491                struct device_attribute *attr, char *buf)
 492{
 493        struct nd_region *nd_region = to_nd_region(dev);
 494        ssize_t rc;
 495
 496        nvdimm_bus_lock(dev);
 497        if (nd_region->btt_seed)
 498                rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
 499        else
 500                rc = sprintf(buf, "\n");
 501        nvdimm_bus_unlock(dev);
 502
 503        return rc;
 504}
 505static DEVICE_ATTR_RO(btt_seed);
 506
 507static ssize_t pfn_seed_show(struct device *dev,
 508                struct device_attribute *attr, char *buf)
 509{
 510        struct nd_region *nd_region = to_nd_region(dev);
 511        ssize_t rc;
 512
 513        nvdimm_bus_lock(dev);
 514        if (nd_region->pfn_seed)
 515                rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
 516        else
 517                rc = sprintf(buf, "\n");
 518        nvdimm_bus_unlock(dev);
 519
 520        return rc;
 521}
 522static DEVICE_ATTR_RO(pfn_seed);
 523
 524static ssize_t dax_seed_show(struct device *dev,
 525                struct device_attribute *attr, char *buf)
 526{
 527        struct nd_region *nd_region = to_nd_region(dev);
 528        ssize_t rc;
 529
 530        nvdimm_bus_lock(dev);
 531        if (nd_region->dax_seed)
 532                rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
 533        else
 534                rc = sprintf(buf, "\n");
 535        nvdimm_bus_unlock(dev);
 536
 537        return rc;
 538}
 539static DEVICE_ATTR_RO(dax_seed);
 540
 541static ssize_t read_only_show(struct device *dev,
 542                struct device_attribute *attr, char *buf)
 543{
 544        struct nd_region *nd_region = to_nd_region(dev);
 545
 546        return sprintf(buf, "%d\n", nd_region->ro);
 547}
 548
 549static ssize_t read_only_store(struct device *dev,
 550                struct device_attribute *attr, const char *buf, size_t len)
 551{
 552        bool ro;
 553        int rc = strtobool(buf, &ro);
 554        struct nd_region *nd_region = to_nd_region(dev);
 555
 556        if (rc)
 557                return rc;
 558
 559        nd_region->ro = ro;
 560        return len;
 561}
 562static DEVICE_ATTR_RW(read_only);
 563
 564static ssize_t region_badblocks_show(struct device *dev,
 565                struct device_attribute *attr, char *buf)
 566{
 567        struct nd_region *nd_region = to_nd_region(dev);
 568        ssize_t rc;
 569
 570        device_lock(dev);
 571        if (dev->driver)
 572                rc = badblocks_show(&nd_region->bb, buf, 0);
 573        else
 574                rc = -ENXIO;
 575        device_unlock(dev);
 576
 577        return rc;
 578}
 579static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
 580
 581static ssize_t resource_show(struct device *dev,
 582                struct device_attribute *attr, char *buf)
 583{
 584        struct nd_region *nd_region = to_nd_region(dev);
 585
 586        return sprintf(buf, "%#llx\n", nd_region->ndr_start);
 587}
 588static DEVICE_ATTR_RO(resource);
 589
 590static ssize_t persistence_domain_show(struct device *dev,
 591                struct device_attribute *attr, char *buf)
 592{
 593        struct nd_region *nd_region = to_nd_region(dev);
 594
 595        if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
 596                return sprintf(buf, "cpu_cache\n");
 597        else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
 598                return sprintf(buf, "memory_controller\n");
 599        else
 600                return sprintf(buf, "\n");
 601}
 602static DEVICE_ATTR_RO(persistence_domain);
 603
 604static struct attribute *nd_region_attributes[] = {
 605        &dev_attr_size.attr,
 606        &dev_attr_nstype.attr,
 607        &dev_attr_mappings.attr,
 608        &dev_attr_btt_seed.attr,
 609        &dev_attr_pfn_seed.attr,
 610        &dev_attr_dax_seed.attr,
 611        &dev_attr_deep_flush.attr,
 612        &dev_attr_read_only.attr,
 613        &dev_attr_set_cookie.attr,
 614        &dev_attr_available_size.attr,
 615        &dev_attr_max_available_extent.attr,
 616        &dev_attr_namespace_seed.attr,
 617        &dev_attr_init_namespaces.attr,
 618        &dev_attr_badblocks.attr,
 619        &dev_attr_resource.attr,
 620        &dev_attr_persistence_domain.attr,
 621        NULL,
 622};
 623
 624static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
 625{
 626        struct device *dev = container_of(kobj, typeof(*dev), kobj);
 627        struct nd_region *nd_region = to_nd_region(dev);
 628        struct nd_interleave_set *nd_set = nd_region->nd_set;
 629        int type = nd_region_to_nstype(nd_region);
 630
 631        if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
 632                return 0;
 633
 634        if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
 635                return 0;
 636
 637        if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
 638                return 0;
 639
 640        if (a == &dev_attr_resource.attr) {
 641                if (is_nd_pmem(dev))
 642                        return 0400;
 643                else
 644                        return 0;
 645        }
 646
 647        if (a == &dev_attr_deep_flush.attr) {
 648                int has_flush = nvdimm_has_flush(nd_region);
 649
 650                if (has_flush == 1)
 651                        return a->mode;
 652                else if (has_flush == 0)
 653                        return 0444;
 654                else
 655                        return 0;
 656        }
 657
 658        if (a == &dev_attr_persistence_domain.attr) {
 659                if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
 660                                        | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
 661                        return 0;
 662                return a->mode;
 663        }
 664
 665        if (a != &dev_attr_set_cookie.attr
 666                        && a != &dev_attr_available_size.attr)
 667                return a->mode;
 668
 669        if ((type == ND_DEVICE_NAMESPACE_PMEM
 670                                || type == ND_DEVICE_NAMESPACE_BLK)
 671                        && a == &dev_attr_available_size.attr)
 672                return a->mode;
 673        else if (is_memory(dev) && nd_set)
 674                return a->mode;
 675
 676        return 0;
 677}
 678
 679struct attribute_group nd_region_attribute_group = {
 680        .attrs = nd_region_attributes,
 681        .is_visible = region_visible,
 682};
 683EXPORT_SYMBOL_GPL(nd_region_attribute_group);
 684
 685u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
 686                struct nd_namespace_index *nsindex)
 687{
 688        struct nd_interleave_set *nd_set = nd_region->nd_set;
 689
 690        if (!nd_set)
 691                return 0;
 692
 693        if (nsindex && __le16_to_cpu(nsindex->major) == 1
 694                        && __le16_to_cpu(nsindex->minor) == 1)
 695                return nd_set->cookie1;
 696        return nd_set->cookie2;
 697}
 698
 699u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
 700{
 701        struct nd_interleave_set *nd_set = nd_region->nd_set;
 702
 703        if (nd_set)
 704                return nd_set->altcookie;
 705        return 0;
 706}
 707
 708void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
 709{
 710        struct nd_label_ent *label_ent, *e;
 711
 712        lockdep_assert_held(&nd_mapping->lock);
 713        list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
 714                list_del(&label_ent->list);
 715                kfree(label_ent);
 716        }
 717}
 718
 719/*
 720 * Upon successful probe/remove, take/release a reference on the
 721 * associated interleave set (if present), and plant new btt + namespace
 722 * seeds.  Also, on the removal of a BLK region, notify the provider to
 723 * disable the region.
 724 */
 725static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
 726                struct device *dev, bool probe)
 727{
 728        struct nd_region *nd_region;
 729
 730        if (!probe && is_nd_region(dev)) {
 731                int i;
 732
 733                nd_region = to_nd_region(dev);
 734                for (i = 0; i < nd_region->ndr_mappings; i++) {
 735                        struct nd_mapping *nd_mapping = &nd_region->mapping[i];
 736                        struct nvdimm_drvdata *ndd = nd_mapping->ndd;
 737                        struct nvdimm *nvdimm = nd_mapping->nvdimm;
 738
 739                        mutex_lock(&nd_mapping->lock);
 740                        nd_mapping_free_labels(nd_mapping);
 741                        mutex_unlock(&nd_mapping->lock);
 742
 743                        put_ndd(ndd);
 744                        nd_mapping->ndd = NULL;
 745                        if (ndd)
 746                                atomic_dec(&nvdimm->busy);
 747                }
 748        }
 749        if (dev->parent && is_nd_region(dev->parent) && probe) {
 750                nd_region = to_nd_region(dev->parent);
 751                nvdimm_bus_lock(dev);
 752                if (nd_region->ns_seed == dev)
 753                        nd_region_create_ns_seed(nd_region);
 754                nvdimm_bus_unlock(dev);
 755        }
 756        if (is_nd_btt(dev) && probe) {
 757                struct nd_btt *nd_btt = to_nd_btt(dev);
 758
 759                nd_region = to_nd_region(dev->parent);
 760                nvdimm_bus_lock(dev);
 761                if (nd_region->btt_seed == dev)
 762                        nd_region_create_btt_seed(nd_region);
 763                if (nd_region->ns_seed == &nd_btt->ndns->dev)
 764                        nd_region_create_ns_seed(nd_region);
 765                nvdimm_bus_unlock(dev);
 766        }
 767        if (is_nd_pfn(dev) && probe) {
 768                struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 769
 770                nd_region = to_nd_region(dev->parent);
 771                nvdimm_bus_lock(dev);
 772                if (nd_region->pfn_seed == dev)
 773                        nd_region_create_pfn_seed(nd_region);
 774                if (nd_region->ns_seed == &nd_pfn->ndns->dev)
 775                        nd_region_create_ns_seed(nd_region);
 776                nvdimm_bus_unlock(dev);
 777        }
 778        if (is_nd_dax(dev) && probe) {
 779                struct nd_dax *nd_dax = to_nd_dax(dev);
 780
 781                nd_region = to_nd_region(dev->parent);
 782                nvdimm_bus_lock(dev);
 783                if (nd_region->dax_seed == dev)
 784                        nd_region_create_dax_seed(nd_region);
 785                if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
 786                        nd_region_create_ns_seed(nd_region);
 787                nvdimm_bus_unlock(dev);
 788        }
 789}
 790
 791void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
 792{
 793        nd_region_notify_driver_action(nvdimm_bus, dev, true);
 794}
 795
 796void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
 797{
 798        nd_region_notify_driver_action(nvdimm_bus, dev, false);
 799}
 800
 801static ssize_t mappingN(struct device *dev, char *buf, int n)
 802{
 803        struct nd_region *nd_region = to_nd_region(dev);
 804        struct nd_mapping *nd_mapping;
 805        struct nvdimm *nvdimm;
 806
 807        if (n >= nd_region->ndr_mappings)
 808                return -ENXIO;
 809        nd_mapping = &nd_region->mapping[n];
 810        nvdimm = nd_mapping->nvdimm;
 811
 812        return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
 813                        nd_mapping->start, nd_mapping->size,
 814                        nd_mapping->position);
 815}
 816
 817#define REGION_MAPPING(idx) \
 818static ssize_t mapping##idx##_show(struct device *dev,          \
 819                struct device_attribute *attr, char *buf)       \
 820{                                                               \
 821        return mappingN(dev, buf, idx);                         \
 822}                                                               \
 823static DEVICE_ATTR_RO(mapping##idx)
 824
 825/*
 826 * 32 should be enough for a while, even in the presence of socket
 827 * interleave a 32-way interleave set is a degenerate case.
 828 */
 829REGION_MAPPING(0);
 830REGION_MAPPING(1);
 831REGION_MAPPING(2);
 832REGION_MAPPING(3);
 833REGION_MAPPING(4);
 834REGION_MAPPING(5);
 835REGION_MAPPING(6);
 836REGION_MAPPING(7);
 837REGION_MAPPING(8);
 838REGION_MAPPING(9);
 839REGION_MAPPING(10);
 840REGION_MAPPING(11);
 841REGION_MAPPING(12);
 842REGION_MAPPING(13);
 843REGION_MAPPING(14);
 844REGION_MAPPING(15);
 845REGION_MAPPING(16);
 846REGION_MAPPING(17);
 847REGION_MAPPING(18);
 848REGION_MAPPING(19);
 849REGION_MAPPING(20);
 850REGION_MAPPING(21);
 851REGION_MAPPING(22);
 852REGION_MAPPING(23);
 853REGION_MAPPING(24);
 854REGION_MAPPING(25);
 855REGION_MAPPING(26);
 856REGION_MAPPING(27);
 857REGION_MAPPING(28);
 858REGION_MAPPING(29);
 859REGION_MAPPING(30);
 860REGION_MAPPING(31);
 861
 862static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
 863{
 864        struct device *dev = container_of(kobj, struct device, kobj);
 865        struct nd_region *nd_region = to_nd_region(dev);
 866
 867        if (n < nd_region->ndr_mappings)
 868                return a->mode;
 869        return 0;
 870}
 871
 872static struct attribute *mapping_attributes[] = {
 873        &dev_attr_mapping0.attr,
 874        &dev_attr_mapping1.attr,
 875        &dev_attr_mapping2.attr,
 876        &dev_attr_mapping3.attr,
 877        &dev_attr_mapping4.attr,
 878        &dev_attr_mapping5.attr,
 879        &dev_attr_mapping6.attr,
 880        &dev_attr_mapping7.attr,
 881        &dev_attr_mapping8.attr,
 882        &dev_attr_mapping9.attr,
 883        &dev_attr_mapping10.attr,
 884        &dev_attr_mapping11.attr,
 885        &dev_attr_mapping12.attr,
 886        &dev_attr_mapping13.attr,
 887        &dev_attr_mapping14.attr,
 888        &dev_attr_mapping15.attr,
 889        &dev_attr_mapping16.attr,
 890        &dev_attr_mapping17.attr,
 891        &dev_attr_mapping18.attr,
 892        &dev_attr_mapping19.attr,
 893        &dev_attr_mapping20.attr,
 894        &dev_attr_mapping21.attr,
 895        &dev_attr_mapping22.attr,
 896        &dev_attr_mapping23.attr,
 897        &dev_attr_mapping24.attr,
 898        &dev_attr_mapping25.attr,
 899        &dev_attr_mapping26.attr,
 900        &dev_attr_mapping27.attr,
 901        &dev_attr_mapping28.attr,
 902        &dev_attr_mapping29.attr,
 903        &dev_attr_mapping30.attr,
 904        &dev_attr_mapping31.attr,
 905        NULL,
 906};
 907
 908struct attribute_group nd_mapping_attribute_group = {
 909        .is_visible = mapping_visible,
 910        .attrs = mapping_attributes,
 911};
 912EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
 913
 914int nd_blk_region_init(struct nd_region *nd_region)
 915{
 916        struct device *dev = &nd_region->dev;
 917        struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
 918
 919        if (!is_nd_blk(dev))
 920                return 0;
 921
 922        if (nd_region->ndr_mappings < 1) {
 923                dev_dbg(dev, "invalid BLK region\n");
 924                return -ENXIO;
 925        }
 926
 927        return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
 928}
 929
 930/**
 931 * nd_region_acquire_lane - allocate and lock a lane
 932 * @nd_region: region id and number of lanes possible
 933 *
 934 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
 935 * We optimize for the common case where there are 256 lanes, one
 936 * per-cpu.  For larger systems we need to lock to share lanes.  For now
 937 * this implementation assumes the cost of maintaining an allocator for
 938 * free lanes is on the order of the lock hold time, so it implements a
 939 * static lane = cpu % num_lanes mapping.
 940 *
 941 * In the case of a BTT instance on top of a BLK namespace a lane may be
 942 * acquired recursively.  We lock on the first instance.
 943 *
 944 * In the case of a BTT instance on top of PMEM, we only acquire a lane
 945 * for the BTT metadata updates.
 946 */
 947unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
 948{
 949        unsigned int cpu, lane;
 950
 951        cpu = get_cpu();
 952        if (nd_region->num_lanes < nr_cpu_ids) {
 953                struct nd_percpu_lane *ndl_lock, *ndl_count;
 954
 955                lane = cpu % nd_region->num_lanes;
 956                ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 957                ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 958                if (ndl_count->count++ == 0)
 959                        spin_lock(&ndl_lock->lock);
 960        } else
 961                lane = cpu;
 962
 963        return lane;
 964}
 965EXPORT_SYMBOL(nd_region_acquire_lane);
 966
 967void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
 968{
 969        if (nd_region->num_lanes < nr_cpu_ids) {
 970                unsigned int cpu = get_cpu();
 971                struct nd_percpu_lane *ndl_lock, *ndl_count;
 972
 973                ndl_count = per_cpu_ptr(nd_region->lane, cpu);
 974                ndl_lock = per_cpu_ptr(nd_region->lane, lane);
 975                if (--ndl_count->count == 0)
 976                        spin_unlock(&ndl_lock->lock);
 977                put_cpu();
 978        }
 979        put_cpu();
 980}
 981EXPORT_SYMBOL(nd_region_release_lane);
 982
 983static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
 984                struct nd_region_desc *ndr_desc, struct device_type *dev_type,
 985                const char *caller)
 986{
 987        struct nd_region *nd_region;
 988        struct device *dev;
 989        void *region_buf;
 990        unsigned int i;
 991        int ro = 0;
 992
 993        for (i = 0; i < ndr_desc->num_mappings; i++) {
 994                struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
 995                struct nvdimm *nvdimm = mapping->nvdimm;
 996
 997                if ((mapping->start | mapping->size) % SZ_4K) {
 998                        dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
 999                                        caller, dev_name(&nvdimm->dev), i);
1000
1001                        return NULL;
1002                }
1003
1004                if (test_bit(NDD_UNARMED, &nvdimm->flags))
1005                        ro = 1;
1006        }
1007
1008        if (dev_type == &nd_blk_device_type) {
1009                struct nd_blk_region_desc *ndbr_desc;
1010                struct nd_blk_region *ndbr;
1011
1012                ndbr_desc = to_blk_region_desc(ndr_desc);
1013                ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
1014                                * ndr_desc->num_mappings,
1015                                GFP_KERNEL);
1016                if (ndbr) {
1017                        nd_region = &ndbr->nd_region;
1018                        ndbr->enable = ndbr_desc->enable;
1019                        ndbr->do_io = ndbr_desc->do_io;
1020                }
1021                region_buf = ndbr;
1022        } else {
1023                nd_region = kzalloc(sizeof(struct nd_region)
1024                                + sizeof(struct nd_mapping)
1025                                * ndr_desc->num_mappings,
1026                                GFP_KERNEL);
1027                region_buf = nd_region;
1028        }
1029
1030        if (!region_buf)
1031                return NULL;
1032        nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
1033        if (nd_region->id < 0)
1034                goto err_id;
1035
1036        nd_region->lane = alloc_percpu(struct nd_percpu_lane);
1037        if (!nd_region->lane)
1038                goto err_percpu;
1039
1040        for (i = 0; i < nr_cpu_ids; i++) {
1041                struct nd_percpu_lane *ndl;
1042
1043                ndl = per_cpu_ptr(nd_region->lane, i);
1044                spin_lock_init(&ndl->lock);
1045                ndl->count = 0;
1046        }
1047
1048        for (i = 0; i < ndr_desc->num_mappings; i++) {
1049                struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1050                struct nvdimm *nvdimm = mapping->nvdimm;
1051
1052                nd_region->mapping[i].nvdimm = nvdimm;
1053                nd_region->mapping[i].start = mapping->start;
1054                nd_region->mapping[i].size = mapping->size;
1055                nd_region->mapping[i].position = mapping->position;
1056                INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1057                mutex_init(&nd_region->mapping[i].lock);
1058
1059                get_device(&nvdimm->dev);
1060        }
1061        nd_region->ndr_mappings = ndr_desc->num_mappings;
1062        nd_region->provider_data = ndr_desc->provider_data;
1063        nd_region->nd_set = ndr_desc->nd_set;
1064        nd_region->num_lanes = ndr_desc->num_lanes;
1065        nd_region->flags = ndr_desc->flags;
1066        nd_region->ro = ro;
1067        nd_region->numa_node = ndr_desc->numa_node;
1068        ida_init(&nd_region->ns_ida);
1069        ida_init(&nd_region->btt_ida);
1070        ida_init(&nd_region->pfn_ida);
1071        ida_init(&nd_region->dax_ida);
1072        dev = &nd_region->dev;
1073        dev_set_name(dev, "region%d", nd_region->id);
1074        dev->parent = &nvdimm_bus->dev;
1075        dev->type = dev_type;
1076        dev->groups = ndr_desc->attr_groups;
1077        nd_region->ndr_size = resource_size(ndr_desc->res);
1078        nd_region->ndr_start = ndr_desc->res->start;
1079        nd_device_register(dev);
1080
1081        return nd_region;
1082
1083 err_percpu:
1084        ida_simple_remove(&region_ida, nd_region->id);
1085 err_id:
1086        kfree(region_buf);
1087        return NULL;
1088}
1089
1090struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1091                struct nd_region_desc *ndr_desc)
1092{
1093        ndr_desc->num_lanes = ND_MAX_LANES;
1094        return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1095                        __func__);
1096}
1097EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1098
1099struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
1100                struct nd_region_desc *ndr_desc)
1101{
1102        if (ndr_desc->num_mappings > 1)
1103                return NULL;
1104        ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
1105        return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
1106                        __func__);
1107}
1108EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
1109
1110struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1111                struct nd_region_desc *ndr_desc)
1112{
1113        ndr_desc->num_lanes = ND_MAX_LANES;
1114        return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1115                        __func__);
1116}
1117EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1118
1119/**
1120 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1121 * @nd_region: blk or interleaved pmem region
1122 */
1123void nvdimm_flush(struct nd_region *nd_region)
1124{
1125        struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1126        int i, idx;
1127
1128        /*
1129         * Try to encourage some diversity in flush hint addresses
1130         * across cpus assuming a limited number of flush hints.
1131         */
1132        idx = this_cpu_read(flush_idx);
1133        idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1134
1135        /*
1136         * The first wmb() is needed to 'sfence' all previous writes
1137         * such that they are architecturally visible for the platform
1138         * buffer flush.  Note that we've already arranged for pmem
1139         * writes to avoid the cache via memcpy_flushcache().  The final
1140         * wmb() ensures ordering for the NVDIMM flush write.
1141         */
1142        wmb();
1143        for (i = 0; i < nd_region->ndr_mappings; i++)
1144                if (ndrd_get_flush_wpq(ndrd, i, 0))
1145                        writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1146        wmb();
1147}
1148EXPORT_SYMBOL_GPL(nvdimm_flush);
1149
1150/**
1151 * nvdimm_has_flush - determine write flushing requirements
1152 * @nd_region: blk or interleaved pmem region
1153 *
1154 * Returns 1 if writes require flushing
1155 * Returns 0 if writes do not require flushing
1156 * Returns -ENXIO if flushing capability can not be determined
1157 */
1158int nvdimm_has_flush(struct nd_region *nd_region)
1159{
1160        int i;
1161
1162        /* no nvdimm or pmem api == flushing capability unknown */
1163        if (nd_region->ndr_mappings == 0
1164                        || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1165                return -ENXIO;
1166
1167        for (i = 0; i < nd_region->ndr_mappings; i++) {
1168                struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1169                struct nvdimm *nvdimm = nd_mapping->nvdimm;
1170
1171                /* flush hints present / available */
1172                if (nvdimm->num_flush)
1173                        return 1;
1174        }
1175
1176        /*
1177         * The platform defines dimm devices without hints, assume
1178         * platform persistence mechanism like ADR
1179         */
1180        return 0;
1181}
1182EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1183
1184int nvdimm_has_cache(struct nd_region *nd_region)
1185{
1186        return is_nd_pmem(&nd_region->dev) &&
1187                !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1188}
1189EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1190
1191struct conflict_context {
1192        struct nd_region *nd_region;
1193        resource_size_t start, size;
1194};
1195
1196static int region_conflict(struct device *dev, void *data)
1197{
1198        struct nd_region *nd_region;
1199        struct conflict_context *ctx = data;
1200        resource_size_t res_end, region_end, region_start;
1201
1202        if (!is_memory(dev))
1203                return 0;
1204
1205        nd_region = to_nd_region(dev);
1206        if (nd_region == ctx->nd_region)
1207                return 0;
1208
1209        res_end = ctx->start + ctx->size;
1210        region_start = nd_region->ndr_start;
1211        region_end = region_start + nd_region->ndr_size;
1212        if (ctx->start >= region_start && ctx->start < region_end)
1213                return -EBUSY;
1214        if (res_end > region_start && res_end <= region_end)
1215                return -EBUSY;
1216        return 0;
1217}
1218
1219int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1220                resource_size_t size)
1221{
1222        struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1223        struct conflict_context ctx = {
1224                .nd_region = nd_region,
1225                .start = start,
1226                .size = size,
1227        };
1228
1229        return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1230}
1231
1232void __exit nd_region_devs_exit(void)
1233{
1234        ida_destroy(&region_ida);
1235}
1236