linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/aio.h>
  35#include <linux/syscalls.h>
  36#include <uapi/linux/memfd.h>
  37
  38static struct vfsmount *shm_mnt;
  39
  40#ifdef CONFIG_SHMEM
  41/*
  42 * This virtual memory filesystem is heavily based on the ramfs. It
  43 * extends ramfs by the ability to use swap and honor resource limits
  44 * which makes it a completely usable filesystem.
  45 */
  46
  47#include <linux/xattr.h>
  48#include <linux/exportfs.h>
  49#include <linux/posix_acl.h>
  50#include <linux/generic_acl.h>
  51#include <linux/mman.h>
  52#include <linux/string.h>
  53#include <linux/slab.h>
  54#include <linux/backing-dev.h>
  55#include <linux/shmem_fs.h>
  56#include <linux/writeback.h>
  57#include <linux/blkdev.h>
  58#include <linux/pagevec.h>
  59#include <linux/percpu_counter.h>
  60#include <linux/falloc.h>
  61#include <linux/splice.h>
  62#include <linux/security.h>
  63#include <linux/swapops.h>
  64#include <linux/mempolicy.h>
  65#include <linux/namei.h>
  66#include <linux/ctype.h>
  67#include <linux/migrate.h>
  68#include <linux/highmem.h>
  69#include <linux/seq_file.h>
  70#include <linux/magic.h>
  71#include <linux/fcntl.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/rmap.h>
  74#include <linux/uuid.h>
  75
  76#include <asm/uaccess.h>
  77#include <asm/pgtable.h>
  78
  79#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  80#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  81
  82/* Pretend that each entry is of this size in directory's i_size */
  83#define BOGO_DIRENT_SIZE 20
  84
  85/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  86#define SHORT_SYMLINK_LEN 128
  87
  88/*
  89 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  90 * inode->i_private (with i_mutex making sure that it has only one user at
  91 * a time): we would prefer not to enlarge the shmem inode just for that.
  92 */
  93struct shmem_falloc {
  94        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  95        pgoff_t start;          /* start of range currently being fallocated */
  96        pgoff_t next;           /* the next page offset to be fallocated */
  97        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
  98        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
  99};
 100
 101/* Flag allocation requirements to shmem_getpage */
 102enum sgp_type {
 103        SGP_READ,       /* don't exceed i_size, don't allocate page */
 104        SGP_CACHE,      /* don't exceed i_size, may allocate page */
 105        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 106        SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
 107        SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
 108};
 109
 110#ifdef CONFIG_TMPFS
 111static unsigned long shmem_default_max_blocks(void)
 112{
 113        return totalram_pages / 2;
 114}
 115
 116static unsigned long shmem_default_max_inodes(void)
 117{
 118        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 119}
 120#endif
 121
 122static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 123static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 124                                struct shmem_inode_info *info, pgoff_t index);
 125static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 126                             struct page **pagep, enum sgp_type sgp,
 127                             gfp_t gfp, struct vm_area_struct *vma,
 128                             struct vm_fault *vmf, int *fault_type);
 129
 130static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 131                                struct page **pagep, enum sgp_type sgp,
 132                                int *fault_type)
 133{
 134        return shmem_getpage_gfp(inode, index, pagep, sgp,
 135                                 mapping_gfp_mask(inode->i_mapping),
 136                                 NULL, NULL, fault_type);
 137}
 138
 139static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 140{
 141        return sb->s_fs_info;
 142}
 143
 144/*
 145 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 146 * for shared memory and for shared anonymous (/dev/zero) mappings
 147 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 148 * consistent with the pre-accounting of private mappings ...
 149 */
 150static inline int shmem_acct_size(unsigned long flags, loff_t size)
 151{
 152        return (flags & VM_NORESERVE) ?
 153                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 154}
 155
 156static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 157{
 158        if (!(flags & VM_NORESERVE))
 159                vm_unacct_memory(VM_ACCT(size));
 160}
 161
 162/*
 163 * ... whereas tmpfs objects are accounted incrementally as
 164 * pages are allocated, in order to allow huge sparse files.
 165 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 166 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 167 */
 168static inline int shmem_acct_block(unsigned long flags, long pages)
 169{
 170        return (flags & VM_NORESERVE) ?
 171                security_vm_enough_memory_mm(current->mm, pages *
 172                                             VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 173}
 174
 175static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 176{
 177        if (flags & VM_NORESERVE)
 178                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 179}
 180
 181static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 182{
 183        struct shmem_inode_info *info = SHMEM_I(inode);
 184        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 185
 186        if (shmem_acct_block(info->flags, pages))
 187                return false;
 188
 189        if (sbinfo->max_blocks) {
 190                if (percpu_counter_compare(&sbinfo->used_blocks,
 191                                           sbinfo->max_blocks - pages) > 0)
 192                        goto unacct;
 193                percpu_counter_add(&sbinfo->used_blocks, pages);
 194        }
 195
 196        return true;
 197
 198unacct:
 199        shmem_unacct_blocks(info->flags, pages);
 200        return false;
 201}
 202
 203static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 204{
 205        struct shmem_inode_info *info = SHMEM_I(inode);
 206        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 207
 208        if (sbinfo->max_blocks)
 209                percpu_counter_sub(&sbinfo->used_blocks, pages);
 210        shmem_unacct_blocks(info->flags, pages);
 211}
 212
 213static const struct super_operations shmem_ops;
 214static const struct address_space_operations shmem_aops;
 215static const struct file_operations shmem_file_operations;
 216static const struct inode_operations shmem_inode_operations;
 217static const struct inode_operations_wrapper shmem_dir_inode_operations;
 218static const struct inode_operations shmem_special_inode_operations;
 219static const struct vm_operations_struct shmem_vm_ops;
 220
 221static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 222        .ra_pages       = 0,    /* No readahead */
 223        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 224};
 225
 226bool vma_is_shmem(struct vm_area_struct *vma)
 227{
 228        return vma->vm_ops == &shmem_vm_ops;
 229}
 230
 231static LIST_HEAD(shmem_swaplist);
 232static DEFINE_MUTEX(shmem_swaplist_mutex);
 233
 234static int shmem_reserve_inode(struct super_block *sb)
 235{
 236        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 237        if (sbinfo->max_inodes) {
 238                spin_lock(&sbinfo->stat_lock);
 239                if (!sbinfo->free_inodes) {
 240                        spin_unlock(&sbinfo->stat_lock);
 241                        return -ENOSPC;
 242                }
 243                sbinfo->free_inodes--;
 244                spin_unlock(&sbinfo->stat_lock);
 245        }
 246        return 0;
 247}
 248
 249static void shmem_free_inode(struct super_block *sb)
 250{
 251        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 252        if (sbinfo->max_inodes) {
 253                spin_lock(&sbinfo->stat_lock);
 254                sbinfo->free_inodes++;
 255                spin_unlock(&sbinfo->stat_lock);
 256        }
 257}
 258
 259/**
 260 * shmem_recalc_inode - recalculate the block usage of an inode
 261 * @inode: inode to recalc
 262 *
 263 * We have to calculate the free blocks since the mm can drop
 264 * undirtied hole pages behind our back.
 265 *
 266 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 267 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 268 *
 269 * It has to be called with the spinlock held.
 270 */
 271static void shmem_recalc_inode(struct inode *inode)
 272{
 273        struct shmem_inode_info *info = SHMEM_I(inode);
 274        long freed;
 275
 276        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 277        if (freed > 0) {
 278                info->alloced -= freed;
 279                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 280                shmem_inode_unacct_blocks(inode, freed);
 281        }
 282}
 283
 284/*
 285 * Replace item expected in radix tree by a new item, while holding tree lock.
 286 */
 287static int shmem_radix_tree_replace(struct address_space *mapping,
 288                        pgoff_t index, void *expected, void *replacement)
 289{
 290        void **pslot;
 291        void *item;
 292
 293        VM_BUG_ON(!expected);
 294        VM_BUG_ON(!replacement);
 295        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 296        if (!pslot)
 297                return -ENOENT;
 298        item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 299        if (item != expected)
 300                return -ENOENT;
 301        radix_tree_replace_slot(pslot, replacement);
 302        return 0;
 303}
 304
 305/*
 306 * Sometimes, before we decide whether to proceed or to fail, we must check
 307 * that an entry was not already brought back from swap by a racing thread.
 308 *
 309 * Checking page is not enough: by the time a SwapCache page is locked, it
 310 * might be reused, and again be SwapCache, using the same swap as before.
 311 */
 312static bool shmem_confirm_swap(struct address_space *mapping,
 313                               pgoff_t index, swp_entry_t swap)
 314{
 315        void *item;
 316
 317        rcu_read_lock();
 318        item = radix_tree_lookup(&mapping->page_tree, index);
 319        rcu_read_unlock();
 320        return item == swp_to_radix_entry(swap);
 321}
 322
 323/*
 324 * Like add_to_page_cache_locked, but error if expected item has gone.
 325 */
 326static int shmem_add_to_page_cache(struct page *page,
 327                                   struct address_space *mapping,
 328                                   pgoff_t index, gfp_t gfp, void *expected)
 329{
 330        int error;
 331
 332        VM_BUG_ON_PAGE(!PageLocked(page), page);
 333        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 334
 335        page_cache_get(page);
 336        page->mapping = mapping;
 337        page->index = index;
 338
 339        spin_lock_irq(&mapping->tree_lock);
 340        if (!expected)
 341                error = radix_tree_insert(&mapping->page_tree, index, page);
 342        else
 343                error = shmem_radix_tree_replace(mapping, index, expected,
 344                                                                 page);
 345        if (!error) {
 346                mapping->nrpages++;
 347                __inc_zone_page_state(page, NR_FILE_PAGES);
 348                __inc_zone_page_state(page, NR_SHMEM);
 349                spin_unlock_irq(&mapping->tree_lock);
 350        } else {
 351                page->mapping = NULL;
 352                spin_unlock_irq(&mapping->tree_lock);
 353                page_cache_release(page);
 354        }
 355        return error;
 356}
 357
 358/*
 359 * Like delete_from_page_cache, but substitutes swap for page.
 360 */
 361static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 362{
 363        struct address_space *mapping = page->mapping;
 364        int error;
 365
 366        spin_lock_irq(&mapping->tree_lock);
 367        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 368        page->mapping = NULL;
 369        mapping->nrpages--;
 370        __dec_zone_page_state(page, NR_FILE_PAGES);
 371        __dec_zone_page_state(page, NR_SHMEM);
 372        spin_unlock_irq(&mapping->tree_lock);
 373        page_cache_release(page);
 374        BUG_ON(error);
 375}
 376
 377/*
 378 * Remove swap entry from radix tree, free the swap and its page cache.
 379 */
 380static int shmem_free_swap(struct address_space *mapping,
 381                           pgoff_t index, void *radswap)
 382{
 383        void *old;
 384
 385        spin_lock_irq(&mapping->tree_lock);
 386        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 387        spin_unlock_irq(&mapping->tree_lock);
 388        if (old != radswap)
 389                return -ENOENT;
 390        free_swap_and_cache(radix_to_swp_entry(radswap));
 391        return 0;
 392}
 393
 394/*
 395 * Determine (in bytes) how many of the shmem object's pages mapped by the
 396 * given offsets are swapped out.
 397 *
 398 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 399 * as long as the inode doesn't go away and racy results are not a problem.
 400 */
 401unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 402                                                pgoff_t start, pgoff_t end)
 403{
 404        struct radix_tree_iter iter;
 405        void **slot;
 406        struct page *page;
 407        unsigned long swapped = 0;
 408
 409        rcu_read_lock();
 410
 411        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 412                if (iter.index >= end)
 413                        break;
 414
 415                page = radix_tree_deref_slot(slot);
 416
 417                if (radix_tree_deref_retry(page)) {
 418                        slot = radix_tree_iter_retry(&iter);
 419                        continue;
 420                }
 421
 422                if (radix_tree_exceptional_entry(page))
 423                        swapped++;
 424
 425                if (need_resched()) {
 426                        cond_resched_rcu();
 427                        slot = radix_tree_iter_next(&iter);
 428                }
 429        }
 430
 431        rcu_read_unlock();
 432
 433        return swapped << PAGE_SHIFT;
 434}
 435
 436/*
 437 * Determine (in bytes) how many of the shmem object's pages mapped by the
 438 * given vma is swapped out.
 439 *
 440 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 441 * as long as the inode doesn't go away and racy results are not a problem.
 442 */
 443unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 444{
 445        struct inode *inode = file_inode(vma->vm_file);
 446        struct shmem_inode_info *info = SHMEM_I(inode);
 447        struct address_space *mapping = inode->i_mapping;
 448        unsigned long swapped;
 449
 450        /* Be careful as we don't hold info->lock */
 451        swapped = READ_ONCE(info->swapped);
 452
 453        /*
 454         * The easier cases are when the shmem object has nothing in swap, or
 455         * the vma maps it whole. Then we can simply use the stats that we
 456         * already track.
 457         */
 458        if (!swapped)
 459                return 0;
 460
 461        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 462                return swapped << PAGE_SHIFT;
 463
 464        /* Here comes the more involved part */
 465        return shmem_partial_swap_usage(mapping,
 466                        linear_page_index(vma, vma->vm_start),
 467                        linear_page_index(vma, vma->vm_end));
 468}
 469
 470/*
 471 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 472 */
 473void shmem_unlock_mapping(struct address_space *mapping)
 474{
 475        struct pagevec pvec;
 476        pgoff_t indices[PAGEVEC_SIZE];
 477        pgoff_t index = 0;
 478
 479        pagevec_init(&pvec, 0);
 480        /*
 481         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 482         */
 483        while (!mapping_unevictable(mapping)) {
 484                /*
 485                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 486                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 487                 */
 488                pvec.nr = __find_get_pages(mapping, index,
 489                                        PAGEVEC_SIZE, pvec.pages, indices);
 490                if (!pvec.nr)
 491                        break;
 492                index = indices[pvec.nr - 1] + 1;
 493                pagevec_remove_exceptionals(&pvec);
 494                check_move_unevictable_pages(&pvec);
 495                pagevec_release(&pvec);
 496                cond_resched();
 497        }
 498}
 499
 500/*
 501 * Remove range of pages and swap entries from radix tree, and free them.
 502 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 503 */
 504static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 505                                                                 bool unfalloc)
 506{
 507        struct address_space *mapping = inode->i_mapping;
 508        struct shmem_inode_info *info = SHMEM_I(inode);
 509        pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 510        pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
 511        unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 512        unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 513        struct pagevec pvec;
 514        pgoff_t indices[PAGEVEC_SIZE];
 515        long nr_swaps_freed = 0;
 516        pgoff_t index;
 517        int i;
 518
 519        if (lend == -1)
 520                end = -1;       /* unsigned, so actually very big */
 521
 522        pagevec_init(&pvec, 0);
 523        index = start;
 524        while (index < end) {
 525                pvec.nr = __find_get_pages(mapping, index,
 526                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 527                        pvec.pages, indices);
 528                if (!pvec.nr)
 529                        break;
 530                mem_cgroup_uncharge_start();
 531                for (i = 0; i < pagevec_count(&pvec); i++) {
 532                        struct page *page = pvec.pages[i];
 533
 534                        index = indices[i];
 535                        if (index >= end)
 536                                break;
 537
 538                        if (radix_tree_exceptional_entry(page)) {
 539                                if (unfalloc)
 540                                        continue;
 541                                nr_swaps_freed += !shmem_free_swap(mapping,
 542                                                                index, page);
 543                                continue;
 544                        }
 545
 546                        if (!trylock_page(page))
 547                                continue;
 548                        if (!unfalloc || !PageUptodate(page)) {
 549                                if (page->mapping == mapping) {
 550                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 551                                        truncate_inode_page(mapping, page);
 552                                }
 553                        }
 554                        unlock_page(page);
 555                }
 556                pagevec_remove_exceptionals(&pvec);
 557                pagevec_release(&pvec);
 558                mem_cgroup_uncharge_end();
 559                cond_resched();
 560                index++;
 561        }
 562
 563        if (partial_start) {
 564                struct page *page = NULL;
 565                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 566                if (page) {
 567                        unsigned int top = PAGE_CACHE_SIZE;
 568                        if (start > end) {
 569                                top = partial_end;
 570                                partial_end = 0;
 571                        }
 572                        zero_user_segment(page, partial_start, top);
 573                        set_page_dirty(page);
 574                        unlock_page(page);
 575                        page_cache_release(page);
 576                }
 577        }
 578        if (partial_end) {
 579                struct page *page = NULL;
 580                shmem_getpage(inode, end, &page, SGP_READ, NULL);
 581                if (page) {
 582                        zero_user_segment(page, 0, partial_end);
 583                        set_page_dirty(page);
 584                        unlock_page(page);
 585                        page_cache_release(page);
 586                }
 587        }
 588        if (start >= end)
 589                return;
 590
 591        index = start;
 592        while (index < end) {
 593                cond_resched();
 594
 595                pvec.nr = __find_get_pages(mapping, index,
 596                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 597                                pvec.pages, indices);
 598                if (!pvec.nr) {
 599                        /* If all gone or hole-punch or unfalloc, we're done */
 600                        if (index == start || end != -1)
 601                                break;
 602                        /* But if truncating, restart to make sure all gone */
 603                        index = start;
 604                        continue;
 605                }
 606                mem_cgroup_uncharge_start();
 607                for (i = 0; i < pagevec_count(&pvec); i++) {
 608                        struct page *page = pvec.pages[i];
 609
 610                        index = indices[i];
 611                        if (index >= end)
 612                                break;
 613
 614                        if (radix_tree_exceptional_entry(page)) {
 615                                if (unfalloc)
 616                                        continue;
 617                                if (shmem_free_swap(mapping, index, page)) {
 618                                        /* Swap was replaced by page: retry */
 619                                        index--;
 620                                        break;
 621                                }
 622                                nr_swaps_freed++;
 623                                continue;
 624                        }
 625
 626                        lock_page(page);
 627                        if (!unfalloc || !PageUptodate(page)) {
 628                                if (page->mapping == mapping) {
 629                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 630                                        truncate_inode_page(mapping, page);
 631                                } else {
 632                                        /* Page was replaced by swap: retry */
 633                                        unlock_page(page);
 634                                        index--;
 635                                        break;
 636                                }
 637                        }
 638                        unlock_page(page);
 639                }
 640                pagevec_remove_exceptionals(&pvec);
 641                pagevec_release(&pvec);
 642                mem_cgroup_uncharge_end();
 643                index++;
 644        }
 645
 646        spin_lock(&info->lock);
 647        info->swapped -= nr_swaps_freed;
 648        shmem_recalc_inode(inode);
 649        spin_unlock(&info->lock);
 650}
 651
 652void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 653{
 654        shmem_undo_range(inode, lstart, lend, false);
 655        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 656}
 657EXPORT_SYMBOL_GPL(shmem_truncate_range);
 658
 659static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 660{
 661        struct inode *inode = dentry->d_inode;
 662        struct shmem_inode_info *info = SHMEM_I(inode);
 663        int error;
 664
 665        error = inode_change_ok(inode, attr);
 666        if (error)
 667                return error;
 668
 669        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 670                loff_t oldsize = inode->i_size;
 671                loff_t newsize = attr->ia_size;
 672
 673                /* protected by i_mutex */
 674                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 675                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 676                        return -EPERM;
 677
 678                if (newsize != oldsize) {
 679                        i_size_write(inode, newsize);
 680                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 681                }
 682                if (newsize < oldsize) {
 683                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 684                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 685                        shmem_truncate_range(inode, newsize, (loff_t)-1);
 686                        /* unmap again to remove racily COWed private pages */
 687                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 688                }
 689        }
 690
 691        setattr_copy(inode, attr);
 692#ifdef CONFIG_TMPFS_POSIX_ACL
 693        if (attr->ia_valid & ATTR_MODE)
 694                error = generic_acl_chmod(inode);
 695#endif
 696        return error;
 697}
 698
 699static void shmem_evict_inode(struct inode *inode)
 700{
 701        struct shmem_inode_info *info = SHMEM_I(inode);
 702
 703        if (inode->i_mapping->a_ops == &shmem_aops) {
 704                shmem_unacct_size(info->flags, inode->i_size);
 705                inode->i_size = 0;
 706                shmem_truncate_range(inode, 0, (loff_t)-1);
 707                if (!list_empty(&info->swaplist)) {
 708                        mutex_lock(&shmem_swaplist_mutex);
 709                        list_del_init(&info->swaplist);
 710                        mutex_unlock(&shmem_swaplist_mutex);
 711                }
 712        } else
 713                kfree(info->symlink);
 714
 715        simple_xattrs_free(&info->xattrs);
 716        WARN_ON(inode->i_blocks);
 717        shmem_free_inode(inode->i_sb);
 718        clear_inode(inode);
 719}
 720
 721/*
 722 * If swap found in inode, free it and move page from swapcache to filecache.
 723 */
 724static int shmem_unuse_inode(struct shmem_inode_info *info,
 725                             swp_entry_t swap, struct page **pagep)
 726{
 727        struct address_space *mapping = info->vfs_inode.i_mapping;
 728        void *radswap;
 729        pgoff_t index;
 730        gfp_t gfp;
 731        int error = 0;
 732
 733        radswap = swp_to_radix_entry(swap);
 734        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 735        if (index == -1)
 736                return 0;
 737
 738        /*
 739         * Move _head_ to start search for next from here.
 740         * But be careful: shmem_evict_inode checks list_empty without taking
 741         * mutex, and there's an instant in list_move_tail when info->swaplist
 742         * would appear empty, if it were the only one on shmem_swaplist.
 743         */
 744        if (shmem_swaplist.next != &info->swaplist)
 745                list_move_tail(&shmem_swaplist, &info->swaplist);
 746
 747        gfp = mapping_gfp_mask(mapping);
 748        if (shmem_should_replace_page(*pagep, gfp)) {
 749                mutex_unlock(&shmem_swaplist_mutex);
 750                error = shmem_replace_page(pagep, gfp, info, index);
 751                mutex_lock(&shmem_swaplist_mutex);
 752                /*
 753                 * We needed to drop mutex to make that restrictive page
 754                 * allocation, but the inode might have been freed while we
 755                 * dropped it: although a racing shmem_evict_inode() cannot
 756                 * complete without emptying the radix_tree, our page lock
 757                 * on this swapcache page is not enough to prevent that -
 758                 * free_swap_and_cache() of our swap entry will only
 759                 * trylock_page(), removing swap from radix_tree whatever.
 760                 *
 761                 * We must not proceed to shmem_add_to_page_cache() if the
 762                 * inode has been freed, but of course we cannot rely on
 763                 * inode or mapping or info to check that.  However, we can
 764                 * safely check if our swap entry is still in use (and here
 765                 * it can't have got reused for another page): if it's still
 766                 * in use, then the inode cannot have been freed yet, and we
 767                 * can safely proceed (if it's no longer in use, that tells
 768                 * nothing about the inode, but we don't need to unuse swap).
 769                 */
 770                if (!page_swapcount(*pagep))
 771                        error = -ENOENT;
 772        }
 773
 774        /*
 775         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 776         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 777         * beneath us (pagelock doesn't help until the page is in pagecache).
 778         */
 779        if (!error)
 780                error = shmem_add_to_page_cache(*pagep, mapping, index,
 781                                                GFP_NOWAIT, radswap);
 782        if (error != -ENOMEM) {
 783                /*
 784                 * Truncation and eviction use free_swap_and_cache(), which
 785                 * only does trylock page: if we raced, best clean up here.
 786                 */
 787                delete_from_swap_cache(*pagep);
 788                set_page_dirty(*pagep);
 789                if (!error) {
 790                        spin_lock(&info->lock);
 791                        info->swapped--;
 792                        spin_unlock(&info->lock);
 793                        swap_free(swap);
 794                }
 795                error = 1;      /* not an error, but entry was found */
 796        }
 797        return error;
 798}
 799
 800/*
 801 * Search through swapped inodes to find and replace swap by page.
 802 */
 803int shmem_unuse(swp_entry_t swap, struct page *page)
 804{
 805        struct list_head *this, *next;
 806        struct shmem_inode_info *info;
 807        int found = 0;
 808        int error = 0;
 809
 810        /*
 811         * There's a faint possibility that swap page was replaced before
 812         * caller locked it: caller will come back later with the right page.
 813         */
 814        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 815                goto out;
 816
 817        /*
 818         * Charge page using GFP_KERNEL while we can wait, before taking
 819         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 820         * Charged back to the user (not to caller) when swap account is used.
 821         */
 822        error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 823        if (error)
 824                goto out;
 825        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 826
 827        mutex_lock(&shmem_swaplist_mutex);
 828        list_for_each_safe(this, next, &shmem_swaplist) {
 829                info = list_entry(this, struct shmem_inode_info, swaplist);
 830                if (info->swapped)
 831                        found = shmem_unuse_inode(info, swap, &page);
 832                else
 833                        list_del_init(&info->swaplist);
 834                cond_resched();
 835                if (found)
 836                        break;
 837        }
 838        mutex_unlock(&shmem_swaplist_mutex);
 839
 840        if (found < 0)
 841                error = found;
 842out:
 843        unlock_page(page);
 844        page_cache_release(page);
 845        return error;
 846}
 847
 848/*
 849 * Move the page from the page cache to the swap cache.
 850 */
 851static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 852{
 853        struct shmem_inode_info *info;
 854        struct address_space *mapping;
 855        struct inode *inode;
 856        swp_entry_t swap;
 857        pgoff_t index;
 858
 859        BUG_ON(!PageLocked(page));
 860        mapping = page->mapping;
 861        index = page->index;
 862        inode = mapping->host;
 863        info = SHMEM_I(inode);
 864        if (info->flags & VM_LOCKED)
 865                goto redirty;
 866        if (!total_swap_pages)
 867                goto redirty;
 868
 869        /*
 870         * shmem_backing_dev_info's capabilities prevent regular writeback or
 871         * sync from ever calling shmem_writepage; but a stacking filesystem
 872         * might use ->writepage of its underlying filesystem, in which case
 873         * tmpfs should write out to swap only in response to memory pressure,
 874         * and not for the writeback threads or sync.
 875         */
 876        if (!wbc->for_reclaim) {
 877                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 878                goto redirty;
 879        }
 880
 881        /*
 882         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 883         * value into swapfile.c, the only way we can correctly account for a
 884         * fallocated page arriving here is now to initialize it and write it.
 885         *
 886         * That's okay for a page already fallocated earlier, but if we have
 887         * not yet completed the fallocation, then (a) we want to keep track
 888         * of this page in case we have to undo it, and (b) it may not be a
 889         * good idea to continue anyway, once we're pushing into swap.  So
 890         * reactivate the page, and let shmem_fallocate() quit when too many.
 891         */
 892        if (!PageUptodate(page)) {
 893                if (inode->i_private) {
 894                        struct shmem_falloc *shmem_falloc;
 895                        spin_lock(&inode->i_lock);
 896                        shmem_falloc = inode->i_private;
 897                        if (shmem_falloc &&
 898                            !shmem_falloc->waitq &&
 899                            index >= shmem_falloc->start &&
 900                            index < shmem_falloc->next)
 901                                shmem_falloc->nr_unswapped++;
 902                        else
 903                                shmem_falloc = NULL;
 904                        spin_unlock(&inode->i_lock);
 905                        if (shmem_falloc)
 906                                goto redirty;
 907                }
 908                clear_highpage(page);
 909                flush_dcache_page(page);
 910                SetPageUptodate(page);
 911        }
 912
 913        swap = get_swap_page();
 914        if (!swap.val)
 915                goto redirty;
 916
 917        /*
 918         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 919         * if it's not already there.  Do it now before the page is
 920         * moved to swap cache, when its pagelock no longer protects
 921         * the inode from eviction.  But don't unlock the mutex until
 922         * we've incremented swapped, because shmem_unuse_inode() will
 923         * prune a !swapped inode from the swaplist under this mutex.
 924         */
 925        mutex_lock(&shmem_swaplist_mutex);
 926        if (list_empty(&info->swaplist))
 927                list_add_tail(&info->swaplist, &shmem_swaplist);
 928
 929        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 930                spin_lock(&info->lock);
 931                shmem_recalc_inode(inode);
 932                info->swapped++;
 933                spin_unlock(&info->lock);
 934
 935                swap_shmem_alloc(swap);
 936                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 937
 938                mutex_unlock(&shmem_swaplist_mutex);
 939                BUG_ON(page_mapped(page));
 940                swap_writepage(page, wbc);
 941                return 0;
 942        }
 943
 944        mutex_unlock(&shmem_swaplist_mutex);
 945        swapcache_free(swap, NULL);
 946redirty:
 947        set_page_dirty(page);
 948        if (wbc->for_reclaim)
 949                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 950        unlock_page(page);
 951        return 0;
 952}
 953
 954#ifdef CONFIG_NUMA
 955#ifdef CONFIG_TMPFS
 956static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 957{
 958        char buffer[64];
 959
 960        if (!mpol || mpol->mode == MPOL_DEFAULT)
 961                return;         /* show nothing */
 962
 963        mpol_to_str(buffer, sizeof(buffer), mpol);
 964
 965        seq_printf(seq, ",mpol=%s", buffer);
 966}
 967
 968static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 969{
 970        struct mempolicy *mpol = NULL;
 971        if (sbinfo->mpol) {
 972                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 973                mpol = sbinfo->mpol;
 974                mpol_get(mpol);
 975                spin_unlock(&sbinfo->stat_lock);
 976        }
 977        return mpol;
 978}
 979#endif /* CONFIG_TMPFS */
 980
 981static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 982                        struct shmem_inode_info *info, pgoff_t index)
 983{
 984        struct vm_area_struct pvma;
 985        struct page *page;
 986
 987        /* Create a pseudo vma that just contains the policy */
 988        pvma.vm_start = 0;
 989        /* Bias interleave by inode number to distribute better across nodes */
 990        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 991        pvma.vm_ops = NULL;
 992        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 993
 994        page = swapin_readahead(swap, gfp, &pvma, 0);
 995
 996        /* Drop reference taken by mpol_shared_policy_lookup() */
 997        mpol_cond_put(pvma.vm_policy);
 998
 999        return page;
1000}
1001
1002static struct page *shmem_alloc_page(gfp_t gfp,
1003                        struct shmem_inode_info *info, pgoff_t index)
1004{
1005        struct vm_area_struct pvma;
1006        struct page *page;
1007
1008        /* Create a pseudo vma that just contains the policy */
1009        pvma.vm_start = 0;
1010        /* Bias interleave by inode number to distribute better across nodes */
1011        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
1012        pvma.vm_ops = NULL;
1013        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1014
1015        page = alloc_page_vma(gfp, &pvma, 0);
1016
1017        /* Drop reference taken by mpol_shared_policy_lookup() */
1018        mpol_cond_put(pvma.vm_policy);
1019
1020        return page;
1021}
1022#else /* !CONFIG_NUMA */
1023#ifdef CONFIG_TMPFS
1024static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1025{
1026}
1027#endif /* CONFIG_TMPFS */
1028
1029static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1030                        struct shmem_inode_info *info, pgoff_t index)
1031{
1032        return swapin_readahead(swap, gfp, NULL, 0);
1033}
1034
1035static inline struct page *shmem_alloc_page(gfp_t gfp,
1036                        struct shmem_inode_info *info, pgoff_t index)
1037{
1038        return alloc_page(gfp);
1039}
1040#endif /* CONFIG_NUMA */
1041
1042#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1043static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1044{
1045        return NULL;
1046}
1047#endif
1048
1049/*
1050 * When a page is moved from swapcache to shmem filecache (either by the
1051 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1052 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1053 * ignorance of the mapping it belongs to.  If that mapping has special
1054 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1055 * we may need to copy to a suitable page before moving to filecache.
1056 *
1057 * In a future release, this may well be extended to respect cpuset and
1058 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1059 * but for now it is a simple matter of zone.
1060 */
1061static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1062{
1063        return page_zonenum(page) > gfp_zone(gfp);
1064}
1065
1066static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1067                                struct shmem_inode_info *info, pgoff_t index)
1068{
1069        struct page *oldpage, *newpage;
1070        struct address_space *swap_mapping;
1071        pgoff_t swap_index;
1072        int error;
1073
1074        oldpage = *pagep;
1075        swap_index = page_private(oldpage);
1076        swap_mapping = page_mapping(oldpage);
1077
1078        /*
1079         * We have arrived here because our zones are constrained, so don't
1080         * limit chance of success by further cpuset and node constraints.
1081         */
1082        gfp &= ~GFP_CONSTRAINT_MASK;
1083        newpage = shmem_alloc_page(gfp, info, index);
1084        if (!newpage)
1085                return -ENOMEM;
1086
1087        page_cache_get(newpage);
1088        copy_highpage(newpage, oldpage);
1089        flush_dcache_page(newpage);
1090
1091        __set_page_locked(newpage);
1092        SetPageUptodate(newpage);
1093        SetPageSwapBacked(newpage);
1094        set_page_private(newpage, swap_index);
1095        SetPageSwapCache(newpage);
1096
1097        /*
1098         * Our caller will very soon move newpage out of swapcache, but it's
1099         * a nice clean interface for us to replace oldpage by newpage there.
1100         */
1101        spin_lock_irq(&swap_mapping->tree_lock);
1102        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1103                                                                   newpage);
1104        if (!error) {
1105                __inc_zone_page_state(newpage, NR_FILE_PAGES);
1106                __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1107        }
1108        spin_unlock_irq(&swap_mapping->tree_lock);
1109
1110        if (unlikely(error)) {
1111                /*
1112                 * Is this possible?  I think not, now that our callers check
1113                 * both PageSwapCache and page_private after getting page lock;
1114                 * but be defensive.  Reverse old to newpage for clear and free.
1115                 */
1116                oldpage = newpage;
1117        } else {
1118                mem_cgroup_replace_page_cache(oldpage, newpage);
1119                lru_cache_add_anon(newpage);
1120                *pagep = newpage;
1121        }
1122
1123        ClearPageSwapCache(oldpage);
1124        set_page_private(oldpage, 0);
1125
1126        unlock_page(oldpage);
1127        page_cache_release(oldpage);
1128        page_cache_release(oldpage);
1129        return error;
1130}
1131
1132/*
1133 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1134 *
1135 * If we allocate a new one we do not mark it dirty. That's up to the
1136 * vm. If we swap it in we mark it dirty since we also free the swap
1137 * entry since a page cannot live in both the swap and page cache
1138 */
1139static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1140                             struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1141                             struct vm_area_struct *vma, struct vm_fault *vmf,
1142                             int *fault_type)
1143{
1144        struct address_space *mapping = inode->i_mapping;
1145        struct shmem_inode_info *info;
1146        struct page *page;
1147        swp_entry_t swap;
1148        int error;
1149        int once = 0;
1150        int alloced = 0;
1151
1152        if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1153                return -EFBIG;
1154repeat:
1155        swap.val = 0;
1156        page = __find_lock_page(mapping, index);
1157        if (radix_tree_exceptional_entry(page)) {
1158                swap = radix_to_swp_entry(page);
1159                page = NULL;
1160        }
1161
1162        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1163            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1164                error = -EINVAL;
1165                goto unlock;
1166        }
1167
1168        /* fallocated page? */
1169        if (page && !PageUptodate(page)) {
1170                if (sgp != SGP_READ)
1171                        goto clear;
1172                unlock_page(page);
1173                page_cache_release(page);
1174                page = NULL;
1175        }
1176        if (page || (sgp == SGP_READ && !swap.val)) {
1177                *pagep = page;
1178                return 0;
1179        }
1180
1181        /*
1182         * Fast cache lookup did not find it:
1183         * bring it back from swap or allocate.
1184         */
1185        info = SHMEM_I(inode);
1186
1187        if (swap.val) {
1188                /* Look it up and read it in.. */
1189                page = lookup_swap_cache(swap, NULL, 0);
1190                if (!page) {
1191                        /* here we actually do the io */
1192                        if (fault_type)
1193                                *fault_type |= VM_FAULT_MAJOR;
1194                        page = shmem_swapin(swap, gfp, info, index);
1195                        if (!page) {
1196                                error = -ENOMEM;
1197                                goto failed;
1198                        }
1199                }
1200
1201                /* We have to do this with page locked to prevent races */
1202                lock_page(page);
1203                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1204                    !shmem_confirm_swap(mapping, index, swap)) {
1205                        error = -EEXIST;        /* try again */
1206                        goto unlock;
1207                }
1208                if (!PageUptodate(page)) {
1209                        error = -EIO;
1210                        goto failed;
1211                }
1212                wait_on_page_writeback(page);
1213
1214                if (shmem_should_replace_page(page, gfp)) {
1215                        error = shmem_replace_page(&page, gfp, info, index);
1216                        if (error)
1217                                goto failed;
1218                }
1219
1220                error = mem_cgroup_cache_charge(page, current->mm,
1221                                                gfp & GFP_RECLAIM_MASK);
1222                if (!error) {
1223                        error = shmem_add_to_page_cache(page, mapping, index,
1224                                                gfp, swp_to_radix_entry(swap));
1225                        /*
1226                         * We already confirmed swap under page lock, and make
1227                         * no memory allocation here, so usually no possibility
1228                         * of error; but free_swap_and_cache() only trylocks a
1229                         * page, so it is just possible that the entry has been
1230                         * truncated or holepunched since swap was confirmed.
1231                         * shmem_undo_range() will have done some of the
1232                         * unaccounting, now delete_from_swap_cache() will do
1233                         * the rest (including mem_cgroup_uncharge_swapcache).
1234                         * Reset swap.val? No, leave it so "failed" goes back to
1235                         * "repeat": reading a hole and writing should succeed.
1236                         */
1237                        if (error)
1238                                delete_from_swap_cache(page);
1239                }
1240                if (error)
1241                        goto failed;
1242
1243                spin_lock(&info->lock);
1244                info->swapped--;
1245                shmem_recalc_inode(inode);
1246                spin_unlock(&info->lock);
1247
1248                delete_from_swap_cache(page);
1249                set_page_dirty(page);
1250                swap_free(swap);
1251
1252        } else {
1253                if (vma && userfaultfd_missing(vma)) {
1254                        *fault_type = handle_userfault(vmf,
1255                                                       VM_UFFD_MISSING);
1256                        return 0;
1257                }
1258                if (!shmem_inode_acct_block(inode, 1)) {
1259                        error = -ENOSPC;
1260
1261                        goto failed;
1262                }
1263
1264                page = shmem_alloc_page(gfp, info, index);
1265                if (!page) {
1266                        error = -ENOMEM;
1267                        goto decused;
1268                }
1269
1270                SetPageSwapBacked(page);
1271                __set_page_locked(page);
1272                error = mem_cgroup_cache_charge(page, current->mm,
1273                                                gfp & GFP_RECLAIM_MASK);
1274                if (error)
1275                        goto decused;
1276                error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1277                if (!error) {
1278                        error = shmem_add_to_page_cache(page, mapping, index,
1279                                                        gfp, NULL);
1280                        radix_tree_preload_end();
1281                }
1282                if (error) {
1283                        mem_cgroup_uncharge_cache_page(page);
1284                        goto decused;
1285                }
1286                lru_cache_add_anon(page);
1287
1288                spin_lock(&info->lock);
1289                info->alloced++;
1290                inode->i_blocks += BLOCKS_PER_PAGE;
1291                shmem_recalc_inode(inode);
1292                spin_unlock(&info->lock);
1293                alloced = true;
1294
1295                /*
1296                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1297                 */
1298                if (sgp == SGP_FALLOC)
1299                        sgp = SGP_WRITE;
1300clear:
1301                /*
1302                 * Let SGP_WRITE caller clear ends if write does not fill page;
1303                 * but SGP_FALLOC on a page fallocated earlier must initialize
1304                 * it now, lest undo on failure cancel our earlier guarantee.
1305                 */
1306                if (sgp != SGP_WRITE) {
1307                        clear_highpage(page);
1308                        flush_dcache_page(page);
1309                        SetPageUptodate(page);
1310                }
1311                if (sgp == SGP_DIRTY)
1312                        set_page_dirty(page);
1313        }
1314
1315        /* Perhaps the file has been truncated since we checked */
1316        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1317            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1318                if (alloced) {
1319                        ClearPageDirty(page);
1320                        delete_from_page_cache(page);
1321                        spin_lock(&info->lock);
1322                        shmem_recalc_inode(inode);
1323                        spin_unlock(&info->lock);
1324                }
1325                error = -EINVAL;
1326                goto unlock;
1327        }
1328        *pagep = page;
1329        return 0;
1330
1331        /*
1332         * Error recovery.
1333         */
1334decused:
1335        shmem_inode_unacct_blocks(inode, 1);
1336failed:
1337        if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1338                error = -EEXIST;
1339unlock:
1340        if (page) {
1341                unlock_page(page);
1342                page_cache_release(page);
1343        }
1344        if (error == -ENOSPC && !once++) {
1345                info = SHMEM_I(inode);
1346                spin_lock(&info->lock);
1347                shmem_recalc_inode(inode);
1348                spin_unlock(&info->lock);
1349                goto repeat;
1350        }
1351        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1352                goto repeat;
1353        return error;
1354}
1355
1356/*
1357 * This is like autoremove_wake_function, but it removes the wait queue
1358 * entry unconditionally - even if something else had already woken the
1359 * target.
1360 */
1361static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1362{
1363        int ret = default_wake_function(wait, mode, sync, key);
1364        list_del_init(&wait->task_list);
1365        return ret;
1366}
1367
1368static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1369{
1370        struct inode *inode = file_inode(vma->vm_file);
1371        gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1372        int error;
1373        int ret = VM_FAULT_LOCKED;
1374
1375        /*
1376         * Trinity finds that probing a hole which tmpfs is punching can
1377         * prevent the hole-punch from ever completing: which in turn
1378         * locks writers out with its hold on i_mutex.  So refrain from
1379         * faulting pages into the hole while it's being punched.  Although
1380         * shmem_undo_range() does remove the additions, it may be unable to
1381         * keep up, as each new page needs its own unmap_mapping_range() call,
1382         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1383         *
1384         * It does not matter if we sometimes reach this check just before the
1385         * hole-punch begins, so that one fault then races with the punch:
1386         * we just need to make racing faults a rare case.
1387         *
1388         * The implementation below would be much simpler if we just used a
1389         * standard mutex or completion: but we cannot take i_mutex in fault,
1390         * and bloating every shmem inode for this unlikely case would be sad.
1391         */
1392        if (unlikely(inode->i_private)) {
1393                struct shmem_falloc *shmem_falloc;
1394
1395                spin_lock(&inode->i_lock);
1396                shmem_falloc = inode->i_private;
1397                if (shmem_falloc &&
1398                    shmem_falloc->waitq &&
1399                    vmf->pgoff >= shmem_falloc->start &&
1400                    vmf->pgoff < shmem_falloc->next) {
1401                        wait_queue_head_t *shmem_falloc_waitq;
1402                        DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1403
1404                        ret = VM_FAULT_NOPAGE;
1405                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1406                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1407                                /* It's polite to up mmap_sem if we can */
1408                                up_read(&vma->vm_mm->mmap_sem);
1409                                ret = VM_FAULT_RETRY;
1410                        }
1411
1412                        shmem_falloc_waitq = shmem_falloc->waitq;
1413                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1414                                        TASK_UNINTERRUPTIBLE);
1415                        spin_unlock(&inode->i_lock);
1416                        schedule();
1417
1418                        /*
1419                         * shmem_falloc_waitq points into the shmem_fallocate()
1420                         * stack of the hole-punching task: shmem_falloc_waitq
1421                         * is usually invalid by the time we reach here, but
1422                         * finish_wait() does not dereference it in that case;
1423                         * though i_lock needed lest racing with wake_up_all().
1424                         */
1425                        spin_lock(&inode->i_lock);
1426                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1427                        spin_unlock(&inode->i_lock);
1428                        return ret;
1429                }
1430                spin_unlock(&inode->i_lock);
1431        }
1432
1433        error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1434                                  gfp, vma, vmf, &ret);
1435        if (error)
1436                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1437
1438        if (ret & VM_FAULT_MAJOR) {
1439                count_vm_event(PGMAJFAULT);
1440                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1441        }
1442        return ret;
1443}
1444
1445#ifdef CONFIG_NUMA
1446static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1447{
1448        struct inode *inode = file_inode(vma->vm_file);
1449        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1450}
1451
1452static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1453                                          unsigned long addr)
1454{
1455        struct inode *inode = file_inode(vma->vm_file);
1456        pgoff_t index;
1457
1458        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1459        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1460}
1461#endif
1462
1463int shmem_lock(struct file *file, int lock, struct user_struct *user)
1464{
1465        struct inode *inode = file_inode(file);
1466        struct shmem_inode_info *info = SHMEM_I(inode);
1467        int retval = -ENOMEM;
1468
1469        spin_lock(&info->lock);
1470        if (lock && !(info->flags & VM_LOCKED)) {
1471                if (!user_shm_lock(inode->i_size, user))
1472                        goto out_nomem;
1473                info->flags |= VM_LOCKED;
1474                mapping_set_unevictable(file->f_mapping);
1475        }
1476        if (!lock && (info->flags & VM_LOCKED) && user) {
1477                user_shm_unlock(inode->i_size, user);
1478                info->flags &= ~VM_LOCKED;
1479                mapping_clear_unevictable(file->f_mapping);
1480        }
1481        retval = 0;
1482
1483out_nomem:
1484        spin_unlock(&info->lock);
1485        return retval;
1486}
1487
1488static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1489{
1490        file_accessed(file);
1491        vma->vm_ops = &shmem_vm_ops;
1492        return 0;
1493}
1494
1495static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1496                                     umode_t mode, dev_t dev, unsigned long flags)
1497{
1498        struct inode *inode;
1499        struct shmem_inode_info *info;
1500        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1501
1502        if (shmem_reserve_inode(sb))
1503                return NULL;
1504
1505        inode = new_inode(sb);
1506        if (inode) {
1507                inode->i_ino = get_next_ino();
1508                inode_init_owner(inode, dir, mode);
1509                inode->i_blocks = 0;
1510                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1511                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1512                inode->i_generation = get_seconds();
1513                info = SHMEM_I(inode);
1514                memset(info, 0, (char *)inode - (char *)info);
1515                spin_lock_init(&info->lock);
1516                info->seals = F_SEAL_SEAL;
1517                info->flags = flags & VM_NORESERVE;
1518                INIT_LIST_HEAD(&info->swaplist);
1519                simple_xattrs_init(&info->xattrs);
1520                cache_no_acl(inode);
1521
1522                switch (mode & S_IFMT) {
1523                default:
1524                        inode->i_op = &shmem_special_inode_operations;
1525                        init_special_inode(inode, mode, dev);
1526                        break;
1527                case S_IFREG:
1528                        inode->i_mapping->a_ops = &shmem_aops;
1529                        inode->i_op = &shmem_inode_operations;
1530                        inode->i_fop = &shmem_file_operations;
1531                        mpol_shared_policy_init(&info->policy,
1532                                                 shmem_get_sbmpol(sbinfo));
1533                        break;
1534                case S_IFDIR:
1535                        inc_nlink(inode);
1536                        /* Some things misbehave if size == 0 on a directory */
1537                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1538                        inode->i_op = &shmem_dir_inode_operations.ops;
1539                        inode->i_fop = &simple_dir_operations;
1540                        inode->i_flags |= S_IOPS_WRAPPER;
1541                        break;
1542                case S_IFLNK:
1543                        /*
1544                         * Must not load anything in the rbtree,
1545                         * mpol_free_shared_policy will not be called.
1546                         */
1547                        mpol_shared_policy_init(&info->policy, NULL);
1548                        break;
1549                }
1550        } else
1551                shmem_free_inode(sb);
1552        return inode;
1553}
1554
1555bool shmem_mapping(struct address_space *mapping)
1556{
1557        return mapping->backing_dev_info == &shmem_backing_dev_info;
1558}
1559
1560static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
1561                                  pmd_t *dst_pmd,
1562                                  struct vm_area_struct *dst_vma,
1563                                  unsigned long dst_addr,
1564                                  unsigned long src_addr,
1565                                  bool zeropage,
1566                                  struct page **pagep)
1567{
1568        struct inode *inode = file_inode(dst_vma->vm_file);
1569        struct shmem_inode_info *info = SHMEM_I(inode);
1570        struct address_space *mapping = inode->i_mapping;
1571        gfp_t gfp = mapping_gfp_mask(mapping);
1572        pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
1573        spinlock_t *ptl;
1574        void *page_kaddr;
1575        struct page *page;
1576        pte_t _dst_pte, *dst_pte;
1577        int ret;
1578        pgoff_t offset, max_off;
1579
1580        ret = -ENOMEM;
1581        if (!shmem_inode_acct_block(inode, 1))
1582                goto out;
1583
1584        if (!*pagep) {
1585                page = shmem_alloc_page(gfp, info, pgoff);
1586                if (!page)
1587                        goto out_unacct_blocks;
1588
1589                if (!zeropage) {        /* mcopy_atomic */
1590                        page_kaddr = kmap_atomic(page);
1591                        ret = copy_from_user(page_kaddr,
1592                                             (const void __user *)src_addr,
1593                                             PAGE_SIZE);
1594                        kunmap_atomic(page_kaddr);
1595
1596                        /* fallback to copy_from_user outside mmap_sem */
1597                        if (unlikely(ret)) {
1598                                *pagep = page;
1599                                shmem_inode_unacct_blocks(inode, 1);
1600                                /* don't free the page */
1601                                return -ENOENT;
1602                        }
1603                } else {                /* mfill_zeropage_atomic */
1604                        clear_highpage(page);
1605                }
1606        } else {
1607                page = *pagep;
1608                *pagep = NULL;
1609        }
1610
1611        VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
1612        __set_page_locked(page);
1613        __SetPageSwapBacked(page);
1614        __SetPageUptodate(page);
1615
1616        ret = -EFAULT;
1617        offset = linear_page_index(dst_vma, dst_addr);
1618        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1619        if (unlikely(offset >= max_off))
1620                goto out_release;
1621
1622        ret = mem_cgroup_cache_charge(page, dst_mm,
1623                                      gfp & GFP_RECLAIM_MASK);
1624        if (ret)
1625                goto out_release;
1626
1627        ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1628        if (!ret) {
1629                ret = shmem_add_to_page_cache(page, mapping, pgoff, gfp, NULL);
1630                radix_tree_preload_end();
1631        }
1632        if (ret)
1633                goto out_release_uncharge;
1634
1635        _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
1636        if (dst_vma->vm_flags & VM_WRITE)
1637                _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
1638        else {
1639                /*
1640                 * We don't set the pte dirty if the vma has no
1641                 * VM_WRITE permission, so mark the page dirty or it
1642                 * could be freed from under us. We could do it
1643                 * unconditionally before unlock_page(), but doing it
1644                 * only if VM_WRITE is not set is faster.
1645                 */
1646                set_page_dirty(page);
1647        }
1648
1649        dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
1650
1651        ret = -EFAULT;
1652        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1653        if (unlikely(offset >= max_off))
1654                goto out_release_uncharge_unlock;
1655
1656        ret = -EEXIST;
1657        if (!pte_none(*dst_pte))
1658                goto out_release_uncharge_unlock;
1659
1660        lru_cache_add_anon(page);
1661
1662        spin_lock(&info->lock);
1663        info->alloced++;
1664        inode->i_blocks += BLOCKS_PER_PAGE;
1665        shmem_recalc_inode(inode);
1666        spin_unlock(&info->lock);
1667
1668        inc_mm_counter(dst_mm, mm_counter_file(page));
1669        page_add_file_rmap(page);
1670        set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
1671
1672        /* No need to invalidate - it was non-present before */
1673        update_mmu_cache(dst_vma, dst_addr, dst_pte);
1674        pte_unmap_unlock(dst_pte, ptl);
1675        unlock_page(page);
1676        ret = 0;
1677out:
1678        return ret;
1679out_release_uncharge_unlock:
1680        pte_unmap_unlock(dst_pte, ptl);
1681        ClearPageDirty(page);
1682        delete_from_page_cache(page);
1683out_release_uncharge:
1684        mem_cgroup_uncharge_cache_page(page);
1685out_release:
1686        unlock_page(page);
1687        put_page(page);
1688out_unacct_blocks:
1689        shmem_inode_unacct_blocks(inode, 1);
1690        goto out;
1691}
1692
1693int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
1694                           pmd_t *dst_pmd,
1695                           struct vm_area_struct *dst_vma,
1696                           unsigned long dst_addr,
1697                           unsigned long src_addr,
1698                           struct page **pagep)
1699{
1700        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
1701                                      dst_addr, src_addr, false, pagep);
1702}
1703
1704int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
1705                             pmd_t *dst_pmd,
1706                             struct vm_area_struct *dst_vma,
1707                             unsigned long dst_addr)
1708{
1709        struct page *page = NULL;
1710
1711        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
1712                                      dst_addr, 0, true, &page);
1713}
1714
1715#ifdef CONFIG_TMPFS
1716static const struct inode_operations shmem_symlink_inode_operations;
1717static const struct inode_operations shmem_short_symlink_operations;
1718
1719#ifdef CONFIG_TMPFS_XATTR
1720static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1721#else
1722#define shmem_initxattrs NULL
1723#endif
1724
1725static int
1726shmem_write_begin(struct file *file, struct address_space *mapping,
1727                        loff_t pos, unsigned len, unsigned flags,
1728                        struct page **pagep, void **fsdata)
1729{
1730        struct inode *inode = mapping->host;
1731        struct shmem_inode_info *info = SHMEM_I(inode);
1732        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1733
1734        /* i_mutex is held by caller */
1735        if (unlikely(info->seals)) {
1736                if (info->seals & F_SEAL_WRITE)
1737                        return -EPERM;
1738                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1739                        return -EPERM;
1740        }
1741
1742        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1743}
1744
1745static int
1746shmem_write_end(struct file *file, struct address_space *mapping,
1747                        loff_t pos, unsigned len, unsigned copied,
1748                        struct page *page, void *fsdata)
1749{
1750        struct inode *inode = mapping->host;
1751
1752        if (pos + copied > inode->i_size)
1753                i_size_write(inode, pos + copied);
1754
1755        if (!PageUptodate(page)) {
1756                if (copied < PAGE_CACHE_SIZE) {
1757                        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1758                        zero_user_segments(page, 0, from,
1759                                        from + copied, PAGE_CACHE_SIZE);
1760                }
1761                SetPageUptodate(page);
1762        }
1763        set_page_dirty(page);
1764        unlock_page(page);
1765        page_cache_release(page);
1766
1767        return copied;
1768}
1769
1770static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1771{
1772        struct inode *inode = file_inode(filp);
1773        struct address_space *mapping = inode->i_mapping;
1774        pgoff_t index;
1775        unsigned long offset;
1776        enum sgp_type sgp = SGP_READ;
1777
1778        /*
1779         * Might this read be for a stacking filesystem?  Then when reading
1780         * holes of a sparse file, we actually need to allocate those pages,
1781         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1782         */
1783        if (segment_eq(get_fs(), KERNEL_DS))
1784                sgp = SGP_DIRTY;
1785
1786        index = *ppos >> PAGE_CACHE_SHIFT;
1787        offset = *ppos & ~PAGE_CACHE_MASK;
1788
1789        for (;;) {
1790                struct page *page = NULL;
1791                pgoff_t end_index;
1792                unsigned long nr, ret;
1793                loff_t i_size = i_size_read(inode);
1794
1795                end_index = i_size >> PAGE_CACHE_SHIFT;
1796                if (index > end_index)
1797                        break;
1798                if (index == end_index) {
1799                        nr = i_size & ~PAGE_CACHE_MASK;
1800                        if (nr <= offset)
1801                                break;
1802                }
1803
1804                desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1805                if (desc->error) {
1806                        if (desc->error == -EINVAL)
1807                                desc->error = 0;
1808                        break;
1809                }
1810                if (page)
1811                        unlock_page(page);
1812
1813                /*
1814                 * We must evaluate after, since reads (unlike writes)
1815                 * are called without i_mutex protection against truncate
1816                 */
1817                nr = PAGE_CACHE_SIZE;
1818                i_size = i_size_read(inode);
1819                end_index = i_size >> PAGE_CACHE_SHIFT;
1820                if (index == end_index) {
1821                        nr = i_size & ~PAGE_CACHE_MASK;
1822                        if (nr <= offset) {
1823                                if (page)
1824                                        page_cache_release(page);
1825                                break;
1826                        }
1827                }
1828                nr -= offset;
1829
1830                if (page) {
1831                        /*
1832                         * If users can be writing to this page using arbitrary
1833                         * virtual addresses, take care about potential aliasing
1834                         * before reading the page on the kernel side.
1835                         */
1836                        if (mapping_writably_mapped(mapping))
1837                                flush_dcache_page(page);
1838                        /*
1839                         * Mark the page accessed if we read the beginning.
1840                         */
1841                        if (!offset)
1842                                mark_page_accessed(page);
1843                } else {
1844                        page = ZERO_PAGE(0);
1845                        page_cache_get(page);
1846                }
1847
1848                /*
1849                 * Ok, we have the page, and it's up-to-date, so
1850                 * now we can copy it to user space...
1851                 *
1852                 * The actor routine returns how many bytes were actually used..
1853                 * NOTE! This may not be the same as how much of a user buffer
1854                 * we filled up (we may be padding etc), so we can only update
1855                 * "pos" here (the actor routine has to update the user buffer
1856                 * pointers and the remaining count).
1857                 */
1858                ret = actor(desc, page, offset, nr);
1859                offset += ret;
1860                index += offset >> PAGE_CACHE_SHIFT;
1861                offset &= ~PAGE_CACHE_MASK;
1862
1863                page_cache_release(page);
1864                if (ret != nr || !desc->count)
1865                        break;
1866
1867                cond_resched();
1868        }
1869
1870        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1871        file_accessed(filp);
1872}
1873
1874static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1875                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1876{
1877        struct file *filp = iocb->ki_filp;
1878        ssize_t retval;
1879        unsigned long seg;
1880        size_t count;
1881        loff_t *ppos = &iocb->ki_pos;
1882
1883        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1884        if (retval)
1885                return retval;
1886
1887        for (seg = 0; seg < nr_segs; seg++) {
1888                read_descriptor_t desc;
1889
1890                desc.written = 0;
1891                desc.arg.buf = iov[seg].iov_base;
1892                desc.count = iov[seg].iov_len;
1893                if (desc.count == 0)
1894                        continue;
1895                desc.error = 0;
1896                do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1897                retval += desc.written;
1898                if (desc.error) {
1899                        retval = retval ?: desc.error;
1900                        break;
1901                }
1902                if (desc.count > 0)
1903                        break;
1904        }
1905        return retval;
1906}
1907
1908static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1909                                struct pipe_inode_info *pipe, size_t len,
1910                                unsigned int flags)
1911{
1912        struct address_space *mapping = in->f_mapping;
1913        struct inode *inode = mapping->host;
1914        unsigned int loff, nr_pages, req_pages;
1915        struct page *pages[PIPE_DEF_BUFFERS];
1916        struct partial_page partial[PIPE_DEF_BUFFERS];
1917        struct page *page;
1918        pgoff_t index, end_index;
1919        loff_t isize, left;
1920        int error, page_nr;
1921        struct splice_pipe_desc spd = {
1922                .pages = pages,
1923                .partial = partial,
1924                .nr_pages_max = PIPE_DEF_BUFFERS,
1925                .flags = flags,
1926                .ops = &page_cache_pipe_buf_ops,
1927                .spd_release = spd_release_page,
1928        };
1929
1930        isize = i_size_read(inode);
1931        if (unlikely(*ppos >= isize))
1932                return 0;
1933
1934        left = isize - *ppos;
1935        if (unlikely(left < len))
1936                len = left;
1937
1938        if (splice_grow_spd(pipe, &spd))
1939                return -ENOMEM;
1940
1941        index = *ppos >> PAGE_CACHE_SHIFT;
1942        loff = *ppos & ~PAGE_CACHE_MASK;
1943        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1944        nr_pages = min(req_pages, pipe->buffers);
1945
1946        spd.nr_pages = find_get_pages_contig(mapping, index,
1947                                                nr_pages, spd.pages);
1948        index += spd.nr_pages;
1949        error = 0;
1950
1951        while (spd.nr_pages < nr_pages) {
1952                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1953                if (error)
1954                        break;
1955                unlock_page(page);
1956                spd.pages[spd.nr_pages++] = page;
1957                index++;
1958        }
1959
1960        index = *ppos >> PAGE_CACHE_SHIFT;
1961        nr_pages = spd.nr_pages;
1962        spd.nr_pages = 0;
1963
1964        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1965                unsigned int this_len;
1966
1967                if (!len)
1968                        break;
1969
1970                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1971                page = spd.pages[page_nr];
1972
1973                if (!PageUptodate(page) || page->mapping != mapping) {
1974                        error = shmem_getpage(inode, index, &page,
1975                                                        SGP_CACHE, NULL);
1976                        if (error)
1977                                break;
1978                        unlock_page(page);
1979                        page_cache_release(spd.pages[page_nr]);
1980                        spd.pages[page_nr] = page;
1981                }
1982
1983                isize = i_size_read(inode);
1984                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1985                if (unlikely(!isize || index > end_index))
1986                        break;
1987
1988                if (end_index == index) {
1989                        unsigned int plen;
1990
1991                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1992                        if (plen <= loff)
1993                                break;
1994
1995                        this_len = min(this_len, plen - loff);
1996                        len = this_len;
1997                }
1998
1999                spd.partial[page_nr].offset = loff;
2000                spd.partial[page_nr].len = this_len;
2001                len -= this_len;
2002                loff = 0;
2003                spd.nr_pages++;
2004                index++;
2005        }
2006
2007        while (page_nr < nr_pages)
2008                page_cache_release(spd.pages[page_nr++]);
2009
2010        if (spd.nr_pages)
2011                error = splice_to_pipe(pipe, &spd);
2012
2013        splice_shrink_spd(&spd);
2014
2015        if (error > 0) {
2016                *ppos += error;
2017                file_accessed(in);
2018        }
2019        return error;
2020}
2021
2022/*
2023 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2024 */
2025static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2026                                    pgoff_t index, pgoff_t end, int whence)
2027{
2028        struct page *page;
2029        struct pagevec pvec;
2030        pgoff_t indices[PAGEVEC_SIZE];
2031        bool done = false;
2032        int i;
2033
2034        pagevec_init(&pvec, 0);
2035        pvec.nr = 1;            /* start small: we may be there already */
2036        while (!done) {
2037                pvec.nr = __find_get_pages(mapping, index,
2038                                        pvec.nr, pvec.pages, indices);
2039                if (!pvec.nr) {
2040                        if (whence == SEEK_DATA)
2041                                index = end;
2042                        break;
2043                }
2044                for (i = 0; i < pvec.nr; i++, index++) {
2045                        if (index < indices[i]) {
2046                                if (whence == SEEK_HOLE) {
2047                                        done = true;
2048                                        break;
2049                                }
2050                                index = indices[i];
2051                        }
2052                        page = pvec.pages[i];
2053                        if (page && !radix_tree_exceptional_entry(page)) {
2054                                if (!PageUptodate(page))
2055                                        page = NULL;
2056                        }
2057                        if (index >= end ||
2058                            (page && whence == SEEK_DATA) ||
2059                            (!page && whence == SEEK_HOLE)) {
2060                                done = true;
2061                                break;
2062                        }
2063                }
2064                pagevec_remove_exceptionals(&pvec);
2065                pagevec_release(&pvec);
2066                pvec.nr = PAGEVEC_SIZE;
2067                cond_resched();
2068        }
2069        return index;
2070}
2071
2072static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2073{
2074        struct address_space *mapping = file->f_mapping;
2075        struct inode *inode = mapping->host;
2076        pgoff_t start, end;
2077        loff_t new_offset;
2078
2079        if (whence != SEEK_DATA && whence != SEEK_HOLE)
2080                return generic_file_llseek_size(file, offset, whence,
2081                                        MAX_LFS_FILESIZE, i_size_read(inode));
2082        mutex_lock(&inode->i_mutex);
2083        /* We're holding i_mutex so we can access i_size directly */
2084
2085        if (offset < 0)
2086                offset = -EINVAL;
2087        else if (offset >= inode->i_size)
2088                offset = -ENXIO;
2089        else {
2090                start = offset >> PAGE_CACHE_SHIFT;
2091                end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2092                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2093                new_offset <<= PAGE_CACHE_SHIFT;
2094                if (new_offset > offset) {
2095                        if (new_offset < inode->i_size)
2096                                offset = new_offset;
2097                        else if (whence == SEEK_DATA)
2098                                offset = -ENXIO;
2099                        else
2100                                offset = inode->i_size;
2101                }
2102        }
2103
2104        if (offset >= 0)
2105                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2106        mutex_unlock(&inode->i_mutex);
2107        return offset;
2108}
2109
2110/*
2111 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2112 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2113 */
2114#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2115#define LAST_SCAN               4       /* about 150ms max */
2116
2117static void shmem_tag_pins(struct address_space *mapping)
2118{
2119        struct radix_tree_iter iter;
2120        void **slot;
2121        pgoff_t start;
2122        struct page *page;
2123
2124        lru_add_drain();
2125        start = 0;
2126        rcu_read_lock();
2127
2128        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2129                page = radix_tree_deref_slot(slot);
2130                if (!page || radix_tree_exception(page)) {
2131                        if (radix_tree_deref_retry(page)) {
2132                                slot = radix_tree_iter_retry(&iter);
2133                                continue;
2134                        }
2135                } else if (page_count(page) - page_mapcount(page) > 1) {
2136                        spin_lock_irq(&mapping->tree_lock);
2137                        radix_tree_tag_set(&mapping->page_tree, iter.index,
2138                                           SHMEM_TAG_PINNED);
2139                        spin_unlock_irq(&mapping->tree_lock);
2140                }
2141
2142                if (need_resched()) {
2143                        cond_resched_rcu();
2144                        slot = radix_tree_iter_next(&iter);
2145                }
2146        }
2147        rcu_read_unlock();
2148}
2149
2150/*
2151 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2152 * via get_user_pages(), drivers might have some pending I/O without any active
2153 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2154 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2155 * them to be dropped.
2156 * The caller must guarantee that no new user will acquire writable references
2157 * to those pages to avoid races.
2158 */
2159static int shmem_wait_for_pins(struct address_space *mapping)
2160{
2161        struct radix_tree_iter iter;
2162        void **slot;
2163        pgoff_t start;
2164        struct page *page;
2165        int error, scan;
2166
2167        shmem_tag_pins(mapping);
2168
2169        error = 0;
2170        for (scan = 0; scan <= LAST_SCAN; scan++) {
2171                if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2172                        break;
2173
2174                if (!scan)
2175                        lru_add_drain_all();
2176                else if (schedule_timeout_killable((HZ << scan) / 200))
2177                        scan = LAST_SCAN;
2178
2179                start = 0;
2180                rcu_read_lock();
2181                radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2182                                           start, SHMEM_TAG_PINNED) {
2183
2184                        page = radix_tree_deref_slot(slot);
2185                        if (radix_tree_exception(page)) {
2186                                if (radix_tree_deref_retry(page)) {
2187                                        slot = radix_tree_iter_retry(&iter);
2188                                        continue;
2189                                }
2190
2191                                page = NULL;
2192                        }
2193
2194                        if (page &&
2195                            page_count(page) - page_mapcount(page) != 1) {
2196                                if (scan < LAST_SCAN)
2197                                        goto continue_resched;
2198
2199                                /*
2200                                 * On the last scan, we clean up all those tags
2201                                 * we inserted; but make a note that we still
2202                                 * found pages pinned.
2203                                 */
2204                                error = -EBUSY;
2205                        }
2206
2207                        spin_lock_irq(&mapping->tree_lock);
2208                        radix_tree_tag_clear(&mapping->page_tree,
2209                                             iter.index, SHMEM_TAG_PINNED);
2210                        spin_unlock_irq(&mapping->tree_lock);
2211continue_resched:
2212                        if (need_resched()) {
2213                                cond_resched_rcu();
2214                                slot = radix_tree_iter_next(&iter);
2215                        }
2216                }
2217                rcu_read_unlock();
2218        }
2219
2220        return error;
2221}
2222
2223#define F_ALL_SEALS (F_SEAL_SEAL | \
2224                     F_SEAL_SHRINK | \
2225                     F_SEAL_GROW | \
2226                     F_SEAL_WRITE)
2227
2228int shmem_add_seals(struct file *file, unsigned int seals)
2229{
2230        struct inode *inode = file_inode(file);
2231        struct shmem_inode_info *info = SHMEM_I(inode);
2232        int error;
2233
2234        /*
2235         * SEALING
2236         * Sealing allows multiple parties to share a shmem-file but restrict
2237         * access to a specific subset of file operations. Seals can only be
2238         * added, but never removed. This way, mutually untrusted parties can
2239         * share common memory regions with a well-defined policy. A malicious
2240         * peer can thus never perform unwanted operations on a shared object.
2241         *
2242         * Seals are only supported on special shmem-files and always affect
2243         * the whole underlying inode. Once a seal is set, it may prevent some
2244         * kinds of access to the file. Currently, the following seals are
2245         * defined:
2246         *   SEAL_SEAL: Prevent further seals from being set on this file
2247         *   SEAL_SHRINK: Prevent the file from shrinking
2248         *   SEAL_GROW: Prevent the file from growing
2249         *   SEAL_WRITE: Prevent write access to the file
2250         *
2251         * As we don't require any trust relationship between two parties, we
2252         * must prevent seals from being removed. Therefore, sealing a file
2253         * only adds a given set of seals to the file, it never touches
2254         * existing seals. Furthermore, the "setting seals"-operation can be
2255         * sealed itself, which basically prevents any further seal from being
2256         * added.
2257         *
2258         * Semantics of sealing are only defined on volatile files. Only
2259         * anonymous shmem files support sealing. More importantly, seals are
2260         * never written to disk. Therefore, there's no plan to support it on
2261         * other file types.
2262         */
2263
2264        if (file->f_op != &shmem_file_operations)
2265                return -EINVAL;
2266        if (!(file->f_mode & FMODE_WRITE))
2267                return -EPERM;
2268        if (seals & ~(unsigned int)F_ALL_SEALS)
2269                return -EINVAL;
2270
2271        mutex_lock(&inode->i_mutex);
2272
2273        if (info->seals & F_SEAL_SEAL) {
2274                error = -EPERM;
2275                goto unlock;
2276        }
2277
2278        if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2279                error = mapping_deny_writable(file->f_mapping);
2280                if (error)
2281                        goto unlock;
2282
2283                error = shmem_wait_for_pins(file->f_mapping);
2284                if (error) {
2285                        mapping_allow_writable(file->f_mapping);
2286                        goto unlock;
2287                }
2288        }
2289
2290        info->seals |= seals;
2291        error = 0;
2292
2293unlock:
2294        mutex_unlock(&inode->i_mutex);
2295        return error;
2296}
2297EXPORT_SYMBOL_GPL(shmem_add_seals);
2298
2299int shmem_get_seals(struct file *file)
2300{
2301        if (file->f_op != &shmem_file_operations)
2302                return -EINVAL;
2303
2304        return SHMEM_I(file_inode(file))->seals;
2305}
2306EXPORT_SYMBOL_GPL(shmem_get_seals);
2307
2308long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2309{
2310        long error;
2311
2312        switch (cmd) {
2313        case F_ADD_SEALS:
2314                /* disallow upper 32bit */
2315                if (arg > UINT_MAX)
2316                        return -EINVAL;
2317
2318                error = shmem_add_seals(file, arg);
2319                break;
2320        case F_GET_SEALS:
2321                error = shmem_get_seals(file);
2322                break;
2323        default:
2324                error = -EINVAL;
2325                break;
2326        }
2327
2328        return error;
2329}
2330
2331static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2332                                                         loff_t len)
2333{
2334        struct inode *inode = file_inode(file);
2335        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2336        struct shmem_inode_info *info = SHMEM_I(inode);
2337        struct shmem_falloc shmem_falloc;
2338        pgoff_t start, index, end;
2339        int error;
2340
2341        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2342                return -EOPNOTSUPP;
2343
2344        mutex_lock(&inode->i_mutex);
2345
2346        if (mode & FALLOC_FL_PUNCH_HOLE) {
2347                struct address_space *mapping = file->f_mapping;
2348                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2349                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2350                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2351
2352                /* protected by i_mutex */
2353                if (info->seals & F_SEAL_WRITE) {
2354                        error = -EPERM;
2355                        goto out;
2356                }
2357
2358                shmem_falloc.waitq = &shmem_falloc_waitq;
2359                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2360                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2361                spin_lock(&inode->i_lock);
2362                inode->i_private = &shmem_falloc;
2363                spin_unlock(&inode->i_lock);
2364
2365                if ((u64)unmap_end > (u64)unmap_start)
2366                        unmap_mapping_range(mapping, unmap_start,
2367                                            1 + unmap_end - unmap_start, 0);
2368                shmem_truncate_range(inode, offset, offset + len - 1);
2369                /* No need to unmap again: hole-punching leaves COWed pages */
2370
2371                spin_lock(&inode->i_lock);
2372                inode->i_private = NULL;
2373                wake_up_all(&shmem_falloc_waitq);
2374                WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2375                spin_unlock(&inode->i_lock);
2376                error = 0;
2377                goto out;
2378        }
2379
2380        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2381        error = inode_newsize_ok(inode, offset + len);
2382        if (error)
2383                goto out;
2384
2385        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2386                error = -EPERM;
2387                goto out;
2388        }
2389
2390        start = offset >> PAGE_CACHE_SHIFT;
2391        end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2392        /* Try to avoid a swapstorm if len is impossible to satisfy */
2393        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2394                error = -ENOSPC;
2395                goto out;
2396        }
2397
2398        shmem_falloc.waitq = NULL;
2399        shmem_falloc.start = start;
2400        shmem_falloc.next  = start;
2401        shmem_falloc.nr_falloced = 0;
2402        shmem_falloc.nr_unswapped = 0;
2403        spin_lock(&inode->i_lock);
2404        inode->i_private = &shmem_falloc;
2405        spin_unlock(&inode->i_lock);
2406
2407        for (index = start; index < end; index++) {
2408                struct page *page;
2409
2410                /*
2411                 * Good, the fallocate(2) manpage permits EINTR: we may have
2412                 * been interrupted because we are using up too much memory.
2413                 */
2414                if (signal_pending(current))
2415                        error = -EINTR;
2416                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2417                        error = -ENOMEM;
2418                else
2419                        error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2420                                                                        NULL);
2421                if (error) {
2422                        /* Remove the !PageUptodate pages we added */
2423                        shmem_undo_range(inode,
2424                                (loff_t)start << PAGE_CACHE_SHIFT,
2425                                (loff_t)index << PAGE_CACHE_SHIFT, true);
2426                        goto undone;
2427                }
2428
2429                /*
2430                 * Inform shmem_writepage() how far we have reached.
2431                 * No need for lock or barrier: we have the page lock.
2432                 */
2433                shmem_falloc.next++;
2434                if (!PageUptodate(page))
2435                        shmem_falloc.nr_falloced++;
2436
2437                /*
2438                 * If !PageUptodate, leave it that way so that freeable pages
2439                 * can be recognized if we need to rollback on error later.
2440                 * But set_page_dirty so that memory pressure will swap rather
2441                 * than free the pages we are allocating (and SGP_CACHE pages
2442                 * might still be clean: we now need to mark those dirty too).
2443                 */
2444                set_page_dirty(page);
2445                unlock_page(page);
2446                page_cache_release(page);
2447                cond_resched();
2448        }
2449
2450        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2451                i_size_write(inode, offset + len);
2452        inode->i_ctime = CURRENT_TIME;
2453undone:
2454        spin_lock(&inode->i_lock);
2455        inode->i_private = NULL;
2456        spin_unlock(&inode->i_lock);
2457out:
2458        mutex_unlock(&inode->i_mutex);
2459        return error;
2460}
2461
2462static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2463{
2464        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2465
2466        buf->f_type = TMPFS_MAGIC;
2467        buf->f_bsize = PAGE_CACHE_SIZE;
2468        buf->f_namelen = NAME_MAX;
2469        if (sbinfo->max_blocks) {
2470                buf->f_blocks = sbinfo->max_blocks;
2471                buf->f_bavail =
2472                buf->f_bfree  = sbinfo->max_blocks -
2473                                percpu_counter_sum(&sbinfo->used_blocks);
2474        }
2475        if (sbinfo->max_inodes) {
2476                buf->f_files = sbinfo->max_inodes;
2477                buf->f_ffree = sbinfo->free_inodes;
2478        }
2479        /* else leave those fields 0 like simple_statfs */
2480        return 0;
2481}
2482
2483/*
2484 * File creation. Allocate an inode, and we're done..
2485 */
2486static int
2487shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2488{
2489        struct inode *inode;
2490        int error = -ENOSPC;
2491
2492        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2493        if (inode) {
2494                error = security_inode_init_security(inode, dir,
2495                                                     &dentry->d_name,
2496                                                     shmem_initxattrs, NULL);
2497                if (error) {
2498                        if (error != -EOPNOTSUPP) {
2499                                iput(inode);
2500                                return error;
2501                        }
2502                }
2503#ifdef CONFIG_TMPFS_POSIX_ACL
2504                error = generic_acl_init(inode, dir);
2505                if (error) {
2506                        iput(inode);
2507                        return error;
2508                }
2509#else
2510                error = 0;
2511#endif
2512                dir->i_size += BOGO_DIRENT_SIZE;
2513                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2514                d_instantiate(dentry, inode);
2515                dget(dentry); /* Extra count - pin the dentry in core */
2516        }
2517        return error;
2518}
2519
2520static int
2521shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2522{
2523        struct inode *inode;
2524        int error = -ENOSPC;
2525
2526        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2527        if (inode) {
2528                error = security_inode_init_security(inode, dir,
2529                                                     NULL,
2530                                                     shmem_initxattrs, NULL);
2531                if (error) {
2532                        if (error != -EOPNOTSUPP) {
2533                                iput(inode);
2534                                return error;
2535                        }
2536                }
2537#ifdef CONFIG_TMPFS_POSIX_ACL
2538                error = generic_acl_init(inode, dir);
2539                if (error) {
2540                        iput(inode);
2541                        return error;
2542                }
2543#else
2544                error = 0;
2545#endif
2546                d_tmpfile(dentry, inode);
2547        }
2548        return error;
2549}
2550
2551static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2552{
2553        int error;
2554
2555        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2556                return error;
2557        inc_nlink(dir);
2558        return 0;
2559}
2560
2561static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2562                bool excl)
2563{
2564        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2565}
2566
2567/*
2568 * Link a file..
2569 */
2570static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2571{
2572        struct inode *inode = old_dentry->d_inode;
2573        int ret;
2574
2575        /*
2576         * No ordinary (disk based) filesystem counts links as inodes;
2577         * but each new link needs a new dentry, pinning lowmem, and
2578         * tmpfs dentries cannot be pruned until they are unlinked.
2579         */
2580        ret = shmem_reserve_inode(inode->i_sb);
2581        if (ret)
2582                goto out;
2583
2584        dir->i_size += BOGO_DIRENT_SIZE;
2585        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2586        inc_nlink(inode);
2587        ihold(inode);   /* New dentry reference */
2588        dget(dentry);           /* Extra pinning count for the created dentry */
2589        d_instantiate(dentry, inode);
2590out:
2591        return ret;
2592}
2593
2594static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2595{
2596        struct inode *inode = dentry->d_inode;
2597
2598        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2599                shmem_free_inode(inode->i_sb);
2600
2601        dir->i_size -= BOGO_DIRENT_SIZE;
2602        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2603        drop_nlink(inode);
2604        dput(dentry);   /* Undo the count from "create" - this does all the work */
2605        return 0;
2606}
2607
2608static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2609{
2610        if (!simple_empty(dentry))
2611                return -ENOTEMPTY;
2612
2613        drop_nlink(dentry->d_inode);
2614        drop_nlink(dir);
2615        return shmem_unlink(dir, dentry);
2616}
2617
2618static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2619{
2620        bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2621        bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2622
2623        if (old_dir != new_dir && old_is_dir != new_is_dir) {
2624                if (old_is_dir) {
2625                        drop_nlink(old_dir);
2626                        inc_nlink(new_dir);
2627                } else {
2628                        drop_nlink(new_dir);
2629                        inc_nlink(old_dir);
2630                }
2631        }
2632        old_dir->i_ctime = old_dir->i_mtime =
2633        new_dir->i_ctime = new_dir->i_mtime =
2634        old_dentry->d_inode->i_ctime =
2635        new_dentry->d_inode->i_ctime = CURRENT_TIME;
2636
2637        return 0;
2638}
2639
2640static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2641{
2642        struct dentry *whiteout;
2643        int error;
2644
2645        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2646        if (!whiteout)
2647                return -ENOMEM;
2648
2649        error = shmem_mknod(old_dir, whiteout,
2650                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2651        dput(whiteout);
2652        if (error)
2653                return error;
2654
2655        /*
2656         * Cheat and hash the whiteout while the old dentry is still in
2657         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2658         *
2659         * d_lookup() will consistently find one of them at this point,
2660         * not sure which one, but that isn't even important.
2661         */
2662        d_rehash(whiteout);
2663        return 0;
2664}
2665
2666/*
2667 * The VFS layer already does all the dentry stuff for rename,
2668 * we just have to decrement the usage count for the target if
2669 * it exists so that the VFS layer correctly free's it when it
2670 * gets overwritten.
2671 */
2672static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2673{
2674        struct inode *inode = old_dentry->d_inode;
2675        int they_are_dirs = S_ISDIR(inode->i_mode);
2676
2677        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2678                return -EINVAL;
2679
2680        if (flags & RENAME_EXCHANGE)
2681                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2682
2683        if (!simple_empty(new_dentry))
2684                return -ENOTEMPTY;
2685
2686        if (flags & RENAME_WHITEOUT) {
2687                int error;
2688
2689                error = shmem_whiteout(old_dir, old_dentry);
2690                if (error)
2691                        return error;
2692        }
2693
2694        if (new_dentry->d_inode) {
2695                (void) shmem_unlink(new_dir, new_dentry);
2696                if (they_are_dirs)
2697                        drop_nlink(old_dir);
2698        } else if (they_are_dirs) {
2699                drop_nlink(old_dir);
2700                inc_nlink(new_dir);
2701        }
2702
2703        old_dir->i_size -= BOGO_DIRENT_SIZE;
2704        new_dir->i_size += BOGO_DIRENT_SIZE;
2705        old_dir->i_ctime = old_dir->i_mtime =
2706        new_dir->i_ctime = new_dir->i_mtime =
2707        inode->i_ctime = CURRENT_TIME;
2708        return 0;
2709}
2710
2711static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2712{
2713        return shmem_rename2(old_dir, old_dentry, new_dir, new_dentry, 0);
2714}
2715
2716static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2717{
2718        int error;
2719        int len;
2720        struct inode *inode;
2721        struct page *page;
2722        char *kaddr;
2723        struct shmem_inode_info *info;
2724
2725        len = strlen(symname) + 1;
2726        if (len > PAGE_CACHE_SIZE)
2727                return -ENAMETOOLONG;
2728
2729        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2730        if (!inode)
2731                return -ENOSPC;
2732
2733        error = security_inode_init_security(inode, dir, &dentry->d_name,
2734                                             shmem_initxattrs, NULL);
2735        if (error) {
2736                if (error != -EOPNOTSUPP) {
2737                        iput(inode);
2738                        return error;
2739                }
2740                error = 0;
2741        }
2742
2743        info = SHMEM_I(inode);
2744        inode->i_size = len-1;
2745        if (len <= SHORT_SYMLINK_LEN) {
2746                info->symlink = kmemdup(symname, len, GFP_KERNEL);
2747                if (!info->symlink) {
2748                        iput(inode);
2749                        return -ENOMEM;
2750                }
2751                inode->i_op = &shmem_short_symlink_operations;
2752        } else {
2753                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2754                if (error) {
2755                        iput(inode);
2756                        return error;
2757                }
2758                inode->i_mapping->a_ops = &shmem_aops;
2759                inode->i_op = &shmem_symlink_inode_operations;
2760                kaddr = kmap_atomic(page);
2761                memcpy(kaddr, symname, len);
2762                kunmap_atomic(kaddr);
2763                SetPageUptodate(page);
2764                set_page_dirty(page);
2765                unlock_page(page);
2766                page_cache_release(page);
2767        }
2768        dir->i_size += BOGO_DIRENT_SIZE;
2769        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2770        d_instantiate(dentry, inode);
2771        dget(dentry);
2772        return 0;
2773}
2774
2775static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2776{
2777        nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2778        return NULL;
2779}
2780
2781static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2782{
2783        struct page *page = NULL;
2784        int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2785        nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2786        if (page)
2787                unlock_page(page);
2788        return page;
2789}
2790
2791static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2792{
2793        if (!IS_ERR(nd_get_link(nd))) {
2794                struct page *page = cookie;
2795                kunmap(page);
2796                mark_page_accessed(page);
2797                page_cache_release(page);
2798        }
2799}
2800
2801#ifdef CONFIG_TMPFS_XATTR
2802/*
2803 * Superblocks without xattr inode operations may get some security.* xattr
2804 * support from the LSM "for free". As soon as we have any other xattrs
2805 * like ACLs, we also need to implement the security.* handlers at
2806 * filesystem level, though.
2807 */
2808
2809/*
2810 * Callback for security_inode_init_security() for acquiring xattrs.
2811 */
2812static int shmem_initxattrs(struct inode *inode,
2813                            const struct xattr *xattr_array,
2814                            void *fs_info)
2815{
2816        struct shmem_inode_info *info = SHMEM_I(inode);
2817        const struct xattr *xattr;
2818        struct simple_xattr *new_xattr;
2819        size_t len;
2820
2821        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2822                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2823                if (!new_xattr)
2824                        return -ENOMEM;
2825
2826                len = strlen(xattr->name) + 1;
2827                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2828                                          GFP_KERNEL);
2829                if (!new_xattr->name) {
2830                        kfree(new_xattr);
2831                        return -ENOMEM;
2832                }
2833
2834                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2835                       XATTR_SECURITY_PREFIX_LEN);
2836                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2837                       xattr->name, len);
2838
2839                simple_xattr_list_add(&info->xattrs, new_xattr);
2840        }
2841
2842        return 0;
2843}
2844
2845static const struct xattr_handler *shmem_xattr_handlers[] = {
2846#ifdef CONFIG_TMPFS_POSIX_ACL
2847        &generic_acl_access_handler,
2848        &generic_acl_default_handler,
2849#endif
2850        NULL
2851};
2852
2853static int shmem_xattr_validate(const char *name)
2854{
2855        struct { const char *prefix; size_t len; } arr[] = {
2856                { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2857                { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2858        };
2859        int i;
2860
2861        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2862                size_t preflen = arr[i].len;
2863                if (strncmp(name, arr[i].prefix, preflen) == 0) {
2864                        if (!name[preflen])
2865                                return -EINVAL;
2866                        return 0;
2867                }
2868        }
2869        return -EOPNOTSUPP;
2870}
2871
2872static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2873                              void *buffer, size_t size)
2874{
2875        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2876        int err;
2877
2878        /*
2879         * If this is a request for a synthetic attribute in the system.*
2880         * namespace use the generic infrastructure to resolve a handler
2881         * for it via sb->s_xattr.
2882         */
2883        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2884                return generic_getxattr(dentry, name, buffer, size);
2885
2886        err = shmem_xattr_validate(name);
2887        if (err)
2888                return err;
2889
2890        return simple_xattr_get(&info->xattrs, name, buffer, size);
2891}
2892
2893static int shmem_setxattr(struct dentry *dentry, const char *name,
2894                          const void *value, size_t size, int flags)
2895{
2896        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2897        int err;
2898
2899        /*
2900         * If this is a request for a synthetic attribute in the system.*
2901         * namespace use the generic infrastructure to resolve a handler
2902         * for it via sb->s_xattr.
2903         */
2904        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2905                return generic_setxattr(dentry, name, value, size, flags);
2906
2907        err = shmem_xattr_validate(name);
2908        if (err)
2909                return err;
2910
2911        return simple_xattr_set(&info->xattrs, name, value, size, flags);
2912}
2913
2914static int shmem_removexattr(struct dentry *dentry, const char *name)
2915{
2916        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2917        int err;
2918
2919        /*
2920         * If this is a request for a synthetic attribute in the system.*
2921         * namespace use the generic infrastructure to resolve a handler
2922         * for it via sb->s_xattr.
2923         */
2924        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2925                return generic_removexattr(dentry, name);
2926
2927        err = shmem_xattr_validate(name);
2928        if (err)
2929                return err;
2930
2931        return simple_xattr_remove(&info->xattrs, name);
2932}
2933
2934static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2935{
2936        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2937        return simple_xattr_list(&info->xattrs, buffer, size);
2938}
2939#endif /* CONFIG_TMPFS_XATTR */
2940
2941static const struct inode_operations shmem_short_symlink_operations = {
2942        .readlink       = generic_readlink,
2943        .follow_link    = shmem_follow_short_symlink,
2944#ifdef CONFIG_TMPFS_XATTR
2945        .setxattr       = shmem_setxattr,
2946        .getxattr       = shmem_getxattr,
2947        .listxattr      = shmem_listxattr,
2948        .removexattr    = shmem_removexattr,
2949#endif
2950};
2951
2952static const struct inode_operations shmem_symlink_inode_operations = {
2953        .readlink       = generic_readlink,
2954        .follow_link    = shmem_follow_link,
2955        .put_link       = shmem_put_link,
2956#ifdef CONFIG_TMPFS_XATTR
2957        .setxattr       = shmem_setxattr,
2958        .getxattr       = shmem_getxattr,
2959        .listxattr      = shmem_listxattr,
2960        .removexattr    = shmem_removexattr,
2961#endif
2962};
2963
2964static struct dentry *shmem_get_parent(struct dentry *child)
2965{
2966        return ERR_PTR(-ESTALE);
2967}
2968
2969static int shmem_match(struct inode *ino, void *vfh)
2970{
2971        __u32 *fh = vfh;
2972        __u64 inum = fh[2];
2973        inum = (inum << 32) | fh[1];
2974        return ino->i_ino == inum && fh[0] == ino->i_generation;
2975}
2976
2977static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2978                struct fid *fid, int fh_len, int fh_type)
2979{
2980        struct inode *inode;
2981        struct dentry *dentry = NULL;
2982        u64 inum;
2983
2984        if (fh_len < 3)
2985                return NULL;
2986
2987        inum = fid->raw[2];
2988        inum = (inum << 32) | fid->raw[1];
2989
2990        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2991                        shmem_match, fid->raw);
2992        if (inode) {
2993                dentry = d_find_alias(inode);
2994                iput(inode);
2995        }
2996
2997        return dentry;
2998}
2999
3000static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3001                                struct inode *parent)
3002{
3003        if (*len < 3) {
3004                *len = 3;
3005                return FILEID_INVALID;
3006        }
3007
3008        if (inode_unhashed(inode)) {
3009                /* Unfortunately insert_inode_hash is not idempotent,
3010                 * so as we hash inodes here rather than at creation
3011                 * time, we need a lock to ensure we only try
3012                 * to do it once
3013                 */
3014                static DEFINE_SPINLOCK(lock);
3015                spin_lock(&lock);
3016                if (inode_unhashed(inode))
3017                        __insert_inode_hash(inode,
3018                                            inode->i_ino + inode->i_generation);
3019                spin_unlock(&lock);
3020        }
3021
3022        fh[0] = inode->i_generation;
3023        fh[1] = inode->i_ino;
3024        fh[2] = ((__u64)inode->i_ino) >> 32;
3025
3026        *len = 3;
3027        return 1;
3028}
3029
3030static const struct export_operations shmem_export_ops = {
3031        .get_parent     = shmem_get_parent,
3032        .encode_fh      = shmem_encode_fh,
3033        .fh_to_dentry   = shmem_fh_to_dentry,
3034};
3035
3036static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3037                               bool remount)
3038{
3039        char *this_char, *value, *rest;
3040        struct mempolicy *mpol = NULL;
3041        uid_t uid;
3042        gid_t gid;
3043
3044        while (options != NULL) {
3045                this_char = options;
3046                for (;;) {
3047                        /*
3048                         * NUL-terminate this option: unfortunately,
3049                         * mount options form a comma-separated list,
3050                         * but mpol's nodelist may also contain commas.
3051                         */
3052                        options = strchr(options, ',');
3053                        if (options == NULL)
3054                                break;
3055                        options++;
3056                        if (!isdigit(*options)) {
3057                                options[-1] = '\0';
3058                                break;
3059                        }
3060                }
3061                if (!*this_char)
3062                        continue;
3063                if ((value = strchr(this_char,'=')) != NULL) {
3064                        *value++ = 0;
3065                } else {
3066                        printk(KERN_ERR
3067                            "tmpfs: No value for mount option '%s'\n",
3068                            this_char);
3069                        goto error;
3070                }
3071
3072                if (!strcmp(this_char,"size")) {
3073                        unsigned long long size;
3074                        size = memparse(value,&rest);
3075                        if (*rest == '%') {
3076                                size <<= PAGE_SHIFT;
3077                                size *= totalram_pages;
3078                                do_div(size, 100);
3079                                rest++;
3080                        }
3081                        if (*rest)
3082                                goto bad_val;
3083                        sbinfo->max_blocks =
3084                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
3085                } else if (!strcmp(this_char,"nr_blocks")) {
3086                        sbinfo->max_blocks = memparse(value, &rest);
3087                        if (*rest)
3088                                goto bad_val;
3089                } else if (!strcmp(this_char,"nr_inodes")) {
3090                        sbinfo->max_inodes = memparse(value, &rest);
3091                        if (*rest)
3092                                goto bad_val;
3093                } else if (!strcmp(this_char,"mode")) {
3094                        if (remount)
3095                                continue;
3096                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3097                        if (*rest)
3098                                goto bad_val;
3099                } else if (!strcmp(this_char,"uid")) {
3100                        if (remount)
3101                                continue;
3102                        uid = simple_strtoul(value, &rest, 0);
3103                        if (*rest)
3104                                goto bad_val;
3105                        sbinfo->uid = make_kuid(current_user_ns(), uid);
3106                        if (!uid_valid(sbinfo->uid))
3107                                goto bad_val;
3108                } else if (!strcmp(this_char,"gid")) {
3109                        if (remount)
3110                                continue;
3111                        gid = simple_strtoul(value, &rest, 0);
3112                        if (*rest)
3113                                goto bad_val;
3114                        sbinfo->gid = make_kgid(current_user_ns(), gid);
3115                        if (!gid_valid(sbinfo->gid))
3116                                goto bad_val;
3117                } else if (!strcmp(this_char,"mpol")) {
3118                        mpol_put(mpol);
3119                        mpol = NULL;
3120                        if (mpol_parse_str(value, &mpol))
3121                                goto bad_val;
3122                } else {
3123                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
3124                               this_char);
3125                        goto error;
3126                }
3127        }
3128        sbinfo->mpol = mpol;
3129        return 0;
3130
3131bad_val:
3132        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
3133               value, this_char);
3134error:
3135        mpol_put(mpol);
3136        return 1;
3137
3138}
3139
3140static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3141{
3142        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3143        struct shmem_sb_info config = *sbinfo;
3144        unsigned long inodes;
3145        int error = -EINVAL;
3146
3147        config.mpol = NULL;
3148        if (shmem_parse_options(data, &config, true))
3149                return error;
3150
3151        spin_lock(&sbinfo->stat_lock);
3152        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3153        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3154                goto out;
3155        if (config.max_inodes < inodes)
3156                goto out;
3157        /*
3158         * Those tests disallow limited->unlimited while any are in use;
3159         * but we must separately disallow unlimited->limited, because
3160         * in that case we have no record of how much is already in use.
3161         */
3162        if (config.max_blocks && !sbinfo->max_blocks)
3163                goto out;
3164        if (config.max_inodes && !sbinfo->max_inodes)
3165                goto out;
3166
3167        error = 0;
3168        sbinfo->max_blocks  = config.max_blocks;
3169        sbinfo->max_inodes  = config.max_inodes;
3170        sbinfo->free_inodes = config.max_inodes - inodes;
3171
3172        /*
3173         * Preserve previous mempolicy unless mpol remount option was specified.
3174         */
3175        if (config.mpol) {
3176                mpol_put(sbinfo->mpol);
3177                sbinfo->mpol = config.mpol;     /* transfers initial ref */
3178        }
3179out:
3180        spin_unlock(&sbinfo->stat_lock);
3181        return error;
3182}
3183
3184static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3185{
3186        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3187
3188        if (sbinfo->max_blocks != shmem_default_max_blocks())
3189                seq_printf(seq, ",size=%luk",
3190                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
3191        if (sbinfo->max_inodes != shmem_default_max_inodes())
3192                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3193        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3194                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3195        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3196                seq_printf(seq, ",uid=%u",
3197                                from_kuid_munged(&init_user_ns, sbinfo->uid));
3198        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3199                seq_printf(seq, ",gid=%u",
3200                                from_kgid_munged(&init_user_ns, sbinfo->gid));
3201        shmem_show_mpol(seq, sbinfo->mpol);
3202        return 0;
3203}
3204
3205#define MFD_NAME_PREFIX "memfd:"
3206#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3207#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3208
3209#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3210
3211SYSCALL_DEFINE2(memfd_create,
3212                const char __user *, uname,
3213                unsigned int, flags)
3214{
3215        struct shmem_inode_info *info;
3216        struct file *file;
3217        int fd, error;
3218        char *name;
3219        long len;
3220
3221        if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3222                return -EINVAL;
3223
3224        /* length includes terminating zero */
3225        len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3226        if (len <= 0)
3227                return -EFAULT;
3228        if (len > MFD_NAME_MAX_LEN + 1)
3229                return -EINVAL;
3230
3231        name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3232        if (!name)
3233                return -ENOMEM;
3234
3235        strcpy(name, MFD_NAME_PREFIX);
3236        if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3237                error = -EFAULT;
3238                goto err_name;
3239        }
3240
3241        /* terminating-zero may have changed after strnlen_user() returned */
3242        if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3243                error = -EFAULT;
3244                goto err_name;
3245        }
3246
3247        fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3248        if (fd < 0) {
3249                error = fd;
3250                goto err_name;
3251        }
3252
3253        file = shmem_file_setup(name, 0, VM_NORESERVE);
3254        if (IS_ERR(file)) {
3255                error = PTR_ERR(file);
3256                goto err_fd;
3257        }
3258        info = SHMEM_I(file_inode(file));
3259        file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3260        file->f_flags |= O_RDWR | O_LARGEFILE;
3261        if (flags & MFD_ALLOW_SEALING)
3262                info->seals &= ~F_SEAL_SEAL;
3263
3264        fd_install(fd, file);
3265        kfree(name);
3266        return fd;
3267
3268err_fd:
3269        put_unused_fd(fd);
3270err_name:
3271        kfree(name);
3272        return error;
3273}
3274
3275#endif /* CONFIG_TMPFS */
3276
3277static void shmem_put_super(struct super_block *sb)
3278{
3279        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3280
3281        percpu_counter_destroy(&sbinfo->used_blocks);
3282        mpol_put(sbinfo->mpol);
3283        kfree(sbinfo);
3284        sb->s_fs_info = NULL;
3285}
3286
3287int shmem_fill_super(struct super_block *sb, void *data, int silent)
3288{
3289        struct inode *inode;
3290        struct shmem_sb_info *sbinfo;
3291        int err = -ENOMEM;
3292
3293        /* Round up to L1_CACHE_BYTES to resist false sharing */
3294        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3295                                L1_CACHE_BYTES), GFP_KERNEL);
3296        if (!sbinfo)
3297                return -ENOMEM;
3298
3299        sbinfo->mode = S_IRWXUGO | S_ISVTX;
3300        sbinfo->uid = current_fsuid();
3301        sbinfo->gid = current_fsgid();
3302        sb->s_fs_info = sbinfo;
3303
3304#ifdef CONFIG_TMPFS
3305        /*
3306         * Per default we only allow half of the physical ram per
3307         * tmpfs instance, limiting inodes to one per page of lowmem;
3308         * but the internal instance is left unlimited.
3309         */
3310        if (!(sb->s_flags & MS_KERNMOUNT)) {
3311                sbinfo->max_blocks = shmem_default_max_blocks();
3312                sbinfo->max_inodes = shmem_default_max_inodes();
3313                if (shmem_parse_options(data, sbinfo, false)) {
3314                        err = -EINVAL;
3315                        goto failed;
3316                }
3317        } else {
3318                sb->s_flags |= MS_NOUSER;
3319        }
3320        sb->s_export_op = &shmem_export_ops;
3321        sb->s_flags |= MS_NOSEC;
3322#else
3323        sb->s_flags |= MS_NOUSER;
3324#endif
3325
3326        spin_lock_init(&sbinfo->stat_lock);
3327        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3328                goto failed;
3329        sbinfo->free_inodes = sbinfo->max_inodes;
3330
3331        sb->s_maxbytes = MAX_LFS_FILESIZE;
3332        sb->s_blocksize = PAGE_CACHE_SIZE;
3333        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3334        sb->s_magic = TMPFS_MAGIC;
3335        sb->s_op = &shmem_ops;
3336        sb->s_time_gran = 1;
3337#ifdef CONFIG_TMPFS_XATTR
3338        sb->s_xattr = shmem_xattr_handlers;
3339#endif
3340#ifdef CONFIG_TMPFS_POSIX_ACL
3341        sb->s_flags |= MS_POSIXACL;
3342#endif
3343        uuid_be_gen((uuid_be *) &sb->s_uuid);
3344
3345        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3346        if (!inode)
3347                goto failed;
3348        inode->i_uid = sbinfo->uid;
3349        inode->i_gid = sbinfo->gid;
3350        sb->s_root = d_make_root(inode);
3351        if (!sb->s_root)
3352                goto failed;
3353        return 0;
3354
3355failed:
3356        shmem_put_super(sb);
3357        return err;
3358}
3359
3360static struct kmem_cache *shmem_inode_cachep;
3361
3362static struct inode *shmem_alloc_inode(struct super_block *sb)
3363{
3364        struct shmem_inode_info *info;
3365        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3366        if (!info)
3367                return NULL;
3368        return &info->vfs_inode;
3369}
3370
3371static void shmem_destroy_callback(struct rcu_head *head)
3372{
3373        struct inode *inode = container_of(head, struct inode, i_rcu);
3374        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3375}
3376
3377static void shmem_destroy_inode(struct inode *inode)
3378{
3379        if (S_ISREG(inode->i_mode))
3380                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3381        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3382}
3383
3384static void shmem_init_inode(void *foo)
3385{
3386        struct shmem_inode_info *info = foo;
3387        inode_init_once(&info->vfs_inode);
3388}
3389
3390static int shmem_init_inodecache(void)
3391{
3392        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3393                                sizeof(struct shmem_inode_info),
3394                                0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3395        return 0;
3396}
3397
3398static void shmem_destroy_inodecache(void)
3399{
3400        kmem_cache_destroy(shmem_inode_cachep);
3401}
3402
3403static const struct address_space_operations shmem_aops = {
3404        .writepage      = shmem_writepage,
3405        .set_page_dirty = __set_page_dirty_no_writeback,
3406#ifdef CONFIG_TMPFS
3407        .write_begin    = shmem_write_begin,
3408        .write_end      = shmem_write_end,
3409#endif
3410        .migratepage    = migrate_page,
3411        .error_remove_page = generic_error_remove_page,
3412};
3413
3414static const struct file_operations shmem_file_operations = {
3415        .mmap           = shmem_mmap,
3416#ifdef CONFIG_TMPFS
3417        .llseek         = shmem_file_llseek,
3418        .read           = do_sync_read,
3419        .write          = do_sync_write,
3420        .aio_read       = shmem_file_aio_read,
3421        .aio_write      = generic_file_aio_write,
3422        .fsync          = noop_fsync,
3423        .splice_read    = shmem_file_splice_read,
3424        .splice_write   = generic_file_splice_write,
3425        .fallocate      = shmem_fallocate,
3426#endif
3427};
3428
3429static const struct inode_operations shmem_inode_operations = {
3430        .setattr        = shmem_setattr,
3431#ifdef CONFIG_TMPFS_XATTR
3432        .setxattr       = shmem_setxattr,
3433        .getxattr       = shmem_getxattr,
3434        .listxattr      = shmem_listxattr,
3435        .removexattr    = shmem_removexattr,
3436#endif
3437};
3438
3439static const struct inode_operations_wrapper shmem_dir_inode_operations = {
3440        .ops = {
3441#ifdef CONFIG_TMPFS
3442        .create         = shmem_create,
3443        .lookup         = simple_lookup,
3444        .link           = shmem_link,
3445        .unlink         = shmem_unlink,
3446        .symlink        = shmem_symlink,
3447        .mkdir          = shmem_mkdir,
3448        .rmdir          = shmem_rmdir,
3449        .mknod          = shmem_mknod,
3450        .rename         = shmem_rename,
3451#endif
3452#ifdef CONFIG_TMPFS_XATTR
3453        .setxattr       = shmem_setxattr,
3454        .getxattr       = shmem_getxattr,
3455        .listxattr      = shmem_listxattr,
3456        .removexattr    = shmem_removexattr,
3457#endif
3458#ifdef CONFIG_TMPFS_POSIX_ACL
3459        .setattr        = shmem_setattr,
3460#endif
3461        },
3462#ifdef CONFIG_TMPFS
3463        .rename2        = shmem_rename2,
3464        .tmpfile        = shmem_tmpfile,
3465#endif
3466};
3467
3468static const struct inode_operations shmem_special_inode_operations = {
3469#ifdef CONFIG_TMPFS_XATTR
3470        .setxattr       = shmem_setxattr,
3471        .getxattr       = shmem_getxattr,
3472        .listxattr      = shmem_listxattr,
3473        .removexattr    = shmem_removexattr,
3474#endif
3475#ifdef CONFIG_TMPFS_POSIX_ACL
3476        .setattr        = shmem_setattr,
3477#endif
3478};
3479
3480static const struct super_operations shmem_ops = {
3481        .alloc_inode    = shmem_alloc_inode,
3482        .destroy_inode  = shmem_destroy_inode,
3483#ifdef CONFIG_TMPFS
3484        .statfs         = shmem_statfs,
3485        .remount_fs     = shmem_remount_fs,
3486        .show_options   = shmem_show_options,
3487#endif
3488        .evict_inode    = shmem_evict_inode,
3489        .drop_inode     = generic_delete_inode,
3490        .put_super      = shmem_put_super,
3491};
3492
3493static const struct vm_operations_struct shmem_vm_ops = {
3494        .fault          = shmem_fault,
3495#ifdef CONFIG_NUMA
3496        .set_policy     = shmem_set_policy,
3497        .get_policy     = shmem_get_policy,
3498#endif
3499        .remap_pages    = generic_file_remap_pages,
3500};
3501
3502static struct dentry *shmem_mount(struct file_system_type *fs_type,
3503        int flags, const char *dev_name, void *data)
3504{
3505        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3506}
3507
3508static struct file_system_type shmem_fs_type = {
3509        .owner          = THIS_MODULE,
3510        .name           = "tmpfs",
3511        .mount          = shmem_mount,
3512        .kill_sb        = kill_litter_super,
3513        .fs_flags       = FS_USERNS_MOUNT,
3514};
3515
3516int __init shmem_init(void)
3517{
3518        int error;
3519
3520        /* If rootfs called this, don't re-init */
3521        if (shmem_inode_cachep)
3522                return 0;
3523
3524        error = bdi_init(&shmem_backing_dev_info);
3525        if (error)
3526                goto out4;
3527
3528        error = shmem_init_inodecache();
3529        if (error)
3530                goto out3;
3531
3532        error = register_filesystem(&shmem_fs_type);
3533        if (error) {
3534                printk(KERN_ERR "Could not register tmpfs\n");
3535                goto out2;
3536        }
3537
3538        shm_mnt = kern_mount(&shmem_fs_type);
3539        if (IS_ERR(shm_mnt)) {
3540                error = PTR_ERR(shm_mnt);
3541                printk(KERN_ERR "Could not kern_mount tmpfs\n");
3542                goto out1;
3543        }
3544        return 0;
3545
3546out1:
3547        unregister_filesystem(&shmem_fs_type);
3548out2:
3549        shmem_destroy_inodecache();
3550out3:
3551        bdi_destroy(&shmem_backing_dev_info);
3552out4:
3553        shm_mnt = ERR_PTR(error);
3554        return error;
3555}
3556
3557#else /* !CONFIG_SHMEM */
3558
3559/*
3560 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3561 *
3562 * This is intended for small system where the benefits of the full
3563 * shmem code (swap-backed and resource-limited) are outweighed by
3564 * their complexity. On systems without swap this code should be
3565 * effectively equivalent, but much lighter weight.
3566 */
3567
3568static struct file_system_type shmem_fs_type = {
3569        .name           = "tmpfs",
3570        .mount          = ramfs_mount,
3571        .kill_sb        = kill_litter_super,
3572        .fs_flags       = FS_USERNS_MOUNT,
3573};
3574
3575int __init shmem_init(void)
3576{
3577        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3578
3579        shm_mnt = kern_mount(&shmem_fs_type);
3580        BUG_ON(IS_ERR(shm_mnt));
3581
3582        return 0;
3583}
3584
3585int shmem_unuse(swp_entry_t swap, struct page *page)
3586{
3587        return 0;
3588}
3589
3590int shmem_lock(struct file *file, int lock, struct user_struct *user)
3591{
3592        return 0;
3593}
3594
3595void shmem_unlock_mapping(struct address_space *mapping)
3596{
3597}
3598
3599void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3600{
3601        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3602}
3603EXPORT_SYMBOL_GPL(shmem_truncate_range);
3604
3605#define shmem_vm_ops                            generic_file_vm_ops
3606#define shmem_file_operations                   ramfs_file_operations
3607#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3608#define shmem_acct_size(flags, size)            0
3609#define shmem_unacct_size(flags, size)          do {} while (0)
3610
3611#endif /* CONFIG_SHMEM */
3612
3613/* common code */
3614
3615static struct dentry_operations anon_ops = {
3616        .d_dname = simple_dname
3617};
3618
3619static struct file *__shmem_file_setup(const char *name, loff_t size,
3620                                       unsigned long flags, unsigned int i_flags)
3621{
3622        struct file *res;
3623        struct inode *inode;
3624        struct path path;
3625        struct super_block *sb;
3626        struct qstr this;
3627
3628        if (IS_ERR(shm_mnt))
3629                return ERR_CAST(shm_mnt);
3630
3631        if (size < 0 || size > MAX_LFS_FILESIZE)
3632                return ERR_PTR(-EINVAL);
3633
3634        if (shmem_acct_size(flags, size))
3635                return ERR_PTR(-ENOMEM);
3636
3637        res = ERR_PTR(-ENOMEM);
3638        this.name = name;
3639        this.len = strlen(name);
3640        this.hash = 0; /* will go */
3641        sb = shm_mnt->mnt_sb;
3642        path.dentry = d_alloc_pseudo(sb, &this);
3643        if (!path.dentry)
3644                goto put_memory;
3645        d_set_d_op(path.dentry, &anon_ops);
3646        path.mnt = mntget(shm_mnt);
3647
3648        res = ERR_PTR(-ENOSPC);
3649        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3650        if (!inode)
3651                goto put_dentry;
3652
3653        inode->i_flags |= i_flags;
3654        d_instantiate(path.dentry, inode);
3655        inode->i_size = size;
3656        clear_nlink(inode);     /* It is unlinked */
3657        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3658        if (IS_ERR(res))
3659                goto put_dentry;
3660
3661        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3662                  &shmem_file_operations);
3663        if (IS_ERR(res))
3664                goto put_dentry;
3665
3666        return res;
3667
3668put_dentry:
3669        path_put(&path);
3670put_memory:
3671        shmem_unacct_size(flags, size);
3672        return res;
3673}
3674
3675/**
3676 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3677 *      kernel internal.  There will be NO LSM permission checks against the
3678 *      underlying inode.  So users of this interface must do LSM checks at a
3679 *      higher layer.  The users are the big_key and shm implementations.  LSM
3680 *      checks are provided at the key or shm level rather than the inode.
3681 * @name: name for dentry (to be seen in /proc/<pid>/maps
3682 * @size: size to be set for the file
3683 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3684 */
3685struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3686{
3687        return __shmem_file_setup(name, size, flags, S_PRIVATE);
3688}
3689
3690/**
3691 * shmem_file_setup - get an unlinked file living in tmpfs
3692 * @name: name for dentry (to be seen in /proc/<pid>/maps
3693 * @size: size to be set for the file
3694 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3695 */
3696struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3697{
3698        return __shmem_file_setup(name, size, flags, 0);
3699}
3700EXPORT_SYMBOL_GPL(shmem_file_setup);
3701
3702/**
3703 * shmem_zero_setup - setup a shared anonymous mapping
3704 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3705 */
3706int shmem_zero_setup(struct vm_area_struct *vma)
3707{
3708        struct file *file;
3709        loff_t size = vma->vm_end - vma->vm_start;
3710
3711        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3712        if (IS_ERR(file))
3713                return PTR_ERR(file);
3714
3715        if (vma->vm_file)
3716                fput(vma->vm_file);
3717        vma->vm_file = file;
3718        vma->vm_ops = &shmem_vm_ops;
3719        return 0;
3720}
3721
3722/**
3723 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3724 * @mapping:    the page's address_space
3725 * @index:      the page index
3726 * @gfp:        the page allocator flags to use if allocating
3727 *
3728 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3729 * with any new page allocations done using the specified allocation flags.
3730 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3731 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3732 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3733 *
3734 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3735 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3736 */
3737struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3738                                         pgoff_t index, gfp_t gfp)
3739{
3740#ifdef CONFIG_SHMEM
3741        struct inode *inode = mapping->host;
3742        struct page *page;
3743        int error;
3744
3745        BUG_ON(mapping->a_ops != &shmem_aops);
3746        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3747                                  gfp, NULL, NULL, NULL);
3748        if (error)
3749                page = ERR_PTR(error);
3750        else
3751                unlock_page(page);
3752        return page;
3753#else
3754        /*
3755         * The tiny !SHMEM case uses ramfs without swap
3756         */
3757        return read_cache_page_gfp(mapping, index, gfp);
3758#endif
3759}
3760EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3761