linux/arch/arm/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes.c
   3 *
   4 * Kprobes on ARM
   5 *
   6 * Abhishek Sagar <sagar.abhishek@gmail.com>
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * Nicolas Pitre <nico@marvell.com>
  10 * Copyright (C) 2007 Marvell Ltd.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kprobes.h>
  24#include <linux/module.h>
  25#include <linux/slab.h>
  26#include <linux/stop_machine.h>
  27#include <linux/stringify.h>
  28#include <asm/traps.h>
  29#include <asm/cacheflush.h>
  30
  31#include "kprobes.h"
  32#include "patch.h"
  33
  34#define MIN_STACK_SIZE(addr)                            \
  35        min((unsigned long)MAX_STACK_SIZE,              \
  36            (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
  37
  38#define flush_insns(addr, size)                         \
  39        flush_icache_range((unsigned long)(addr),       \
  40                           (unsigned long)(addr) +      \
  41                           (size))
  42
  43/* Used as a marker in ARM_pc to note when we're in a jprobe. */
  44#define JPROBE_MAGIC_ADDR               0xffffffff
  45
  46DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  47DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  48
  49
  50int __kprobes arch_prepare_kprobe(struct kprobe *p)
  51{
  52        kprobe_opcode_t insn;
  53        kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
  54        unsigned long addr = (unsigned long)p->addr;
  55        bool thumb;
  56        kprobe_decode_insn_t *decode_insn;
  57        int is;
  58
  59        if (in_exception_text(addr))
  60                return -EINVAL;
  61
  62#ifdef CONFIG_THUMB2_KERNEL
  63        thumb = true;
  64        addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
  65        insn = ((u16 *)addr)[0];
  66        if (is_wide_instruction(insn)) {
  67                insn <<= 16;
  68                insn |= ((u16 *)addr)[1];
  69                decode_insn = thumb32_kprobe_decode_insn;
  70        } else
  71                decode_insn = thumb16_kprobe_decode_insn;
  72#else /* !CONFIG_THUMB2_KERNEL */
  73        thumb = false;
  74        if (addr & 0x3)
  75                return -EINVAL;
  76        insn = *p->addr;
  77        decode_insn = arm_kprobe_decode_insn;
  78#endif
  79
  80        p->opcode = insn;
  81        p->ainsn.insn = tmp_insn;
  82
  83        switch ((*decode_insn)(insn, &p->ainsn)) {
  84        case INSN_REJECTED:     /* not supported */
  85                return -EINVAL;
  86
  87        case INSN_GOOD:         /* instruction uses slot */
  88                p->ainsn.insn = get_insn_slot();
  89                if (!p->ainsn.insn)
  90                        return -ENOMEM;
  91                for (is = 0; is < MAX_INSN_SIZE; ++is)
  92                        p->ainsn.insn[is] = tmp_insn[is];
  93                flush_insns(p->ainsn.insn,
  94                                sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
  95                p->ainsn.insn_fn = (kprobe_insn_fn_t *)
  96                                        ((uintptr_t)p->ainsn.insn | thumb);
  97                break;
  98
  99        case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
 100                p->ainsn.insn = NULL;
 101                break;
 102        }
 103
 104        return 0;
 105}
 106
 107void __kprobes arch_arm_kprobe(struct kprobe *p)
 108{
 109        unsigned int brkp;
 110        void *addr;
 111
 112        if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
 113                /* Remove any Thumb flag */
 114                addr = (void *)((uintptr_t)p->addr & ~1);
 115
 116                if (is_wide_instruction(p->opcode))
 117                        brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
 118                else
 119                        brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
 120        } else {
 121                kprobe_opcode_t insn = p->opcode;
 122
 123                addr = p->addr;
 124                brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
 125
 126                if (insn >= 0xe0000000)
 127                        brkp |= 0xe0000000;  /* Unconditional instruction */
 128                else
 129                        brkp |= insn & 0xf0000000;  /* Copy condition from insn */
 130        }
 131
 132        patch_text(addr, brkp);
 133}
 134
 135/*
 136 * The actual disarming is done here on each CPU and synchronized using
 137 * stop_machine. This synchronization is necessary on SMP to avoid removing
 138 * a probe between the moment the 'Undefined Instruction' exception is raised
 139 * and the moment the exception handler reads the faulting instruction from
 140 * memory. It is also needed to atomically set the two half-words of a 32-bit
 141 * Thumb breakpoint.
 142 */
 143int __kprobes __arch_disarm_kprobe(void *p)
 144{
 145        struct kprobe *kp = p;
 146        void *addr = (void *)((uintptr_t)kp->addr & ~1);
 147
 148        __patch_text(addr, kp->opcode);
 149
 150        return 0;
 151}
 152
 153void __kprobes arch_disarm_kprobe(struct kprobe *p)
 154{
 155        stop_machine(__arch_disarm_kprobe, p, cpu_online_mask);
 156}
 157
 158void __kprobes arch_remove_kprobe(struct kprobe *p)
 159{
 160        if (p->ainsn.insn) {
 161                free_insn_slot(p->ainsn.insn, 0);
 162                p->ainsn.insn = NULL;
 163        }
 164}
 165
 166static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 167{
 168        kcb->prev_kprobe.kp = kprobe_running();
 169        kcb->prev_kprobe.status = kcb->kprobe_status;
 170}
 171
 172static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 173{
 174        __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 175        kcb->kprobe_status = kcb->prev_kprobe.status;
 176}
 177
 178static void __kprobes set_current_kprobe(struct kprobe *p)
 179{
 180        __get_cpu_var(current_kprobe) = p;
 181}
 182
 183static void __kprobes
 184singlestep_skip(struct kprobe *p, struct pt_regs *regs)
 185{
 186#ifdef CONFIG_THUMB2_KERNEL
 187        regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
 188        if (is_wide_instruction(p->opcode))
 189                regs->ARM_pc += 4;
 190        else
 191                regs->ARM_pc += 2;
 192#else
 193        regs->ARM_pc += 4;
 194#endif
 195}
 196
 197static inline void __kprobes
 198singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 199{
 200        p->ainsn.insn_singlestep(p, regs);
 201}
 202
 203/*
 204 * Called with IRQs disabled. IRQs must remain disabled from that point
 205 * all the way until processing this kprobe is complete.  The current
 206 * kprobes implementation cannot process more than one nested level of
 207 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 208 * risk encountering a new kprobe in an interrupt handler.
 209 */
 210void __kprobes kprobe_handler(struct pt_regs *regs)
 211{
 212        struct kprobe *p, *cur;
 213        struct kprobe_ctlblk *kcb;
 214
 215        kcb = get_kprobe_ctlblk();
 216        cur = kprobe_running();
 217
 218#ifdef CONFIG_THUMB2_KERNEL
 219        /*
 220         * First look for a probe which was registered using an address with
 221         * bit 0 set, this is the usual situation for pointers to Thumb code.
 222         * If not found, fallback to looking for one with bit 0 clear.
 223         */
 224        p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
 225        if (!p)
 226                p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 227
 228#else /* ! CONFIG_THUMB2_KERNEL */
 229        p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
 230#endif
 231
 232        if (p) {
 233                if (cur) {
 234                        /* Kprobe is pending, so we're recursing. */
 235                        switch (kcb->kprobe_status) {
 236                        case KPROBE_HIT_ACTIVE:
 237                        case KPROBE_HIT_SSDONE:
 238                                /* A pre- or post-handler probe got us here. */
 239                                kprobes_inc_nmissed_count(p);
 240                                save_previous_kprobe(kcb);
 241                                set_current_kprobe(p);
 242                                kcb->kprobe_status = KPROBE_REENTER;
 243                                singlestep(p, regs, kcb);
 244                                restore_previous_kprobe(kcb);
 245                                break;
 246                        default:
 247                                /* impossible cases */
 248                                BUG();
 249                        }
 250                } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
 251                        /* Probe hit and conditional execution check ok. */
 252                        set_current_kprobe(p);
 253                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 254
 255                        /*
 256                         * If we have no pre-handler or it returned 0, we
 257                         * continue with normal processing.  If we have a
 258                         * pre-handler and it returned non-zero, it prepped
 259                         * for calling the break_handler below on re-entry,
 260                         * so get out doing nothing more here.
 261                         */
 262                        if (!p->pre_handler || !p->pre_handler(p, regs)) {
 263                                kcb->kprobe_status = KPROBE_HIT_SS;
 264                                singlestep(p, regs, kcb);
 265                                if (p->post_handler) {
 266                                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 267                                        p->post_handler(p, regs, 0);
 268                                }
 269                                reset_current_kprobe();
 270                        }
 271                } else {
 272                        /*
 273                         * Probe hit but conditional execution check failed,
 274                         * so just skip the instruction and continue as if
 275                         * nothing had happened.
 276                         */
 277                        singlestep_skip(p, regs);
 278                }
 279        } else if (cur) {
 280                /* We probably hit a jprobe.  Call its break handler. */
 281                if (cur->break_handler && cur->break_handler(cur, regs)) {
 282                        kcb->kprobe_status = KPROBE_HIT_SS;
 283                        singlestep(cur, regs, kcb);
 284                        if (cur->post_handler) {
 285                                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 286                                cur->post_handler(cur, regs, 0);
 287                        }
 288                }
 289                reset_current_kprobe();
 290        } else {
 291                /*
 292                 * The probe was removed and a race is in progress.
 293                 * There is nothing we can do about it.  Let's restart
 294                 * the instruction.  By the time we can restart, the
 295                 * real instruction will be there.
 296                 */
 297        }
 298}
 299
 300static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
 301{
 302        unsigned long flags;
 303        local_irq_save(flags);
 304        kprobe_handler(regs);
 305        local_irq_restore(flags);
 306        return 0;
 307}
 308
 309int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
 310{
 311        struct kprobe *cur = kprobe_running();
 312        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 313
 314        switch (kcb->kprobe_status) {
 315        case KPROBE_HIT_SS:
 316        case KPROBE_REENTER:
 317                /*
 318                 * We are here because the instruction being single
 319                 * stepped caused a page fault. We reset the current
 320                 * kprobe and the PC to point back to the probe address
 321                 * and allow the page fault handler to continue as a
 322                 * normal page fault.
 323                 */
 324                regs->ARM_pc = (long)cur->addr;
 325                if (kcb->kprobe_status == KPROBE_REENTER) {
 326                        restore_previous_kprobe(kcb);
 327                } else {
 328                        reset_current_kprobe();
 329                }
 330                break;
 331
 332        case KPROBE_HIT_ACTIVE:
 333        case KPROBE_HIT_SSDONE:
 334                /*
 335                 * We increment the nmissed count for accounting,
 336                 * we can also use npre/npostfault count for accounting
 337                 * these specific fault cases.
 338                 */
 339                kprobes_inc_nmissed_count(cur);
 340
 341                /*
 342                 * We come here because instructions in the pre/post
 343                 * handler caused the page_fault, this could happen
 344                 * if handler tries to access user space by
 345                 * copy_from_user(), get_user() etc. Let the
 346                 * user-specified handler try to fix it.
 347                 */
 348                if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
 349                        return 1;
 350                break;
 351
 352        default:
 353                break;
 354        }
 355
 356        return 0;
 357}
 358
 359int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 360                                       unsigned long val, void *data)
 361{
 362        /*
 363         * notify_die() is currently never called on ARM,
 364         * so this callback is currently empty.
 365         */
 366        return NOTIFY_DONE;
 367}
 368
 369/*
 370 * When a retprobed function returns, trampoline_handler() is called,
 371 * calling the kretprobe's handler. We construct a struct pt_regs to
 372 * give a view of registers r0-r11 to the user return-handler.  This is
 373 * not a complete pt_regs structure, but that should be plenty sufficient
 374 * for kretprobe handlers which should normally be interested in r0 only
 375 * anyway.
 376 */
 377void __naked __kprobes kretprobe_trampoline(void)
 378{
 379        __asm__ __volatile__ (
 380                "stmdb  sp!, {r0 - r11}         \n\t"
 381                "mov    r0, sp                  \n\t"
 382                "bl     trampoline_handler      \n\t"
 383                "mov    lr, r0                  \n\t"
 384                "ldmia  sp!, {r0 - r11}         \n\t"
 385#ifdef CONFIG_THUMB2_KERNEL
 386                "bx     lr                      \n\t"
 387#else
 388                "mov    pc, lr                  \n\t"
 389#endif
 390                : : : "memory");
 391}
 392
 393/* Called from kretprobe_trampoline */
 394static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 395{
 396        struct kretprobe_instance *ri = NULL;
 397        struct hlist_head *head, empty_rp;
 398        struct hlist_node *tmp;
 399        unsigned long flags, orig_ret_address = 0;
 400        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 401
 402        INIT_HLIST_HEAD(&empty_rp);
 403        kretprobe_hash_lock(current, &head, &flags);
 404
 405        /*
 406         * It is possible to have multiple instances associated with a given
 407         * task either because multiple functions in the call path have
 408         * a return probe installed on them, and/or more than one return
 409         * probe was registered for a target function.
 410         *
 411         * We can handle this because:
 412         *     - instances are always inserted at the head of the list
 413         *     - when multiple return probes are registered for the same
 414         *       function, the first instance's ret_addr will point to the
 415         *       real return address, and all the rest will point to
 416         *       kretprobe_trampoline
 417         */
 418        hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 419                if (ri->task != current)
 420                        /* another task is sharing our hash bucket */
 421                        continue;
 422
 423                if (ri->rp && ri->rp->handler) {
 424                        __get_cpu_var(current_kprobe) = &ri->rp->kp;
 425                        get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 426                        ri->rp->handler(ri, regs);
 427                        __get_cpu_var(current_kprobe) = NULL;
 428                }
 429
 430                orig_ret_address = (unsigned long)ri->ret_addr;
 431                recycle_rp_inst(ri, &empty_rp);
 432
 433                if (orig_ret_address != trampoline_address)
 434                        /*
 435                         * This is the real return address. Any other
 436                         * instances associated with this task are for
 437                         * other calls deeper on the call stack
 438                         */
 439                        break;
 440        }
 441
 442        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 443        kretprobe_hash_unlock(current, &flags);
 444
 445        hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 446                hlist_del(&ri->hlist);
 447                kfree(ri);
 448        }
 449
 450        return (void *)orig_ret_address;
 451}
 452
 453void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 454                                      struct pt_regs *regs)
 455{
 456        ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
 457
 458        /* Replace the return addr with trampoline addr. */
 459        regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
 460}
 461
 462int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 463{
 464        struct jprobe *jp = container_of(p, struct jprobe, kp);
 465        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 466        long sp_addr = regs->ARM_sp;
 467        long cpsr;
 468
 469        kcb->jprobe_saved_regs = *regs;
 470        memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 471        regs->ARM_pc = (long)jp->entry;
 472
 473        cpsr = regs->ARM_cpsr | PSR_I_BIT;
 474#ifdef CONFIG_THUMB2_KERNEL
 475        /* Set correct Thumb state in cpsr */
 476        if (regs->ARM_pc & 1)
 477                cpsr |= PSR_T_BIT;
 478        else
 479                cpsr &= ~PSR_T_BIT;
 480#endif
 481        regs->ARM_cpsr = cpsr;
 482
 483        preempt_disable();
 484        return 1;
 485}
 486
 487void __kprobes jprobe_return(void)
 488{
 489        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 490
 491        __asm__ __volatile__ (
 492                /*
 493                 * Setup an empty pt_regs. Fill SP and PC fields as
 494                 * they're needed by longjmp_break_handler.
 495                 *
 496                 * We allocate some slack between the original SP and start of
 497                 * our fabricated regs. To be precise we want to have worst case
 498                 * covered which is STMFD with all 16 regs so we allocate 2 *
 499                 * sizeof(struct_pt_regs)).
 500                 *
 501                 * This is to prevent any simulated instruction from writing
 502                 * over the regs when they are accessing the stack.
 503                 */
 504#ifdef CONFIG_THUMB2_KERNEL
 505                "sub    r0, %0, %1              \n\t"
 506                "mov    sp, r0                  \n\t"
 507#else
 508                "sub    sp, %0, %1              \n\t"
 509#endif
 510                "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
 511                "str    %0, [sp, %2]            \n\t"
 512                "str    r0, [sp, %3]            \n\t"
 513                "mov    r0, sp                  \n\t"
 514                "bl     kprobe_handler          \n\t"
 515
 516                /*
 517                 * Return to the context saved by setjmp_pre_handler
 518                 * and restored by longjmp_break_handler.
 519                 */
 520#ifdef CONFIG_THUMB2_KERNEL
 521                "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
 522                "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
 523                "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
 524                "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
 525                                                      /* rfe context */
 526                "ldmia  sp, {r0 - r12}          \n\t"
 527                "mov    sp, lr                  \n\t"
 528                "ldr    lr, [sp], #4            \n\t"
 529                "rfeia  sp!                     \n\t"
 530#else
 531                "ldr    r0, [sp, %4]            \n\t"
 532                "msr    cpsr_cxsf, r0           \n\t"
 533                "ldmia  sp, {r0 - pc}           \n\t"
 534#endif
 535                :
 536                : "r" (kcb->jprobe_saved_regs.ARM_sp),
 537                  "I" (sizeof(struct pt_regs) * 2),
 538                  "J" (offsetof(struct pt_regs, ARM_sp)),
 539                  "J" (offsetof(struct pt_regs, ARM_pc)),
 540                  "J" (offsetof(struct pt_regs, ARM_cpsr)),
 541                  "J" (offsetof(struct pt_regs, ARM_lr))
 542                : "memory", "cc");
 543}
 544
 545int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 546{
 547        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 548        long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
 549        long orig_sp = regs->ARM_sp;
 550        struct jprobe *jp = container_of(p, struct jprobe, kp);
 551
 552        if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
 553                if (orig_sp != stack_addr) {
 554                        struct pt_regs *saved_regs =
 555                                (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
 556                        printk("current sp %lx does not match saved sp %lx\n",
 557                               orig_sp, stack_addr);
 558                        printk("Saved registers for jprobe %p\n", jp);
 559                        show_regs(saved_regs);
 560                        printk("Current registers\n");
 561                        show_regs(regs);
 562                        BUG();
 563                }
 564                *regs = kcb->jprobe_saved_regs;
 565                memcpy((void *)stack_addr, kcb->jprobes_stack,
 566                       MIN_STACK_SIZE(stack_addr));
 567                preempt_enable_no_resched();
 568                return 1;
 569        }
 570        return 0;
 571}
 572
 573int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 574{
 575        return 0;
 576}
 577
 578#ifdef CONFIG_THUMB2_KERNEL
 579
 580static struct undef_hook kprobes_thumb16_break_hook = {
 581        .instr_mask     = 0xffff,
 582        .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
 583        .cpsr_mask      = MODE_MASK,
 584        .cpsr_val       = SVC_MODE,
 585        .fn             = kprobe_trap_handler,
 586};
 587
 588static struct undef_hook kprobes_thumb32_break_hook = {
 589        .instr_mask     = 0xffffffff,
 590        .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
 591        .cpsr_mask      = MODE_MASK,
 592        .cpsr_val       = SVC_MODE,
 593        .fn             = kprobe_trap_handler,
 594};
 595
 596#else  /* !CONFIG_THUMB2_KERNEL */
 597
 598static struct undef_hook kprobes_arm_break_hook = {
 599        .instr_mask     = 0x0fffffff,
 600        .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
 601        .cpsr_mask      = MODE_MASK,
 602        .cpsr_val       = SVC_MODE,
 603        .fn             = kprobe_trap_handler,
 604};
 605
 606#endif /* !CONFIG_THUMB2_KERNEL */
 607
 608int __init arch_init_kprobes()
 609{
 610        arm_kprobe_decode_init();
 611#ifdef CONFIG_THUMB2_KERNEL
 612        register_undef_hook(&kprobes_thumb16_break_hook);
 613        register_undef_hook(&kprobes_thumb32_break_hook);
 614#else
 615        register_undef_hook(&kprobes_arm_break_hook);
 616#endif
 617        return 0;
 618}
 619