linux/drivers/scsi/libfc/fc_exch.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
   3 * Copyright(c) 2008 Red Hat, Inc.  All rights reserved.
   4 * Copyright(c) 2008 Mike Christie
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc.,
  17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18 *
  19 * Maintained at www.Open-FCoE.org
  20 */
  21
  22/*
  23 * Fibre Channel exchange and sequence handling.
  24 */
  25
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <linux/err.h>
  29#include <linux/export.h>
  30
  31#include <scsi/fc/fc_fc2.h>
  32
  33#include <scsi/libfc.h>
  34#include <scsi/fc_encode.h>
  35
  36#include "fc_libfc.h"
  37
  38u16     fc_cpu_mask;            /* cpu mask for possible cpus */
  39EXPORT_SYMBOL(fc_cpu_mask);
  40static u16      fc_cpu_order;   /* 2's power to represent total possible cpus */
  41static struct kmem_cache *fc_em_cachep;        /* cache for exchanges */
  42static struct workqueue_struct *fc_exch_workqueue;
  43
  44/*
  45 * Structure and function definitions for managing Fibre Channel Exchanges
  46 * and Sequences.
  47 *
  48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
  49 *
  50 * fc_exch_mgr holds the exchange state for an N port
  51 *
  52 * fc_exch holds state for one exchange and links to its active sequence.
  53 *
  54 * fc_seq holds the state for an individual sequence.
  55 */
  56
  57/**
  58 * struct fc_exch_pool - Per cpu exchange pool
  59 * @next_index:   Next possible free exchange index
  60 * @total_exches: Total allocated exchanges
  61 * @lock:         Exch pool lock
  62 * @ex_list:      List of exchanges
  63 *
  64 * This structure manages per cpu exchanges in array of exchange pointers.
  65 * This array is allocated followed by struct fc_exch_pool memory for
  66 * assigned range of exchanges to per cpu pool.
  67 */
  68struct fc_exch_pool {
  69        spinlock_t       lock;
  70        struct list_head ex_list;
  71        u16              next_index;
  72        u16              total_exches;
  73
  74        /* two cache of free slot in exch array */
  75        u16              left;
  76        u16              right;
  77} ____cacheline_aligned_in_smp;
  78
  79/**
  80 * struct fc_exch_mgr - The Exchange Manager (EM).
  81 * @class:          Default class for new sequences
  82 * @kref:           Reference counter
  83 * @min_xid:        Minimum exchange ID
  84 * @max_xid:        Maximum exchange ID
  85 * @ep_pool:        Reserved exchange pointers
  86 * @pool_max_index: Max exch array index in exch pool
  87 * @pool:           Per cpu exch pool
  88 * @stats:          Statistics structure
  89 *
  90 * This structure is the center for creating exchanges and sequences.
  91 * It manages the allocation of exchange IDs.
  92 */
  93struct fc_exch_mgr {
  94        struct fc_exch_pool __percpu *pool;
  95        mempool_t       *ep_pool;
  96        enum fc_class   class;
  97        struct kref     kref;
  98        u16             min_xid;
  99        u16             max_xid;
 100        u16             pool_max_index;
 101
 102        struct {
 103                atomic_t no_free_exch;
 104                atomic_t no_free_exch_xid;
 105                atomic_t xid_not_found;
 106                atomic_t xid_busy;
 107                atomic_t seq_not_found;
 108                atomic_t non_bls_resp;
 109        } stats;
 110};
 111
 112/**
 113 * struct fc_exch_mgr_anchor - primary structure for list of EMs
 114 * @ema_list: Exchange Manager Anchor list
 115 * @mp:       Exchange Manager associated with this anchor
 116 * @match:    Routine to determine if this anchor's EM should be used
 117 *
 118 * When walking the list of anchors the match routine will be called
 119 * for each anchor to determine if that EM should be used. The last
 120 * anchor in the list will always match to handle any exchanges not
 121 * handled by other EMs. The non-default EMs would be added to the
 122 * anchor list by HW that provides offloads.
 123 */
 124struct fc_exch_mgr_anchor {
 125        struct list_head ema_list;
 126        struct fc_exch_mgr *mp;
 127        bool (*match)(struct fc_frame *);
 128};
 129
 130static void fc_exch_rrq(struct fc_exch *);
 131static void fc_seq_ls_acc(struct fc_frame *);
 132static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
 133                          enum fc_els_rjt_explan);
 134static void fc_exch_els_rec(struct fc_frame *);
 135static void fc_exch_els_rrq(struct fc_frame *);
 136
 137/*
 138 * Internal implementation notes.
 139 *
 140 * The exchange manager is one by default in libfc but LLD may choose
 141 * to have one per CPU. The sequence manager is one per exchange manager
 142 * and currently never separated.
 143 *
 144 * Section 9.8 in FC-FS-2 specifies:  "The SEQ_ID is a one-byte field
 145 * assigned by the Sequence Initiator that shall be unique for a specific
 146 * D_ID and S_ID pair while the Sequence is open."   Note that it isn't
 147 * qualified by exchange ID, which one might think it would be.
 148 * In practice this limits the number of open sequences and exchanges to 256
 149 * per session.  For most targets we could treat this limit as per exchange.
 150 *
 151 * The exchange and its sequence are freed when the last sequence is received.
 152 * It's possible for the remote port to leave an exchange open without
 153 * sending any sequences.
 154 *
 155 * Notes on reference counts:
 156 *
 157 * Exchanges are reference counted and exchange gets freed when the reference
 158 * count becomes zero.
 159 *
 160 * Timeouts:
 161 * Sequences are timed out for E_D_TOV and R_A_TOV.
 162 *
 163 * Sequence event handling:
 164 *
 165 * The following events may occur on initiator sequences:
 166 *
 167 *      Send.
 168 *          For now, the whole thing is sent.
 169 *      Receive ACK
 170 *          This applies only to class F.
 171 *          The sequence is marked complete.
 172 *      ULP completion.
 173 *          The upper layer calls fc_exch_done() when done
 174 *          with exchange and sequence tuple.
 175 *      RX-inferred completion.
 176 *          When we receive the next sequence on the same exchange, we can
 177 *          retire the previous sequence ID.  (XXX not implemented).
 178 *      Timeout.
 179 *          R_A_TOV frees the sequence ID.  If we're waiting for ACK,
 180 *          E_D_TOV causes abort and calls upper layer response handler
 181 *          with FC_EX_TIMEOUT error.
 182 *      Receive RJT
 183 *          XXX defer.
 184 *      Send ABTS
 185 *          On timeout.
 186 *
 187 * The following events may occur on recipient sequences:
 188 *
 189 *      Receive
 190 *          Allocate sequence for first frame received.
 191 *          Hold during receive handler.
 192 *          Release when final frame received.
 193 *          Keep status of last N of these for the ELS RES command.  XXX TBD.
 194 *      Receive ABTS
 195 *          Deallocate sequence
 196 *      Send RJT
 197 *          Deallocate
 198 *
 199 * For now, we neglect conditions where only part of a sequence was
 200 * received or transmitted, or where out-of-order receipt is detected.
 201 */
 202
 203/*
 204 * Locking notes:
 205 *
 206 * The EM code run in a per-CPU worker thread.
 207 *
 208 * To protect against concurrency between a worker thread code and timers,
 209 * sequence allocation and deallocation must be locked.
 210 *  - exchange refcnt can be done atomicly without locks.
 211 *  - sequence allocation must be locked by exch lock.
 212 *  - If the EM pool lock and ex_lock must be taken at the same time, then the
 213 *    EM pool lock must be taken before the ex_lock.
 214 */
 215
 216/*
 217 * opcode names for debugging.
 218 */
 219static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
 220
 221/**
 222 * fc_exch_name_lookup() - Lookup name by opcode
 223 * @op:        Opcode to be looked up
 224 * @table:     Opcode/name table
 225 * @max_index: Index not to be exceeded
 226 *
 227 * This routine is used to determine a human-readable string identifying
 228 * a R_CTL opcode.
 229 */
 230static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
 231                                              unsigned int max_index)
 232{
 233        const char *name = NULL;
 234
 235        if (op < max_index)
 236                name = table[op];
 237        if (!name)
 238                name = "unknown";
 239        return name;
 240}
 241
 242/**
 243 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
 244 * @op: The opcode to be looked up
 245 */
 246static const char *fc_exch_rctl_name(unsigned int op)
 247{
 248        return fc_exch_name_lookup(op, fc_exch_rctl_names,
 249                                   ARRAY_SIZE(fc_exch_rctl_names));
 250}
 251
 252/**
 253 * fc_exch_hold() - Increment an exchange's reference count
 254 * @ep: Echange to be held
 255 */
 256static inline void fc_exch_hold(struct fc_exch *ep)
 257{
 258        atomic_inc(&ep->ex_refcnt);
 259}
 260
 261/**
 262 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
 263 *                       and determine SOF and EOF.
 264 * @ep:    The exchange to that will use the header
 265 * @fp:    The frame whose header is to be modified
 266 * @f_ctl: F_CTL bits that will be used for the frame header
 267 *
 268 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
 269 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
 270 */
 271static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
 272                              u32 f_ctl)
 273{
 274        struct fc_frame_header *fh = fc_frame_header_get(fp);
 275        u16 fill;
 276
 277        fr_sof(fp) = ep->class;
 278        if (ep->seq.cnt)
 279                fr_sof(fp) = fc_sof_normal(ep->class);
 280
 281        if (f_ctl & FC_FC_END_SEQ) {
 282                fr_eof(fp) = FC_EOF_T;
 283                if (fc_sof_needs_ack(ep->class))
 284                        fr_eof(fp) = FC_EOF_N;
 285                /*
 286                 * From F_CTL.
 287                 * The number of fill bytes to make the length a 4-byte
 288                 * multiple is the low order 2-bits of the f_ctl.
 289                 * The fill itself will have been cleared by the frame
 290                 * allocation.
 291                 * After this, the length will be even, as expected by
 292                 * the transport.
 293                 */
 294                fill = fr_len(fp) & 3;
 295                if (fill) {
 296                        fill = 4 - fill;
 297                        /* TODO, this may be a problem with fragmented skb */
 298                        skb_put(fp_skb(fp), fill);
 299                        hton24(fh->fh_f_ctl, f_ctl | fill);
 300                }
 301        } else {
 302                WARN_ON(fr_len(fp) % 4 != 0);   /* no pad to non last frame */
 303                fr_eof(fp) = FC_EOF_N;
 304        }
 305
 306        /*
 307         * Initialize remainig fh fields
 308         * from fc_fill_fc_hdr
 309         */
 310        fh->fh_ox_id = htons(ep->oxid);
 311        fh->fh_rx_id = htons(ep->rxid);
 312        fh->fh_seq_id = ep->seq.id;
 313        fh->fh_seq_cnt = htons(ep->seq.cnt);
 314}
 315
 316/**
 317 * fc_exch_release() - Decrement an exchange's reference count
 318 * @ep: Exchange to be released
 319 *
 320 * If the reference count reaches zero and the exchange is complete,
 321 * it is freed.
 322 */
 323static void fc_exch_release(struct fc_exch *ep)
 324{
 325        struct fc_exch_mgr *mp;
 326
 327        if (atomic_dec_and_test(&ep->ex_refcnt)) {
 328                mp = ep->em;
 329                if (ep->destructor)
 330                        ep->destructor(&ep->seq, ep->arg);
 331                WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
 332                mempool_free(ep, mp->ep_pool);
 333        }
 334}
 335
 336/**
 337 * fc_exch_timer_cancel() - cancel exch timer
 338 * @ep:         The exchange whose timer to be canceled
 339 */
 340static inline  void fc_exch_timer_cancel(struct fc_exch *ep)
 341{
 342        if (cancel_delayed_work(&ep->timeout_work)) {
 343                FC_EXCH_DBG(ep, "Exchange timer canceled\n");
 344                atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
 345        }
 346}
 347
 348/**
 349 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
 350 *                              the exchange lock held
 351 * @ep:         The exchange whose timer will start
 352 * @timer_msec: The timeout period
 353 *
 354 * Used for upper level protocols to time out the exchange.
 355 * The timer is cancelled when it fires or when the exchange completes.
 356 */
 357static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
 358                                            unsigned int timer_msec)
 359{
 360        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 361                return;
 362
 363        FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
 364
 365        if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
 366                               msecs_to_jiffies(timer_msec)))
 367                fc_exch_hold(ep);               /* hold for timer */
 368}
 369
 370/**
 371 * fc_exch_timer_set() - Lock the exchange and set the timer
 372 * @ep:         The exchange whose timer will start
 373 * @timer_msec: The timeout period
 374 */
 375static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
 376{
 377        spin_lock_bh(&ep->ex_lock);
 378        fc_exch_timer_set_locked(ep, timer_msec);
 379        spin_unlock_bh(&ep->ex_lock);
 380}
 381
 382/**
 383 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
 384 * @ep: The exchange that is complete
 385 */
 386static int fc_exch_done_locked(struct fc_exch *ep)
 387{
 388        int rc = 1;
 389
 390        /*
 391         * We must check for completion in case there are two threads
 392         * tyring to complete this. But the rrq code will reuse the
 393         * ep, and in that case we only clear the resp and set it as
 394         * complete, so it can be reused by the timer to send the rrq.
 395         */
 396        ep->resp = NULL;
 397        if (ep->state & FC_EX_DONE)
 398                return rc;
 399        ep->esb_stat |= ESB_ST_COMPLETE;
 400
 401        if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
 402                ep->state |= FC_EX_DONE;
 403                fc_exch_timer_cancel(ep);
 404                rc = 0;
 405        }
 406        return rc;
 407}
 408
 409/**
 410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
 411 * @pool:  Exchange Pool to get an exchange from
 412 * @index: Index of the exchange within the pool
 413 *
 414 * Use the index to get an exchange from within an exchange pool. exches
 415 * will point to an array of exchange pointers. The index will select
 416 * the exchange within the array.
 417 */
 418static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
 419                                              u16 index)
 420{
 421        struct fc_exch **exches = (struct fc_exch **)(pool + 1);
 422        return exches[index];
 423}
 424
 425/**
 426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
 427 * @pool:  The pool to assign the exchange to
 428 * @index: The index in the pool where the exchange will be assigned
 429 * @ep:    The exchange to assign to the pool
 430 */
 431static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
 432                                   struct fc_exch *ep)
 433{
 434        ((struct fc_exch **)(pool + 1))[index] = ep;
 435}
 436
 437/**
 438 * fc_exch_delete() - Delete an exchange
 439 * @ep: The exchange to be deleted
 440 */
 441static void fc_exch_delete(struct fc_exch *ep)
 442{
 443        struct fc_exch_pool *pool;
 444        u16 index;
 445
 446        pool = ep->pool;
 447        spin_lock_bh(&pool->lock);
 448        WARN_ON(pool->total_exches <= 0);
 449        pool->total_exches--;
 450
 451        /* update cache of free slot */
 452        index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
 453        if (pool->left == FC_XID_UNKNOWN)
 454                pool->left = index;
 455        else if (pool->right == FC_XID_UNKNOWN)
 456                pool->right = index;
 457        else
 458                pool->next_index = index;
 459
 460        fc_exch_ptr_set(pool, index, NULL);
 461        list_del(&ep->ex_list);
 462        spin_unlock_bh(&pool->lock);
 463        fc_exch_release(ep);    /* drop hold for exch in mp */
 464}
 465
 466static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
 467                       struct fc_frame *fp)
 468{
 469        struct fc_exch *ep;
 470        struct fc_frame_header *fh = fc_frame_header_get(fp);
 471        int error;
 472        u32 f_ctl;
 473        u8 fh_type = fh->fh_type;
 474
 475        ep = fc_seq_exch(sp);
 476        WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
 477
 478        f_ctl = ntoh24(fh->fh_f_ctl);
 479        fc_exch_setup_hdr(ep, fp, f_ctl);
 480        fr_encaps(fp) = ep->encaps;
 481
 482        /*
 483         * update sequence count if this frame is carrying
 484         * multiple FC frames when sequence offload is enabled
 485         * by LLD.
 486         */
 487        if (fr_max_payload(fp))
 488                sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
 489                                        fr_max_payload(fp));
 490        else
 491                sp->cnt++;
 492
 493        /*
 494         * Send the frame.
 495         */
 496        error = lport->tt.frame_send(lport, fp);
 497
 498        if (fh_type == FC_TYPE_BLS)
 499                goto out;
 500
 501        /*
 502         * Update the exchange and sequence flags,
 503         * assuming all frames for the sequence have been sent.
 504         * We can only be called to send once for each sequence.
 505         */
 506        ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ;   /* not first seq */
 507        if (f_ctl & FC_FC_SEQ_INIT)
 508                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 509out:
 510        return error;
 511}
 512
 513/**
 514 * fc_seq_send() - Send a frame using existing sequence/exchange pair
 515 * @lport: The local port that the exchange will be sent on
 516 * @sp:    The sequence to be sent
 517 * @fp:    The frame to be sent on the exchange
 518 */
 519static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
 520                       struct fc_frame *fp)
 521{
 522        struct fc_exch *ep;
 523        int error;
 524        ep = fc_seq_exch(sp);
 525        spin_lock_bh(&ep->ex_lock);
 526        error = fc_seq_send_locked(lport, sp, fp);
 527        spin_unlock_bh(&ep->ex_lock);
 528        return error;
 529}
 530
 531/**
 532 * fc_seq_alloc() - Allocate a sequence for a given exchange
 533 * @ep:     The exchange to allocate a new sequence for
 534 * @seq_id: The sequence ID to be used
 535 *
 536 * We don't support multiple originated sequences on the same exchange.
 537 * By implication, any previously originated sequence on this exchange
 538 * is complete, and we reallocate the same sequence.
 539 */
 540static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
 541{
 542        struct fc_seq *sp;
 543
 544        sp = &ep->seq;
 545        sp->ssb_stat = 0;
 546        sp->cnt = 0;
 547        sp->id = seq_id;
 548        return sp;
 549}
 550
 551/**
 552 * fc_seq_start_next_locked() - Allocate a new sequence on the same
 553 *                              exchange as the supplied sequence
 554 * @sp: The sequence/exchange to get a new sequence for
 555 */
 556static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
 557{
 558        struct fc_exch *ep = fc_seq_exch(sp);
 559
 560        sp = fc_seq_alloc(ep, ep->seq_id++);
 561        FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
 562                    ep->f_ctl, sp->id);
 563        return sp;
 564}
 565
 566/**
 567 * fc_seq_start_next() - Lock the exchange and get a new sequence
 568 *                       for a given sequence/exchange pair
 569 * @sp: The sequence/exchange to get a new exchange for
 570 */
 571static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
 572{
 573        struct fc_exch *ep = fc_seq_exch(sp);
 574
 575        spin_lock_bh(&ep->ex_lock);
 576        sp = fc_seq_start_next_locked(sp);
 577        spin_unlock_bh(&ep->ex_lock);
 578
 579        return sp;
 580}
 581
 582/*
 583 * Set the response handler for the exchange associated with a sequence.
 584 */
 585static void fc_seq_set_resp(struct fc_seq *sp,
 586                            void (*resp)(struct fc_seq *, struct fc_frame *,
 587                                         void *),
 588                            void *arg)
 589{
 590        struct fc_exch *ep = fc_seq_exch(sp);
 591
 592        spin_lock_bh(&ep->ex_lock);
 593        ep->resp = resp;
 594        ep->arg = arg;
 595        spin_unlock_bh(&ep->ex_lock);
 596}
 597
 598/**
 599 * fc_exch_abort_locked() - Abort an exchange
 600 * @ep: The exchange to be aborted
 601 * @timer_msec: The period of time to wait before aborting
 602 *
 603 * Locking notes:  Called with exch lock held
 604 *
 605 * Return value: 0 on success else error code
 606 */
 607static int fc_exch_abort_locked(struct fc_exch *ep,
 608                                unsigned int timer_msec)
 609{
 610        struct fc_seq *sp;
 611        struct fc_frame *fp;
 612        int error;
 613
 614        if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
 615            ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
 616                return -ENXIO;
 617
 618        /*
 619         * Send the abort on a new sequence if possible.
 620         */
 621        sp = fc_seq_start_next_locked(&ep->seq);
 622        if (!sp)
 623                return -ENOMEM;
 624
 625        ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
 626        if (timer_msec)
 627                fc_exch_timer_set_locked(ep, timer_msec);
 628
 629        /*
 630         * If not logged into the fabric, don't send ABTS but leave
 631         * sequence active until next timeout.
 632         */
 633        if (!ep->sid)
 634                return 0;
 635
 636        /*
 637         * Send an abort for the sequence that timed out.
 638         */
 639        fp = fc_frame_alloc(ep->lp, 0);
 640        if (fp) {
 641                fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
 642                               FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
 643                error = fc_seq_send_locked(ep->lp, sp, fp);
 644        } else
 645                error = -ENOBUFS;
 646        return error;
 647}
 648
 649/**
 650 * fc_seq_exch_abort() - Abort an exchange and sequence
 651 * @req_sp:     The sequence to be aborted
 652 * @timer_msec: The period of time to wait before aborting
 653 *
 654 * Generally called because of a timeout or an abort from the upper layer.
 655 *
 656 * Return value: 0 on success else error code
 657 */
 658static int fc_seq_exch_abort(const struct fc_seq *req_sp,
 659                             unsigned int timer_msec)
 660{
 661        struct fc_exch *ep;
 662        int error;
 663
 664        ep = fc_seq_exch(req_sp);
 665        spin_lock_bh(&ep->ex_lock);
 666        error = fc_exch_abort_locked(ep, timer_msec);
 667        spin_unlock_bh(&ep->ex_lock);
 668        return error;
 669}
 670
 671/**
 672 * fc_exch_timeout() - Handle exchange timer expiration
 673 * @work: The work_struct identifying the exchange that timed out
 674 */
 675static void fc_exch_timeout(struct work_struct *work)
 676{
 677        struct fc_exch *ep = container_of(work, struct fc_exch,
 678                                          timeout_work.work);
 679        struct fc_seq *sp = &ep->seq;
 680        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
 681        void *arg;
 682        u32 e_stat;
 683        int rc = 1;
 684
 685        FC_EXCH_DBG(ep, "Exchange timed out\n");
 686
 687        spin_lock_bh(&ep->ex_lock);
 688        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
 689                goto unlock;
 690
 691        e_stat = ep->esb_stat;
 692        if (e_stat & ESB_ST_COMPLETE) {
 693                ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
 694                spin_unlock_bh(&ep->ex_lock);
 695                if (e_stat & ESB_ST_REC_QUAL)
 696                        fc_exch_rrq(ep);
 697                goto done;
 698        } else {
 699                resp = ep->resp;
 700                arg = ep->arg;
 701                ep->resp = NULL;
 702                if (e_stat & ESB_ST_ABNORMAL)
 703                        rc = fc_exch_done_locked(ep);
 704                spin_unlock_bh(&ep->ex_lock);
 705                if (!rc)
 706                        fc_exch_delete(ep);
 707                if (resp)
 708                        resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
 709                fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
 710                goto done;
 711        }
 712unlock:
 713        spin_unlock_bh(&ep->ex_lock);
 714done:
 715        /*
 716         * This release matches the hold taken when the timer was set.
 717         */
 718        fc_exch_release(ep);
 719}
 720
 721/**
 722 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
 723 * @lport: The local port that the exchange is for
 724 * @mp:    The exchange manager that will allocate the exchange
 725 *
 726 * Returns pointer to allocated fc_exch with exch lock held.
 727 */
 728static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
 729                                        struct fc_exch_mgr *mp)
 730{
 731        struct fc_exch *ep;
 732        unsigned int cpu;
 733        u16 index;
 734        struct fc_exch_pool *pool;
 735
 736        /* allocate memory for exchange */
 737        ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
 738        if (!ep) {
 739                atomic_inc(&mp->stats.no_free_exch);
 740                goto out;
 741        }
 742        memset(ep, 0, sizeof(*ep));
 743
 744        cpu = get_cpu();
 745        pool = per_cpu_ptr(mp->pool, cpu);
 746        spin_lock_bh(&pool->lock);
 747        put_cpu();
 748
 749        /* peek cache of free slot */
 750        if (pool->left != FC_XID_UNKNOWN) {
 751                index = pool->left;
 752                pool->left = FC_XID_UNKNOWN;
 753                goto hit;
 754        }
 755        if (pool->right != FC_XID_UNKNOWN) {
 756                index = pool->right;
 757                pool->right = FC_XID_UNKNOWN;
 758                goto hit;
 759        }
 760
 761        index = pool->next_index;
 762        /* allocate new exch from pool */
 763        while (fc_exch_ptr_get(pool, index)) {
 764                index = index == mp->pool_max_index ? 0 : index + 1;
 765                if (index == pool->next_index)
 766                        goto err;
 767        }
 768        pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
 769hit:
 770        fc_exch_hold(ep);       /* hold for exch in mp */
 771        spin_lock_init(&ep->ex_lock);
 772        /*
 773         * Hold exch lock for caller to prevent fc_exch_reset()
 774         * from releasing exch  while fc_exch_alloc() caller is
 775         * still working on exch.
 776         */
 777        spin_lock_bh(&ep->ex_lock);
 778
 779        fc_exch_ptr_set(pool, index, ep);
 780        list_add_tail(&ep->ex_list, &pool->ex_list);
 781        fc_seq_alloc(ep, ep->seq_id++);
 782        pool->total_exches++;
 783        spin_unlock_bh(&pool->lock);
 784
 785        /*
 786         *  update exchange
 787         */
 788        ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
 789        ep->em = mp;
 790        ep->pool = pool;
 791        ep->lp = lport;
 792        ep->f_ctl = FC_FC_FIRST_SEQ;    /* next seq is first seq */
 793        ep->rxid = FC_XID_UNKNOWN;
 794        ep->class = mp->class;
 795        INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
 796out:
 797        return ep;
 798err:
 799        spin_unlock_bh(&pool->lock);
 800        atomic_inc(&mp->stats.no_free_exch_xid);
 801        mempool_free(ep, mp->ep_pool);
 802        return NULL;
 803}
 804
 805/**
 806 * fc_exch_alloc() - Allocate an exchange from an EM on a
 807 *                   local port's list of EMs.
 808 * @lport: The local port that will own the exchange
 809 * @fp:    The FC frame that the exchange will be for
 810 *
 811 * This function walks the list of exchange manager(EM)
 812 * anchors to select an EM for a new exchange allocation. The
 813 * EM is selected when a NULL match function pointer is encountered
 814 * or when a call to a match function returns true.
 815 */
 816static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
 817                                            struct fc_frame *fp)
 818{
 819        struct fc_exch_mgr_anchor *ema;
 820
 821        list_for_each_entry(ema, &lport->ema_list, ema_list)
 822                if (!ema->match || ema->match(fp))
 823                        return fc_exch_em_alloc(lport, ema->mp);
 824        return NULL;
 825}
 826
 827/**
 828 * fc_exch_find() - Lookup and hold an exchange
 829 * @mp:  The exchange manager to lookup the exchange from
 830 * @xid: The XID of the exchange to look up
 831 */
 832static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
 833{
 834        struct fc_exch_pool *pool;
 835        struct fc_exch *ep = NULL;
 836        u16 cpu = xid & fc_cpu_mask;
 837
 838        if (xid == FC_XID_UNKNOWN)
 839                return NULL;
 840
 841        if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 842                printk_ratelimited(KERN_ERR
 843                        "libfc: lookup request for XID = %d, "
 844                        "indicates invalid CPU %d\n", xid, cpu);
 845                return NULL;
 846        }
 847
 848        if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
 849                pool = per_cpu_ptr(mp->pool, cpu);
 850                spin_lock_bh(&pool->lock);
 851                ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
 852                if (ep && ep->xid == xid)
 853                        fc_exch_hold(ep);
 854                spin_unlock_bh(&pool->lock);
 855        }
 856        return ep;
 857}
 858
 859
 860/**
 861 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
 862 *                  the memory allocated for the related objects may be freed.
 863 * @sp: The sequence that has completed
 864 */
 865static void fc_exch_done(struct fc_seq *sp)
 866{
 867        struct fc_exch *ep = fc_seq_exch(sp);
 868        int rc;
 869
 870        spin_lock_bh(&ep->ex_lock);
 871        rc = fc_exch_done_locked(ep);
 872        spin_unlock_bh(&ep->ex_lock);
 873        if (!rc)
 874                fc_exch_delete(ep);
 875}
 876
 877/**
 878 * fc_exch_resp() - Allocate a new exchange for a response frame
 879 * @lport: The local port that the exchange was for
 880 * @mp:    The exchange manager to allocate the exchange from
 881 * @fp:    The response frame
 882 *
 883 * Sets the responder ID in the frame header.
 884 */
 885static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
 886                                    struct fc_exch_mgr *mp,
 887                                    struct fc_frame *fp)
 888{
 889        struct fc_exch *ep;
 890        struct fc_frame_header *fh;
 891
 892        ep = fc_exch_alloc(lport, fp);
 893        if (ep) {
 894                ep->class = fc_frame_class(fp);
 895
 896                /*
 897                 * Set EX_CTX indicating we're responding on this exchange.
 898                 */
 899                ep->f_ctl |= FC_FC_EX_CTX;      /* we're responding */
 900                ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not new */
 901                fh = fc_frame_header_get(fp);
 902                ep->sid = ntoh24(fh->fh_d_id);
 903                ep->did = ntoh24(fh->fh_s_id);
 904                ep->oid = ep->did;
 905
 906                /*
 907                 * Allocated exchange has placed the XID in the
 908                 * originator field. Move it to the responder field,
 909                 * and set the originator XID from the frame.
 910                 */
 911                ep->rxid = ep->xid;
 912                ep->oxid = ntohs(fh->fh_ox_id);
 913                ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
 914                if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
 915                        ep->esb_stat &= ~ESB_ST_SEQ_INIT;
 916
 917                fc_exch_hold(ep);       /* hold for caller */
 918                spin_unlock_bh(&ep->ex_lock);   /* lock from fc_exch_alloc */
 919        }
 920        return ep;
 921}
 922
 923/**
 924 * fc_seq_lookup_recip() - Find a sequence where the other end
 925 *                         originated the sequence
 926 * @lport: The local port that the frame was sent to
 927 * @mp:    The Exchange Manager to lookup the exchange from
 928 * @fp:    The frame associated with the sequence we're looking for
 929 *
 930 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
 931 * on the ep that should be released by the caller.
 932 */
 933static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
 934                                                 struct fc_exch_mgr *mp,
 935                                                 struct fc_frame *fp)
 936{
 937        struct fc_frame_header *fh = fc_frame_header_get(fp);
 938        struct fc_exch *ep = NULL;
 939        struct fc_seq *sp = NULL;
 940        enum fc_pf_rjt_reason reject = FC_RJT_NONE;
 941        u32 f_ctl;
 942        u16 xid;
 943
 944        f_ctl = ntoh24(fh->fh_f_ctl);
 945        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
 946
 947        /*
 948         * Lookup or create the exchange if we will be creating the sequence.
 949         */
 950        if (f_ctl & FC_FC_EX_CTX) {
 951                xid = ntohs(fh->fh_ox_id);      /* we originated exch */
 952                ep = fc_exch_find(mp, xid);
 953                if (!ep) {
 954                        atomic_inc(&mp->stats.xid_not_found);
 955                        reject = FC_RJT_OX_ID;
 956                        goto out;
 957                }
 958                if (ep->rxid == FC_XID_UNKNOWN)
 959                        ep->rxid = ntohs(fh->fh_rx_id);
 960                else if (ep->rxid != ntohs(fh->fh_rx_id)) {
 961                        reject = FC_RJT_OX_ID;
 962                        goto rel;
 963                }
 964        } else {
 965                xid = ntohs(fh->fh_rx_id);      /* we are the responder */
 966
 967                /*
 968                 * Special case for MDS issuing an ELS TEST with a
 969                 * bad rxid of 0.
 970                 * XXX take this out once we do the proper reject.
 971                 */
 972                if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
 973                    fc_frame_payload_op(fp) == ELS_TEST) {
 974                        fh->fh_rx_id = htons(FC_XID_UNKNOWN);
 975                        xid = FC_XID_UNKNOWN;
 976                }
 977
 978                /*
 979                 * new sequence - find the exchange
 980                 */
 981                ep = fc_exch_find(mp, xid);
 982                if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
 983                        if (ep) {
 984                                atomic_inc(&mp->stats.xid_busy);
 985                                reject = FC_RJT_RX_ID;
 986                                goto rel;
 987                        }
 988                        ep = fc_exch_resp(lport, mp, fp);
 989                        if (!ep) {
 990                                reject = FC_RJT_EXCH_EST;       /* XXX */
 991                                goto out;
 992                        }
 993                        xid = ep->xid;  /* get our XID */
 994                } else if (!ep) {
 995                        atomic_inc(&mp->stats.xid_not_found);
 996                        reject = FC_RJT_RX_ID;  /* XID not found */
 997                        goto out;
 998                }
 999        }
1000
1001        /*
1002         * At this point, we have the exchange held.
1003         * Find or create the sequence.
1004         */
1005        if (fc_sof_is_init(fr_sof(fp))) {
1006                sp = &ep->seq;
1007                sp->ssb_stat |= SSB_ST_RESP;
1008                sp->id = fh->fh_seq_id;
1009        } else {
1010                sp = &ep->seq;
1011                if (sp->id != fh->fh_seq_id) {
1012                        atomic_inc(&mp->stats.seq_not_found);
1013                        if (f_ctl & FC_FC_END_SEQ) {
1014                                /*
1015                                 * Update sequence_id based on incoming last
1016                                 * frame of sequence exchange. This is needed
1017                                 * for FC target where DDP has been used
1018                                 * on target where, stack is indicated only
1019                                 * about last frame's (payload _header) header.
1020                                 * Whereas "seq_id" which is part of
1021                                 * frame_header is allocated by initiator
1022                                 * which is totally different from "seq_id"
1023                                 * allocated when XFER_RDY was sent by target.
1024                                 * To avoid false -ve which results into not
1025                                 * sending RSP, hence write request on other
1026                                 * end never finishes.
1027                                 */
1028                                spin_lock_bh(&ep->ex_lock);
1029                                sp->ssb_stat |= SSB_ST_RESP;
1030                                sp->id = fh->fh_seq_id;
1031                                spin_unlock_bh(&ep->ex_lock);
1032                        } else {
1033                                /* sequence/exch should exist */
1034                                reject = FC_RJT_SEQ_ID;
1035                                goto rel;
1036                        }
1037                }
1038        }
1039        WARN_ON(ep != fc_seq_exch(sp));
1040
1041        if (f_ctl & FC_FC_SEQ_INIT)
1042                ep->esb_stat |= ESB_ST_SEQ_INIT;
1043
1044        fr_seq(fp) = sp;
1045out:
1046        return reject;
1047rel:
1048        fc_exch_done(&ep->seq);
1049        fc_exch_release(ep);    /* hold from fc_exch_find/fc_exch_resp */
1050        return reject;
1051}
1052
1053/**
1054 * fc_seq_lookup_orig() - Find a sequence where this end
1055 *                        originated the sequence
1056 * @mp:    The Exchange Manager to lookup the exchange from
1057 * @fp:    The frame associated with the sequence we're looking for
1058 *
1059 * Does not hold the sequence for the caller.
1060 */
1061static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1062                                         struct fc_frame *fp)
1063{
1064        struct fc_frame_header *fh = fc_frame_header_get(fp);
1065        struct fc_exch *ep;
1066        struct fc_seq *sp = NULL;
1067        u32 f_ctl;
1068        u16 xid;
1069
1070        f_ctl = ntoh24(fh->fh_f_ctl);
1071        WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1072        xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1073        ep = fc_exch_find(mp, xid);
1074        if (!ep)
1075                return NULL;
1076        if (ep->seq.id == fh->fh_seq_id) {
1077                /*
1078                 * Save the RX_ID if we didn't previously know it.
1079                 */
1080                sp = &ep->seq;
1081                if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1082                    ep->rxid == FC_XID_UNKNOWN) {
1083                        ep->rxid = ntohs(fh->fh_rx_id);
1084                }
1085        }
1086        fc_exch_release(ep);
1087        return sp;
1088}
1089
1090/**
1091 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1092 * @ep:      The exchange to set the addresses for
1093 * @orig_id: The originator's ID
1094 * @resp_id: The responder's ID
1095 *
1096 * Note this must be done before the first sequence of the exchange is sent.
1097 */
1098static void fc_exch_set_addr(struct fc_exch *ep,
1099                             u32 orig_id, u32 resp_id)
1100{
1101        ep->oid = orig_id;
1102        if (ep->esb_stat & ESB_ST_RESP) {
1103                ep->sid = resp_id;
1104                ep->did = orig_id;
1105        } else {
1106                ep->sid = orig_id;
1107                ep->did = resp_id;
1108        }
1109}
1110
1111/**
1112 * fc_seq_els_rsp_send() - Send an ELS response using information from
1113 *                         the existing sequence/exchange.
1114 * @fp:       The received frame
1115 * @els_cmd:  The ELS command to be sent
1116 * @els_data: The ELS data to be sent
1117 *
1118 * The received frame is not freed.
1119 */
1120static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1121                                struct fc_seq_els_data *els_data)
1122{
1123        switch (els_cmd) {
1124        case ELS_LS_RJT:
1125                fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1126                break;
1127        case ELS_LS_ACC:
1128                fc_seq_ls_acc(fp);
1129                break;
1130        case ELS_RRQ:
1131                fc_exch_els_rrq(fp);
1132                break;
1133        case ELS_REC:
1134                fc_exch_els_rec(fp);
1135                break;
1136        default:
1137                FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1138        }
1139}
1140
1141/**
1142 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1143 * @sp:      The sequence that is to be sent
1144 * @fp:      The frame that will be sent on the sequence
1145 * @rctl:    The R_CTL information to be sent
1146 * @fh_type: The frame header type
1147 */
1148static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1149                             enum fc_rctl rctl, enum fc_fh_type fh_type)
1150{
1151        u32 f_ctl;
1152        struct fc_exch *ep = fc_seq_exch(sp);
1153
1154        f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1155        f_ctl |= ep->f_ctl;
1156        fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1157        fc_seq_send_locked(ep->lp, sp, fp);
1158}
1159
1160/**
1161 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1162 * @sp:    The sequence to send the ACK on
1163 * @rx_fp: The received frame that is being acknoledged
1164 *
1165 * Send ACK_1 (or equiv.) indicating we received something.
1166 */
1167static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1168{
1169        struct fc_frame *fp;
1170        struct fc_frame_header *rx_fh;
1171        struct fc_frame_header *fh;
1172        struct fc_exch *ep = fc_seq_exch(sp);
1173        struct fc_lport *lport = ep->lp;
1174        unsigned int f_ctl;
1175
1176        /*
1177         * Don't send ACKs for class 3.
1178         */
1179        if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1180                fp = fc_frame_alloc(lport, 0);
1181                if (!fp)
1182                        return;
1183
1184                fh = fc_frame_header_get(fp);
1185                fh->fh_r_ctl = FC_RCTL_ACK_1;
1186                fh->fh_type = FC_TYPE_BLS;
1187
1188                /*
1189                 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1190                 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1191                 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1192                 * Last ACK uses bits 7-6 (continue sequence),
1193                 * bits 5-4 are meaningful (what kind of ACK to use).
1194                 */
1195                rx_fh = fc_frame_header_get(rx_fp);
1196                f_ctl = ntoh24(rx_fh->fh_f_ctl);
1197                f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1198                        FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1199                        FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1200                        FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1201                f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1202                hton24(fh->fh_f_ctl, f_ctl);
1203
1204                fc_exch_setup_hdr(ep, fp, f_ctl);
1205                fh->fh_seq_id = rx_fh->fh_seq_id;
1206                fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1207                fh->fh_parm_offset = htonl(1);  /* ack single frame */
1208
1209                fr_sof(fp) = fr_sof(rx_fp);
1210                if (f_ctl & FC_FC_END_SEQ)
1211                        fr_eof(fp) = FC_EOF_T;
1212                else
1213                        fr_eof(fp) = FC_EOF_N;
1214
1215                lport->tt.frame_send(lport, fp);
1216        }
1217}
1218
1219/**
1220 * fc_exch_send_ba_rjt() - Send BLS Reject
1221 * @rx_fp:  The frame being rejected
1222 * @reason: The reason the frame is being rejected
1223 * @explan: The explanation for the rejection
1224 *
1225 * This is for rejecting BA_ABTS only.
1226 */
1227static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1228                                enum fc_ba_rjt_reason reason,
1229                                enum fc_ba_rjt_explan explan)
1230{
1231        struct fc_frame *fp;
1232        struct fc_frame_header *rx_fh;
1233        struct fc_frame_header *fh;
1234        struct fc_ba_rjt *rp;
1235        struct fc_lport *lport;
1236        unsigned int f_ctl;
1237
1238        lport = fr_dev(rx_fp);
1239        fp = fc_frame_alloc(lport, sizeof(*rp));
1240        if (!fp)
1241                return;
1242        fh = fc_frame_header_get(fp);
1243        rx_fh = fc_frame_header_get(rx_fp);
1244
1245        memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1246
1247        rp = fc_frame_payload_get(fp, sizeof(*rp));
1248        rp->br_reason = reason;
1249        rp->br_explan = explan;
1250
1251        /*
1252         * seq_id, cs_ctl, df_ctl and param/offset are zero.
1253         */
1254        memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1255        memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1256        fh->fh_ox_id = rx_fh->fh_ox_id;
1257        fh->fh_rx_id = rx_fh->fh_rx_id;
1258        fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1259        fh->fh_r_ctl = FC_RCTL_BA_RJT;
1260        fh->fh_type = FC_TYPE_BLS;
1261
1262        /*
1263         * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1264         * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1265         * Bits 9-8 are meaningful (retransmitted or unidirectional).
1266         * Last ACK uses bits 7-6 (continue sequence),
1267         * bits 5-4 are meaningful (what kind of ACK to use).
1268         * Always set LAST_SEQ, END_SEQ.
1269         */
1270        f_ctl = ntoh24(rx_fh->fh_f_ctl);
1271        f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1272                FC_FC_END_CONN | FC_FC_SEQ_INIT |
1273                FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1274        f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1275        f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1276        f_ctl &= ~FC_FC_FIRST_SEQ;
1277        hton24(fh->fh_f_ctl, f_ctl);
1278
1279        fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1280        fr_eof(fp) = FC_EOF_T;
1281        if (fc_sof_needs_ack(fr_sof(fp)))
1282                fr_eof(fp) = FC_EOF_N;
1283
1284        lport->tt.frame_send(lport, fp);
1285}
1286
1287/**
1288 * fc_exch_recv_abts() - Handle an incoming ABTS
1289 * @ep:    The exchange the abort was on
1290 * @rx_fp: The ABTS frame
1291 *
1292 * This would be for target mode usually, but could be due to lost
1293 * FCP transfer ready, confirm or RRQ. We always handle this as an
1294 * exchange abort, ignoring the parameter.
1295 */
1296static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1297{
1298        struct fc_frame *fp;
1299        struct fc_ba_acc *ap;
1300        struct fc_frame_header *fh;
1301        struct fc_seq *sp;
1302
1303        if (!ep)
1304                goto reject;
1305        spin_lock_bh(&ep->ex_lock);
1306        if (ep->esb_stat & ESB_ST_COMPLETE) {
1307                spin_unlock_bh(&ep->ex_lock);
1308                goto reject;
1309        }
1310        if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1311                fc_exch_hold(ep);               /* hold for REC_QUAL */
1312        ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1313        fc_exch_timer_set_locked(ep, ep->r_a_tov);
1314
1315        fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1316        if (!fp) {
1317                spin_unlock_bh(&ep->ex_lock);
1318                goto free;
1319        }
1320        fh = fc_frame_header_get(fp);
1321        ap = fc_frame_payload_get(fp, sizeof(*ap));
1322        memset(ap, 0, sizeof(*ap));
1323        sp = &ep->seq;
1324        ap->ba_high_seq_cnt = htons(0xffff);
1325        if (sp->ssb_stat & SSB_ST_RESP) {
1326                ap->ba_seq_id = sp->id;
1327                ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1328                ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1329                ap->ba_low_seq_cnt = htons(sp->cnt);
1330        }
1331        sp = fc_seq_start_next_locked(sp);
1332        fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1333        spin_unlock_bh(&ep->ex_lock);
1334        fc_frame_free(rx_fp);
1335        return;
1336
1337reject:
1338        fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1339free:
1340        fc_frame_free(rx_fp);
1341}
1342
1343/**
1344 * fc_seq_assign() - Assign exchange and sequence for incoming request
1345 * @lport: The local port that received the request
1346 * @fp:    The request frame
1347 *
1348 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1349 * A reference will be held on the exchange/sequence for the caller, which
1350 * must call fc_seq_release().
1351 */
1352static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1353{
1354        struct fc_exch_mgr_anchor *ema;
1355
1356        WARN_ON(lport != fr_dev(fp));
1357        WARN_ON(fr_seq(fp));
1358        fr_seq(fp) = NULL;
1359
1360        list_for_each_entry(ema, &lport->ema_list, ema_list)
1361                if ((!ema->match || ema->match(fp)) &&
1362                    fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1363                        break;
1364        return fr_seq(fp);
1365}
1366
1367/**
1368 * fc_seq_release() - Release the hold
1369 * @sp:    The sequence.
1370 */
1371static void fc_seq_release(struct fc_seq *sp)
1372{
1373        fc_exch_release(fc_seq_exch(sp));
1374}
1375
1376/**
1377 * fc_exch_recv_req() - Handler for an incoming request
1378 * @lport: The local port that received the request
1379 * @mp:    The EM that the exchange is on
1380 * @fp:    The request frame
1381 *
1382 * This is used when the other end is originating the exchange
1383 * and the sequence.
1384 */
1385static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1386                             struct fc_frame *fp)
1387{
1388        struct fc_frame_header *fh = fc_frame_header_get(fp);
1389        struct fc_seq *sp = NULL;
1390        struct fc_exch *ep = NULL;
1391        enum fc_pf_rjt_reason reject;
1392
1393        /* We can have the wrong fc_lport at this point with NPIV, which is a
1394         * problem now that we know a new exchange needs to be allocated
1395         */
1396        lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1397        if (!lport) {
1398                fc_frame_free(fp);
1399                return;
1400        }
1401        fr_dev(fp) = lport;
1402
1403        BUG_ON(fr_seq(fp));             /* XXX remove later */
1404
1405        /*
1406         * If the RX_ID is 0xffff, don't allocate an exchange.
1407         * The upper-level protocol may request one later, if needed.
1408         */
1409        if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1410                return lport->tt.lport_recv(lport, fp);
1411
1412        reject = fc_seq_lookup_recip(lport, mp, fp);
1413        if (reject == FC_RJT_NONE) {
1414                sp = fr_seq(fp);        /* sequence will be held */
1415                ep = fc_seq_exch(sp);
1416                fc_seq_send_ack(sp, fp);
1417                ep->encaps = fr_encaps(fp);
1418
1419                /*
1420                 * Call the receive function.
1421                 *
1422                 * The receive function may allocate a new sequence
1423                 * over the old one, so we shouldn't change the
1424                 * sequence after this.
1425                 *
1426                 * The frame will be freed by the receive function.
1427                 * If new exch resp handler is valid then call that
1428                 * first.
1429                 */
1430                if (ep->resp)
1431                        ep->resp(sp, fp, ep->arg);
1432                else
1433                        lport->tt.lport_recv(lport, fp);
1434                fc_exch_release(ep);    /* release from lookup */
1435        } else {
1436                FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1437                             reject);
1438                fc_frame_free(fp);
1439        }
1440}
1441
1442/**
1443 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1444 *                           end is the originator of the sequence that is a
1445 *                           response to our initial exchange
1446 * @mp: The EM that the exchange is on
1447 * @fp: The response frame
1448 */
1449static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1450{
1451        struct fc_frame_header *fh = fc_frame_header_get(fp);
1452        struct fc_seq *sp;
1453        struct fc_exch *ep;
1454        enum fc_sof sof;
1455        u32 f_ctl;
1456        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1457        void *ex_resp_arg;
1458        int rc;
1459
1460        ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1461        if (!ep) {
1462                atomic_inc(&mp->stats.xid_not_found);
1463                goto out;
1464        }
1465        if (ep->esb_stat & ESB_ST_COMPLETE) {
1466                atomic_inc(&mp->stats.xid_not_found);
1467                goto rel;
1468        }
1469        if (ep->rxid == FC_XID_UNKNOWN)
1470                ep->rxid = ntohs(fh->fh_rx_id);
1471        if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1472                atomic_inc(&mp->stats.xid_not_found);
1473                goto rel;
1474        }
1475        if (ep->did != ntoh24(fh->fh_s_id) &&
1476            ep->did != FC_FID_FLOGI) {
1477                atomic_inc(&mp->stats.xid_not_found);
1478                goto rel;
1479        }
1480        sof = fr_sof(fp);
1481        sp = &ep->seq;
1482        if (fc_sof_is_init(sof)) {
1483                sp->ssb_stat |= SSB_ST_RESP;
1484                sp->id = fh->fh_seq_id;
1485        } else if (sp->id != fh->fh_seq_id) {
1486                atomic_inc(&mp->stats.seq_not_found);
1487                goto rel;
1488        }
1489
1490        f_ctl = ntoh24(fh->fh_f_ctl);
1491        fr_seq(fp) = sp;
1492        if (f_ctl & FC_FC_SEQ_INIT)
1493                ep->esb_stat |= ESB_ST_SEQ_INIT;
1494
1495        if (fc_sof_needs_ack(sof))
1496                fc_seq_send_ack(sp, fp);
1497        resp = ep->resp;
1498        ex_resp_arg = ep->arg;
1499
1500        if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1501            (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1502            (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1503                spin_lock_bh(&ep->ex_lock);
1504                resp = ep->resp;
1505                rc = fc_exch_done_locked(ep);
1506                WARN_ON(fc_seq_exch(sp) != ep);
1507                spin_unlock_bh(&ep->ex_lock);
1508                if (!rc)
1509                        fc_exch_delete(ep);
1510        }
1511
1512        /*
1513         * Call the receive function.
1514         * The sequence is held (has a refcnt) for us,
1515         * but not for the receive function.
1516         *
1517         * The receive function may allocate a new sequence
1518         * over the old one, so we shouldn't change the
1519         * sequence after this.
1520         *
1521         * The frame will be freed by the receive function.
1522         * If new exch resp handler is valid then call that
1523         * first.
1524         */
1525        if (resp)
1526                resp(sp, fp, ex_resp_arg);
1527        else
1528                fc_frame_free(fp);
1529        fc_exch_release(ep);
1530        return;
1531rel:
1532        fc_exch_release(ep);
1533out:
1534        fc_frame_free(fp);
1535}
1536
1537/**
1538 * fc_exch_recv_resp() - Handler for a sequence where other end is
1539 *                       responding to our sequence
1540 * @mp: The EM that the exchange is on
1541 * @fp: The response frame
1542 */
1543static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1544{
1545        struct fc_seq *sp;
1546
1547        sp = fc_seq_lookup_orig(mp, fp);        /* doesn't hold sequence */
1548
1549        if (!sp)
1550                atomic_inc(&mp->stats.xid_not_found);
1551        else
1552                atomic_inc(&mp->stats.non_bls_resp);
1553
1554        fc_frame_free(fp);
1555}
1556
1557/**
1558 * fc_exch_abts_resp() - Handler for a response to an ABT
1559 * @ep: The exchange that the frame is on
1560 * @fp: The response frame
1561 *
1562 * This response would be to an ABTS cancelling an exchange or sequence.
1563 * The response can be either BA_ACC or BA_RJT
1564 */
1565static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1566{
1567        void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1568        void *ex_resp_arg;
1569        struct fc_frame_header *fh;
1570        struct fc_ba_acc *ap;
1571        struct fc_seq *sp;
1572        u16 low;
1573        u16 high;
1574        int rc = 1, has_rec = 0;
1575
1576        fh = fc_frame_header_get(fp);
1577        FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1578                    fc_exch_rctl_name(fh->fh_r_ctl));
1579
1580        if (cancel_delayed_work_sync(&ep->timeout_work)) {
1581                FC_EXCH_DBG(ep, "Exchange timer canceled\n");
1582                fc_exch_release(ep);    /* release from pending timer hold */
1583        }
1584
1585        spin_lock_bh(&ep->ex_lock);
1586        switch (fh->fh_r_ctl) {
1587        case FC_RCTL_BA_ACC:
1588                ap = fc_frame_payload_get(fp, sizeof(*ap));
1589                if (!ap)
1590                        break;
1591
1592                /*
1593                 * Decide whether to establish a Recovery Qualifier.
1594                 * We do this if there is a non-empty SEQ_CNT range and
1595                 * SEQ_ID is the same as the one we aborted.
1596                 */
1597                low = ntohs(ap->ba_low_seq_cnt);
1598                high = ntohs(ap->ba_high_seq_cnt);
1599                if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1600                    (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1601                     ap->ba_seq_id == ep->seq_id) && low != high) {
1602                        ep->esb_stat |= ESB_ST_REC_QUAL;
1603                        fc_exch_hold(ep);  /* hold for recovery qualifier */
1604                        has_rec = 1;
1605                }
1606                break;
1607        case FC_RCTL_BA_RJT:
1608                break;
1609        default:
1610                break;
1611        }
1612
1613        resp = ep->resp;
1614        ex_resp_arg = ep->arg;
1615
1616        /* do we need to do some other checks here. Can we reuse more of
1617         * fc_exch_recv_seq_resp
1618         */
1619        sp = &ep->seq;
1620        /*
1621         * do we want to check END_SEQ as well as LAST_SEQ here?
1622         */
1623        if (ep->fh_type != FC_TYPE_FCP &&
1624            ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1625                rc = fc_exch_done_locked(ep);
1626        spin_unlock_bh(&ep->ex_lock);
1627        if (!rc)
1628                fc_exch_delete(ep);
1629
1630        if (resp)
1631                resp(sp, fp, ex_resp_arg);
1632        else
1633                fc_frame_free(fp);
1634
1635        if (has_rec)
1636                fc_exch_timer_set(ep, ep->r_a_tov);
1637
1638}
1639
1640/**
1641 * fc_exch_recv_bls() - Handler for a BLS sequence
1642 * @mp: The EM that the exchange is on
1643 * @fp: The request frame
1644 *
1645 * The BLS frame is always a sequence initiated by the remote side.
1646 * We may be either the originator or recipient of the exchange.
1647 */
1648static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1649{
1650        struct fc_frame_header *fh;
1651        struct fc_exch *ep;
1652        u32 f_ctl;
1653
1654        fh = fc_frame_header_get(fp);
1655        f_ctl = ntoh24(fh->fh_f_ctl);
1656        fr_seq(fp) = NULL;
1657
1658        ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1659                          ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1660        if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1661                spin_lock_bh(&ep->ex_lock);
1662                ep->esb_stat |= ESB_ST_SEQ_INIT;
1663                spin_unlock_bh(&ep->ex_lock);
1664        }
1665        if (f_ctl & FC_FC_SEQ_CTX) {
1666                /*
1667                 * A response to a sequence we initiated.
1668                 * This should only be ACKs for class 2 or F.
1669                 */
1670                switch (fh->fh_r_ctl) {
1671                case FC_RCTL_ACK_1:
1672                case FC_RCTL_ACK_0:
1673                        break;
1674                default:
1675                        if (ep)
1676                                FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1677                                            fh->fh_r_ctl,
1678                                            fc_exch_rctl_name(fh->fh_r_ctl));
1679                        break;
1680                }
1681                fc_frame_free(fp);
1682        } else {
1683                switch (fh->fh_r_ctl) {
1684                case FC_RCTL_BA_RJT:
1685                case FC_RCTL_BA_ACC:
1686                        if (ep)
1687                                fc_exch_abts_resp(ep, fp);
1688                        else
1689                                fc_frame_free(fp);
1690                        break;
1691                case FC_RCTL_BA_ABTS:
1692                        fc_exch_recv_abts(ep, fp);
1693                        break;
1694                default:                        /* ignore junk */
1695                        fc_frame_free(fp);
1696                        break;
1697                }
1698        }
1699        if (ep)
1700                fc_exch_release(ep);    /* release hold taken by fc_exch_find */
1701}
1702
1703/**
1704 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1705 * @rx_fp: The received frame, not freed here.
1706 *
1707 * If this fails due to allocation or transmit congestion, assume the
1708 * originator will repeat the sequence.
1709 */
1710static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1711{
1712        struct fc_lport *lport;
1713        struct fc_els_ls_acc *acc;
1714        struct fc_frame *fp;
1715
1716        lport = fr_dev(rx_fp);
1717        fp = fc_frame_alloc(lport, sizeof(*acc));
1718        if (!fp)
1719                return;
1720        acc = fc_frame_payload_get(fp, sizeof(*acc));
1721        memset(acc, 0, sizeof(*acc));
1722        acc->la_cmd = ELS_LS_ACC;
1723        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1724        lport->tt.frame_send(lport, fp);
1725}
1726
1727/**
1728 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1729 * @rx_fp: The received frame, not freed here.
1730 * @reason: The reason the sequence is being rejected
1731 * @explan: The explanation for the rejection
1732 *
1733 * If this fails due to allocation or transmit congestion, assume the
1734 * originator will repeat the sequence.
1735 */
1736static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1737                          enum fc_els_rjt_explan explan)
1738{
1739        struct fc_lport *lport;
1740        struct fc_els_ls_rjt *rjt;
1741        struct fc_frame *fp;
1742
1743        lport = fr_dev(rx_fp);
1744        fp = fc_frame_alloc(lport, sizeof(*rjt));
1745        if (!fp)
1746                return;
1747        rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1748        memset(rjt, 0, sizeof(*rjt));
1749        rjt->er_cmd = ELS_LS_RJT;
1750        rjt->er_reason = reason;
1751        rjt->er_explan = explan;
1752        fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1753        lport->tt.frame_send(lport, fp);
1754}
1755
1756/**
1757 * fc_exch_reset() - Reset an exchange
1758 * @ep: The exchange to be reset
1759 */
1760static void fc_exch_reset(struct fc_exch *ep)
1761{
1762        struct fc_seq *sp;
1763        void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1764        void *arg;
1765        int rc = 1;
1766
1767        spin_lock_bh(&ep->ex_lock);
1768        fc_exch_abort_locked(ep, 0);
1769        ep->state |= FC_EX_RST_CLEANUP;
1770        fc_exch_timer_cancel(ep);
1771        resp = ep->resp;
1772        ep->resp = NULL;
1773        if (ep->esb_stat & ESB_ST_REC_QUAL)
1774                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec_qual */
1775        ep->esb_stat &= ~ESB_ST_REC_QUAL;
1776        arg = ep->arg;
1777        sp = &ep->seq;
1778        rc = fc_exch_done_locked(ep);
1779        spin_unlock_bh(&ep->ex_lock);
1780        if (!rc)
1781                fc_exch_delete(ep);
1782
1783        if (resp)
1784                resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1785}
1786
1787/**
1788 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1789 * @lport: The local port that the exchange pool is on
1790 * @pool:  The exchange pool to be reset
1791 * @sid:   The source ID
1792 * @did:   The destination ID
1793 *
1794 * Resets a per cpu exches pool, releasing all of its sequences
1795 * and exchanges. If sid is non-zero then reset only exchanges
1796 * we sourced from the local port's FID. If did is non-zero then
1797 * only reset exchanges destined for the local port's FID.
1798 */
1799static void fc_exch_pool_reset(struct fc_lport *lport,
1800                               struct fc_exch_pool *pool,
1801                               u32 sid, u32 did)
1802{
1803        struct fc_exch *ep;
1804        struct fc_exch *next;
1805
1806        spin_lock_bh(&pool->lock);
1807restart:
1808        list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1809                if ((lport == ep->lp) &&
1810                    (sid == 0 || sid == ep->sid) &&
1811                    (did == 0 || did == ep->did)) {
1812                        fc_exch_hold(ep);
1813                        spin_unlock_bh(&pool->lock);
1814
1815                        fc_exch_reset(ep);
1816
1817                        fc_exch_release(ep);
1818                        spin_lock_bh(&pool->lock);
1819
1820                        /*
1821                         * must restart loop incase while lock
1822                         * was down multiple eps were released.
1823                         */
1824                        goto restart;
1825                }
1826        }
1827        pool->next_index = 0;
1828        pool->left = FC_XID_UNKNOWN;
1829        pool->right = FC_XID_UNKNOWN;
1830        spin_unlock_bh(&pool->lock);
1831}
1832
1833/**
1834 * fc_exch_mgr_reset() - Reset all EMs of a local port
1835 * @lport: The local port whose EMs are to be reset
1836 * @sid:   The source ID
1837 * @did:   The destination ID
1838 *
1839 * Reset all EMs associated with a given local port. Release all
1840 * sequences and exchanges. If sid is non-zero then reset only the
1841 * exchanges sent from the local port's FID. If did is non-zero then
1842 * reset only exchanges destined for the local port's FID.
1843 */
1844void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1845{
1846        struct fc_exch_mgr_anchor *ema;
1847        unsigned int cpu;
1848
1849        list_for_each_entry(ema, &lport->ema_list, ema_list) {
1850                for_each_possible_cpu(cpu)
1851                        fc_exch_pool_reset(lport,
1852                                           per_cpu_ptr(ema->mp->pool, cpu),
1853                                           sid, did);
1854        }
1855}
1856EXPORT_SYMBOL(fc_exch_mgr_reset);
1857
1858/**
1859 * fc_exch_lookup() - find an exchange
1860 * @lport: The local port
1861 * @xid: The exchange ID
1862 *
1863 * Returns exchange pointer with hold for caller, or NULL if not found.
1864 */
1865static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1866{
1867        struct fc_exch_mgr_anchor *ema;
1868
1869        list_for_each_entry(ema, &lport->ema_list, ema_list)
1870                if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1871                        return fc_exch_find(ema->mp, xid);
1872        return NULL;
1873}
1874
1875/**
1876 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1877 * @rfp: The REC frame, not freed here.
1878 *
1879 * Note that the requesting port may be different than the S_ID in the request.
1880 */
1881static void fc_exch_els_rec(struct fc_frame *rfp)
1882{
1883        struct fc_lport *lport;
1884        struct fc_frame *fp;
1885        struct fc_exch *ep;
1886        struct fc_els_rec *rp;
1887        struct fc_els_rec_acc *acc;
1888        enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1889        enum fc_els_rjt_explan explan;
1890        u32 sid;
1891        u16 rxid;
1892        u16 oxid;
1893
1894        lport = fr_dev(rfp);
1895        rp = fc_frame_payload_get(rfp, sizeof(*rp));
1896        explan = ELS_EXPL_INV_LEN;
1897        if (!rp)
1898                goto reject;
1899        sid = ntoh24(rp->rec_s_id);
1900        rxid = ntohs(rp->rec_rx_id);
1901        oxid = ntohs(rp->rec_ox_id);
1902
1903        ep = fc_exch_lookup(lport,
1904                            sid == fc_host_port_id(lport->host) ? oxid : rxid);
1905        explan = ELS_EXPL_OXID_RXID;
1906        if (!ep)
1907                goto reject;
1908        if (ep->oid != sid || oxid != ep->oxid)
1909                goto rel;
1910        if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1911                goto rel;
1912        fp = fc_frame_alloc(lport, sizeof(*acc));
1913        if (!fp)
1914                goto out;
1915
1916        acc = fc_frame_payload_get(fp, sizeof(*acc));
1917        memset(acc, 0, sizeof(*acc));
1918        acc->reca_cmd = ELS_LS_ACC;
1919        acc->reca_ox_id = rp->rec_ox_id;
1920        memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1921        acc->reca_rx_id = htons(ep->rxid);
1922        if (ep->sid == ep->oid)
1923                hton24(acc->reca_rfid, ep->did);
1924        else
1925                hton24(acc->reca_rfid, ep->sid);
1926        acc->reca_fc4value = htonl(ep->seq.rec_data);
1927        acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1928                                                 ESB_ST_SEQ_INIT |
1929                                                 ESB_ST_COMPLETE));
1930        fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1931        lport->tt.frame_send(lport, fp);
1932out:
1933        fc_exch_release(ep);
1934        return;
1935
1936rel:
1937        fc_exch_release(ep);
1938reject:
1939        fc_seq_ls_rjt(rfp, reason, explan);
1940}
1941
1942/**
1943 * fc_exch_rrq_resp() - Handler for RRQ responses
1944 * @sp:  The sequence that the RRQ is on
1945 * @fp:  The RRQ frame
1946 * @arg: The exchange that the RRQ is on
1947 *
1948 * TODO: fix error handler.
1949 */
1950static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1951{
1952        struct fc_exch *aborted_ep = arg;
1953        unsigned int op;
1954
1955        if (IS_ERR(fp)) {
1956                int err = PTR_ERR(fp);
1957
1958                if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1959                        goto cleanup;
1960                FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1961                            "frame error %d\n", err);
1962                return;
1963        }
1964
1965        op = fc_frame_payload_op(fp);
1966        fc_frame_free(fp);
1967
1968        switch (op) {
1969        case ELS_LS_RJT:
1970                FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1971                /* fall through */
1972        case ELS_LS_ACC:
1973                goto cleanup;
1974        default:
1975                FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1976                            "for RRQ", op);
1977                return;
1978        }
1979
1980cleanup:
1981        fc_exch_done(&aborted_ep->seq);
1982        /* drop hold for rec qual */
1983        fc_exch_release(aborted_ep);
1984}
1985
1986
1987/**
1988 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1989 * @lport:      The local port to send the frame on
1990 * @fp:         The frame to be sent
1991 * @resp:       The response handler for this request
1992 * @destructor: The destructor for the exchange
1993 * @arg:        The argument to be passed to the response handler
1994 * @timer_msec: The timeout period for the exchange
1995 *
1996 * The frame pointer with some of the header's fields must be
1997 * filled before calling this routine, those fields are:
1998 *
1999 * - routing control
2000 * - FC port did
2001 * - FC port sid
2002 * - FC header type
2003 * - frame control
2004 * - parameter or relative offset
2005 */
2006static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2007                                       struct fc_frame *fp,
2008                                       void (*resp)(struct fc_seq *,
2009                                                    struct fc_frame *fp,
2010                                                    void *arg),
2011                                       void (*destructor)(struct fc_seq *,
2012                                                          void *),
2013                                       void *arg, u32 timer_msec)
2014{
2015        struct fc_exch *ep;
2016        struct fc_seq *sp = NULL;
2017        struct fc_frame_header *fh;
2018        struct fc_fcp_pkt *fsp = NULL;
2019        int rc = 1;
2020
2021        ep = fc_exch_alloc(lport, fp);
2022        if (!ep) {
2023                fc_frame_free(fp);
2024                return NULL;
2025        }
2026        ep->esb_stat |= ESB_ST_SEQ_INIT;
2027        fh = fc_frame_header_get(fp);
2028        fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2029        ep->resp = resp;
2030        ep->destructor = destructor;
2031        ep->arg = arg;
2032        ep->r_a_tov = FC_DEF_R_A_TOV;
2033        ep->lp = lport;
2034        sp = &ep->seq;
2035
2036        ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2037        ep->f_ctl = ntoh24(fh->fh_f_ctl);
2038        fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2039        sp->cnt++;
2040
2041        if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2042                fsp = fr_fsp(fp);
2043                fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2044        }
2045
2046        if (unlikely(lport->tt.frame_send(lport, fp)))
2047                goto err;
2048
2049        if (timer_msec)
2050                fc_exch_timer_set_locked(ep, timer_msec);
2051        ep->f_ctl &= ~FC_FC_FIRST_SEQ;  /* not first seq */
2052
2053        if (ep->f_ctl & FC_FC_SEQ_INIT)
2054                ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2055        spin_unlock_bh(&ep->ex_lock);
2056        return sp;
2057err:
2058        if (fsp)
2059                fc_fcp_ddp_done(fsp);
2060        rc = fc_exch_done_locked(ep);
2061        spin_unlock_bh(&ep->ex_lock);
2062        if (!rc)
2063                fc_exch_delete(ep);
2064        return NULL;
2065}
2066
2067/**
2068 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2069 * @ep: The exchange to send the RRQ on
2070 *
2071 * This tells the remote port to stop blocking the use of
2072 * the exchange and the seq_cnt range.
2073 */
2074static void fc_exch_rrq(struct fc_exch *ep)
2075{
2076        struct fc_lport *lport;
2077        struct fc_els_rrq *rrq;
2078        struct fc_frame *fp;
2079        u32 did;
2080
2081        lport = ep->lp;
2082
2083        fp = fc_frame_alloc(lport, sizeof(*rrq));
2084        if (!fp)
2085                goto retry;
2086
2087        rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2088        memset(rrq, 0, sizeof(*rrq));
2089        rrq->rrq_cmd = ELS_RRQ;
2090        hton24(rrq->rrq_s_id, ep->sid);
2091        rrq->rrq_ox_id = htons(ep->oxid);
2092        rrq->rrq_rx_id = htons(ep->rxid);
2093
2094        did = ep->did;
2095        if (ep->esb_stat & ESB_ST_RESP)
2096                did = ep->sid;
2097
2098        fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2099                       lport->port_id, FC_TYPE_ELS,
2100                       FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2101
2102        if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2103                             lport->e_d_tov))
2104                return;
2105
2106retry:
2107        spin_lock_bh(&ep->ex_lock);
2108        if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2109                spin_unlock_bh(&ep->ex_lock);
2110                /* drop hold for rec qual */
2111                fc_exch_release(ep);
2112                return;
2113        }
2114        ep->esb_stat |= ESB_ST_REC_QUAL;
2115        fc_exch_timer_set_locked(ep, ep->r_a_tov);
2116        spin_unlock_bh(&ep->ex_lock);
2117}
2118
2119/**
2120 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2121 * @fp: The RRQ frame, not freed here.
2122 */
2123static void fc_exch_els_rrq(struct fc_frame *fp)
2124{
2125        struct fc_lport *lport;
2126        struct fc_exch *ep = NULL;      /* request or subject exchange */
2127        struct fc_els_rrq *rp;
2128        u32 sid;
2129        u16 xid;
2130        enum fc_els_rjt_explan explan;
2131
2132        lport = fr_dev(fp);
2133        rp = fc_frame_payload_get(fp, sizeof(*rp));
2134        explan = ELS_EXPL_INV_LEN;
2135        if (!rp)
2136                goto reject;
2137
2138        /*
2139         * lookup subject exchange.
2140         */
2141        sid = ntoh24(rp->rrq_s_id);             /* subject source */
2142        xid = fc_host_port_id(lport->host) == sid ?
2143                        ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2144        ep = fc_exch_lookup(lport, xid);
2145        explan = ELS_EXPL_OXID_RXID;
2146        if (!ep)
2147                goto reject;
2148        spin_lock_bh(&ep->ex_lock);
2149        if (ep->oxid != ntohs(rp->rrq_ox_id))
2150                goto unlock_reject;
2151        if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2152            ep->rxid != FC_XID_UNKNOWN)
2153                goto unlock_reject;
2154        explan = ELS_EXPL_SID;
2155        if (ep->sid != sid)
2156                goto unlock_reject;
2157
2158        /*
2159         * Clear Recovery Qualifier state, and cancel timer if complete.
2160         */
2161        if (ep->esb_stat & ESB_ST_REC_QUAL) {
2162                ep->esb_stat &= ~ESB_ST_REC_QUAL;
2163                atomic_dec(&ep->ex_refcnt);     /* drop hold for rec qual */
2164        }
2165        if (ep->esb_stat & ESB_ST_COMPLETE)
2166                fc_exch_timer_cancel(ep);
2167
2168        spin_unlock_bh(&ep->ex_lock);
2169
2170        /*
2171         * Send LS_ACC.
2172         */
2173        fc_seq_ls_acc(fp);
2174        goto out;
2175
2176unlock_reject:
2177        spin_unlock_bh(&ep->ex_lock);
2178reject:
2179        fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2180out:
2181        if (ep)
2182                fc_exch_release(ep);    /* drop hold from fc_exch_find */
2183}
2184
2185/**
2186 * fc_exch_update_stats() - update exches stats to lport
2187 * @lport: The local port to update exchange manager stats
2188 */
2189void fc_exch_update_stats(struct fc_lport *lport)
2190{
2191        struct fc_host_statistics *st;
2192        struct fc_exch_mgr_anchor *ema;
2193        struct fc_exch_mgr *mp;
2194
2195        st = &lport->host_stats;
2196
2197        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2198                mp = ema->mp;
2199                st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2200                st->fc_no_free_exch_xid +=
2201                                atomic_read(&mp->stats.no_free_exch_xid);
2202                st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2203                st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2204                st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2205                st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2206        }
2207}
2208EXPORT_SYMBOL(fc_exch_update_stats);
2209
2210/**
2211 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2212 * @lport: The local port to add the exchange manager to
2213 * @mp:    The exchange manager to be added to the local port
2214 * @match: The match routine that indicates when this EM should be used
2215 */
2216struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2217                                           struct fc_exch_mgr *mp,
2218                                           bool (*match)(struct fc_frame *))
2219{
2220        struct fc_exch_mgr_anchor *ema;
2221
2222        ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2223        if (!ema)
2224                return ema;
2225
2226        ema->mp = mp;
2227        ema->match = match;
2228        /* add EM anchor to EM anchors list */
2229        list_add_tail(&ema->ema_list, &lport->ema_list);
2230        kref_get(&mp->kref);
2231        return ema;
2232}
2233EXPORT_SYMBOL(fc_exch_mgr_add);
2234
2235/**
2236 * fc_exch_mgr_destroy() - Destroy an exchange manager
2237 * @kref: The reference to the EM to be destroyed
2238 */
2239static void fc_exch_mgr_destroy(struct kref *kref)
2240{
2241        struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2242
2243        mempool_destroy(mp->ep_pool);
2244        free_percpu(mp->pool);
2245        kfree(mp);
2246}
2247
2248/**
2249 * fc_exch_mgr_del() - Delete an EM from a local port's list
2250 * @ema: The exchange manager anchor identifying the EM to be deleted
2251 */
2252void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2253{
2254        /* remove EM anchor from EM anchors list */
2255        list_del(&ema->ema_list);
2256        kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2257        kfree(ema);
2258}
2259EXPORT_SYMBOL(fc_exch_mgr_del);
2260
2261/**
2262 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2263 * @src: Source lport to clone exchange managers from
2264 * @dst: New lport that takes references to all the exchange managers
2265 */
2266int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2267{
2268        struct fc_exch_mgr_anchor *ema, *tmp;
2269
2270        list_for_each_entry(ema, &src->ema_list, ema_list) {
2271                if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2272                        goto err;
2273        }
2274        return 0;
2275err:
2276        list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2277                fc_exch_mgr_del(ema);
2278        return -ENOMEM;
2279}
2280EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2281
2282/**
2283 * fc_exch_mgr_alloc() - Allocate an exchange manager
2284 * @lport:   The local port that the new EM will be associated with
2285 * @class:   The default FC class for new exchanges
2286 * @min_xid: The minimum XID for exchanges from the new EM
2287 * @max_xid: The maximum XID for exchanges from the new EM
2288 * @match:   The match routine for the new EM
2289 */
2290struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2291                                      enum fc_class class,
2292                                      u16 min_xid, u16 max_xid,
2293                                      bool (*match)(struct fc_frame *))
2294{
2295        struct fc_exch_mgr *mp;
2296        u16 pool_exch_range;
2297        size_t pool_size;
2298        unsigned int cpu;
2299        struct fc_exch_pool *pool;
2300
2301        if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2302            (min_xid & fc_cpu_mask) != 0) {
2303                FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2304                             min_xid, max_xid);
2305                return NULL;
2306        }
2307
2308        /*
2309         * allocate memory for EM
2310         */
2311        mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2312        if (!mp)
2313                return NULL;
2314
2315        mp->class = class;
2316        /* adjust em exch xid range for offload */
2317        mp->min_xid = min_xid;
2318
2319       /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2320        pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2321                sizeof(struct fc_exch *);
2322        if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2323                mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2324                        min_xid - 1;
2325        } else {
2326                mp->max_xid = max_xid;
2327                pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2328                        (fc_cpu_mask + 1);
2329        }
2330
2331        mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2332        if (!mp->ep_pool)
2333                goto free_mp;
2334
2335        /*
2336         * Setup per cpu exch pool with entire exchange id range equally
2337         * divided across all cpus. The exch pointers array memory is
2338         * allocated for exch range per pool.
2339         */
2340        mp->pool_max_index = pool_exch_range - 1;
2341
2342        /*
2343         * Allocate and initialize per cpu exch pool
2344         */
2345        pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2346        mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2347        if (!mp->pool)
2348                goto free_mempool;
2349        for_each_possible_cpu(cpu) {
2350                pool = per_cpu_ptr(mp->pool, cpu);
2351                pool->next_index = 0;
2352                pool->left = FC_XID_UNKNOWN;
2353                pool->right = FC_XID_UNKNOWN;
2354                spin_lock_init(&pool->lock);
2355                INIT_LIST_HEAD(&pool->ex_list);
2356        }
2357
2358        kref_init(&mp->kref);
2359        if (!fc_exch_mgr_add(lport, mp, match)) {
2360                free_percpu(mp->pool);
2361                goto free_mempool;
2362        }
2363
2364        /*
2365         * Above kref_init() sets mp->kref to 1 and then
2366         * call to fc_exch_mgr_add incremented mp->kref again,
2367         * so adjust that extra increment.
2368         */
2369        kref_put(&mp->kref, fc_exch_mgr_destroy);
2370        return mp;
2371
2372free_mempool:
2373        mempool_destroy(mp->ep_pool);
2374free_mp:
2375        kfree(mp);
2376        return NULL;
2377}
2378EXPORT_SYMBOL(fc_exch_mgr_alloc);
2379
2380/**
2381 * fc_exch_mgr_free() - Free all exchange managers on a local port
2382 * @lport: The local port whose EMs are to be freed
2383 */
2384void fc_exch_mgr_free(struct fc_lport *lport)
2385{
2386        struct fc_exch_mgr_anchor *ema, *next;
2387
2388        flush_workqueue(fc_exch_workqueue);
2389        list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2390                fc_exch_mgr_del(ema);
2391}
2392EXPORT_SYMBOL(fc_exch_mgr_free);
2393
2394/**
2395 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2396 * upon 'xid'.
2397 * @f_ctl: f_ctl
2398 * @lport: The local port the frame was received on
2399 * @fh: The received frame header
2400 */
2401static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2402                                              struct fc_lport *lport,
2403                                              struct fc_frame_header *fh)
2404{
2405        struct fc_exch_mgr_anchor *ema;
2406        u16 xid;
2407
2408        if (f_ctl & FC_FC_EX_CTX)
2409                xid = ntohs(fh->fh_ox_id);
2410        else {
2411                xid = ntohs(fh->fh_rx_id);
2412                if (xid == FC_XID_UNKNOWN)
2413                        return list_entry(lport->ema_list.prev,
2414                                          typeof(*ema), ema_list);
2415        }
2416
2417        list_for_each_entry(ema, &lport->ema_list, ema_list) {
2418                if ((xid >= ema->mp->min_xid) &&
2419                    (xid <= ema->mp->max_xid))
2420                        return ema;
2421        }
2422        return NULL;
2423}
2424/**
2425 * fc_exch_recv() - Handler for received frames
2426 * @lport: The local port the frame was received on
2427 * @fp: The received frame
2428 */
2429void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2430{
2431        struct fc_frame_header *fh = fc_frame_header_get(fp);
2432        struct fc_exch_mgr_anchor *ema;
2433        u32 f_ctl;
2434
2435        /* lport lock ? */
2436        if (!lport || lport->state == LPORT_ST_DISABLED) {
2437                FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2438                             "has not been initialized correctly\n");
2439                fc_frame_free(fp);
2440                return;
2441        }
2442
2443        f_ctl = ntoh24(fh->fh_f_ctl);
2444        ema = fc_find_ema(f_ctl, lport, fh);
2445        if (!ema) {
2446                FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2447                                    "fc_ctl <0x%x>, xid <0x%x>\n",
2448                                     f_ctl,
2449                                     (f_ctl & FC_FC_EX_CTX) ?
2450                                     ntohs(fh->fh_ox_id) :
2451                                     ntohs(fh->fh_rx_id));
2452                fc_frame_free(fp);
2453                return;
2454        }
2455
2456        /*
2457         * If frame is marked invalid, just drop it.
2458         */
2459        switch (fr_eof(fp)) {
2460        case FC_EOF_T:
2461                if (f_ctl & FC_FC_END_SEQ)
2462                        skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2463                /* fall through */
2464        case FC_EOF_N:
2465                if (fh->fh_type == FC_TYPE_BLS)
2466                        fc_exch_recv_bls(ema->mp, fp);
2467                else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2468                         FC_FC_EX_CTX)
2469                        fc_exch_recv_seq_resp(ema->mp, fp);
2470                else if (f_ctl & FC_FC_SEQ_CTX)
2471                        fc_exch_recv_resp(ema->mp, fp);
2472                else    /* no EX_CTX and no SEQ_CTX */
2473                        fc_exch_recv_req(lport, ema->mp, fp);
2474                break;
2475        default:
2476                FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2477                             fr_eof(fp));
2478                fc_frame_free(fp);
2479        }
2480}
2481EXPORT_SYMBOL(fc_exch_recv);
2482
2483/**
2484 * fc_exch_init() - Initialize the exchange layer for a local port
2485 * @lport: The local port to initialize the exchange layer for
2486 */
2487int fc_exch_init(struct fc_lport *lport)
2488{
2489        if (!lport->tt.seq_start_next)
2490                lport->tt.seq_start_next = fc_seq_start_next;
2491
2492        if (!lport->tt.seq_set_resp)
2493                lport->tt.seq_set_resp = fc_seq_set_resp;
2494
2495        if (!lport->tt.exch_seq_send)
2496                lport->tt.exch_seq_send = fc_exch_seq_send;
2497
2498        if (!lport->tt.seq_send)
2499                lport->tt.seq_send = fc_seq_send;
2500
2501        if (!lport->tt.seq_els_rsp_send)
2502                lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2503
2504        if (!lport->tt.exch_done)
2505                lport->tt.exch_done = fc_exch_done;
2506
2507        if (!lport->tt.exch_mgr_reset)
2508                lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2509
2510        if (!lport->tt.seq_exch_abort)
2511                lport->tt.seq_exch_abort = fc_seq_exch_abort;
2512
2513        if (!lport->tt.seq_assign)
2514                lport->tt.seq_assign = fc_seq_assign;
2515
2516        if (!lport->tt.seq_release)
2517                lport->tt.seq_release = fc_seq_release;
2518
2519        return 0;
2520}
2521EXPORT_SYMBOL(fc_exch_init);
2522
2523/**
2524 * fc_setup_exch_mgr() - Setup an exchange manager
2525 */
2526int fc_setup_exch_mgr(void)
2527{
2528        fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2529                                         0, SLAB_HWCACHE_ALIGN, NULL);
2530        if (!fc_em_cachep)
2531                return -ENOMEM;
2532
2533        /*
2534         * Initialize fc_cpu_mask and fc_cpu_order. The
2535         * fc_cpu_mask is set for nr_cpu_ids rounded up
2536         * to order of 2's * power and order is stored
2537         * in fc_cpu_order as this is later required in
2538         * mapping between an exch id and exch array index
2539         * in per cpu exch pool.
2540         *
2541         * This round up is required to align fc_cpu_mask
2542         * to exchange id's lower bits such that all incoming
2543         * frames of an exchange gets delivered to the same
2544         * cpu on which exchange originated by simple bitwise
2545         * AND operation between fc_cpu_mask and exchange id.
2546         */
2547        fc_cpu_mask = 1;
2548        fc_cpu_order = 0;
2549        while (fc_cpu_mask < nr_cpu_ids) {
2550                fc_cpu_mask <<= 1;
2551                fc_cpu_order++;
2552        }
2553        fc_cpu_mask--;
2554
2555        fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2556        if (!fc_exch_workqueue)
2557                goto err;
2558        return 0;
2559err:
2560        kmem_cache_destroy(fc_em_cachep);
2561        return -ENOMEM;
2562}
2563
2564/**
2565 * fc_destroy_exch_mgr() - Destroy an exchange manager
2566 */
2567void fc_destroy_exch_mgr(void)
2568{
2569        destroy_workqueue(fc_exch_workqueue);
2570        kmem_cache_destroy(fc_em_cachep);
2571}
2572