linux/fs/xfs/xfs_mount.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
  20#include "xfs_shared.h"
  21#include "xfs_format.h"
  22#include "xfs_log_format.h"
  23#include "xfs_trans_resv.h"
  24#include "xfs_bit.h"
  25#include "xfs_sb.h"
  26#include "xfs_mount.h"
  27#include "xfs_defer.h"
  28#include "xfs_da_format.h"
  29#include "xfs_da_btree.h"
  30#include "xfs_inode.h"
  31#include "xfs_dir2.h"
  32#include "xfs_ialloc.h"
  33#include "xfs_alloc.h"
  34#include "xfs_rtalloc.h"
  35#include "xfs_bmap.h"
  36#include "xfs_trans.h"
  37#include "xfs_trans_priv.h"
  38#include "xfs_log.h"
  39#include "xfs_error.h"
  40#include "xfs_quota.h"
  41#include "xfs_fsops.h"
  42#include "xfs_trace.h"
  43#include "xfs_icache.h"
  44#include "xfs_sysfs.h"
  45#include "xfs_extent_busy.h"
  46
  47
  48static DEFINE_MUTEX(xfs_uuid_table_mutex);
  49static int xfs_uuid_table_size;
  50static uuid_t *xfs_uuid_table;
  51
  52void
  53xfs_uuid_table_free(void)
  54{
  55        if (xfs_uuid_table_size == 0)
  56                return;
  57        kmem_free(xfs_uuid_table);
  58        xfs_uuid_table = NULL;
  59        xfs_uuid_table_size = 0;
  60}
  61
  62/*
  63 * See if the UUID is unique among mounted XFS filesystems.
  64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
  65 */
  66STATIC int
  67xfs_uuid_mount(
  68        struct xfs_mount        *mp)
  69{
  70        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
  71        int                     hole, i;
  72
  73        /* Publish UUID in struct super_block */
  74        BUILD_BUG_ON(sizeof(mp->m_super->s_uuid) != sizeof(uuid_t));
  75        memcpy(&mp->m_super->s_uuid, uuid, sizeof(uuid_t));
  76
  77        if (mp->m_flags & XFS_MOUNT_NOUUID)
  78                return 0;
  79
  80        if (uuid_is_null(uuid)) {
  81                xfs_warn(mp, "Filesystem has null UUID - can't mount");
  82                return -EINVAL;
  83        }
  84
  85        mutex_lock(&xfs_uuid_table_mutex);
  86        for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
  87                if (uuid_is_null(&xfs_uuid_table[i])) {
  88                        hole = i;
  89                        continue;
  90                }
  91                if (uuid_equal(uuid, &xfs_uuid_table[i]))
  92                        goto out_duplicate;
  93        }
  94
  95        if (hole < 0) {
  96                xfs_uuid_table = kmem_realloc(xfs_uuid_table,
  97                        (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
  98                        KM_SLEEP);
  99                hole = xfs_uuid_table_size++;
 100        }
 101        xfs_uuid_table[hole] = *uuid;
 102        mutex_unlock(&xfs_uuid_table_mutex);
 103
 104        return 0;
 105
 106 out_duplicate:
 107        mutex_unlock(&xfs_uuid_table_mutex);
 108        xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
 109        return -EINVAL;
 110}
 111
 112STATIC void
 113xfs_uuid_unmount(
 114        struct xfs_mount        *mp)
 115{
 116        uuid_t                  *uuid = &mp->m_sb.sb_uuid;
 117        int                     i;
 118
 119        if (mp->m_flags & XFS_MOUNT_NOUUID)
 120                return;
 121
 122        mutex_lock(&xfs_uuid_table_mutex);
 123        for (i = 0; i < xfs_uuid_table_size; i++) {
 124                if (uuid_is_null(&xfs_uuid_table[i]))
 125                        continue;
 126                if (!uuid_equal(uuid, &xfs_uuid_table[i]))
 127                        continue;
 128                memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
 129                break;
 130        }
 131        ASSERT(i < xfs_uuid_table_size);
 132        mutex_unlock(&xfs_uuid_table_mutex);
 133}
 134
 135
 136STATIC void
 137__xfs_free_perag(
 138        struct rcu_head *head)
 139{
 140        struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
 141
 142        ASSERT(atomic_read(&pag->pag_ref) == 0);
 143        kmem_free(pag);
 144}
 145
 146/*
 147 * Free up the per-ag resources associated with the mount structure.
 148 */
 149STATIC void
 150xfs_free_perag(
 151        xfs_mount_t     *mp)
 152{
 153        xfs_agnumber_t  agno;
 154        struct xfs_perag *pag;
 155
 156        for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
 157                spin_lock(&mp->m_perag_lock);
 158                pag = radix_tree_delete(&mp->m_perag_tree, agno);
 159                spin_unlock(&mp->m_perag_lock);
 160                ASSERT(pag);
 161                ASSERT(atomic_read(&pag->pag_ref) == 0);
 162                mutex_destroy(&pag->pag_ici_reclaim_lock);
 163                call_rcu(&pag->rcu_head, __xfs_free_perag);
 164        }
 165}
 166
 167/*
 168 * Check size of device based on the (data/realtime) block count.
 169 * Note: this check is used by the growfs code as well as mount.
 170 */
 171int
 172xfs_sb_validate_fsb_count(
 173        xfs_sb_t        *sbp,
 174        uint64_t        nblocks)
 175{
 176        ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
 177        ASSERT(sbp->sb_blocklog >= BBSHIFT);
 178
 179        /* Limited by ULONG_MAX of page cache index */
 180        if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
 181                return -EFBIG;
 182        return 0;
 183}
 184
 185int
 186xfs_initialize_perag(
 187        xfs_mount_t     *mp,
 188        xfs_agnumber_t  agcount,
 189        xfs_agnumber_t  *maxagi)
 190{
 191        xfs_agnumber_t  index;
 192        xfs_agnumber_t  first_initialised = NULLAGNUMBER;
 193        xfs_perag_t     *pag;
 194        int             error = -ENOMEM;
 195
 196        /*
 197         * Walk the current per-ag tree so we don't try to initialise AGs
 198         * that already exist (growfs case). Allocate and insert all the
 199         * AGs we don't find ready for initialisation.
 200         */
 201        for (index = 0; index < agcount; index++) {
 202                pag = xfs_perag_get(mp, index);
 203                if (pag) {
 204                        xfs_perag_put(pag);
 205                        continue;
 206                }
 207
 208                pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
 209                if (!pag)
 210                        goto out_unwind_new_pags;
 211                pag->pag_agno = index;
 212                pag->pag_mount = mp;
 213                spin_lock_init(&pag->pag_ici_lock);
 214                mutex_init(&pag->pag_ici_reclaim_lock);
 215                INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
 216
 217                init_waitqueue_head(&pag->pagb_wait);
 218                spin_lock_init(&pag->pag_buf_lock);
 219                pag->pag_buf_tree = RB_ROOT;
 220
 221                if (radix_tree_preload(GFP_NOFS))
 222                        goto out_free_pag;
 223
 224                spin_lock(&mp->m_perag_lock);
 225                if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
 226                        BUG();
 227                        spin_unlock(&mp->m_perag_lock);
 228                        radix_tree_preload_end();
 229                        error = -EEXIST;
 230                        goto out_free_pag;
 231                }
 232                spin_unlock(&mp->m_perag_lock);
 233                radix_tree_preload_end();
 234                /* first new pag is fully initialized */
 235                if (first_initialised == NULLAGNUMBER)
 236                        first_initialised = index;
 237        }
 238
 239        index = xfs_set_inode_alloc(mp, agcount);
 240
 241        if (maxagi)
 242                *maxagi = index;
 243        return 0;
 244
 245out_free_pag:
 246        mutex_destroy(&pag->pag_ici_reclaim_lock);
 247        kmem_free(pag);
 248out_unwind_new_pags:
 249        /* unwind any prior newly initialized pags */
 250        for (index = first_initialised; index < agcount; index++) {
 251                pag = radix_tree_delete(&mp->m_perag_tree, index);
 252                if (!pag)
 253                        break;
 254                mutex_destroy(&pag->pag_ici_reclaim_lock);
 255                kmem_free(pag);
 256        }
 257        return error;
 258}
 259
 260/*
 261 * xfs_readsb
 262 *
 263 * Does the initial read of the superblock.
 264 */
 265int
 266xfs_readsb(
 267        struct xfs_mount *mp,
 268        int             flags)
 269{
 270        unsigned int    sector_size;
 271        struct xfs_buf  *bp;
 272        struct xfs_sb   *sbp = &mp->m_sb;
 273        int             error;
 274        int             loud = !(flags & XFS_MFSI_QUIET);
 275        const struct xfs_buf_ops *buf_ops;
 276
 277        ASSERT(mp->m_sb_bp == NULL);
 278        ASSERT(mp->m_ddev_targp != NULL);
 279
 280        /*
 281         * For the initial read, we must guess at the sector
 282         * size based on the block device.  It's enough to
 283         * get the sb_sectsize out of the superblock and
 284         * then reread with the proper length.
 285         * We don't verify it yet, because it may not be complete.
 286         */
 287        sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
 288        buf_ops = NULL;
 289
 290        /*
 291         * Allocate a (locked) buffer to hold the superblock. This will be kept
 292         * around at all times to optimize access to the superblock. Therefore,
 293         * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
 294         * elevated.
 295         */
 296reread:
 297        error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
 298                                      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
 299                                      buf_ops);
 300        if (error) {
 301                if (loud)
 302                        xfs_warn(mp, "SB validate failed with error %d.", error);
 303                /* bad CRC means corrupted metadata */
 304                if (error == -EFSBADCRC)
 305                        error = -EFSCORRUPTED;
 306                return error;
 307        }
 308
 309        /*
 310         * Initialize the mount structure from the superblock.
 311         */
 312        xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
 313
 314        /*
 315         * If we haven't validated the superblock, do so now before we try
 316         * to check the sector size and reread the superblock appropriately.
 317         */
 318        if (sbp->sb_magicnum != XFS_SB_MAGIC) {
 319                if (loud)
 320                        xfs_warn(mp, "Invalid superblock magic number");
 321                error = -EINVAL;
 322                goto release_buf;
 323        }
 324
 325        /*
 326         * We must be able to do sector-sized and sector-aligned IO.
 327         */
 328        if (sector_size > sbp->sb_sectsize) {
 329                if (loud)
 330                        xfs_warn(mp, "device supports %u byte sectors (not %u)",
 331                                sector_size, sbp->sb_sectsize);
 332                error = -ENOSYS;
 333                goto release_buf;
 334        }
 335
 336        if (buf_ops == NULL) {
 337                /*
 338                 * Re-read the superblock so the buffer is correctly sized,
 339                 * and properly verified.
 340                 */
 341                xfs_buf_relse(bp);
 342                sector_size = sbp->sb_sectsize;
 343                buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
 344                goto reread;
 345        }
 346
 347        xfs_reinit_percpu_counters(mp);
 348
 349        /* no need to be quiet anymore, so reset the buf ops */
 350        bp->b_ops = &xfs_sb_buf_ops;
 351
 352        mp->m_sb_bp = bp;
 353        xfs_buf_unlock(bp);
 354        return 0;
 355
 356release_buf:
 357        xfs_buf_relse(bp);
 358        return error;
 359}
 360
 361/*
 362 * Update alignment values based on mount options and sb values
 363 */
 364STATIC int
 365xfs_update_alignment(xfs_mount_t *mp)
 366{
 367        xfs_sb_t        *sbp = &(mp->m_sb);
 368
 369        if (mp->m_dalign) {
 370                /*
 371                 * If stripe unit and stripe width are not multiples
 372                 * of the fs blocksize turn off alignment.
 373                 */
 374                if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
 375                    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
 376                        xfs_warn(mp,
 377                "alignment check failed: sunit/swidth vs. blocksize(%d)",
 378                                sbp->sb_blocksize);
 379                        return -EINVAL;
 380                } else {
 381                        /*
 382                         * Convert the stripe unit and width to FSBs.
 383                         */
 384                        mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
 385                        if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
 386                                xfs_warn(mp,
 387                        "alignment check failed: sunit/swidth vs. agsize(%d)",
 388                                         sbp->sb_agblocks);
 389                                return -EINVAL;
 390                        } else if (mp->m_dalign) {
 391                                mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
 392                        } else {
 393                                xfs_warn(mp,
 394                        "alignment check failed: sunit(%d) less than bsize(%d)",
 395                                         mp->m_dalign, sbp->sb_blocksize);
 396                                return -EINVAL;
 397                        }
 398                }
 399
 400                /*
 401                 * Update superblock with new values
 402                 * and log changes
 403                 */
 404                if (xfs_sb_version_hasdalign(sbp)) {
 405                        if (sbp->sb_unit != mp->m_dalign) {
 406                                sbp->sb_unit = mp->m_dalign;
 407                                mp->m_update_sb = true;
 408                        }
 409                        if (sbp->sb_width != mp->m_swidth) {
 410                                sbp->sb_width = mp->m_swidth;
 411                                mp->m_update_sb = true;
 412                        }
 413                } else {
 414                        xfs_warn(mp,
 415        "cannot change alignment: superblock does not support data alignment");
 416                        return -EINVAL;
 417                }
 418        } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
 419                    xfs_sb_version_hasdalign(&mp->m_sb)) {
 420                        mp->m_dalign = sbp->sb_unit;
 421                        mp->m_swidth = sbp->sb_width;
 422        }
 423
 424        return 0;
 425}
 426
 427/*
 428 * Set the maximum inode count for this filesystem
 429 */
 430STATIC void
 431xfs_set_maxicount(xfs_mount_t *mp)
 432{
 433        xfs_sb_t        *sbp = &(mp->m_sb);
 434        uint64_t        icount;
 435
 436        if (sbp->sb_imax_pct) {
 437                /*
 438                 * Make sure the maximum inode count is a multiple
 439                 * of the units we allocate inodes in.
 440                 */
 441                icount = sbp->sb_dblocks * sbp->sb_imax_pct;
 442                do_div(icount, 100);
 443                do_div(icount, mp->m_ialloc_blks);
 444                mp->m_maxicount = (icount * mp->m_ialloc_blks)  <<
 445                                   sbp->sb_inopblog;
 446        } else {
 447                mp->m_maxicount = 0;
 448        }
 449}
 450
 451/*
 452 * Set the default minimum read and write sizes unless
 453 * already specified in a mount option.
 454 * We use smaller I/O sizes when the file system
 455 * is being used for NFS service (wsync mount option).
 456 */
 457STATIC void
 458xfs_set_rw_sizes(xfs_mount_t *mp)
 459{
 460        xfs_sb_t        *sbp = &(mp->m_sb);
 461        int             readio_log, writeio_log;
 462
 463        if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
 464                if (mp->m_flags & XFS_MOUNT_WSYNC) {
 465                        readio_log = XFS_WSYNC_READIO_LOG;
 466                        writeio_log = XFS_WSYNC_WRITEIO_LOG;
 467                } else {
 468                        readio_log = XFS_READIO_LOG_LARGE;
 469                        writeio_log = XFS_WRITEIO_LOG_LARGE;
 470                }
 471        } else {
 472                readio_log = mp->m_readio_log;
 473                writeio_log = mp->m_writeio_log;
 474        }
 475
 476        if (sbp->sb_blocklog > readio_log) {
 477                mp->m_readio_log = sbp->sb_blocklog;
 478        } else {
 479                mp->m_readio_log = readio_log;
 480        }
 481        mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
 482        if (sbp->sb_blocklog > writeio_log) {
 483                mp->m_writeio_log = sbp->sb_blocklog;
 484        } else {
 485                mp->m_writeio_log = writeio_log;
 486        }
 487        mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
 488}
 489
 490/*
 491 * precalculate the low space thresholds for dynamic speculative preallocation.
 492 */
 493void
 494xfs_set_low_space_thresholds(
 495        struct xfs_mount        *mp)
 496{
 497        int i;
 498
 499        for (i = 0; i < XFS_LOWSP_MAX; i++) {
 500                uint64_t space = mp->m_sb.sb_dblocks;
 501
 502                do_div(space, 100);
 503                mp->m_low_space[i] = space * (i + 1);
 504        }
 505}
 506
 507
 508/*
 509 * Set whether we're using inode alignment.
 510 */
 511STATIC void
 512xfs_set_inoalignment(xfs_mount_t *mp)
 513{
 514        if (xfs_sb_version_hasalign(&mp->m_sb) &&
 515                mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
 516                mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
 517        else
 518                mp->m_inoalign_mask = 0;
 519        /*
 520         * If we are using stripe alignment, check whether
 521         * the stripe unit is a multiple of the inode alignment
 522         */
 523        if (mp->m_dalign && mp->m_inoalign_mask &&
 524            !(mp->m_dalign & mp->m_inoalign_mask))
 525                mp->m_sinoalign = mp->m_dalign;
 526        else
 527                mp->m_sinoalign = 0;
 528}
 529
 530/*
 531 * Check that the data (and log if separate) is an ok size.
 532 */
 533STATIC int
 534xfs_check_sizes(
 535        struct xfs_mount *mp)
 536{
 537        struct xfs_buf  *bp;
 538        xfs_daddr_t     d;
 539        int             error;
 540
 541        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 542        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
 543                xfs_warn(mp, "filesystem size mismatch detected");
 544                return -EFBIG;
 545        }
 546        error = xfs_buf_read_uncached(mp->m_ddev_targp,
 547                                        d - XFS_FSS_TO_BB(mp, 1),
 548                                        XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
 549        if (error) {
 550                xfs_warn(mp, "last sector read failed");
 551                return error;
 552        }
 553        xfs_buf_relse(bp);
 554
 555        if (mp->m_logdev_targp == mp->m_ddev_targp)
 556                return 0;
 557
 558        d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 559        if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
 560                xfs_warn(mp, "log size mismatch detected");
 561                return -EFBIG;
 562        }
 563        error = xfs_buf_read_uncached(mp->m_logdev_targp,
 564                                        d - XFS_FSB_TO_BB(mp, 1),
 565                                        XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
 566        if (error) {
 567                xfs_warn(mp, "log device read failed");
 568                return error;
 569        }
 570        xfs_buf_relse(bp);
 571        return 0;
 572}
 573
 574/*
 575 * Clear the quotaflags in memory and in the superblock.
 576 */
 577int
 578xfs_mount_reset_sbqflags(
 579        struct xfs_mount        *mp)
 580{
 581        mp->m_qflags = 0;
 582
 583        /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
 584        if (mp->m_sb.sb_qflags == 0)
 585                return 0;
 586        spin_lock(&mp->m_sb_lock);
 587        mp->m_sb.sb_qflags = 0;
 588        spin_unlock(&mp->m_sb_lock);
 589
 590        if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
 591                return 0;
 592
 593        return xfs_sync_sb(mp, false);
 594}
 595
 596uint64_t
 597xfs_default_resblks(xfs_mount_t *mp)
 598{
 599        uint64_t resblks;
 600
 601        /*
 602         * We default to 5% or 8192 fsbs of space reserved, whichever is
 603         * smaller.  This is intended to cover concurrent allocation
 604         * transactions when we initially hit enospc. These each require a 4
 605         * block reservation. Hence by default we cover roughly 2000 concurrent
 606         * allocation reservations.
 607         */
 608        resblks = mp->m_sb.sb_dblocks;
 609        do_div(resblks, 20);
 610        resblks = min_t(uint64_t, resblks, 8192);
 611        return resblks;
 612}
 613
 614/*
 615 * This function does the following on an initial mount of a file system:
 616 *      - reads the superblock from disk and init the mount struct
 617 *      - if we're a 32-bit kernel, do a size check on the superblock
 618 *              so we don't mount terabyte filesystems
 619 *      - init mount struct realtime fields
 620 *      - allocate inode hash table for fs
 621 *      - init directory manager
 622 *      - perform recovery and init the log manager
 623 */
 624int
 625xfs_mountfs(
 626        struct xfs_mount        *mp)
 627{
 628        struct xfs_sb           *sbp = &(mp->m_sb);
 629        struct xfs_inode        *rip;
 630        uint64_t                resblks;
 631        uint                    quotamount = 0;
 632        uint                    quotaflags = 0;
 633        int                     error = 0;
 634
 635        xfs_sb_mount_common(mp, sbp);
 636
 637        /*
 638         * Check for a mismatched features2 values.  Older kernels read & wrote
 639         * into the wrong sb offset for sb_features2 on some platforms due to
 640         * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
 641         * which made older superblock reading/writing routines swap it as a
 642         * 64-bit value.
 643         *
 644         * For backwards compatibility, we make both slots equal.
 645         *
 646         * If we detect a mismatched field, we OR the set bits into the existing
 647         * features2 field in case it has already been modified; we don't want
 648         * to lose any features.  We then update the bad location with the ORed
 649         * value so that older kernels will see any features2 flags. The
 650         * superblock writeback code ensures the new sb_features2 is copied to
 651         * sb_bad_features2 before it is logged or written to disk.
 652         */
 653        if (xfs_sb_has_mismatched_features2(sbp)) {
 654                xfs_warn(mp, "correcting sb_features alignment problem");
 655                sbp->sb_features2 |= sbp->sb_bad_features2;
 656                mp->m_update_sb = true;
 657
 658                /*
 659                 * Re-check for ATTR2 in case it was found in bad_features2
 660                 * slot.
 661                 */
 662                if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 663                   !(mp->m_flags & XFS_MOUNT_NOATTR2))
 664                        mp->m_flags |= XFS_MOUNT_ATTR2;
 665        }
 666
 667        if (xfs_sb_version_hasattr2(&mp->m_sb) &&
 668           (mp->m_flags & XFS_MOUNT_NOATTR2)) {
 669                xfs_sb_version_removeattr2(&mp->m_sb);
 670                mp->m_update_sb = true;
 671
 672                /* update sb_versionnum for the clearing of the morebits */
 673                if (!sbp->sb_features2)
 674                        mp->m_update_sb = true;
 675        }
 676
 677        /* always use v2 inodes by default now */
 678        if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
 679                mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
 680                mp->m_update_sb = true;
 681        }
 682
 683        /*
 684         * Check if sb_agblocks is aligned at stripe boundary
 685         * If sb_agblocks is NOT aligned turn off m_dalign since
 686         * allocator alignment is within an ag, therefore ag has
 687         * to be aligned at stripe boundary.
 688         */
 689        error = xfs_update_alignment(mp);
 690        if (error)
 691                goto out;
 692
 693        xfs_alloc_compute_maxlevels(mp);
 694        xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
 695        xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
 696        xfs_ialloc_compute_maxlevels(mp);
 697
 698        xfs_set_maxicount(mp);
 699
 700        /* enable fail_at_unmount as default */
 701        mp->m_fail_unmount = true;
 702
 703        error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
 704        if (error)
 705                goto out;
 706
 707        error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
 708                               &mp->m_kobj, "stats");
 709        if (error)
 710                goto out_remove_sysfs;
 711
 712        error = xfs_error_sysfs_init(mp);
 713        if (error)
 714                goto out_del_stats;
 715
 716        error = xfs_errortag_init(mp);
 717        if (error)
 718                goto out_remove_error_sysfs;
 719
 720        error = xfs_uuid_mount(mp);
 721        if (error)
 722                goto out_remove_errortag;
 723
 724        /*
 725         * Set the minimum read and write sizes
 726         */
 727        xfs_set_rw_sizes(mp);
 728
 729        /* set the low space thresholds for dynamic preallocation */
 730        xfs_set_low_space_thresholds(mp);
 731
 732        /*
 733         * Set the inode cluster size.
 734         * This may still be overridden by the file system
 735         * block size if it is larger than the chosen cluster size.
 736         *
 737         * For v5 filesystems, scale the cluster size with the inode size to
 738         * keep a constant ratio of inode per cluster buffer, but only if mkfs
 739         * has set the inode alignment value appropriately for larger cluster
 740         * sizes.
 741         */
 742        mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
 743        if (xfs_sb_version_hascrc(&mp->m_sb)) {
 744                int     new_size = mp->m_inode_cluster_size;
 745
 746                new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
 747                if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
 748                        mp->m_inode_cluster_size = new_size;
 749        }
 750
 751        /*
 752         * If enabled, sparse inode chunk alignment is expected to match the
 753         * cluster size. Full inode chunk alignment must match the chunk size,
 754         * but that is checked on sb read verification...
 755         */
 756        if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
 757            mp->m_sb.sb_spino_align !=
 758                        XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
 759                xfs_warn(mp,
 760        "Sparse inode block alignment (%u) must match cluster size (%llu).",
 761                         mp->m_sb.sb_spino_align,
 762                         XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
 763                error = -EINVAL;
 764                goto out_remove_uuid;
 765        }
 766
 767        /*
 768         * Set inode alignment fields
 769         */
 770        xfs_set_inoalignment(mp);
 771
 772        /*
 773         * Check that the data (and log if separate) is an ok size.
 774         */
 775        error = xfs_check_sizes(mp);
 776        if (error)
 777                goto out_remove_uuid;
 778
 779        /*
 780         * Initialize realtime fields in the mount structure
 781         */
 782        error = xfs_rtmount_init(mp);
 783        if (error) {
 784                xfs_warn(mp, "RT mount failed");
 785                goto out_remove_uuid;
 786        }
 787
 788        /*
 789         *  Copies the low order bits of the timestamp and the randomly
 790         *  set "sequence" number out of a UUID.
 791         */
 792        mp->m_fixedfsid[0] =
 793                (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
 794                 get_unaligned_be16(&sbp->sb_uuid.b[4]);
 795        mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
 796
 797        error = xfs_da_mount(mp);
 798        if (error) {
 799                xfs_warn(mp, "Failed dir/attr init: %d", error);
 800                goto out_remove_uuid;
 801        }
 802
 803        /*
 804         * Initialize the precomputed transaction reservations values.
 805         */
 806        xfs_trans_init(mp);
 807
 808        /*
 809         * Allocate and initialize the per-ag data.
 810         */
 811        error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
 812        if (error) {
 813                xfs_warn(mp, "Failed per-ag init: %d", error);
 814                goto out_free_dir;
 815        }
 816
 817        if (!sbp->sb_logblocks) {
 818                xfs_warn(mp, "no log defined");
 819                XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
 820                error = -EFSCORRUPTED;
 821                goto out_free_perag;
 822        }
 823
 824        /*
 825         * Log's mount-time initialization. The first part of recovery can place
 826         * some items on the AIL, to be handled when recovery is finished or
 827         * cancelled.
 828         */
 829        error = xfs_log_mount(mp, mp->m_logdev_targp,
 830                              XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
 831                              XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
 832        if (error) {
 833                xfs_warn(mp, "log mount failed");
 834                goto out_fail_wait;
 835        }
 836
 837        /*
 838         * Now the log is mounted, we know if it was an unclean shutdown or
 839         * not. If it was, with the first phase of recovery has completed, we
 840         * have consistent AG blocks on disk. We have not recovered EFIs yet,
 841         * but they are recovered transactionally in the second recovery phase
 842         * later.
 843         *
 844         * Hence we can safely re-initialise incore superblock counters from
 845         * the per-ag data. These may not be correct if the filesystem was not
 846         * cleanly unmounted, so we need to wait for recovery to finish before
 847         * doing this.
 848         *
 849         * If the filesystem was cleanly unmounted, then we can trust the
 850         * values in the superblock to be correct and we don't need to do
 851         * anything here.
 852         *
 853         * If we are currently making the filesystem, the initialisation will
 854         * fail as the perag data is in an undefined state.
 855         */
 856        if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
 857            !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
 858             !mp->m_sb.sb_inprogress) {
 859                error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
 860                if (error)
 861                        goto out_log_dealloc;
 862        }
 863
 864        /*
 865         * Get and sanity-check the root inode.
 866         * Save the pointer to it in the mount structure.
 867         */
 868        error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
 869                         XFS_ILOCK_EXCL, &rip);
 870        if (error) {
 871                xfs_warn(mp,
 872                        "Failed to read root inode 0x%llx, error %d",
 873                        sbp->sb_rootino, -error);
 874                goto out_log_dealloc;
 875        }
 876
 877        ASSERT(rip != NULL);
 878
 879        if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
 880                xfs_warn(mp, "corrupted root inode %llu: not a directory",
 881                        (unsigned long long)rip->i_ino);
 882                xfs_iunlock(rip, XFS_ILOCK_EXCL);
 883                XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
 884                                 mp);
 885                error = -EFSCORRUPTED;
 886                goto out_rele_rip;
 887        }
 888        mp->m_rootip = rip;     /* save it */
 889
 890        xfs_iunlock(rip, XFS_ILOCK_EXCL);
 891
 892        /*
 893         * Initialize realtime inode pointers in the mount structure
 894         */
 895        error = xfs_rtmount_inodes(mp);
 896        if (error) {
 897                /*
 898                 * Free up the root inode.
 899                 */
 900                xfs_warn(mp, "failed to read RT inodes");
 901                goto out_rele_rip;
 902        }
 903
 904        /*
 905         * If this is a read-only mount defer the superblock updates until
 906         * the next remount into writeable mode.  Otherwise we would never
 907         * perform the update e.g. for the root filesystem.
 908         */
 909        if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
 910                error = xfs_sync_sb(mp, false);
 911                if (error) {
 912                        xfs_warn(mp, "failed to write sb changes");
 913                        goto out_rtunmount;
 914                }
 915        }
 916
 917        /*
 918         * Initialise the XFS quota management subsystem for this mount
 919         */
 920        if (XFS_IS_QUOTA_RUNNING(mp)) {
 921                error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
 922                if (error)
 923                        goto out_rtunmount;
 924        } else {
 925                ASSERT(!XFS_IS_QUOTA_ON(mp));
 926
 927                /*
 928                 * If a file system had quotas running earlier, but decided to
 929                 * mount without -o uquota/pquota/gquota options, revoke the
 930                 * quotachecked license.
 931                 */
 932                if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
 933                        xfs_notice(mp, "resetting quota flags");
 934                        error = xfs_mount_reset_sbqflags(mp);
 935                        if (error)
 936                                goto out_rtunmount;
 937                }
 938        }
 939
 940        /*
 941         * Finish recovering the file system.  This part needed to be delayed
 942         * until after the root and real-time bitmap inodes were consistently
 943         * read in.
 944         */
 945        error = xfs_log_mount_finish(mp);
 946        if (error) {
 947                xfs_warn(mp, "log mount finish failed");
 948                goto out_rtunmount;
 949        }
 950
 951        /*
 952         * Now the log is fully replayed, we can transition to full read-only
 953         * mode for read-only mounts. This will sync all the metadata and clean
 954         * the log so that the recovery we just performed does not have to be
 955         * replayed again on the next mount.
 956         *
 957         * We use the same quiesce mechanism as the rw->ro remount, as they are
 958         * semantically identical operations.
 959         */
 960        if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
 961                                                        XFS_MOUNT_RDONLY) {
 962                xfs_quiesce_attr(mp);
 963        }
 964
 965        /*
 966         * Complete the quota initialisation, post-log-replay component.
 967         */
 968        if (quotamount) {
 969                ASSERT(mp->m_qflags == 0);
 970                mp->m_qflags = quotaflags;
 971
 972                xfs_qm_mount_quotas(mp);
 973        }
 974
 975        /*
 976         * Now we are mounted, reserve a small amount of unused space for
 977         * privileged transactions. This is needed so that transaction
 978         * space required for critical operations can dip into this pool
 979         * when at ENOSPC. This is needed for operations like create with
 980         * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
 981         * are not allowed to use this reserved space.
 982         *
 983         * This may drive us straight to ENOSPC on mount, but that implies
 984         * we were already there on the last unmount. Warn if this occurs.
 985         */
 986        if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
 987                resblks = xfs_default_resblks(mp);
 988                error = xfs_reserve_blocks(mp, &resblks, NULL);
 989                if (error)
 990                        xfs_warn(mp,
 991        "Unable to allocate reserve blocks. Continuing without reserve pool.");
 992        }
 993
 994        return 0;
 995
 996 out_rtunmount:
 997        mp->m_super->s_flags &= ~MS_ACTIVE;
 998        xfs_rtunmount_inodes(mp);
 999 out_rele_rip:
1000        IRELE(rip);
1001        /* Clean out dquots that might be in memory after quotacheck. */
1002        xfs_qm_unmount(mp);
1003        /*
1004         * Cancel all delayed reclaim work and reclaim the inodes directly.
1005         * We have to do this /after/ rtunmount and qm_unmount because those
1006         * two will have scheduled delayed reclaim for the rt/quota inodes.
1007         *
1008         * This is slightly different from the unmountfs call sequence
1009         * because we could be tearing down a partially set up mount.  In
1010         * particular, if log_mount_finish fails we bail out without calling
1011         * qm_unmount_quotas and therefore rely on qm_unmount to release the
1012         * quota inodes.
1013         */
1014        cancel_delayed_work_sync(&mp->m_reclaim_work);
1015        xfs_reclaim_inodes(mp, SYNC_WAIT);
1016 out_log_dealloc:
1017        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1018        xfs_log_mount_cancel(mp);
1019 out_fail_wait:
1020        if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1021                xfs_wait_buftarg(mp->m_logdev_targp);
1022        xfs_wait_buftarg(mp->m_ddev_targp);
1023 out_free_perag:
1024        xfs_free_perag(mp);
1025 out_free_dir:
1026        xfs_da_unmount(mp);
1027 out_remove_uuid:
1028        xfs_uuid_unmount(mp);
1029 out_remove_errortag:
1030        xfs_errortag_del(mp);
1031 out_remove_error_sysfs:
1032        xfs_error_sysfs_del(mp);
1033 out_del_stats:
1034        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1035 out_remove_sysfs:
1036        xfs_sysfs_del(&mp->m_kobj);
1037 out:
1038        return error;
1039}
1040
1041/*
1042 * This flushes out the inodes,dquots and the superblock, unmounts the
1043 * log and makes sure that incore structures are freed.
1044 */
1045void
1046xfs_unmountfs(
1047        struct xfs_mount        *mp)
1048{
1049        uint64_t                resblks;
1050        int                     error;
1051
1052        cancel_delayed_work_sync(&mp->m_eofblocks_work);
1053
1054        xfs_qm_unmount_quotas(mp);
1055        xfs_rtunmount_inodes(mp);
1056        IRELE(mp->m_rootip);
1057
1058        /*
1059         * We can potentially deadlock here if we have an inode cluster
1060         * that has been freed has its buffer still pinned in memory because
1061         * the transaction is still sitting in a iclog. The stale inodes
1062         * on that buffer will have their flush locks held until the
1063         * transaction hits the disk and the callbacks run. the inode
1064         * flush takes the flush lock unconditionally and with nothing to
1065         * push out the iclog we will never get that unlocked. hence we
1066         * need to force the log first.
1067         */
1068        xfs_log_force(mp, XFS_LOG_SYNC);
1069
1070        /*
1071         * Wait for all busy extents to be freed, including completion of
1072         * any discard operation.
1073         */
1074        xfs_extent_busy_wait_all(mp);
1075
1076        /*
1077         * We now need to tell the world we are unmounting. This will allow
1078         * us to detect that the filesystem is going away and we should error
1079         * out anything that we have been retrying in the background. This will
1080         * prevent neverending retries in AIL pushing from hanging the unmount.
1081         */
1082        mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1083
1084        /*
1085         * Flush all pending changes from the AIL.
1086         */
1087        xfs_ail_push_all_sync(mp->m_ail);
1088
1089        /*
1090         * And reclaim all inodes.  At this point there should be no dirty
1091         * inodes and none should be pinned or locked, but use synchronous
1092         * reclaim just to be sure. We can stop background inode reclaim
1093         * here as well if it is still running.
1094         */
1095        cancel_delayed_work_sync(&mp->m_reclaim_work);
1096        xfs_reclaim_inodes(mp, SYNC_WAIT);
1097
1098        xfs_qm_unmount(mp);
1099
1100        /*
1101         * Unreserve any blocks we have so that when we unmount we don't account
1102         * the reserved free space as used. This is really only necessary for
1103         * lazy superblock counting because it trusts the incore superblock
1104         * counters to be absolutely correct on clean unmount.
1105         *
1106         * We don't bother correcting this elsewhere for lazy superblock
1107         * counting because on mount of an unclean filesystem we reconstruct the
1108         * correct counter value and this is irrelevant.
1109         *
1110         * For non-lazy counter filesystems, this doesn't matter at all because
1111         * we only every apply deltas to the superblock and hence the incore
1112         * value does not matter....
1113         */
1114        resblks = 0;
1115        error = xfs_reserve_blocks(mp, &resblks, NULL);
1116        if (error)
1117                xfs_warn(mp, "Unable to free reserved block pool. "
1118                                "Freespace may not be correct on next mount.");
1119
1120        error = xfs_log_sbcount(mp);
1121        if (error)
1122                xfs_warn(mp, "Unable to update superblock counters. "
1123                                "Freespace may not be correct on next mount.");
1124
1125
1126        xfs_log_unmount(mp);
1127        xfs_da_unmount(mp);
1128        xfs_uuid_unmount(mp);
1129
1130#if defined(DEBUG)
1131        xfs_errortag_clearall(mp);
1132#endif
1133        xfs_free_perag(mp);
1134
1135        xfs_errortag_del(mp);
1136        xfs_error_sysfs_del(mp);
1137        xfs_sysfs_del(&mp->m_stats.xs_kobj);
1138        xfs_sysfs_del(&mp->m_kobj);
1139}
1140
1141/*
1142 * Determine whether modifications can proceed. The caller specifies the minimum
1143 * freeze level for which modifications should not be allowed. This allows
1144 * certain operations to proceed while the freeze sequence is in progress, if
1145 * necessary.
1146 */
1147bool
1148xfs_fs_writable(
1149        struct xfs_mount        *mp,
1150        int                     level)
1151{
1152        ASSERT(level > SB_UNFROZEN);
1153        if ((mp->m_super->s_writers.frozen >= level) ||
1154            XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1155                return false;
1156
1157        return true;
1158}
1159
1160/*
1161 * xfs_log_sbcount
1162 *
1163 * Sync the superblock counters to disk.
1164 *
1165 * Note this code can be called during the process of freezing, so we use the
1166 * transaction allocator that does not block when the transaction subsystem is
1167 * in its frozen state.
1168 */
1169int
1170xfs_log_sbcount(xfs_mount_t *mp)
1171{
1172        /* allow this to proceed during the freeze sequence... */
1173        if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1174                return 0;
1175
1176        /*
1177         * we don't need to do this if we are updating the superblock
1178         * counters on every modification.
1179         */
1180        if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1181                return 0;
1182
1183        return xfs_sync_sb(mp, true);
1184}
1185
1186/*
1187 * Deltas for the inode count are +/-64, hence we use a large batch size
1188 * of 128 so we don't need to take the counter lock on every update.
1189 */
1190#define XFS_ICOUNT_BATCH        128
1191int
1192xfs_mod_icount(
1193        struct xfs_mount        *mp,
1194        int64_t                 delta)
1195{
1196        __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1197        if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1198                ASSERT(0);
1199                percpu_counter_add(&mp->m_icount, -delta);
1200                return -EINVAL;
1201        }
1202        return 0;
1203}
1204
1205int
1206xfs_mod_ifree(
1207        struct xfs_mount        *mp,
1208        int64_t                 delta)
1209{
1210        percpu_counter_add(&mp->m_ifree, delta);
1211        if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1212                ASSERT(0);
1213                percpu_counter_add(&mp->m_ifree, -delta);
1214                return -EINVAL;
1215        }
1216        return 0;
1217}
1218
1219/*
1220 * Deltas for the block count can vary from 1 to very large, but lock contention
1221 * only occurs on frequent small block count updates such as in the delayed
1222 * allocation path for buffered writes (page a time updates). Hence we set
1223 * a large batch count (1024) to minimise global counter updates except when
1224 * we get near to ENOSPC and we have to be very accurate with our updates.
1225 */
1226#define XFS_FDBLOCKS_BATCH      1024
1227int
1228xfs_mod_fdblocks(
1229        struct xfs_mount        *mp,
1230        int64_t                 delta,
1231        bool                    rsvd)
1232{
1233        int64_t                 lcounter;
1234        long long               res_used;
1235        s32                     batch;
1236
1237        if (delta > 0) {
1238                /*
1239                 * If the reserve pool is depleted, put blocks back into it
1240                 * first. Most of the time the pool is full.
1241                 */
1242                if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1243                        percpu_counter_add(&mp->m_fdblocks, delta);
1244                        return 0;
1245                }
1246
1247                spin_lock(&mp->m_sb_lock);
1248                res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1249
1250                if (res_used > delta) {
1251                        mp->m_resblks_avail += delta;
1252                } else {
1253                        delta -= res_used;
1254                        mp->m_resblks_avail = mp->m_resblks;
1255                        percpu_counter_add(&mp->m_fdblocks, delta);
1256                }
1257                spin_unlock(&mp->m_sb_lock);
1258                return 0;
1259        }
1260
1261        /*
1262         * Taking blocks away, need to be more accurate the closer we
1263         * are to zero.
1264         *
1265         * If the counter has a value of less than 2 * max batch size,
1266         * then make everything serialise as we are real close to
1267         * ENOSPC.
1268         */
1269        if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1270                                     XFS_FDBLOCKS_BATCH) < 0)
1271                batch = 1;
1272        else
1273                batch = XFS_FDBLOCKS_BATCH;
1274
1275        __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1276        if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1277                                     XFS_FDBLOCKS_BATCH) >= 0) {
1278                /* we had space! */
1279                return 0;
1280        }
1281
1282        /*
1283         * lock up the sb for dipping into reserves before releasing the space
1284         * that took us to ENOSPC.
1285         */
1286        spin_lock(&mp->m_sb_lock);
1287        percpu_counter_add(&mp->m_fdblocks, -delta);
1288        if (!rsvd)
1289                goto fdblocks_enospc;
1290
1291        lcounter = (long long)mp->m_resblks_avail + delta;
1292        if (lcounter >= 0) {
1293                mp->m_resblks_avail = lcounter;
1294                spin_unlock(&mp->m_sb_lock);
1295                return 0;
1296        }
1297        printk_once(KERN_WARNING
1298                "Filesystem \"%s\": reserve blocks depleted! "
1299                "Consider increasing reserve pool size.",
1300                mp->m_fsname);
1301fdblocks_enospc:
1302        spin_unlock(&mp->m_sb_lock);
1303        return -ENOSPC;
1304}
1305
1306int
1307xfs_mod_frextents(
1308        struct xfs_mount        *mp,
1309        int64_t                 delta)
1310{
1311        int64_t                 lcounter;
1312        int                     ret = 0;
1313
1314        spin_lock(&mp->m_sb_lock);
1315        lcounter = mp->m_sb.sb_frextents + delta;
1316        if (lcounter < 0)
1317                ret = -ENOSPC;
1318        else
1319                mp->m_sb.sb_frextents = lcounter;
1320        spin_unlock(&mp->m_sb_lock);
1321        return ret;
1322}
1323
1324/*
1325 * xfs_getsb() is called to obtain the buffer for the superblock.
1326 * The buffer is returned locked and read in from disk.
1327 * The buffer should be released with a call to xfs_brelse().
1328 *
1329 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1330 * the superblock buffer if it can be locked without sleeping.
1331 * If it can't then we'll return NULL.
1332 */
1333struct xfs_buf *
1334xfs_getsb(
1335        struct xfs_mount        *mp,
1336        int                     flags)
1337{
1338        struct xfs_buf          *bp = mp->m_sb_bp;
1339
1340        if (!xfs_buf_trylock(bp)) {
1341                if (flags & XBF_TRYLOCK)
1342                        return NULL;
1343                xfs_buf_lock(bp);
1344        }
1345
1346        xfs_buf_hold(bp);
1347        ASSERT(bp->b_flags & XBF_DONE);
1348        return bp;
1349}
1350
1351/*
1352 * Used to free the superblock along various error paths.
1353 */
1354void
1355xfs_freesb(
1356        struct xfs_mount        *mp)
1357{
1358        struct xfs_buf          *bp = mp->m_sb_bp;
1359
1360        xfs_buf_lock(bp);
1361        mp->m_sb_bp = NULL;
1362        xfs_buf_relse(bp);
1363}
1364
1365/*
1366 * If the underlying (data/log/rt) device is readonly, there are some
1367 * operations that cannot proceed.
1368 */
1369int
1370xfs_dev_is_read_only(
1371        struct xfs_mount        *mp,
1372        char                    *message)
1373{
1374        if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1375            xfs_readonly_buftarg(mp->m_logdev_targp) ||
1376            (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1377                xfs_notice(mp, "%s required on read-only device.", message);
1378                xfs_notice(mp, "write access unavailable, cannot proceed.");
1379                return -EROFS;
1380        }
1381        return 0;
1382}
1383