1#include "builtin.h"
2#include "perf.h"
3
4#include "util/util.h"
5#include "util/evlist.h"
6#include "util/cache.h"
7#include "util/evsel.h"
8#include "util/symbol.h"
9#include "util/thread.h"
10#include "util/header.h"
11#include "util/session.h"
12#include "util/tool.h"
13#include "util/cloexec.h"
14#include "util/thread_map.h"
15#include "util/color.h"
16#include "util/stat.h"
17#include "util/callchain.h"
18#include "util/time-utils.h"
19
20#include <subcmd/parse-options.h>
21#include "util/trace-event.h"
22
23#include "util/debug.h"
24
25#include <linux/kernel.h>
26#include <linux/log2.h>
27#include <sys/prctl.h>
28#include <sys/resource.h>
29#include <inttypes.h>
30
31#include <errno.h>
32#include <semaphore.h>
33#include <pthread.h>
34#include <math.h>
35#include <api/fs/fs.h>
36#include <linux/time64.h>
37
38#include "sane_ctype.h"
39
40#define PR_SET_NAME 15
41#define MAX_CPUS 4096
42#define COMM_LEN 20
43#define SYM_LEN 129
44#define MAX_PID 1024000
45
46struct sched_atom;
47
48struct task_desc {
49 unsigned long nr;
50 unsigned long pid;
51 char comm[COMM_LEN];
52
53 unsigned long nr_events;
54 unsigned long curr_event;
55 struct sched_atom **atoms;
56
57 pthread_t thread;
58 sem_t sleep_sem;
59
60 sem_t ready_for_work;
61 sem_t work_done_sem;
62
63 u64 cpu_usage;
64};
65
66enum sched_event_type {
67 SCHED_EVENT_RUN,
68 SCHED_EVENT_SLEEP,
69 SCHED_EVENT_WAKEUP,
70 SCHED_EVENT_MIGRATION,
71};
72
73struct sched_atom {
74 enum sched_event_type type;
75 int specific_wait;
76 u64 timestamp;
77 u64 duration;
78 unsigned long nr;
79 sem_t *wait_sem;
80 struct task_desc *wakee;
81};
82
83#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
84
85
86#define TASK_RUNNING 0
87#define TASK_INTERRUPTIBLE 1
88#define TASK_UNINTERRUPTIBLE 2
89#define __TASK_STOPPED 4
90#define __TASK_TRACED 8
91
92#define EXIT_DEAD 16
93#define EXIT_ZOMBIE 32
94#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
95
96#define TASK_DEAD 64
97#define TASK_WAKEKILL 128
98#define TASK_WAKING 256
99#define TASK_PARKED 512
100
101enum thread_state {
102 THREAD_SLEEPING = 0,
103 THREAD_WAIT_CPU,
104 THREAD_SCHED_IN,
105 THREAD_IGNORE
106};
107
108struct work_atom {
109 struct list_head list;
110 enum thread_state state;
111 u64 sched_out_time;
112 u64 wake_up_time;
113 u64 sched_in_time;
114 u64 runtime;
115};
116
117struct work_atoms {
118 struct list_head work_list;
119 struct thread *thread;
120 struct rb_node node;
121 u64 max_lat;
122 u64 max_lat_at;
123 u64 total_lat;
124 u64 nb_atoms;
125 u64 total_runtime;
126 int num_merged;
127};
128
129typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
130
131struct perf_sched;
132
133struct trace_sched_handler {
134 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
135 struct perf_sample *sample, struct machine *machine);
136
137 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
138 struct perf_sample *sample, struct machine *machine);
139
140 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
141 struct perf_sample *sample, struct machine *machine);
142
143
144 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
145 struct machine *machine);
146
147 int (*migrate_task_event)(struct perf_sched *sched,
148 struct perf_evsel *evsel,
149 struct perf_sample *sample,
150 struct machine *machine);
151};
152
153#define COLOR_PIDS PERF_COLOR_BLUE
154#define COLOR_CPUS PERF_COLOR_BG_RED
155
156struct perf_sched_map {
157 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
158 int *comp_cpus;
159 bool comp;
160 struct thread_map *color_pids;
161 const char *color_pids_str;
162 struct cpu_map *color_cpus;
163 const char *color_cpus_str;
164 struct cpu_map *cpus;
165 const char *cpus_str;
166};
167
168struct perf_sched {
169 struct perf_tool tool;
170 const char *sort_order;
171 unsigned long nr_tasks;
172 struct task_desc **pid_to_task;
173 struct task_desc **tasks;
174 const struct trace_sched_handler *tp_handler;
175 pthread_mutex_t start_work_mutex;
176 pthread_mutex_t work_done_wait_mutex;
177 int profile_cpu;
178
179
180
181
182 int max_cpu;
183 u32 curr_pid[MAX_CPUS];
184 struct thread *curr_thread[MAX_CPUS];
185 char next_shortname1;
186 char next_shortname2;
187 unsigned int replay_repeat;
188 unsigned long nr_run_events;
189 unsigned long nr_sleep_events;
190 unsigned long nr_wakeup_events;
191 unsigned long nr_sleep_corrections;
192 unsigned long nr_run_events_optimized;
193 unsigned long targetless_wakeups;
194 unsigned long multitarget_wakeups;
195 unsigned long nr_runs;
196 unsigned long nr_timestamps;
197 unsigned long nr_unordered_timestamps;
198 unsigned long nr_context_switch_bugs;
199 unsigned long nr_events;
200 unsigned long nr_lost_chunks;
201 unsigned long nr_lost_events;
202 u64 run_measurement_overhead;
203 u64 sleep_measurement_overhead;
204 u64 start_time;
205 u64 cpu_usage;
206 u64 runavg_cpu_usage;
207 u64 parent_cpu_usage;
208 u64 runavg_parent_cpu_usage;
209 u64 sum_runtime;
210 u64 sum_fluct;
211 u64 run_avg;
212 u64 all_runtime;
213 u64 all_count;
214 u64 cpu_last_switched[MAX_CPUS];
215 struct rb_root atom_root, sorted_atom_root, merged_atom_root;
216 struct list_head sort_list, cmp_pid;
217 bool force;
218 bool skip_merge;
219 struct perf_sched_map map;
220
221
222 bool summary;
223 bool summary_only;
224 bool idle_hist;
225 bool show_callchain;
226 unsigned int max_stack;
227 bool show_cpu_visual;
228 bool show_wakeups;
229 bool show_next;
230 bool show_migrations;
231 bool show_state;
232 u64 skipped_samples;
233 const char *time_str;
234 struct perf_time_interval ptime;
235 struct perf_time_interval hist_time;
236};
237
238
239struct thread_runtime {
240 u64 last_time;
241 u64 dt_run;
242 u64 dt_sleep;
243 u64 dt_iowait;
244 u64 dt_preempt;
245 u64 dt_delay;
246 u64 ready_to_run;
247
248 struct stats run_stats;
249 u64 total_run_time;
250 u64 total_sleep_time;
251 u64 total_iowait_time;
252 u64 total_preempt_time;
253 u64 total_delay_time;
254
255 int last_state;
256
257 char shortname[3];
258 bool comm_changed;
259
260 u64 migrations;
261};
262
263
264struct evsel_runtime {
265 u64 *last_time;
266 u32 ncpu;
267};
268
269
270struct idle_thread_runtime {
271 struct thread_runtime tr;
272 struct thread *last_thread;
273 struct rb_root sorted_root;
274 struct callchain_root callchain;
275 struct callchain_cursor cursor;
276};
277
278
279static struct thread **idle_threads;
280static int idle_max_cpu;
281static char idle_comm[] = "<idle>";
282
283static u64 get_nsecs(void)
284{
285 struct timespec ts;
286
287 clock_gettime(CLOCK_MONOTONIC, &ts);
288
289 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
290}
291
292static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
293{
294 u64 T0 = get_nsecs(), T1;
295
296 do {
297 T1 = get_nsecs();
298 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
299}
300
301static void sleep_nsecs(u64 nsecs)
302{
303 struct timespec ts;
304
305 ts.tv_nsec = nsecs % 999999999;
306 ts.tv_sec = nsecs / 999999999;
307
308 nanosleep(&ts, NULL);
309}
310
311static void calibrate_run_measurement_overhead(struct perf_sched *sched)
312{
313 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
314 int i;
315
316 for (i = 0; i < 10; i++) {
317 T0 = get_nsecs();
318 burn_nsecs(sched, 0);
319 T1 = get_nsecs();
320 delta = T1-T0;
321 min_delta = min(min_delta, delta);
322 }
323 sched->run_measurement_overhead = min_delta;
324
325 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
326}
327
328static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
329{
330 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
331 int i;
332
333 for (i = 0; i < 10; i++) {
334 T0 = get_nsecs();
335 sleep_nsecs(10000);
336 T1 = get_nsecs();
337 delta = T1-T0;
338 min_delta = min(min_delta, delta);
339 }
340 min_delta -= 10000;
341 sched->sleep_measurement_overhead = min_delta;
342
343 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
344}
345
346static struct sched_atom *
347get_new_event(struct task_desc *task, u64 timestamp)
348{
349 struct sched_atom *event = zalloc(sizeof(*event));
350 unsigned long idx = task->nr_events;
351 size_t size;
352
353 event->timestamp = timestamp;
354 event->nr = idx;
355
356 task->nr_events++;
357 size = sizeof(struct sched_atom *) * task->nr_events;
358 task->atoms = realloc(task->atoms, size);
359 BUG_ON(!task->atoms);
360
361 task->atoms[idx] = event;
362
363 return event;
364}
365
366static struct sched_atom *last_event(struct task_desc *task)
367{
368 if (!task->nr_events)
369 return NULL;
370
371 return task->atoms[task->nr_events - 1];
372}
373
374static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
375 u64 timestamp, u64 duration)
376{
377 struct sched_atom *event, *curr_event = last_event(task);
378
379
380
381
382
383 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
384 sched->nr_run_events_optimized++;
385 curr_event->duration += duration;
386 return;
387 }
388
389 event = get_new_event(task, timestamp);
390
391 event->type = SCHED_EVENT_RUN;
392 event->duration = duration;
393
394 sched->nr_run_events++;
395}
396
397static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
398 u64 timestamp, struct task_desc *wakee)
399{
400 struct sched_atom *event, *wakee_event;
401
402 event = get_new_event(task, timestamp);
403 event->type = SCHED_EVENT_WAKEUP;
404 event->wakee = wakee;
405
406 wakee_event = last_event(wakee);
407 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
408 sched->targetless_wakeups++;
409 return;
410 }
411 if (wakee_event->wait_sem) {
412 sched->multitarget_wakeups++;
413 return;
414 }
415
416 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
417 sem_init(wakee_event->wait_sem, 0, 0);
418 wakee_event->specific_wait = 1;
419 event->wait_sem = wakee_event->wait_sem;
420
421 sched->nr_wakeup_events++;
422}
423
424static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
425 u64 timestamp, u64 task_state __maybe_unused)
426{
427 struct sched_atom *event = get_new_event(task, timestamp);
428
429 event->type = SCHED_EVENT_SLEEP;
430
431 sched->nr_sleep_events++;
432}
433
434static struct task_desc *register_pid(struct perf_sched *sched,
435 unsigned long pid, const char *comm)
436{
437 struct task_desc *task;
438 static int pid_max;
439
440 if (sched->pid_to_task == NULL) {
441 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
442 pid_max = MAX_PID;
443 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
444 }
445 if (pid >= (unsigned long)pid_max) {
446 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
447 sizeof(struct task_desc *))) == NULL);
448 while (pid >= (unsigned long)pid_max)
449 sched->pid_to_task[pid_max++] = NULL;
450 }
451
452 task = sched->pid_to_task[pid];
453
454 if (task)
455 return task;
456
457 task = zalloc(sizeof(*task));
458 task->pid = pid;
459 task->nr = sched->nr_tasks;
460 strcpy(task->comm, comm);
461
462
463
464
465 add_sched_event_sleep(sched, task, 0, 0);
466
467 sched->pid_to_task[pid] = task;
468 sched->nr_tasks++;
469 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
470 BUG_ON(!sched->tasks);
471 sched->tasks[task->nr] = task;
472
473 if (verbose > 0)
474 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
475
476 return task;
477}
478
479
480static void print_task_traces(struct perf_sched *sched)
481{
482 struct task_desc *task;
483 unsigned long i;
484
485 for (i = 0; i < sched->nr_tasks; i++) {
486 task = sched->tasks[i];
487 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
488 task->nr, task->comm, task->pid, task->nr_events);
489 }
490}
491
492static void add_cross_task_wakeups(struct perf_sched *sched)
493{
494 struct task_desc *task1, *task2;
495 unsigned long i, j;
496
497 for (i = 0; i < sched->nr_tasks; i++) {
498 task1 = sched->tasks[i];
499 j = i + 1;
500 if (j == sched->nr_tasks)
501 j = 0;
502 task2 = sched->tasks[j];
503 add_sched_event_wakeup(sched, task1, 0, task2);
504 }
505}
506
507static void perf_sched__process_event(struct perf_sched *sched,
508 struct sched_atom *atom)
509{
510 int ret = 0;
511
512 switch (atom->type) {
513 case SCHED_EVENT_RUN:
514 burn_nsecs(sched, atom->duration);
515 break;
516 case SCHED_EVENT_SLEEP:
517 if (atom->wait_sem)
518 ret = sem_wait(atom->wait_sem);
519 BUG_ON(ret);
520 break;
521 case SCHED_EVENT_WAKEUP:
522 if (atom->wait_sem)
523 ret = sem_post(atom->wait_sem);
524 BUG_ON(ret);
525 break;
526 case SCHED_EVENT_MIGRATION:
527 break;
528 default:
529 BUG_ON(1);
530 }
531}
532
533static u64 get_cpu_usage_nsec_parent(void)
534{
535 struct rusage ru;
536 u64 sum;
537 int err;
538
539 err = getrusage(RUSAGE_SELF, &ru);
540 BUG_ON(err);
541
542 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
543 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
544
545 return sum;
546}
547
548static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
549{
550 struct perf_event_attr attr;
551 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
552 int fd;
553 struct rlimit limit;
554 bool need_privilege = false;
555
556 memset(&attr, 0, sizeof(attr));
557
558 attr.type = PERF_TYPE_SOFTWARE;
559 attr.config = PERF_COUNT_SW_TASK_CLOCK;
560
561force_again:
562 fd = sys_perf_event_open(&attr, 0, -1, -1,
563 perf_event_open_cloexec_flag());
564
565 if (fd < 0) {
566 if (errno == EMFILE) {
567 if (sched->force) {
568 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
569 limit.rlim_cur += sched->nr_tasks - cur_task;
570 if (limit.rlim_cur > limit.rlim_max) {
571 limit.rlim_max = limit.rlim_cur;
572 need_privilege = true;
573 }
574 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
575 if (need_privilege && errno == EPERM)
576 strcpy(info, "Need privilege\n");
577 } else
578 goto force_again;
579 } else
580 strcpy(info, "Have a try with -f option\n");
581 }
582 pr_err("Error: sys_perf_event_open() syscall returned "
583 "with %d (%s)\n%s", fd,
584 str_error_r(errno, sbuf, sizeof(sbuf)), info);
585 exit(EXIT_FAILURE);
586 }
587 return fd;
588}
589
590static u64 get_cpu_usage_nsec_self(int fd)
591{
592 u64 runtime;
593 int ret;
594
595 ret = read(fd, &runtime, sizeof(runtime));
596 BUG_ON(ret != sizeof(runtime));
597
598 return runtime;
599}
600
601struct sched_thread_parms {
602 struct task_desc *task;
603 struct perf_sched *sched;
604 int fd;
605};
606
607static void *thread_func(void *ctx)
608{
609 struct sched_thread_parms *parms = ctx;
610 struct task_desc *this_task = parms->task;
611 struct perf_sched *sched = parms->sched;
612 u64 cpu_usage_0, cpu_usage_1;
613 unsigned long i, ret;
614 char comm2[22];
615 int fd = parms->fd;
616
617 zfree(&parms);
618
619 sprintf(comm2, ":%s", this_task->comm);
620 prctl(PR_SET_NAME, comm2);
621 if (fd < 0)
622 return NULL;
623again:
624 ret = sem_post(&this_task->ready_for_work);
625 BUG_ON(ret);
626 ret = pthread_mutex_lock(&sched->start_work_mutex);
627 BUG_ON(ret);
628 ret = pthread_mutex_unlock(&sched->start_work_mutex);
629 BUG_ON(ret);
630
631 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
632
633 for (i = 0; i < this_task->nr_events; i++) {
634 this_task->curr_event = i;
635 perf_sched__process_event(sched, this_task->atoms[i]);
636 }
637
638 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
639 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
640 ret = sem_post(&this_task->work_done_sem);
641 BUG_ON(ret);
642
643 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
644 BUG_ON(ret);
645 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
646 BUG_ON(ret);
647
648 goto again;
649}
650
651static void create_tasks(struct perf_sched *sched)
652{
653 struct task_desc *task;
654 pthread_attr_t attr;
655 unsigned long i;
656 int err;
657
658 err = pthread_attr_init(&attr);
659 BUG_ON(err);
660 err = pthread_attr_setstacksize(&attr,
661 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
662 BUG_ON(err);
663 err = pthread_mutex_lock(&sched->start_work_mutex);
664 BUG_ON(err);
665 err = pthread_mutex_lock(&sched->work_done_wait_mutex);
666 BUG_ON(err);
667 for (i = 0; i < sched->nr_tasks; i++) {
668 struct sched_thread_parms *parms = malloc(sizeof(*parms));
669 BUG_ON(parms == NULL);
670 parms->task = task = sched->tasks[i];
671 parms->sched = sched;
672 parms->fd = self_open_counters(sched, i);
673 sem_init(&task->sleep_sem, 0, 0);
674 sem_init(&task->ready_for_work, 0, 0);
675 sem_init(&task->work_done_sem, 0, 0);
676 task->curr_event = 0;
677 err = pthread_create(&task->thread, &attr, thread_func, parms);
678 BUG_ON(err);
679 }
680}
681
682static void wait_for_tasks(struct perf_sched *sched)
683{
684 u64 cpu_usage_0, cpu_usage_1;
685 struct task_desc *task;
686 unsigned long i, ret;
687
688 sched->start_time = get_nsecs();
689 sched->cpu_usage = 0;
690 pthread_mutex_unlock(&sched->work_done_wait_mutex);
691
692 for (i = 0; i < sched->nr_tasks; i++) {
693 task = sched->tasks[i];
694 ret = sem_wait(&task->ready_for_work);
695 BUG_ON(ret);
696 sem_init(&task->ready_for_work, 0, 0);
697 }
698 ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
699 BUG_ON(ret);
700
701 cpu_usage_0 = get_cpu_usage_nsec_parent();
702
703 pthread_mutex_unlock(&sched->start_work_mutex);
704
705 for (i = 0; i < sched->nr_tasks; i++) {
706 task = sched->tasks[i];
707 ret = sem_wait(&task->work_done_sem);
708 BUG_ON(ret);
709 sem_init(&task->work_done_sem, 0, 0);
710 sched->cpu_usage += task->cpu_usage;
711 task->cpu_usage = 0;
712 }
713
714 cpu_usage_1 = get_cpu_usage_nsec_parent();
715 if (!sched->runavg_cpu_usage)
716 sched->runavg_cpu_usage = sched->cpu_usage;
717 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
718
719 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
720 if (!sched->runavg_parent_cpu_usage)
721 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
722 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
723 sched->parent_cpu_usage)/sched->replay_repeat;
724
725 ret = pthread_mutex_lock(&sched->start_work_mutex);
726 BUG_ON(ret);
727
728 for (i = 0; i < sched->nr_tasks; i++) {
729 task = sched->tasks[i];
730 sem_init(&task->sleep_sem, 0, 0);
731 task->curr_event = 0;
732 }
733}
734
735static void run_one_test(struct perf_sched *sched)
736{
737 u64 T0, T1, delta, avg_delta, fluct;
738
739 T0 = get_nsecs();
740 wait_for_tasks(sched);
741 T1 = get_nsecs();
742
743 delta = T1 - T0;
744 sched->sum_runtime += delta;
745 sched->nr_runs++;
746
747 avg_delta = sched->sum_runtime / sched->nr_runs;
748 if (delta < avg_delta)
749 fluct = avg_delta - delta;
750 else
751 fluct = delta - avg_delta;
752 sched->sum_fluct += fluct;
753 if (!sched->run_avg)
754 sched->run_avg = delta;
755 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
756
757 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
758
759 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
760
761 printf("cpu: %0.2f / %0.2f",
762 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
763
764#if 0
765
766
767
768
769 printf(" [%0.2f / %0.2f]",
770 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
771 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
772#endif
773
774 printf("\n");
775
776 if (sched->nr_sleep_corrections)
777 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
778 sched->nr_sleep_corrections = 0;
779}
780
781static void test_calibrations(struct perf_sched *sched)
782{
783 u64 T0, T1;
784
785 T0 = get_nsecs();
786 burn_nsecs(sched, NSEC_PER_MSEC);
787 T1 = get_nsecs();
788
789 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
790
791 T0 = get_nsecs();
792 sleep_nsecs(NSEC_PER_MSEC);
793 T1 = get_nsecs();
794
795 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
796}
797
798static int
799replay_wakeup_event(struct perf_sched *sched,
800 struct perf_evsel *evsel, struct perf_sample *sample,
801 struct machine *machine __maybe_unused)
802{
803 const char *comm = perf_evsel__strval(evsel, sample, "comm");
804 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
805 struct task_desc *waker, *wakee;
806
807 if (verbose > 0) {
808 printf("sched_wakeup event %p\n", evsel);
809
810 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
811 }
812
813 waker = register_pid(sched, sample->tid, "<unknown>");
814 wakee = register_pid(sched, pid, comm);
815
816 add_sched_event_wakeup(sched, waker, sample->time, wakee);
817 return 0;
818}
819
820static int replay_switch_event(struct perf_sched *sched,
821 struct perf_evsel *evsel,
822 struct perf_sample *sample,
823 struct machine *machine __maybe_unused)
824{
825 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"),
826 *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
827 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
828 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
829 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
830 struct task_desc *prev, __maybe_unused *next;
831 u64 timestamp0, timestamp = sample->time;
832 int cpu = sample->cpu;
833 s64 delta;
834
835 if (verbose > 0)
836 printf("sched_switch event %p\n", evsel);
837
838 if (cpu >= MAX_CPUS || cpu < 0)
839 return 0;
840
841 timestamp0 = sched->cpu_last_switched[cpu];
842 if (timestamp0)
843 delta = timestamp - timestamp0;
844 else
845 delta = 0;
846
847 if (delta < 0) {
848 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
849 return -1;
850 }
851
852 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
853 prev_comm, prev_pid, next_comm, next_pid, delta);
854
855 prev = register_pid(sched, prev_pid, prev_comm);
856 next = register_pid(sched, next_pid, next_comm);
857
858 sched->cpu_last_switched[cpu] = timestamp;
859
860 add_sched_event_run(sched, prev, timestamp, delta);
861 add_sched_event_sleep(sched, prev, timestamp, prev_state);
862
863 return 0;
864}
865
866static int replay_fork_event(struct perf_sched *sched,
867 union perf_event *event,
868 struct machine *machine)
869{
870 struct thread *child, *parent;
871
872 child = machine__findnew_thread(machine, event->fork.pid,
873 event->fork.tid);
874 parent = machine__findnew_thread(machine, event->fork.ppid,
875 event->fork.ptid);
876
877 if (child == NULL || parent == NULL) {
878 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
879 child, parent);
880 goto out_put;
881 }
882
883 if (verbose > 0) {
884 printf("fork event\n");
885 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
886 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
887 }
888
889 register_pid(sched, parent->tid, thread__comm_str(parent));
890 register_pid(sched, child->tid, thread__comm_str(child));
891out_put:
892 thread__put(child);
893 thread__put(parent);
894 return 0;
895}
896
897struct sort_dimension {
898 const char *name;
899 sort_fn_t cmp;
900 struct list_head list;
901};
902
903
904
905
906static struct thread_runtime *thread__init_runtime(struct thread *thread)
907{
908 struct thread_runtime *r;
909
910 r = zalloc(sizeof(struct thread_runtime));
911 if (!r)
912 return NULL;
913
914 init_stats(&r->run_stats);
915 thread__set_priv(thread, r);
916
917 return r;
918}
919
920static struct thread_runtime *thread__get_runtime(struct thread *thread)
921{
922 struct thread_runtime *tr;
923
924 tr = thread__priv(thread);
925 if (tr == NULL) {
926 tr = thread__init_runtime(thread);
927 if (tr == NULL)
928 pr_debug("Failed to malloc memory for runtime data.\n");
929 }
930
931 return tr;
932}
933
934static int
935thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
936{
937 struct sort_dimension *sort;
938 int ret = 0;
939
940 BUG_ON(list_empty(list));
941
942 list_for_each_entry(sort, list, list) {
943 ret = sort->cmp(l, r);
944 if (ret)
945 return ret;
946 }
947
948 return ret;
949}
950
951static struct work_atoms *
952thread_atoms_search(struct rb_root *root, struct thread *thread,
953 struct list_head *sort_list)
954{
955 struct rb_node *node = root->rb_node;
956 struct work_atoms key = { .thread = thread };
957
958 while (node) {
959 struct work_atoms *atoms;
960 int cmp;
961
962 atoms = container_of(node, struct work_atoms, node);
963
964 cmp = thread_lat_cmp(sort_list, &key, atoms);
965 if (cmp > 0)
966 node = node->rb_left;
967 else if (cmp < 0)
968 node = node->rb_right;
969 else {
970 BUG_ON(thread != atoms->thread);
971 return atoms;
972 }
973 }
974 return NULL;
975}
976
977static void
978__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
979 struct list_head *sort_list)
980{
981 struct rb_node **new = &(root->rb_node), *parent = NULL;
982
983 while (*new) {
984 struct work_atoms *this;
985 int cmp;
986
987 this = container_of(*new, struct work_atoms, node);
988 parent = *new;
989
990 cmp = thread_lat_cmp(sort_list, data, this);
991
992 if (cmp > 0)
993 new = &((*new)->rb_left);
994 else
995 new = &((*new)->rb_right);
996 }
997
998 rb_link_node(&data->node, parent, new);
999 rb_insert_color(&data->node, root);
1000}
1001
1002static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1003{
1004 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1005 if (!atoms) {
1006 pr_err("No memory at %s\n", __func__);
1007 return -1;
1008 }
1009
1010 atoms->thread = thread__get(thread);
1011 INIT_LIST_HEAD(&atoms->work_list);
1012 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1013 return 0;
1014}
1015
1016static char sched_out_state(u64 prev_state)
1017{
1018 const char *str = TASK_STATE_TO_CHAR_STR;
1019
1020 return str[prev_state];
1021}
1022
1023static int
1024add_sched_out_event(struct work_atoms *atoms,
1025 char run_state,
1026 u64 timestamp)
1027{
1028 struct work_atom *atom = zalloc(sizeof(*atom));
1029 if (!atom) {
1030 pr_err("Non memory at %s", __func__);
1031 return -1;
1032 }
1033
1034 atom->sched_out_time = timestamp;
1035
1036 if (run_state == 'R') {
1037 atom->state = THREAD_WAIT_CPU;
1038 atom->wake_up_time = atom->sched_out_time;
1039 }
1040
1041 list_add_tail(&atom->list, &atoms->work_list);
1042 return 0;
1043}
1044
1045static void
1046add_runtime_event(struct work_atoms *atoms, u64 delta,
1047 u64 timestamp __maybe_unused)
1048{
1049 struct work_atom *atom;
1050
1051 BUG_ON(list_empty(&atoms->work_list));
1052
1053 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1054
1055 atom->runtime += delta;
1056 atoms->total_runtime += delta;
1057}
1058
1059static void
1060add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1061{
1062 struct work_atom *atom;
1063 u64 delta;
1064
1065 if (list_empty(&atoms->work_list))
1066 return;
1067
1068 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1069
1070 if (atom->state != THREAD_WAIT_CPU)
1071 return;
1072
1073 if (timestamp < atom->wake_up_time) {
1074 atom->state = THREAD_IGNORE;
1075 return;
1076 }
1077
1078 atom->state = THREAD_SCHED_IN;
1079 atom->sched_in_time = timestamp;
1080
1081 delta = atom->sched_in_time - atom->wake_up_time;
1082 atoms->total_lat += delta;
1083 if (delta > atoms->max_lat) {
1084 atoms->max_lat = delta;
1085 atoms->max_lat_at = timestamp;
1086 }
1087 atoms->nb_atoms++;
1088}
1089
1090static int latency_switch_event(struct perf_sched *sched,
1091 struct perf_evsel *evsel,
1092 struct perf_sample *sample,
1093 struct machine *machine)
1094{
1095 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1096 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1097 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1098 struct work_atoms *out_events, *in_events;
1099 struct thread *sched_out, *sched_in;
1100 u64 timestamp0, timestamp = sample->time;
1101 int cpu = sample->cpu, err = -1;
1102 s64 delta;
1103
1104 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1105
1106 timestamp0 = sched->cpu_last_switched[cpu];
1107 sched->cpu_last_switched[cpu] = timestamp;
1108 if (timestamp0)
1109 delta = timestamp - timestamp0;
1110 else
1111 delta = 0;
1112
1113 if (delta < 0) {
1114 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1115 return -1;
1116 }
1117
1118 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1119 sched_in = machine__findnew_thread(machine, -1, next_pid);
1120 if (sched_out == NULL || sched_in == NULL)
1121 goto out_put;
1122
1123 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1124 if (!out_events) {
1125 if (thread_atoms_insert(sched, sched_out))
1126 goto out_put;
1127 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1128 if (!out_events) {
1129 pr_err("out-event: Internal tree error");
1130 goto out_put;
1131 }
1132 }
1133 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1134 return -1;
1135
1136 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1137 if (!in_events) {
1138 if (thread_atoms_insert(sched, sched_in))
1139 goto out_put;
1140 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1141 if (!in_events) {
1142 pr_err("in-event: Internal tree error");
1143 goto out_put;
1144 }
1145
1146
1147
1148
1149 if (add_sched_out_event(in_events, 'R', timestamp))
1150 goto out_put;
1151 }
1152 add_sched_in_event(in_events, timestamp);
1153 err = 0;
1154out_put:
1155 thread__put(sched_out);
1156 thread__put(sched_in);
1157 return err;
1158}
1159
1160static int latency_runtime_event(struct perf_sched *sched,
1161 struct perf_evsel *evsel,
1162 struct perf_sample *sample,
1163 struct machine *machine)
1164{
1165 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1166 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime");
1167 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1168 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1169 u64 timestamp = sample->time;
1170 int cpu = sample->cpu, err = -1;
1171
1172 if (thread == NULL)
1173 return -1;
1174
1175 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1176 if (!atoms) {
1177 if (thread_atoms_insert(sched, thread))
1178 goto out_put;
1179 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180 if (!atoms) {
1181 pr_err("in-event: Internal tree error");
1182 goto out_put;
1183 }
1184 if (add_sched_out_event(atoms, 'R', timestamp))
1185 goto out_put;
1186 }
1187
1188 add_runtime_event(atoms, runtime, timestamp);
1189 err = 0;
1190out_put:
1191 thread__put(thread);
1192 return err;
1193}
1194
1195static int latency_wakeup_event(struct perf_sched *sched,
1196 struct perf_evsel *evsel,
1197 struct perf_sample *sample,
1198 struct machine *machine)
1199{
1200 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1201 struct work_atoms *atoms;
1202 struct work_atom *atom;
1203 struct thread *wakee;
1204 u64 timestamp = sample->time;
1205 int err = -1;
1206
1207 wakee = machine__findnew_thread(machine, -1, pid);
1208 if (wakee == NULL)
1209 return -1;
1210 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1211 if (!atoms) {
1212 if (thread_atoms_insert(sched, wakee))
1213 goto out_put;
1214 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1215 if (!atoms) {
1216 pr_err("wakeup-event: Internal tree error");
1217 goto out_put;
1218 }
1219 if (add_sched_out_event(atoms, 'S', timestamp))
1220 goto out_put;
1221 }
1222
1223 BUG_ON(list_empty(&atoms->work_list));
1224
1225 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1239 goto out_ok;
1240
1241 sched->nr_timestamps++;
1242 if (atom->sched_out_time > timestamp) {
1243 sched->nr_unordered_timestamps++;
1244 goto out_ok;
1245 }
1246
1247 atom->state = THREAD_WAIT_CPU;
1248 atom->wake_up_time = timestamp;
1249out_ok:
1250 err = 0;
1251out_put:
1252 thread__put(wakee);
1253 return err;
1254}
1255
1256static int latency_migrate_task_event(struct perf_sched *sched,
1257 struct perf_evsel *evsel,
1258 struct perf_sample *sample,
1259 struct machine *machine)
1260{
1261 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1262 u64 timestamp = sample->time;
1263 struct work_atoms *atoms;
1264 struct work_atom *atom;
1265 struct thread *migrant;
1266 int err = -1;
1267
1268
1269
1270
1271 if (sched->profile_cpu == -1)
1272 return 0;
1273
1274 migrant = machine__findnew_thread(machine, -1, pid);
1275 if (migrant == NULL)
1276 return -1;
1277 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1278 if (!atoms) {
1279 if (thread_atoms_insert(sched, migrant))
1280 goto out_put;
1281 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1282 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1283 if (!atoms) {
1284 pr_err("migration-event: Internal tree error");
1285 goto out_put;
1286 }
1287 if (add_sched_out_event(atoms, 'R', timestamp))
1288 goto out_put;
1289 }
1290
1291 BUG_ON(list_empty(&atoms->work_list));
1292
1293 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1294 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1295
1296 sched->nr_timestamps++;
1297
1298 if (atom->sched_out_time > timestamp)
1299 sched->nr_unordered_timestamps++;
1300 err = 0;
1301out_put:
1302 thread__put(migrant);
1303 return err;
1304}
1305
1306static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1307{
1308 int i;
1309 int ret;
1310 u64 avg;
1311 char max_lat_at[32];
1312
1313 if (!work_list->nb_atoms)
1314 return;
1315
1316
1317
1318 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1319 return;
1320
1321 sched->all_runtime += work_list->total_runtime;
1322 sched->all_count += work_list->nb_atoms;
1323
1324 if (work_list->num_merged > 1)
1325 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1326 else
1327 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1328
1329 for (i = 0; i < 24 - ret; i++)
1330 printf(" ");
1331
1332 avg = work_list->total_lat / work_list->nb_atoms;
1333 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1334
1335 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1336 (double)work_list->total_runtime / NSEC_PER_MSEC,
1337 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1338 (double)work_list->max_lat / NSEC_PER_MSEC,
1339 max_lat_at);
1340}
1341
1342static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1343{
1344 if (l->thread == r->thread)
1345 return 0;
1346 if (l->thread->tid < r->thread->tid)
1347 return -1;
1348 if (l->thread->tid > r->thread->tid)
1349 return 1;
1350 return (int)(l->thread - r->thread);
1351}
1352
1353static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355 u64 avgl, avgr;
1356
1357 if (!l->nb_atoms)
1358 return -1;
1359
1360 if (!r->nb_atoms)
1361 return 1;
1362
1363 avgl = l->total_lat / l->nb_atoms;
1364 avgr = r->total_lat / r->nb_atoms;
1365
1366 if (avgl < avgr)
1367 return -1;
1368 if (avgl > avgr)
1369 return 1;
1370
1371 return 0;
1372}
1373
1374static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1375{
1376 if (l->max_lat < r->max_lat)
1377 return -1;
1378 if (l->max_lat > r->max_lat)
1379 return 1;
1380
1381 return 0;
1382}
1383
1384static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1385{
1386 if (l->nb_atoms < r->nb_atoms)
1387 return -1;
1388 if (l->nb_atoms > r->nb_atoms)
1389 return 1;
1390
1391 return 0;
1392}
1393
1394static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1395{
1396 if (l->total_runtime < r->total_runtime)
1397 return -1;
1398 if (l->total_runtime > r->total_runtime)
1399 return 1;
1400
1401 return 0;
1402}
1403
1404static int sort_dimension__add(const char *tok, struct list_head *list)
1405{
1406 size_t i;
1407 static struct sort_dimension avg_sort_dimension = {
1408 .name = "avg",
1409 .cmp = avg_cmp,
1410 };
1411 static struct sort_dimension max_sort_dimension = {
1412 .name = "max",
1413 .cmp = max_cmp,
1414 };
1415 static struct sort_dimension pid_sort_dimension = {
1416 .name = "pid",
1417 .cmp = pid_cmp,
1418 };
1419 static struct sort_dimension runtime_sort_dimension = {
1420 .name = "runtime",
1421 .cmp = runtime_cmp,
1422 };
1423 static struct sort_dimension switch_sort_dimension = {
1424 .name = "switch",
1425 .cmp = switch_cmp,
1426 };
1427 struct sort_dimension *available_sorts[] = {
1428 &pid_sort_dimension,
1429 &avg_sort_dimension,
1430 &max_sort_dimension,
1431 &switch_sort_dimension,
1432 &runtime_sort_dimension,
1433 };
1434
1435 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1436 if (!strcmp(available_sorts[i]->name, tok)) {
1437 list_add_tail(&available_sorts[i]->list, list);
1438
1439 return 0;
1440 }
1441 }
1442
1443 return -1;
1444}
1445
1446static void perf_sched__sort_lat(struct perf_sched *sched)
1447{
1448 struct rb_node *node;
1449 struct rb_root *root = &sched->atom_root;
1450again:
1451 for (;;) {
1452 struct work_atoms *data;
1453 node = rb_first(root);
1454 if (!node)
1455 break;
1456
1457 rb_erase(node, root);
1458 data = rb_entry(node, struct work_atoms, node);
1459 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1460 }
1461 if (root == &sched->atom_root) {
1462 root = &sched->merged_atom_root;
1463 goto again;
1464 }
1465}
1466
1467static int process_sched_wakeup_event(struct perf_tool *tool,
1468 struct perf_evsel *evsel,
1469 struct perf_sample *sample,
1470 struct machine *machine)
1471{
1472 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1473
1474 if (sched->tp_handler->wakeup_event)
1475 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1476
1477 return 0;
1478}
1479
1480union map_priv {
1481 void *ptr;
1482 bool color;
1483};
1484
1485static bool thread__has_color(struct thread *thread)
1486{
1487 union map_priv priv = {
1488 .ptr = thread__priv(thread),
1489 };
1490
1491 return priv.color;
1492}
1493
1494static struct thread*
1495map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1496{
1497 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1498 union map_priv priv = {
1499 .color = false,
1500 };
1501
1502 if (!sched->map.color_pids || !thread || thread__priv(thread))
1503 return thread;
1504
1505 if (thread_map__has(sched->map.color_pids, tid))
1506 priv.color = true;
1507
1508 thread__set_priv(thread, priv.ptr);
1509 return thread;
1510}
1511
1512static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1513 struct perf_sample *sample, struct machine *machine)
1514{
1515 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1516 struct thread *sched_in;
1517 struct thread_runtime *tr;
1518 int new_shortname;
1519 u64 timestamp0, timestamp = sample->time;
1520 s64 delta;
1521 int i, this_cpu = sample->cpu;
1522 int cpus_nr;
1523 bool new_cpu = false;
1524 const char *color = PERF_COLOR_NORMAL;
1525 char stimestamp[32];
1526
1527 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1528
1529 if (this_cpu > sched->max_cpu)
1530 sched->max_cpu = this_cpu;
1531
1532 if (sched->map.comp) {
1533 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1534 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1535 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1536 new_cpu = true;
1537 }
1538 } else
1539 cpus_nr = sched->max_cpu;
1540
1541 timestamp0 = sched->cpu_last_switched[this_cpu];
1542 sched->cpu_last_switched[this_cpu] = timestamp;
1543 if (timestamp0)
1544 delta = timestamp - timestamp0;
1545 else
1546 delta = 0;
1547
1548 if (delta < 0) {
1549 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1550 return -1;
1551 }
1552
1553 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1554 if (sched_in == NULL)
1555 return -1;
1556
1557 tr = thread__get_runtime(sched_in);
1558 if (tr == NULL) {
1559 thread__put(sched_in);
1560 return -1;
1561 }
1562
1563 sched->curr_thread[this_cpu] = thread__get(sched_in);
1564
1565 printf(" ");
1566
1567 new_shortname = 0;
1568 if (!tr->shortname[0]) {
1569 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1570
1571
1572
1573
1574 tr->shortname[0] = '.';
1575 tr->shortname[1] = ' ';
1576 } else {
1577 tr->shortname[0] = sched->next_shortname1;
1578 tr->shortname[1] = sched->next_shortname2;
1579
1580 if (sched->next_shortname1 < 'Z') {
1581 sched->next_shortname1++;
1582 } else {
1583 sched->next_shortname1 = 'A';
1584 if (sched->next_shortname2 < '9')
1585 sched->next_shortname2++;
1586 else
1587 sched->next_shortname2 = '0';
1588 }
1589 }
1590 new_shortname = 1;
1591 }
1592
1593 for (i = 0; i < cpus_nr; i++) {
1594 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1595 struct thread *curr_thread = sched->curr_thread[cpu];
1596 struct thread_runtime *curr_tr;
1597 const char *pid_color = color;
1598 const char *cpu_color = color;
1599
1600 if (curr_thread && thread__has_color(curr_thread))
1601 pid_color = COLOR_PIDS;
1602
1603 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1604 continue;
1605
1606 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1607 cpu_color = COLOR_CPUS;
1608
1609 if (cpu != this_cpu)
1610 color_fprintf(stdout, color, " ");
1611 else
1612 color_fprintf(stdout, cpu_color, "*");
1613
1614 if (sched->curr_thread[cpu]) {
1615 curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1616 if (curr_tr == NULL) {
1617 thread__put(sched_in);
1618 return -1;
1619 }
1620 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1621 } else
1622 color_fprintf(stdout, color, " ");
1623 }
1624
1625 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1626 goto out;
1627
1628 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1629 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1630 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1631 const char *pid_color = color;
1632
1633 if (thread__has_color(sched_in))
1634 pid_color = COLOR_PIDS;
1635
1636 color_fprintf(stdout, pid_color, "%s => %s:%d",
1637 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1638 tr->comm_changed = false;
1639 }
1640
1641 if (sched->map.comp && new_cpu)
1642 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1643
1644out:
1645 color_fprintf(stdout, color, "\n");
1646
1647 thread__put(sched_in);
1648
1649 return 0;
1650}
1651
1652static int process_sched_switch_event(struct perf_tool *tool,
1653 struct perf_evsel *evsel,
1654 struct perf_sample *sample,
1655 struct machine *machine)
1656{
1657 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1658 int this_cpu = sample->cpu, err = 0;
1659 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1660 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1661
1662 if (sched->curr_pid[this_cpu] != (u32)-1) {
1663
1664
1665
1666
1667 if (sched->curr_pid[this_cpu] != prev_pid)
1668 sched->nr_context_switch_bugs++;
1669 }
1670
1671 if (sched->tp_handler->switch_event)
1672 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1673
1674 sched->curr_pid[this_cpu] = next_pid;
1675 return err;
1676}
1677
1678static int process_sched_runtime_event(struct perf_tool *tool,
1679 struct perf_evsel *evsel,
1680 struct perf_sample *sample,
1681 struct machine *machine)
1682{
1683 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1684
1685 if (sched->tp_handler->runtime_event)
1686 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1687
1688 return 0;
1689}
1690
1691static int perf_sched__process_fork_event(struct perf_tool *tool,
1692 union perf_event *event,
1693 struct perf_sample *sample,
1694 struct machine *machine)
1695{
1696 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1697
1698
1699 perf_event__process_fork(tool, event, sample, machine);
1700
1701
1702 if (sched->tp_handler->fork_event)
1703 return sched->tp_handler->fork_event(sched, event, machine);
1704
1705 return 0;
1706}
1707
1708static int process_sched_migrate_task_event(struct perf_tool *tool,
1709 struct perf_evsel *evsel,
1710 struct perf_sample *sample,
1711 struct machine *machine)
1712{
1713 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1714
1715 if (sched->tp_handler->migrate_task_event)
1716 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1717
1718 return 0;
1719}
1720
1721typedef int (*tracepoint_handler)(struct perf_tool *tool,
1722 struct perf_evsel *evsel,
1723 struct perf_sample *sample,
1724 struct machine *machine);
1725
1726static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1727 union perf_event *event __maybe_unused,
1728 struct perf_sample *sample,
1729 struct perf_evsel *evsel,
1730 struct machine *machine)
1731{
1732 int err = 0;
1733
1734 if (evsel->handler != NULL) {
1735 tracepoint_handler f = evsel->handler;
1736 err = f(tool, evsel, sample, machine);
1737 }
1738
1739 return err;
1740}
1741
1742static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1743 union perf_event *event,
1744 struct perf_sample *sample,
1745 struct machine *machine)
1746{
1747 struct thread *thread;
1748 struct thread_runtime *tr;
1749 int err;
1750
1751 err = perf_event__process_comm(tool, event, sample, machine);
1752 if (err)
1753 return err;
1754
1755 thread = machine__find_thread(machine, sample->pid, sample->tid);
1756 if (!thread) {
1757 pr_err("Internal error: can't find thread\n");
1758 return -1;
1759 }
1760
1761 tr = thread__get_runtime(thread);
1762 if (tr == NULL) {
1763 thread__put(thread);
1764 return -1;
1765 }
1766
1767 tr->comm_changed = true;
1768 thread__put(thread);
1769
1770 return 0;
1771}
1772
1773static int perf_sched__read_events(struct perf_sched *sched)
1774{
1775 const struct perf_evsel_str_handler handlers[] = {
1776 { "sched:sched_switch", process_sched_switch_event, },
1777 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1778 { "sched:sched_wakeup", process_sched_wakeup_event, },
1779 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1780 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1781 };
1782 struct perf_session *session;
1783 struct perf_data data = {
1784 .file = {
1785 .path = input_name,
1786 },
1787 .mode = PERF_DATA_MODE_READ,
1788 .force = sched->force,
1789 };
1790 int rc = -1;
1791
1792 session = perf_session__new(&data, false, &sched->tool);
1793 if (session == NULL) {
1794 pr_debug("No Memory for session\n");
1795 return -1;
1796 }
1797
1798 symbol__init(&session->header.env);
1799
1800 if (perf_session__set_tracepoints_handlers(session, handlers))
1801 goto out_delete;
1802
1803 if (perf_session__has_traces(session, "record -R")) {
1804 int err = perf_session__process_events(session);
1805 if (err) {
1806 pr_err("Failed to process events, error %d", err);
1807 goto out_delete;
1808 }
1809
1810 sched->nr_events = session->evlist->stats.nr_events[0];
1811 sched->nr_lost_events = session->evlist->stats.total_lost;
1812 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1813 }
1814
1815 rc = 0;
1816out_delete:
1817 perf_session__delete(session);
1818 return rc;
1819}
1820
1821
1822
1823
1824static inline void print_sched_time(unsigned long long nsecs, int width)
1825{
1826 unsigned long msecs;
1827 unsigned long usecs;
1828
1829 msecs = nsecs / NSEC_PER_MSEC;
1830 nsecs -= msecs * NSEC_PER_MSEC;
1831 usecs = nsecs / NSEC_PER_USEC;
1832 printf("%*lu.%03lu ", width, msecs, usecs);
1833}
1834
1835
1836
1837
1838
1839static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1840{
1841 struct evsel_runtime *r = evsel->priv;
1842
1843 if (r == NULL) {
1844 r = zalloc(sizeof(struct evsel_runtime));
1845 evsel->priv = r;
1846 }
1847
1848 return r;
1849}
1850
1851
1852
1853
1854static void perf_evsel__save_time(struct perf_evsel *evsel,
1855 u64 timestamp, u32 cpu)
1856{
1857 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1858
1859 if (r == NULL)
1860 return;
1861
1862 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1863 int i, n = __roundup_pow_of_two(cpu+1);
1864 void *p = r->last_time;
1865
1866 p = realloc(r->last_time, n * sizeof(u64));
1867 if (!p)
1868 return;
1869
1870 r->last_time = p;
1871 for (i = r->ncpu; i < n; ++i)
1872 r->last_time[i] = (u64) 0;
1873
1874 r->ncpu = n;
1875 }
1876
1877 r->last_time[cpu] = timestamp;
1878}
1879
1880
1881static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1882{
1883 struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1884
1885 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1886 return 0;
1887
1888 return r->last_time[cpu];
1889}
1890
1891static int comm_width = 30;
1892
1893static char *timehist_get_commstr(struct thread *thread)
1894{
1895 static char str[32];
1896 const char *comm = thread__comm_str(thread);
1897 pid_t tid = thread->tid;
1898 pid_t pid = thread->pid_;
1899 int n;
1900
1901 if (pid == 0)
1902 n = scnprintf(str, sizeof(str), "%s", comm);
1903
1904 else if (tid != pid)
1905 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1906
1907 else
1908 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1909
1910 if (n > comm_width)
1911 comm_width = n;
1912
1913 return str;
1914}
1915
1916static void timehist_header(struct perf_sched *sched)
1917{
1918 u32 ncpus = sched->max_cpu + 1;
1919 u32 i, j;
1920
1921 printf("%15s %6s ", "time", "cpu");
1922
1923 if (sched->show_cpu_visual) {
1924 printf(" ");
1925 for (i = 0, j = 0; i < ncpus; ++i) {
1926 printf("%x", j++);
1927 if (j > 15)
1928 j = 0;
1929 }
1930 printf(" ");
1931 }
1932
1933 printf(" %-*s %9s %9s %9s", comm_width,
1934 "task name", "wait time", "sch delay", "run time");
1935
1936 if (sched->show_state)
1937 printf(" %s", "state");
1938
1939 printf("\n");
1940
1941
1942
1943
1944 printf("%15s %-6s ", "", "");
1945
1946 if (sched->show_cpu_visual)
1947 printf(" %*s ", ncpus, "");
1948
1949 printf(" %-*s %9s %9s %9s", comm_width,
1950 "[tid/pid]", "(msec)", "(msec)", "(msec)");
1951
1952 if (sched->show_state)
1953 printf(" %5s", "");
1954
1955 printf("\n");
1956
1957
1958
1959
1960 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1961
1962 if (sched->show_cpu_visual)
1963 printf(" %.*s ", ncpus, graph_dotted_line);
1964
1965 printf(" %.*s %.9s %.9s %.9s", comm_width,
1966 graph_dotted_line, graph_dotted_line, graph_dotted_line,
1967 graph_dotted_line);
1968
1969 if (sched->show_state)
1970 printf(" %.5s", graph_dotted_line);
1971
1972 printf("\n");
1973}
1974
1975static char task_state_char(struct thread *thread, int state)
1976{
1977 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1978 unsigned bit = state ? ffs(state) : 0;
1979
1980
1981 if (thread->tid == 0)
1982 return 'I';
1983
1984 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1985}
1986
1987static void timehist_print_sample(struct perf_sched *sched,
1988 struct perf_evsel *evsel,
1989 struct perf_sample *sample,
1990 struct addr_location *al,
1991 struct thread *thread,
1992 u64 t, int state)
1993{
1994 struct thread_runtime *tr = thread__priv(thread);
1995 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1996 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1997 u32 max_cpus = sched->max_cpu + 1;
1998 char tstr[64];
1999 char nstr[30];
2000 u64 wait_time;
2001
2002 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2003 printf("%15s [%04d] ", tstr, sample->cpu);
2004
2005 if (sched->show_cpu_visual) {
2006 u32 i;
2007 char c;
2008
2009 printf(" ");
2010 for (i = 0; i < max_cpus; ++i) {
2011
2012 if (i == sample->cpu)
2013 c = (thread->tid == 0) ? 'i' : 's';
2014 else
2015 c = ' ';
2016 printf("%c", c);
2017 }
2018 printf(" ");
2019 }
2020
2021 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2022
2023 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2024 print_sched_time(wait_time, 6);
2025
2026 print_sched_time(tr->dt_delay, 6);
2027 print_sched_time(tr->dt_run, 6);
2028
2029 if (sched->show_state)
2030 printf(" %5c ", task_state_char(thread, state));
2031
2032 if (sched->show_next) {
2033 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2034 printf(" %-*s", comm_width, nstr);
2035 }
2036
2037 if (sched->show_wakeups && !sched->show_next)
2038 printf(" %-*s", comm_width, "");
2039
2040 if (thread->tid == 0)
2041 goto out;
2042
2043 if (sched->show_callchain)
2044 printf(" ");
2045
2046 sample__fprintf_sym(sample, al, 0,
2047 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2048 EVSEL__PRINT_CALLCHAIN_ARROW |
2049 EVSEL__PRINT_SKIP_IGNORED,
2050 &callchain_cursor, stdout);
2051
2052out:
2053 printf("\n");
2054}
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079static void timehist_update_runtime_stats(struct thread_runtime *r,
2080 u64 t, u64 tprev)
2081{
2082 r->dt_delay = 0;
2083 r->dt_sleep = 0;
2084 r->dt_iowait = 0;
2085 r->dt_preempt = 0;
2086 r->dt_run = 0;
2087
2088 if (tprev) {
2089 r->dt_run = t - tprev;
2090 if (r->ready_to_run) {
2091 if (r->ready_to_run > tprev)
2092 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2093 else
2094 r->dt_delay = tprev - r->ready_to_run;
2095 }
2096
2097 if (r->last_time > tprev)
2098 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2099 else if (r->last_time) {
2100 u64 dt_wait = tprev - r->last_time;
2101
2102 if (r->last_state == TASK_RUNNING)
2103 r->dt_preempt = dt_wait;
2104 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2105 r->dt_iowait = dt_wait;
2106 else
2107 r->dt_sleep = dt_wait;
2108 }
2109 }
2110
2111 update_stats(&r->run_stats, r->dt_run);
2112
2113 r->total_run_time += r->dt_run;
2114 r->total_delay_time += r->dt_delay;
2115 r->total_sleep_time += r->dt_sleep;
2116 r->total_iowait_time += r->dt_iowait;
2117 r->total_preempt_time += r->dt_preempt;
2118}
2119
2120static bool is_idle_sample(struct perf_sample *sample,
2121 struct perf_evsel *evsel)
2122{
2123
2124 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2125 return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2126
2127 return sample->pid == 0;
2128}
2129
2130static void save_task_callchain(struct perf_sched *sched,
2131 struct perf_sample *sample,
2132 struct perf_evsel *evsel,
2133 struct machine *machine)
2134{
2135 struct callchain_cursor *cursor = &callchain_cursor;
2136 struct thread *thread;
2137
2138
2139 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2140 if (thread == NULL) {
2141 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2142 return;
2143 }
2144
2145 if (!sched->show_callchain || sample->callchain == NULL)
2146 return;
2147
2148 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2149 NULL, NULL, sched->max_stack + 2) != 0) {
2150 if (verbose > 0)
2151 pr_err("Failed to resolve callchain. Skipping\n");
2152
2153 return;
2154 }
2155
2156 callchain_cursor_commit(cursor);
2157
2158 while (true) {
2159 struct callchain_cursor_node *node;
2160 struct symbol *sym;
2161
2162 node = callchain_cursor_current(cursor);
2163 if (node == NULL)
2164 break;
2165
2166 sym = node->sym;
2167 if (sym) {
2168 if (!strcmp(sym->name, "schedule") ||
2169 !strcmp(sym->name, "__schedule") ||
2170 !strcmp(sym->name, "preempt_schedule"))
2171 sym->ignore = 1;
2172 }
2173
2174 callchain_cursor_advance(cursor);
2175 }
2176}
2177
2178static int init_idle_thread(struct thread *thread)
2179{
2180 struct idle_thread_runtime *itr;
2181
2182 thread__set_comm(thread, idle_comm, 0);
2183
2184 itr = zalloc(sizeof(*itr));
2185 if (itr == NULL)
2186 return -ENOMEM;
2187
2188 init_stats(&itr->tr.run_stats);
2189 callchain_init(&itr->callchain);
2190 callchain_cursor_reset(&itr->cursor);
2191 thread__set_priv(thread, itr);
2192
2193 return 0;
2194}
2195
2196
2197
2198
2199
2200static int init_idle_threads(int ncpu)
2201{
2202 int i, ret;
2203
2204 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2205 if (!idle_threads)
2206 return -ENOMEM;
2207
2208 idle_max_cpu = ncpu;
2209
2210
2211 for (i = 0; i < ncpu; ++i) {
2212 idle_threads[i] = thread__new(0, 0);
2213 if (idle_threads[i] == NULL)
2214 return -ENOMEM;
2215
2216 ret = init_idle_thread(idle_threads[i]);
2217 if (ret < 0)
2218 return ret;
2219 }
2220
2221 return 0;
2222}
2223
2224static void free_idle_threads(void)
2225{
2226 int i;
2227
2228 if (idle_threads == NULL)
2229 return;
2230
2231 for (i = 0; i < idle_max_cpu; ++i) {
2232 if ((idle_threads[i]))
2233 thread__delete(idle_threads[i]);
2234 }
2235
2236 free(idle_threads);
2237}
2238
2239static struct thread *get_idle_thread(int cpu)
2240{
2241
2242
2243
2244
2245 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2246 int i, j = __roundup_pow_of_two(cpu+1);
2247 void *p;
2248
2249 p = realloc(idle_threads, j * sizeof(struct thread *));
2250 if (!p)
2251 return NULL;
2252
2253 idle_threads = (struct thread **) p;
2254 for (i = idle_max_cpu; i < j; ++i)
2255 idle_threads[i] = NULL;
2256
2257 idle_max_cpu = j;
2258 }
2259
2260
2261 if (idle_threads[cpu] == NULL) {
2262 idle_threads[cpu] = thread__new(0, 0);
2263
2264 if (idle_threads[cpu]) {
2265 if (init_idle_thread(idle_threads[cpu]) < 0)
2266 return NULL;
2267 }
2268 }
2269
2270 return idle_threads[cpu];
2271}
2272
2273static void save_idle_callchain(struct perf_sched *sched,
2274 struct idle_thread_runtime *itr,
2275 struct perf_sample *sample)
2276{
2277 if (!sched->show_callchain || sample->callchain == NULL)
2278 return;
2279
2280 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2281}
2282
2283static struct thread *timehist_get_thread(struct perf_sched *sched,
2284 struct perf_sample *sample,
2285 struct machine *machine,
2286 struct perf_evsel *evsel)
2287{
2288 struct thread *thread;
2289
2290 if (is_idle_sample(sample, evsel)) {
2291 thread = get_idle_thread(sample->cpu);
2292 if (thread == NULL)
2293 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2294
2295 } else {
2296
2297 thread = machine__findnew_thread(machine, sample->pid,
2298 sample->tid ?: sample->pid);
2299 if (thread == NULL) {
2300 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2301 sample->tid);
2302 }
2303
2304 save_task_callchain(sched, sample, evsel, machine);
2305 if (sched->idle_hist) {
2306 struct thread *idle;
2307 struct idle_thread_runtime *itr;
2308
2309 idle = get_idle_thread(sample->cpu);
2310 if (idle == NULL) {
2311 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2312 return NULL;
2313 }
2314
2315 itr = thread__priv(idle);
2316 if (itr == NULL)
2317 return NULL;
2318
2319 itr->last_thread = thread;
2320
2321
2322 if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2323 save_idle_callchain(sched, itr, sample);
2324 }
2325 }
2326
2327 return thread;
2328}
2329
2330static bool timehist_skip_sample(struct perf_sched *sched,
2331 struct thread *thread,
2332 struct perf_evsel *evsel,
2333 struct perf_sample *sample)
2334{
2335 bool rc = false;
2336
2337 if (thread__is_filtered(thread)) {
2338 rc = true;
2339 sched->skipped_samples++;
2340 }
2341
2342 if (sched->idle_hist) {
2343 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2344 rc = true;
2345 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2346 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2347 rc = true;
2348 }
2349
2350 return rc;
2351}
2352
2353static void timehist_print_wakeup_event(struct perf_sched *sched,
2354 struct perf_evsel *evsel,
2355 struct perf_sample *sample,
2356 struct machine *machine,
2357 struct thread *awakened)
2358{
2359 struct thread *thread;
2360 char tstr[64];
2361
2362 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2363 if (thread == NULL)
2364 return;
2365
2366
2367 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2368 timehist_skip_sample(sched, awakened, evsel, sample)) {
2369 return;
2370 }
2371
2372 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2373 printf("%15s [%04d] ", tstr, sample->cpu);
2374 if (sched->show_cpu_visual)
2375 printf(" %*s ", sched->max_cpu + 1, "");
2376
2377 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2378
2379
2380 printf(" %9s %9s %9s ", "", "", "");
2381
2382 printf("awakened: %s", timehist_get_commstr(awakened));
2383
2384 printf("\n");
2385}
2386
2387static int timehist_sched_wakeup_event(struct perf_tool *tool,
2388 union perf_event *event __maybe_unused,
2389 struct perf_evsel *evsel,
2390 struct perf_sample *sample,
2391 struct machine *machine)
2392{
2393 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2394 struct thread *thread;
2395 struct thread_runtime *tr = NULL;
2396
2397 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2398
2399 thread = machine__findnew_thread(machine, 0, pid);
2400 if (thread == NULL)
2401 return -1;
2402
2403 tr = thread__get_runtime(thread);
2404 if (tr == NULL)
2405 return -1;
2406
2407 if (tr->ready_to_run == 0)
2408 tr->ready_to_run = sample->time;
2409
2410
2411 if (sched->show_wakeups &&
2412 !perf_time__skip_sample(&sched->ptime, sample->time))
2413 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2414
2415 return 0;
2416}
2417
2418static void timehist_print_migration_event(struct perf_sched *sched,
2419 struct perf_evsel *evsel,
2420 struct perf_sample *sample,
2421 struct machine *machine,
2422 struct thread *migrated)
2423{
2424 struct thread *thread;
2425 char tstr[64];
2426 u32 max_cpus = sched->max_cpu + 1;
2427 u32 ocpu, dcpu;
2428
2429 if (sched->summary_only)
2430 return;
2431
2432 max_cpus = sched->max_cpu + 1;
2433 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2434 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2435
2436 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2437 if (thread == NULL)
2438 return;
2439
2440 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2441 timehist_skip_sample(sched, migrated, evsel, sample)) {
2442 return;
2443 }
2444
2445 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2446 printf("%15s [%04d] ", tstr, sample->cpu);
2447
2448 if (sched->show_cpu_visual) {
2449 u32 i;
2450 char c;
2451
2452 printf(" ");
2453 for (i = 0; i < max_cpus; ++i) {
2454 c = (i == sample->cpu) ? 'm' : ' ';
2455 printf("%c", c);
2456 }
2457 printf(" ");
2458 }
2459
2460 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2461
2462
2463 printf(" %9s %9s %9s ", "", "", "");
2464
2465 printf("migrated: %s", timehist_get_commstr(migrated));
2466 printf(" cpu %d => %d", ocpu, dcpu);
2467
2468 printf("\n");
2469}
2470
2471static int timehist_migrate_task_event(struct perf_tool *tool,
2472 union perf_event *event __maybe_unused,
2473 struct perf_evsel *evsel,
2474 struct perf_sample *sample,
2475 struct machine *machine)
2476{
2477 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2478 struct thread *thread;
2479 struct thread_runtime *tr = NULL;
2480
2481 const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2482
2483 thread = machine__findnew_thread(machine, 0, pid);
2484 if (thread == NULL)
2485 return -1;
2486
2487 tr = thread__get_runtime(thread);
2488 if (tr == NULL)
2489 return -1;
2490
2491 tr->migrations++;
2492
2493
2494 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2495
2496 return 0;
2497}
2498
2499static int timehist_sched_change_event(struct perf_tool *tool,
2500 union perf_event *event,
2501 struct perf_evsel *evsel,
2502 struct perf_sample *sample,
2503 struct machine *machine)
2504{
2505 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2506 struct perf_time_interval *ptime = &sched->ptime;
2507 struct addr_location al;
2508 struct thread *thread;
2509 struct thread_runtime *tr = NULL;
2510 u64 tprev, t = sample->time;
2511 int rc = 0;
2512 int state = perf_evsel__intval(evsel, sample, "prev_state");
2513
2514
2515 if (machine__resolve(machine, &al, sample) < 0) {
2516 pr_err("problem processing %d event. skipping it\n",
2517 event->header.type);
2518 rc = -1;
2519 goto out;
2520 }
2521
2522 thread = timehist_get_thread(sched, sample, machine, evsel);
2523 if (thread == NULL) {
2524 rc = -1;
2525 goto out;
2526 }
2527
2528 if (timehist_skip_sample(sched, thread, evsel, sample))
2529 goto out;
2530
2531 tr = thread__get_runtime(thread);
2532 if (tr == NULL) {
2533 rc = -1;
2534 goto out;
2535 }
2536
2537 tprev = perf_evsel__get_time(evsel, sample->cpu);
2538
2539
2540
2541
2542
2543
2544 if (ptime->start && ptime->start > t)
2545 goto out;
2546
2547 if (tprev && ptime->start > tprev)
2548 tprev = ptime->start;
2549
2550
2551
2552
2553
2554
2555
2556 if (ptime->end) {
2557 if (tprev > ptime->end)
2558 goto out;
2559
2560 if (t > ptime->end)
2561 t = ptime->end;
2562 }
2563
2564 if (!sched->idle_hist || thread->tid == 0) {
2565 timehist_update_runtime_stats(tr, t, tprev);
2566
2567 if (sched->idle_hist) {
2568 struct idle_thread_runtime *itr = (void *)tr;
2569 struct thread_runtime *last_tr;
2570
2571 BUG_ON(thread->tid != 0);
2572
2573 if (itr->last_thread == NULL)
2574 goto out;
2575
2576
2577 last_tr = thread__get_runtime(itr->last_thread);
2578 if (last_tr == NULL)
2579 goto out;
2580
2581 timehist_update_runtime_stats(last_tr, t, tprev);
2582
2583
2584
2585
2586
2587 last_tr->dt_run = 0;
2588 last_tr->dt_delay = 0;
2589 last_tr->dt_sleep = 0;
2590 last_tr->dt_iowait = 0;
2591 last_tr->dt_preempt = 0;
2592
2593 if (itr->cursor.nr)
2594 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2595
2596 itr->last_thread = NULL;
2597 }
2598 }
2599
2600 if (!sched->summary_only)
2601 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2602
2603out:
2604 if (sched->hist_time.start == 0 && t >= ptime->start)
2605 sched->hist_time.start = t;
2606 if (ptime->end == 0 || t <= ptime->end)
2607 sched->hist_time.end = t;
2608
2609 if (tr) {
2610
2611 tr->last_time = sample->time;
2612
2613
2614 tr->last_state = state;
2615
2616
2617 tr->ready_to_run = 0;
2618 }
2619
2620 perf_evsel__save_time(evsel, sample->time, sample->cpu);
2621
2622 return rc;
2623}
2624
2625static int timehist_sched_switch_event(struct perf_tool *tool,
2626 union perf_event *event,
2627 struct perf_evsel *evsel,
2628 struct perf_sample *sample,
2629 struct machine *machine __maybe_unused)
2630{
2631 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2632}
2633
2634static int process_lost(struct perf_tool *tool __maybe_unused,
2635 union perf_event *event,
2636 struct perf_sample *sample,
2637 struct machine *machine __maybe_unused)
2638{
2639 char tstr[64];
2640
2641 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2642 printf("%15s ", tstr);
2643 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2644
2645 return 0;
2646}
2647
2648
2649static void print_thread_runtime(struct thread *t,
2650 struct thread_runtime *r)
2651{
2652 double mean = avg_stats(&r->run_stats);
2653 float stddev;
2654
2655 printf("%*s %5d %9" PRIu64 " ",
2656 comm_width, timehist_get_commstr(t), t->ppid,
2657 (u64) r->run_stats.n);
2658
2659 print_sched_time(r->total_run_time, 8);
2660 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2661 print_sched_time(r->run_stats.min, 6);
2662 printf(" ");
2663 print_sched_time((u64) mean, 6);
2664 printf(" ");
2665 print_sched_time(r->run_stats.max, 6);
2666 printf(" ");
2667 printf("%5.2f", stddev);
2668 printf(" %5" PRIu64, r->migrations);
2669 printf("\n");
2670}
2671
2672static void print_thread_waittime(struct thread *t,
2673 struct thread_runtime *r)
2674{
2675 printf("%*s %5d %9" PRIu64 " ",
2676 comm_width, timehist_get_commstr(t), t->ppid,
2677 (u64) r->run_stats.n);
2678
2679 print_sched_time(r->total_run_time, 8);
2680 print_sched_time(r->total_sleep_time, 6);
2681 printf(" ");
2682 print_sched_time(r->total_iowait_time, 6);
2683 printf(" ");
2684 print_sched_time(r->total_preempt_time, 6);
2685 printf(" ");
2686 print_sched_time(r->total_delay_time, 6);
2687 printf("\n");
2688}
2689
2690struct total_run_stats {
2691 struct perf_sched *sched;
2692 u64 sched_count;
2693 u64 task_count;
2694 u64 total_run_time;
2695};
2696
2697static int __show_thread_runtime(struct thread *t, void *priv)
2698{
2699 struct total_run_stats *stats = priv;
2700 struct thread_runtime *r;
2701
2702 if (thread__is_filtered(t))
2703 return 0;
2704
2705 r = thread__priv(t);
2706 if (r && r->run_stats.n) {
2707 stats->task_count++;
2708 stats->sched_count += r->run_stats.n;
2709 stats->total_run_time += r->total_run_time;
2710
2711 if (stats->sched->show_state)
2712 print_thread_waittime(t, r);
2713 else
2714 print_thread_runtime(t, r);
2715 }
2716
2717 return 0;
2718}
2719
2720static int show_thread_runtime(struct thread *t, void *priv)
2721{
2722 if (t->dead)
2723 return 0;
2724
2725 return __show_thread_runtime(t, priv);
2726}
2727
2728static int show_deadthread_runtime(struct thread *t, void *priv)
2729{
2730 if (!t->dead)
2731 return 0;
2732
2733 return __show_thread_runtime(t, priv);
2734}
2735
2736static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2737{
2738 const char *sep = " <- ";
2739 struct callchain_list *chain;
2740 size_t ret = 0;
2741 char bf[1024];
2742 bool first;
2743
2744 if (node == NULL)
2745 return 0;
2746
2747 ret = callchain__fprintf_folded(fp, node->parent);
2748 first = (ret == 0);
2749
2750 list_for_each_entry(chain, &node->val, list) {
2751 if (chain->ip >= PERF_CONTEXT_MAX)
2752 continue;
2753 if (chain->ms.sym && chain->ms.sym->ignore)
2754 continue;
2755 ret += fprintf(fp, "%s%s", first ? "" : sep,
2756 callchain_list__sym_name(chain, bf, sizeof(bf),
2757 false));
2758 first = false;
2759 }
2760
2761 return ret;
2762}
2763
2764static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2765{
2766 size_t ret = 0;
2767 FILE *fp = stdout;
2768 struct callchain_node *chain;
2769 struct rb_node *rb_node = rb_first(root);
2770
2771 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2772 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2773 graph_dotted_line);
2774
2775 while (rb_node) {
2776 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2777 rb_node = rb_next(rb_node);
2778
2779 ret += fprintf(fp, " ");
2780 print_sched_time(chain->hit, 12);
2781 ret += 16;
2782 ret += fprintf(fp, " %8d ", chain->count);
2783 ret += callchain__fprintf_folded(fp, chain);
2784 ret += fprintf(fp, "\n");
2785 }
2786
2787 return ret;
2788}
2789
2790static void timehist_print_summary(struct perf_sched *sched,
2791 struct perf_session *session)
2792{
2793 struct machine *m = &session->machines.host;
2794 struct total_run_stats totals;
2795 u64 task_count;
2796 struct thread *t;
2797 struct thread_runtime *r;
2798 int i;
2799 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2800
2801 memset(&totals, 0, sizeof(totals));
2802 totals.sched = sched;
2803
2804 if (sched->idle_hist) {
2805 printf("\nIdle-time summary\n");
2806 printf("%*s parent sched-out ", comm_width, "comm");
2807 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2808 } else if (sched->show_state) {
2809 printf("\nWait-time summary\n");
2810 printf("%*s parent sched-in ", comm_width, "comm");
2811 printf(" run-time sleep iowait preempt delay\n");
2812 } else {
2813 printf("\nRuntime summary\n");
2814 printf("%*s parent sched-in ", comm_width, "comm");
2815 printf(" run-time min-run avg-run max-run stddev migrations\n");
2816 }
2817 printf("%*s (count) ", comm_width, "");
2818 printf(" (msec) (msec) (msec) (msec) %s\n",
2819 sched->show_state ? "(msec)" : "%");
2820 printf("%.117s\n", graph_dotted_line);
2821
2822 machine__for_each_thread(m, show_thread_runtime, &totals);
2823 task_count = totals.task_count;
2824 if (!task_count)
2825 printf("<no still running tasks>\n");
2826
2827 printf("\nTerminated tasks:\n");
2828 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2829 if (task_count == totals.task_count)
2830 printf("<no terminated tasks>\n");
2831
2832
2833 if (sched->skipped_samples && !sched->idle_hist)
2834 return;
2835
2836 printf("\nIdle stats:\n");
2837 for (i = 0; i < idle_max_cpu; ++i) {
2838 t = idle_threads[i];
2839 if (!t)
2840 continue;
2841
2842 r = thread__priv(t);
2843 if (r && r->run_stats.n) {
2844 totals.sched_count += r->run_stats.n;
2845 printf(" CPU %2d idle for ", i);
2846 print_sched_time(r->total_run_time, 6);
2847 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2848 } else
2849 printf(" CPU %2d idle entire time window\n", i);
2850 }
2851
2852 if (sched->idle_hist && sched->show_callchain) {
2853 callchain_param.mode = CHAIN_FOLDED;
2854 callchain_param.value = CCVAL_PERIOD;
2855
2856 callchain_register_param(&callchain_param);
2857
2858 printf("\nIdle stats by callchain:\n");
2859 for (i = 0; i < idle_max_cpu; ++i) {
2860 struct idle_thread_runtime *itr;
2861
2862 t = idle_threads[i];
2863 if (!t)
2864 continue;
2865
2866 itr = thread__priv(t);
2867 if (itr == NULL)
2868 continue;
2869
2870 callchain_param.sort(&itr->sorted_root, &itr->callchain,
2871 0, &callchain_param);
2872
2873 printf(" CPU %2d:", i);
2874 print_sched_time(itr->tr.total_run_time, 6);
2875 printf(" msec\n");
2876 timehist_print_idlehist_callchain(&itr->sorted_root);
2877 printf("\n");
2878 }
2879 }
2880
2881 printf("\n"
2882 " Total number of unique tasks: %" PRIu64 "\n"
2883 "Total number of context switches: %" PRIu64 "\n",
2884 totals.task_count, totals.sched_count);
2885
2886 printf(" Total run time (msec): ");
2887 print_sched_time(totals.total_run_time, 2);
2888 printf("\n");
2889
2890 printf(" Total scheduling time (msec): ");
2891 print_sched_time(hist_time, 2);
2892 printf(" (x %d)\n", sched->max_cpu);
2893}
2894
2895typedef int (*sched_handler)(struct perf_tool *tool,
2896 union perf_event *event,
2897 struct perf_evsel *evsel,
2898 struct perf_sample *sample,
2899 struct machine *machine);
2900
2901static int perf_timehist__process_sample(struct perf_tool *tool,
2902 union perf_event *event,
2903 struct perf_sample *sample,
2904 struct perf_evsel *evsel,
2905 struct machine *machine)
2906{
2907 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2908 int err = 0;
2909 int this_cpu = sample->cpu;
2910
2911 if (this_cpu > sched->max_cpu)
2912 sched->max_cpu = this_cpu;
2913
2914 if (evsel->handler != NULL) {
2915 sched_handler f = evsel->handler;
2916
2917 err = f(tool, event, evsel, sample, machine);
2918 }
2919
2920 return err;
2921}
2922
2923static int timehist_check_attr(struct perf_sched *sched,
2924 struct perf_evlist *evlist)
2925{
2926 struct perf_evsel *evsel;
2927 struct evsel_runtime *er;
2928
2929 list_for_each_entry(evsel, &evlist->entries, node) {
2930 er = perf_evsel__get_runtime(evsel);
2931 if (er == NULL) {
2932 pr_err("Failed to allocate memory for evsel runtime data\n");
2933 return -1;
2934 }
2935
2936 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2937 pr_info("Samples do not have callchains.\n");
2938 sched->show_callchain = 0;
2939 symbol_conf.use_callchain = 0;
2940 }
2941 }
2942
2943 return 0;
2944}
2945
2946static int perf_sched__timehist(struct perf_sched *sched)
2947{
2948 const struct perf_evsel_str_handler handlers[] = {
2949 { "sched:sched_switch", timehist_sched_switch_event, },
2950 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
2951 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
2952 };
2953 const struct perf_evsel_str_handler migrate_handlers[] = {
2954 { "sched:sched_migrate_task", timehist_migrate_task_event, },
2955 };
2956 struct perf_data data = {
2957 .file = {
2958 .path = input_name,
2959 },
2960 .mode = PERF_DATA_MODE_READ,
2961 .force = sched->force,
2962 };
2963
2964 struct perf_session *session;
2965 struct perf_evlist *evlist;
2966 int err = -1;
2967
2968
2969
2970
2971 sched->tool.sample = perf_timehist__process_sample;
2972 sched->tool.mmap = perf_event__process_mmap;
2973 sched->tool.comm = perf_event__process_comm;
2974 sched->tool.exit = perf_event__process_exit;
2975 sched->tool.fork = perf_event__process_fork;
2976 sched->tool.lost = process_lost;
2977 sched->tool.attr = perf_event__process_attr;
2978 sched->tool.tracing_data = perf_event__process_tracing_data;
2979 sched->tool.build_id = perf_event__process_build_id;
2980
2981 sched->tool.ordered_events = true;
2982 sched->tool.ordering_requires_timestamps = true;
2983
2984 symbol_conf.use_callchain = sched->show_callchain;
2985
2986 session = perf_session__new(&data, false, &sched->tool);
2987 if (session == NULL)
2988 return -ENOMEM;
2989
2990 evlist = session->evlist;
2991
2992 symbol__init(&session->header.env);
2993
2994 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2995 pr_err("Invalid time string\n");
2996 return -EINVAL;
2997 }
2998
2999 if (timehist_check_attr(sched, evlist) != 0)
3000 goto out;
3001
3002 setup_pager();
3003
3004
3005 if (perf_session__set_tracepoints_handlers(session, handlers))
3006 goto out;
3007
3008
3009 if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3010 "sched:sched_switch")) {
3011 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3012 goto out;
3013 }
3014
3015 if (sched->show_migrations &&
3016 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3017 goto out;
3018
3019
3020 sched->max_cpu = session->header.env.nr_cpus_online;
3021 if (sched->max_cpu == 0)
3022 sched->max_cpu = 4;
3023 if (init_idle_threads(sched->max_cpu))
3024 goto out;
3025
3026
3027 if (sched->summary_only)
3028 sched->summary = sched->summary_only;
3029
3030 if (!sched->summary_only)
3031 timehist_header(sched);
3032
3033 err = perf_session__process_events(session);
3034 if (err) {
3035 pr_err("Failed to process events, error %d", err);
3036 goto out;
3037 }
3038
3039 sched->nr_events = evlist->stats.nr_events[0];
3040 sched->nr_lost_events = evlist->stats.total_lost;
3041 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3042
3043 if (sched->summary)
3044 timehist_print_summary(sched, session);
3045
3046out:
3047 free_idle_threads();
3048 perf_session__delete(session);
3049
3050 return err;
3051}
3052
3053
3054static void print_bad_events(struct perf_sched *sched)
3055{
3056 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3057 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3058 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3059 sched->nr_unordered_timestamps, sched->nr_timestamps);
3060 }
3061 if (sched->nr_lost_events && sched->nr_events) {
3062 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3063 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3064 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3065 }
3066 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3067 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3068 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3069 sched->nr_context_switch_bugs, sched->nr_timestamps);
3070 if (sched->nr_lost_events)
3071 printf(" (due to lost events?)");
3072 printf("\n");
3073 }
3074}
3075
3076static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3077{
3078 struct rb_node **new = &(root->rb_node), *parent = NULL;
3079 struct work_atoms *this;
3080 const char *comm = thread__comm_str(data->thread), *this_comm;
3081
3082 while (*new) {
3083 int cmp;
3084
3085 this = container_of(*new, struct work_atoms, node);
3086 parent = *new;
3087
3088 this_comm = thread__comm_str(this->thread);
3089 cmp = strcmp(comm, this_comm);
3090 if (cmp > 0) {
3091 new = &((*new)->rb_left);
3092 } else if (cmp < 0) {
3093 new = &((*new)->rb_right);
3094 } else {
3095 this->num_merged++;
3096 this->total_runtime += data->total_runtime;
3097 this->nb_atoms += data->nb_atoms;
3098 this->total_lat += data->total_lat;
3099 list_splice(&data->work_list, &this->work_list);
3100 if (this->max_lat < data->max_lat) {
3101 this->max_lat = data->max_lat;
3102 this->max_lat_at = data->max_lat_at;
3103 }
3104 zfree(&data);
3105 return;
3106 }
3107 }
3108
3109 data->num_merged++;
3110 rb_link_node(&data->node, parent, new);
3111 rb_insert_color(&data->node, root);
3112}
3113
3114static void perf_sched__merge_lat(struct perf_sched *sched)
3115{
3116 struct work_atoms *data;
3117 struct rb_node *node;
3118
3119 if (sched->skip_merge)
3120 return;
3121
3122 while ((node = rb_first(&sched->atom_root))) {
3123 rb_erase(node, &sched->atom_root);
3124 data = rb_entry(node, struct work_atoms, node);
3125 __merge_work_atoms(&sched->merged_atom_root, data);
3126 }
3127}
3128
3129static int perf_sched__lat(struct perf_sched *sched)
3130{
3131 struct rb_node *next;
3132
3133 setup_pager();
3134
3135 if (perf_sched__read_events(sched))
3136 return -1;
3137
3138 perf_sched__merge_lat(sched);
3139 perf_sched__sort_lat(sched);
3140
3141 printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3142 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
3143 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3144
3145 next = rb_first(&sched->sorted_atom_root);
3146
3147 while (next) {
3148 struct work_atoms *work_list;
3149
3150 work_list = rb_entry(next, struct work_atoms, node);
3151 output_lat_thread(sched, work_list);
3152 next = rb_next(next);
3153 thread__zput(work_list->thread);
3154 }
3155
3156 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3157 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3158 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3159
3160 printf(" ---------------------------------------------------\n");
3161
3162 print_bad_events(sched);
3163 printf("\n");
3164
3165 return 0;
3166}
3167
3168static int setup_map_cpus(struct perf_sched *sched)
3169{
3170 struct cpu_map *map;
3171
3172 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF);
3173
3174 if (sched->map.comp) {
3175 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3176 if (!sched->map.comp_cpus)
3177 return -1;
3178 }
3179
3180 if (!sched->map.cpus_str)
3181 return 0;
3182
3183 map = cpu_map__new(sched->map.cpus_str);
3184 if (!map) {
3185 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3186 return -1;
3187 }
3188
3189 sched->map.cpus = map;
3190 return 0;
3191}
3192
3193static int setup_color_pids(struct perf_sched *sched)
3194{
3195 struct thread_map *map;
3196
3197 if (!sched->map.color_pids_str)
3198 return 0;
3199
3200 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3201 if (!map) {
3202 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3203 return -1;
3204 }
3205
3206 sched->map.color_pids = map;
3207 return 0;
3208}
3209
3210static int setup_color_cpus(struct perf_sched *sched)
3211{
3212 struct cpu_map *map;
3213
3214 if (!sched->map.color_cpus_str)
3215 return 0;
3216
3217 map = cpu_map__new(sched->map.color_cpus_str);
3218 if (!map) {
3219 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3220 return -1;
3221 }
3222
3223 sched->map.color_cpus = map;
3224 return 0;
3225}
3226
3227static int perf_sched__map(struct perf_sched *sched)
3228{
3229 if (setup_map_cpus(sched))
3230 return -1;
3231
3232 if (setup_color_pids(sched))
3233 return -1;
3234
3235 if (setup_color_cpus(sched))
3236 return -1;
3237
3238 setup_pager();
3239 if (perf_sched__read_events(sched))
3240 return -1;
3241 print_bad_events(sched);
3242 return 0;
3243}
3244
3245static int perf_sched__replay(struct perf_sched *sched)
3246{
3247 unsigned long i;
3248
3249 calibrate_run_measurement_overhead(sched);
3250 calibrate_sleep_measurement_overhead(sched);
3251
3252 test_calibrations(sched);
3253
3254 if (perf_sched__read_events(sched))
3255 return -1;
3256
3257 printf("nr_run_events: %ld\n", sched->nr_run_events);
3258 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3259 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3260
3261 if (sched->targetless_wakeups)
3262 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3263 if (sched->multitarget_wakeups)
3264 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3265 if (sched->nr_run_events_optimized)
3266 printf("run atoms optimized: %ld\n",
3267 sched->nr_run_events_optimized);
3268
3269 print_task_traces(sched);
3270 add_cross_task_wakeups(sched);
3271
3272 create_tasks(sched);
3273 printf("------------------------------------------------------------\n");
3274 for (i = 0; i < sched->replay_repeat; i++)
3275 run_one_test(sched);
3276
3277 return 0;
3278}
3279
3280static void setup_sorting(struct perf_sched *sched, const struct option *options,
3281 const char * const usage_msg[])
3282{
3283 char *tmp, *tok, *str = strdup(sched->sort_order);
3284
3285 for (tok = strtok_r(str, ", ", &tmp);
3286 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3287 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3288 usage_with_options_msg(usage_msg, options,
3289 "Unknown --sort key: `%s'", tok);
3290 }
3291 }
3292
3293 free(str);
3294
3295 sort_dimension__add("pid", &sched->cmp_pid);
3296}
3297
3298static int __cmd_record(int argc, const char **argv)
3299{
3300 unsigned int rec_argc, i, j;
3301 const char **rec_argv;
3302 const char * const record_args[] = {
3303 "record",
3304 "-a",
3305 "-R",
3306 "-m", "1024",
3307 "-c", "1",
3308 "-e", "sched:sched_switch",
3309 "-e", "sched:sched_stat_wait",
3310 "-e", "sched:sched_stat_sleep",
3311 "-e", "sched:sched_stat_iowait",
3312 "-e", "sched:sched_stat_runtime",
3313 "-e", "sched:sched_process_fork",
3314 "-e", "sched:sched_wakeup",
3315 "-e", "sched:sched_wakeup_new",
3316 "-e", "sched:sched_migrate_task",
3317 };
3318
3319 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3320 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3321
3322 if (rec_argv == NULL)
3323 return -ENOMEM;
3324
3325 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3326 rec_argv[i] = strdup(record_args[i]);
3327
3328 for (j = 1; j < (unsigned int)argc; j++, i++)
3329 rec_argv[i] = argv[j];
3330
3331 BUG_ON(i != rec_argc);
3332
3333 return cmd_record(i, rec_argv);
3334}
3335
3336int cmd_sched(int argc, const char **argv)
3337{
3338 const char default_sort_order[] = "avg, max, switch, runtime";
3339 struct perf_sched sched = {
3340 .tool = {
3341 .sample = perf_sched__process_tracepoint_sample,
3342 .comm = perf_sched__process_comm,
3343 .lost = perf_event__process_lost,
3344 .fork = perf_sched__process_fork_event,
3345 .ordered_events = true,
3346 },
3347 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3348 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3349 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER,
3350 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3351 .sort_order = default_sort_order,
3352 .replay_repeat = 10,
3353 .profile_cpu = -1,
3354 .next_shortname1 = 'A',
3355 .next_shortname2 = '0',
3356 .skip_merge = 0,
3357 .show_callchain = 1,
3358 .max_stack = 5,
3359 };
3360 const struct option sched_options[] = {
3361 OPT_STRING('i', "input", &input_name, "file",
3362 "input file name"),
3363 OPT_INCR('v', "verbose", &verbose,
3364 "be more verbose (show symbol address, etc)"),
3365 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3366 "dump raw trace in ASCII"),
3367 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3368 OPT_END()
3369 };
3370 const struct option latency_options[] = {
3371 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3372 "sort by key(s): runtime, switch, avg, max"),
3373 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3374 "CPU to profile on"),
3375 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3376 "latency stats per pid instead of per comm"),
3377 OPT_PARENT(sched_options)
3378 };
3379 const struct option replay_options[] = {
3380 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3381 "repeat the workload replay N times (-1: infinite)"),
3382 OPT_PARENT(sched_options)
3383 };
3384 const struct option map_options[] = {
3385 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3386 "map output in compact mode"),
3387 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3388 "highlight given pids in map"),
3389 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3390 "highlight given CPUs in map"),
3391 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3392 "display given CPUs in map"),
3393 OPT_PARENT(sched_options)
3394 };
3395 const struct option timehist_options[] = {
3396 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3397 "file", "vmlinux pathname"),
3398 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3399 "file", "kallsyms pathname"),
3400 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3401 "Display call chains if present (default on)"),
3402 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3403 "Maximum number of functions to display backtrace."),
3404 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3405 "Look for files with symbols relative to this directory"),
3406 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3407 "Show only syscall summary with statistics"),
3408 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3409 "Show all syscalls and summary with statistics"),
3410 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3411 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3412 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3413 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3414 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3415 OPT_STRING(0, "time", &sched.time_str, "str",
3416 "Time span for analysis (start,stop)"),
3417 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3418 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3419 "analyze events only for given process id(s)"),
3420 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3421 "analyze events only for given thread id(s)"),
3422 OPT_PARENT(sched_options)
3423 };
3424
3425 const char * const latency_usage[] = {
3426 "perf sched latency [<options>]",
3427 NULL
3428 };
3429 const char * const replay_usage[] = {
3430 "perf sched replay [<options>]",
3431 NULL
3432 };
3433 const char * const map_usage[] = {
3434 "perf sched map [<options>]",
3435 NULL
3436 };
3437 const char * const timehist_usage[] = {
3438 "perf sched timehist [<options>]",
3439 NULL
3440 };
3441 const char *const sched_subcommands[] = { "record", "latency", "map",
3442 "replay", "script",
3443 "timehist", NULL };
3444 const char *sched_usage[] = {
3445 NULL,
3446 NULL
3447 };
3448 struct trace_sched_handler lat_ops = {
3449 .wakeup_event = latency_wakeup_event,
3450 .switch_event = latency_switch_event,
3451 .runtime_event = latency_runtime_event,
3452 .migrate_task_event = latency_migrate_task_event,
3453 };
3454 struct trace_sched_handler map_ops = {
3455 .switch_event = map_switch_event,
3456 };
3457 struct trace_sched_handler replay_ops = {
3458 .wakeup_event = replay_wakeup_event,
3459 .switch_event = replay_switch_event,
3460 .fork_event = replay_fork_event,
3461 };
3462 unsigned int i;
3463
3464 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3465 sched.curr_pid[i] = -1;
3466
3467 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3468 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3469 if (!argc)
3470 usage_with_options(sched_usage, sched_options);
3471
3472
3473
3474
3475 if (!strcmp(argv[0], "script"))
3476 return cmd_script(argc, argv);
3477
3478 if (!strncmp(argv[0], "rec", 3)) {
3479 return __cmd_record(argc, argv);
3480 } else if (!strncmp(argv[0], "lat", 3)) {
3481 sched.tp_handler = &lat_ops;
3482 if (argc > 1) {
3483 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3484 if (argc)
3485 usage_with_options(latency_usage, latency_options);
3486 }
3487 setup_sorting(&sched, latency_options, latency_usage);
3488 return perf_sched__lat(&sched);
3489 } else if (!strcmp(argv[0], "map")) {
3490 if (argc) {
3491 argc = parse_options(argc, argv, map_options, map_usage, 0);
3492 if (argc)
3493 usage_with_options(map_usage, map_options);
3494 }
3495 sched.tp_handler = &map_ops;
3496 setup_sorting(&sched, latency_options, latency_usage);
3497 return perf_sched__map(&sched);
3498 } else if (!strncmp(argv[0], "rep", 3)) {
3499 sched.tp_handler = &replay_ops;
3500 if (argc) {
3501 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3502 if (argc)
3503 usage_with_options(replay_usage, replay_options);
3504 }
3505 return perf_sched__replay(&sched);
3506 } else if (!strcmp(argv[0], "timehist")) {
3507 if (argc) {
3508 argc = parse_options(argc, argv, timehist_options,
3509 timehist_usage, 0);
3510 if (argc)
3511 usage_with_options(timehist_usage, timehist_options);
3512 }
3513 if ((sched.show_wakeups || sched.show_next) &&
3514 sched.summary_only) {
3515 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3516 parse_options_usage(timehist_usage, timehist_options, "s", true);
3517 if (sched.show_wakeups)
3518 parse_options_usage(NULL, timehist_options, "w", true);
3519 if (sched.show_next)
3520 parse_options_usage(NULL, timehist_options, "n", true);
3521 return -EINVAL;
3522 }
3523
3524 return perf_sched__timehist(&sched);
3525 } else {
3526 usage_with_options(sched_usage, sched_options);
3527 }
3528
3529 return 0;
3530}
3531