linux/arch/arm/mm/dma-mapping.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/gfp.h>
  15#include <linux/errno.h>
  16#include <linux/list.h>
  17#include <linux/init.h>
  18#include <linux/device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/dma-contiguous.h>
  21#include <linux/highmem.h>
  22#include <linux/memblock.h>
  23#include <linux/slab.h>
  24#include <linux/iommu.h>
  25#include <linux/io.h>
  26#include <linux/vmalloc.h>
  27#include <linux/sizes.h>
  28
  29#include <asm/memory.h>
  30#include <asm/highmem.h>
  31#include <asm/cacheflush.h>
  32#include <asm/tlbflush.h>
  33#include <asm/mach/arch.h>
  34#include <asm/dma-iommu.h>
  35#include <asm/mach/map.h>
  36#include <asm/system_info.h>
  37#include <asm/dma-contiguous.h>
  38
  39#include "mm.h"
  40
  41/*
  42 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  43 * is either exclusively owned by the CPU (and therefore may be accessed
  44 * by it) or exclusively owned by the DMA device.  These helper functions
  45 * represent the transitions between these two ownership states.
  46 *
  47 * Note, however, that on later ARMs, this notion does not work due to
  48 * speculative prefetches.  We model our approach on the assumption that
  49 * the CPU does do speculative prefetches, which means we clean caches
  50 * before transfers and delay cache invalidation until transfer completion.
  51 *
  52 */
  53static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  54                size_t, enum dma_data_direction);
  55static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  56                size_t, enum dma_data_direction);
  57
  58/**
  59 * arm_dma_map_page - map a portion of a page for streaming DMA
  60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  61 * @page: page that buffer resides in
  62 * @offset: offset into page for start of buffer
  63 * @size: size of buffer to map
  64 * @dir: DMA transfer direction
  65 *
  66 * Ensure that any data held in the cache is appropriately discarded
  67 * or written back.
  68 *
  69 * The device owns this memory once this call has completed.  The CPU
  70 * can regain ownership by calling dma_unmap_page().
  71 */
  72static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  73             unsigned long offset, size_t size, enum dma_data_direction dir,
  74             struct dma_attrs *attrs)
  75{
  76        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  77                __dma_page_cpu_to_dev(page, offset, size, dir);
  78        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  79}
  80
  81static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  82             unsigned long offset, size_t size, enum dma_data_direction dir,
  83             struct dma_attrs *attrs)
  84{
  85        return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  86}
  87
  88/**
  89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  91 * @handle: DMA address of buffer
  92 * @size: size of buffer (same as passed to dma_map_page)
  93 * @dir: DMA transfer direction (same as passed to dma_map_page)
  94 *
  95 * Unmap a page streaming mode DMA translation.  The handle and size
  96 * must match what was provided in the previous dma_map_page() call.
  97 * All other usages are undefined.
  98 *
  99 * After this call, reads by the CPU to the buffer are guaranteed to see
 100 * whatever the device wrote there.
 101 */
 102static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 103                size_t size, enum dma_data_direction dir,
 104                struct dma_attrs *attrs)
 105{
 106        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 107                __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 108                                      handle & ~PAGE_MASK, size, dir);
 109}
 110
 111static void arm_dma_sync_single_for_cpu(struct device *dev,
 112                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 113{
 114        unsigned int offset = handle & (PAGE_SIZE - 1);
 115        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 116        __dma_page_dev_to_cpu(page, offset, size, dir);
 117}
 118
 119static void arm_dma_sync_single_for_device(struct device *dev,
 120                dma_addr_t handle, size_t size, enum dma_data_direction dir)
 121{
 122        unsigned int offset = handle & (PAGE_SIZE - 1);
 123        struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 124        __dma_page_cpu_to_dev(page, offset, size, dir);
 125}
 126
 127struct dma_map_ops arm_dma_ops = {
 128        .alloc                  = arm_dma_alloc,
 129        .free                   = arm_dma_free,
 130        .mmap                   = arm_dma_mmap,
 131        .get_sgtable            = arm_dma_get_sgtable,
 132        .map_page               = arm_dma_map_page,
 133        .unmap_page             = arm_dma_unmap_page,
 134        .map_sg                 = arm_dma_map_sg,
 135        .unmap_sg               = arm_dma_unmap_sg,
 136        .sync_single_for_cpu    = arm_dma_sync_single_for_cpu,
 137        .sync_single_for_device = arm_dma_sync_single_for_device,
 138        .sync_sg_for_cpu        = arm_dma_sync_sg_for_cpu,
 139        .sync_sg_for_device     = arm_dma_sync_sg_for_device,
 140        .set_dma_mask           = arm_dma_set_mask,
 141};
 142EXPORT_SYMBOL(arm_dma_ops);
 143
 144static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 145        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 146static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 147                                  dma_addr_t handle, struct dma_attrs *attrs);
 148
 149struct dma_map_ops arm_coherent_dma_ops = {
 150        .alloc                  = arm_coherent_dma_alloc,
 151        .free                   = arm_coherent_dma_free,
 152        .mmap                   = arm_dma_mmap,
 153        .get_sgtable            = arm_dma_get_sgtable,
 154        .map_page               = arm_coherent_dma_map_page,
 155        .map_sg                 = arm_dma_map_sg,
 156        .set_dma_mask           = arm_dma_set_mask,
 157};
 158EXPORT_SYMBOL(arm_coherent_dma_ops);
 159
 160static u64 get_coherent_dma_mask(struct device *dev)
 161{
 162        u64 mask = (u64)arm_dma_limit;
 163
 164        if (dev) {
 165                mask = dev->coherent_dma_mask;
 166
 167                /*
 168                 * Sanity check the DMA mask - it must be non-zero, and
 169                 * must be able to be satisfied by a DMA allocation.
 170                 */
 171                if (mask == 0) {
 172                        dev_warn(dev, "coherent DMA mask is unset\n");
 173                        return 0;
 174                }
 175
 176                if ((~mask) & (u64)arm_dma_limit) {
 177                        dev_warn(dev, "coherent DMA mask %#llx is smaller "
 178                                 "than system GFP_DMA mask %#llx\n",
 179                                 mask, (u64)arm_dma_limit);
 180                        return 0;
 181                }
 182        }
 183
 184        return mask;
 185}
 186
 187static void __dma_clear_buffer(struct page *page, size_t size)
 188{
 189        /*
 190         * Ensure that the allocated pages are zeroed, and that any data
 191         * lurking in the kernel direct-mapped region is invalidated.
 192         */
 193        if (PageHighMem(page)) {
 194                phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 195                phys_addr_t end = base + size;
 196                while (size > 0) {
 197                        void *ptr = kmap_atomic(page);
 198                        memset(ptr, 0, PAGE_SIZE);
 199                        dmac_flush_range(ptr, ptr + PAGE_SIZE);
 200                        kunmap_atomic(ptr);
 201                        page++;
 202                        size -= PAGE_SIZE;
 203                }
 204                outer_flush_range(base, end);
 205        } else {
 206                void *ptr = page_address(page);
 207                memset(ptr, 0, size);
 208                dmac_flush_range(ptr, ptr + size);
 209                outer_flush_range(__pa(ptr), __pa(ptr) + size);
 210        }
 211}
 212
 213/*
 214 * Allocate a DMA buffer for 'dev' of size 'size' using the
 215 * specified gfp mask.  Note that 'size' must be page aligned.
 216 */
 217static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 218{
 219        unsigned long order = get_order(size);
 220        struct page *page, *p, *e;
 221
 222        page = alloc_pages(gfp, order);
 223        if (!page)
 224                return NULL;
 225
 226        /*
 227         * Now split the huge page and free the excess pages
 228         */
 229        split_page(page, order);
 230        for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 231                __free_page(p);
 232
 233        __dma_clear_buffer(page, size);
 234
 235        return page;
 236}
 237
 238/*
 239 * Free a DMA buffer.  'size' must be page aligned.
 240 */
 241static void __dma_free_buffer(struct page *page, size_t size)
 242{
 243        struct page *e = page + (size >> PAGE_SHIFT);
 244
 245        while (page < e) {
 246                __free_page(page);
 247                page++;
 248        }
 249}
 250
 251#ifdef CONFIG_MMU
 252#ifdef CONFIG_HUGETLB_PAGE
 253#error ARM Coherent DMA allocator does not (yet) support huge TLB
 254#endif
 255
 256static void *__alloc_from_contiguous(struct device *dev, size_t size,
 257                                     pgprot_t prot, struct page **ret_page,
 258                                     const void *caller);
 259
 260static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 261                                 pgprot_t prot, struct page **ret_page,
 262                                 const void *caller);
 263
 264static void *
 265__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 266        const void *caller)
 267{
 268        struct vm_struct *area;
 269        unsigned long addr;
 270
 271        /*
 272         * DMA allocation can be mapped to user space, so lets
 273         * set VM_USERMAP flags too.
 274         */
 275        area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 276                                  caller);
 277        if (!area)
 278                return NULL;
 279        addr = (unsigned long)area->addr;
 280        area->phys_addr = __pfn_to_phys(page_to_pfn(page));
 281
 282        if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
 283                vunmap((void *)addr);
 284                return NULL;
 285        }
 286        return (void *)addr;
 287}
 288
 289static void __dma_free_remap(void *cpu_addr, size_t size)
 290{
 291        unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
 292        struct vm_struct *area = find_vm_area(cpu_addr);
 293        if (!area || (area->flags & flags) != flags) {
 294                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
 295                return;
 296        }
 297        unmap_kernel_range((unsigned long)cpu_addr, size);
 298        vunmap(cpu_addr);
 299}
 300
 301#define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
 302
 303struct dma_pool {
 304        size_t size;
 305        spinlock_t lock;
 306        unsigned long *bitmap;
 307        unsigned long nr_pages;
 308        void *vaddr;
 309        struct page **pages;
 310};
 311
 312static struct dma_pool atomic_pool = {
 313        .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
 314};
 315
 316static int __init early_coherent_pool(char *p)
 317{
 318        atomic_pool.size = memparse(p, &p);
 319        return 0;
 320}
 321early_param("coherent_pool", early_coherent_pool);
 322
 323void __init init_dma_coherent_pool_size(unsigned long size)
 324{
 325        /*
 326         * Catch any attempt to set the pool size too late.
 327         */
 328        BUG_ON(atomic_pool.vaddr);
 329
 330        /*
 331         * Set architecture specific coherent pool size only if
 332         * it has not been changed by kernel command line parameter.
 333         */
 334        if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 335                atomic_pool.size = size;
 336}
 337
 338/*
 339 * Initialise the coherent pool for atomic allocations.
 340 */
 341static int __init atomic_pool_init(void)
 342{
 343        struct dma_pool *pool = &atomic_pool;
 344        pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
 345        gfp_t gfp = GFP_KERNEL | GFP_DMA;
 346        unsigned long nr_pages = pool->size >> PAGE_SHIFT;
 347        unsigned long *bitmap;
 348        struct page *page;
 349        struct page **pages;
 350        void *ptr;
 351        int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
 352
 353        bitmap = kzalloc(bitmap_size, GFP_KERNEL);
 354        if (!bitmap)
 355                goto no_bitmap;
 356
 357        pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
 358        if (!pages)
 359                goto no_pages;
 360
 361        if (IS_ENABLED(CONFIG_DMA_CMA))
 362                ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
 363                                              atomic_pool_init);
 364        else
 365                ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
 366                                           atomic_pool_init);
 367        if (ptr) {
 368                int i;
 369
 370                for (i = 0; i < nr_pages; i++)
 371                        pages[i] = page + i;
 372
 373                spin_lock_init(&pool->lock);
 374                pool->vaddr = ptr;
 375                pool->pages = pages;
 376                pool->bitmap = bitmap;
 377                pool->nr_pages = nr_pages;
 378                pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
 379                       (unsigned)pool->size / 1024);
 380                return 0;
 381        }
 382
 383        kfree(pages);
 384no_pages:
 385        kfree(bitmap);
 386no_bitmap:
 387        pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
 388               (unsigned)pool->size / 1024);
 389        return -ENOMEM;
 390}
 391/*
 392 * CMA is activated by core_initcall, so we must be called after it.
 393 */
 394postcore_initcall(atomic_pool_init);
 395
 396struct dma_contig_early_reserve {
 397        phys_addr_t base;
 398        unsigned long size;
 399};
 400
 401static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 402
 403static int dma_mmu_remap_num __initdata;
 404
 405void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 406{
 407        dma_mmu_remap[dma_mmu_remap_num].base = base;
 408        dma_mmu_remap[dma_mmu_remap_num].size = size;
 409        dma_mmu_remap_num++;
 410}
 411
 412void __init dma_contiguous_remap(void)
 413{
 414        int i;
 415        for (i = 0; i < dma_mmu_remap_num; i++) {
 416                phys_addr_t start = dma_mmu_remap[i].base;
 417                phys_addr_t end = start + dma_mmu_remap[i].size;
 418                struct map_desc map;
 419                unsigned long addr;
 420
 421                if (end > arm_lowmem_limit)
 422                        end = arm_lowmem_limit;
 423                if (start >= end)
 424                        continue;
 425
 426                map.pfn = __phys_to_pfn(start);
 427                map.virtual = __phys_to_virt(start);
 428                map.length = end - start;
 429                map.type = MT_MEMORY_DMA_READY;
 430
 431                /*
 432                 * Clear previous low-memory mapping
 433                 */
 434                for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 435                     addr += PMD_SIZE)
 436                        pmd_clear(pmd_off_k(addr));
 437
 438                iotable_init(&map, 1);
 439        }
 440}
 441
 442static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 443                            void *data)
 444{
 445        struct page *page = virt_to_page(addr);
 446        pgprot_t prot = *(pgprot_t *)data;
 447
 448        set_pte_ext(pte, mk_pte(page, prot), 0);
 449        return 0;
 450}
 451
 452static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 453{
 454        unsigned long start = (unsigned long) page_address(page);
 455        unsigned end = start + size;
 456
 457        apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 458        dsb();
 459        flush_tlb_kernel_range(start, end);
 460}
 461
 462static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 463                                 pgprot_t prot, struct page **ret_page,
 464                                 const void *caller)
 465{
 466        struct page *page;
 467        void *ptr;
 468        page = __dma_alloc_buffer(dev, size, gfp);
 469        if (!page)
 470                return NULL;
 471
 472        ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 473        if (!ptr) {
 474                __dma_free_buffer(page, size);
 475                return NULL;
 476        }
 477
 478        *ret_page = page;
 479        return ptr;
 480}
 481
 482static void *__alloc_from_pool(size_t size, struct page **ret_page)
 483{
 484        struct dma_pool *pool = &atomic_pool;
 485        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 486        unsigned int pageno;
 487        unsigned long flags;
 488        void *ptr = NULL;
 489        unsigned long align_mask;
 490
 491        if (!pool->vaddr) {
 492                WARN(1, "coherent pool not initialised!\n");
 493                return NULL;
 494        }
 495
 496        /*
 497         * Align the region allocation - allocations from pool are rather
 498         * small, so align them to their order in pages, minimum is a page
 499         * size. This helps reduce fragmentation of the DMA space.
 500         */
 501        align_mask = (1 << get_order(size)) - 1;
 502
 503        spin_lock_irqsave(&pool->lock, flags);
 504        pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
 505                                            0, count, align_mask);
 506        if (pageno < pool->nr_pages) {
 507                bitmap_set(pool->bitmap, pageno, count);
 508                ptr = pool->vaddr + PAGE_SIZE * pageno;
 509                *ret_page = pool->pages[pageno];
 510        } else {
 511                pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
 512                            "Please increase it with coherent_pool= kernel parameter!\n",
 513                            (unsigned)pool->size / 1024);
 514        }
 515        spin_unlock_irqrestore(&pool->lock, flags);
 516
 517        return ptr;
 518}
 519
 520static bool __in_atomic_pool(void *start, size_t size)
 521{
 522        struct dma_pool *pool = &atomic_pool;
 523        void *end = start + size;
 524        void *pool_start = pool->vaddr;
 525        void *pool_end = pool->vaddr + pool->size;
 526
 527        if (start < pool_start || start >= pool_end)
 528                return false;
 529
 530        if (end <= pool_end)
 531                return true;
 532
 533        WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
 534             start, end - 1, pool_start, pool_end - 1);
 535
 536        return false;
 537}
 538
 539static int __free_from_pool(void *start, size_t size)
 540{
 541        struct dma_pool *pool = &atomic_pool;
 542        unsigned long pageno, count;
 543        unsigned long flags;
 544
 545        if (!__in_atomic_pool(start, size))
 546                return 0;
 547
 548        pageno = (start - pool->vaddr) >> PAGE_SHIFT;
 549        count = size >> PAGE_SHIFT;
 550
 551        spin_lock_irqsave(&pool->lock, flags);
 552        bitmap_clear(pool->bitmap, pageno, count);
 553        spin_unlock_irqrestore(&pool->lock, flags);
 554
 555        return 1;
 556}
 557
 558static void *__alloc_from_contiguous(struct device *dev, size_t size,
 559                                     pgprot_t prot, struct page **ret_page,
 560                                     const void *caller)
 561{
 562        unsigned long order = get_order(size);
 563        size_t count = size >> PAGE_SHIFT;
 564        struct page *page;
 565        void *ptr;
 566
 567        page = dma_alloc_from_contiguous(dev, count, order);
 568        if (!page)
 569                return NULL;
 570
 571        __dma_clear_buffer(page, size);
 572
 573        if (PageHighMem(page)) {
 574                ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 575                if (!ptr) {
 576                        dma_release_from_contiguous(dev, page, count);
 577                        return NULL;
 578                }
 579        } else {
 580                __dma_remap(page, size, prot);
 581                ptr = page_address(page);
 582        }
 583        *ret_page = page;
 584        return ptr;
 585}
 586
 587static void __free_from_contiguous(struct device *dev, struct page *page,
 588                                   void *cpu_addr, size_t size)
 589{
 590        if (PageHighMem(page))
 591                __dma_free_remap(cpu_addr, size);
 592        else
 593                __dma_remap(page, size, pgprot_kernel);
 594        dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 595}
 596
 597static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 598{
 599        prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 600                            pgprot_writecombine(prot) :
 601                            pgprot_dmacoherent(prot);
 602        return prot;
 603}
 604
 605#define nommu() 0
 606
 607#else   /* !CONFIG_MMU */
 608
 609#define nommu() 1
 610
 611#define __get_dma_pgprot(attrs, prot)   __pgprot(0)
 612#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c)      NULL
 613#define __alloc_from_pool(size, ret_page)                       NULL
 614#define __alloc_from_contiguous(dev, size, prot, ret, c)        NULL
 615#define __free_from_pool(cpu_addr, size)                        0
 616#define __free_from_contiguous(dev, page, cpu_addr, size)       do { } while (0)
 617#define __dma_free_remap(cpu_addr, size)                        do { } while (0)
 618
 619#endif  /* CONFIG_MMU */
 620
 621static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 622                                   struct page **ret_page)
 623{
 624        struct page *page;
 625        page = __dma_alloc_buffer(dev, size, gfp);
 626        if (!page)
 627                return NULL;
 628
 629        *ret_page = page;
 630        return page_address(page);
 631}
 632
 633
 634
 635static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 636                         gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
 637{
 638        u64 mask = get_coherent_dma_mask(dev);
 639        struct page *page = NULL;
 640        void *addr;
 641
 642#ifdef CONFIG_DMA_API_DEBUG
 643        u64 limit = (mask + 1) & ~mask;
 644        if (limit && size >= limit) {
 645                dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 646                        size, mask);
 647                return NULL;
 648        }
 649#endif
 650
 651        if (!mask)
 652                return NULL;
 653
 654        if (mask < 0xffffffffULL)
 655                gfp |= GFP_DMA;
 656
 657        /*
 658         * Following is a work-around (a.k.a. hack) to prevent pages
 659         * with __GFP_COMP being passed to split_page() which cannot
 660         * handle them.  The real problem is that this flag probably
 661         * should be 0 on ARM as it is not supported on this
 662         * platform; see CONFIG_HUGETLBFS.
 663         */
 664        gfp &= ~(__GFP_COMP);
 665
 666        *handle = DMA_ERROR_CODE;
 667        size = PAGE_ALIGN(size);
 668
 669        if (is_coherent || nommu())
 670                addr = __alloc_simple_buffer(dev, size, gfp, &page);
 671        else if (!(gfp & __GFP_WAIT))
 672                addr = __alloc_from_pool(size, &page);
 673        else if (!IS_ENABLED(CONFIG_DMA_CMA))
 674                addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
 675        else
 676                addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
 677
 678        if (addr)
 679                *handle = pfn_to_dma(dev, page_to_pfn(page));
 680
 681        return addr;
 682}
 683
 684/*
 685 * Allocate DMA-coherent memory space and return both the kernel remapped
 686 * virtual and bus address for that space.
 687 */
 688void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 689                    gfp_t gfp, struct dma_attrs *attrs)
 690{
 691        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 692        void *memory;
 693
 694        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 695                return memory;
 696
 697        return __dma_alloc(dev, size, handle, gfp, prot, false,
 698                           __builtin_return_address(0));
 699}
 700
 701static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 702        dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 703{
 704        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
 705        void *memory;
 706
 707        if (dma_alloc_from_coherent(dev, size, handle, &memory))
 708                return memory;
 709
 710        return __dma_alloc(dev, size, handle, gfp, prot, true,
 711                           __builtin_return_address(0));
 712}
 713
 714/*
 715 * Create userspace mapping for the DMA-coherent memory.
 716 */
 717int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 718                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 719                 struct dma_attrs *attrs)
 720{
 721        int ret = -ENXIO;
 722#ifdef CONFIG_MMU
 723        unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 724        unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 725        unsigned long pfn = dma_to_pfn(dev, dma_addr);
 726        unsigned long off = vma->vm_pgoff;
 727
 728        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 729
 730        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 731                return ret;
 732
 733        if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 734                ret = remap_pfn_range(vma, vma->vm_start,
 735                                      pfn + off,
 736                                      vma->vm_end - vma->vm_start,
 737                                      vma->vm_page_prot);
 738        }
 739#endif  /* CONFIG_MMU */
 740
 741        return ret;
 742}
 743
 744/*
 745 * Free a buffer as defined by the above mapping.
 746 */
 747static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 748                           dma_addr_t handle, struct dma_attrs *attrs,
 749                           bool is_coherent)
 750{
 751        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 752
 753        if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
 754                return;
 755
 756        size = PAGE_ALIGN(size);
 757
 758        if (is_coherent || nommu()) {
 759                __dma_free_buffer(page, size);
 760        } else if (__free_from_pool(cpu_addr, size)) {
 761                return;
 762        } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
 763                __dma_free_remap(cpu_addr, size);
 764                __dma_free_buffer(page, size);
 765        } else {
 766                /*
 767                 * Non-atomic allocations cannot be freed with IRQs disabled
 768                 */
 769                WARN_ON(irqs_disabled());
 770                __free_from_contiguous(dev, page, cpu_addr, size);
 771        }
 772}
 773
 774void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 775                  dma_addr_t handle, struct dma_attrs *attrs)
 776{
 777        __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 778}
 779
 780static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 781                                  dma_addr_t handle, struct dma_attrs *attrs)
 782{
 783        __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 784}
 785
 786int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 787                 void *cpu_addr, dma_addr_t handle, size_t size,
 788                 struct dma_attrs *attrs)
 789{
 790        struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 791        int ret;
 792
 793        ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 794        if (unlikely(ret))
 795                return ret;
 796
 797        sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 798        return 0;
 799}
 800
 801static void dma_cache_maint_page(struct page *page, unsigned long offset,
 802        size_t size, enum dma_data_direction dir,
 803        void (*op)(const void *, size_t, int))
 804{
 805        unsigned long pfn;
 806        size_t left = size;
 807
 808        pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 809        offset %= PAGE_SIZE;
 810
 811        /*
 812         * A single sg entry may refer to multiple physically contiguous
 813         * pages.  But we still need to process highmem pages individually.
 814         * If highmem is not configured then the bulk of this loop gets
 815         * optimized out.
 816         */
 817        do {
 818                size_t len = left;
 819                void *vaddr;
 820
 821                page = pfn_to_page(pfn);
 822
 823                if (PageHighMem(page)) {
 824                        if (len + offset > PAGE_SIZE)
 825                                len = PAGE_SIZE - offset;
 826
 827                        if (cache_is_vipt_nonaliasing()) {
 828                                vaddr = kmap_atomic(page);
 829                                op(vaddr + offset, len, dir);
 830                                kunmap_atomic(vaddr);
 831                        } else {
 832                                vaddr = kmap_high_get(page);
 833                                if (vaddr) {
 834                                        op(vaddr + offset, len, dir);
 835                                        kunmap_high(page);
 836                                }
 837                        }
 838                } else {
 839                        vaddr = page_address(page) + offset;
 840                        op(vaddr, len, dir);
 841                }
 842                offset = 0;
 843                pfn++;
 844                left -= len;
 845        } while (left);
 846}
 847
 848/*
 849 * Make an area consistent for devices.
 850 * Note: Drivers should NOT use this function directly, as it will break
 851 * platforms with CONFIG_DMABOUNCE.
 852 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 853 */
 854static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 855        size_t size, enum dma_data_direction dir)
 856{
 857        unsigned long paddr;
 858
 859        dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 860
 861        paddr = page_to_phys(page) + off;
 862        if (dir == DMA_FROM_DEVICE) {
 863                outer_inv_range(paddr, paddr + size);
 864        } else {
 865                outer_clean_range(paddr, paddr + size);
 866        }
 867        /* FIXME: non-speculating: flush on bidirectional mappings? */
 868}
 869
 870static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 871        size_t size, enum dma_data_direction dir)
 872{
 873        unsigned long paddr = page_to_phys(page) + off;
 874
 875        /* FIXME: non-speculating: not required */
 876        /* don't bother invalidating if DMA to device */
 877        if (dir != DMA_TO_DEVICE)
 878                outer_inv_range(paddr, paddr + size);
 879
 880        dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 881
 882        /*
 883         * Mark the D-cache clean for this page to avoid extra flushing.
 884         */
 885        if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
 886                set_bit(PG_dcache_clean, &page->flags);
 887}
 888
 889/**
 890 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 891 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 892 * @sg: list of buffers
 893 * @nents: number of buffers to map
 894 * @dir: DMA transfer direction
 895 *
 896 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 897 * This is the scatter-gather version of the dma_map_single interface.
 898 * Here the scatter gather list elements are each tagged with the
 899 * appropriate dma address and length.  They are obtained via
 900 * sg_dma_{address,length}.
 901 *
 902 * Device ownership issues as mentioned for dma_map_single are the same
 903 * here.
 904 */
 905int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 906                enum dma_data_direction dir, struct dma_attrs *attrs)
 907{
 908        struct dma_map_ops *ops = get_dma_ops(dev);
 909        struct scatterlist *s;
 910        int i, j;
 911
 912        for_each_sg(sg, s, nents, i) {
 913#ifdef CONFIG_NEED_SG_DMA_LENGTH
 914                s->dma_length = s->length;
 915#endif
 916                s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 917                                                s->length, dir, attrs);
 918                if (dma_mapping_error(dev, s->dma_address))
 919                        goto bad_mapping;
 920        }
 921        return nents;
 922
 923 bad_mapping:
 924        for_each_sg(sg, s, i, j)
 925                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 926        return 0;
 927}
 928
 929/**
 930 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
 931 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 932 * @sg: list of buffers
 933 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
 934 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 935 *
 936 * Unmap a set of streaming mode DMA translations.  Again, CPU access
 937 * rules concerning calls here are the same as for dma_unmap_single().
 938 */
 939void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 940                enum dma_data_direction dir, struct dma_attrs *attrs)
 941{
 942        struct dma_map_ops *ops = get_dma_ops(dev);
 943        struct scatterlist *s;
 944
 945        int i;
 946
 947        for_each_sg(sg, s, nents, i)
 948                ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 949}
 950
 951/**
 952 * arm_dma_sync_sg_for_cpu
 953 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 954 * @sg: list of buffers
 955 * @nents: number of buffers to map (returned from dma_map_sg)
 956 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 957 */
 958void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 959                        int nents, enum dma_data_direction dir)
 960{
 961        struct dma_map_ops *ops = get_dma_ops(dev);
 962        struct scatterlist *s;
 963        int i;
 964
 965        for_each_sg(sg, s, nents, i)
 966                ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
 967                                         dir);
 968}
 969
 970/**
 971 * arm_dma_sync_sg_for_device
 972 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 973 * @sg: list of buffers
 974 * @nents: number of buffers to map (returned from dma_map_sg)
 975 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
 976 */
 977void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 978                        int nents, enum dma_data_direction dir)
 979{
 980        struct dma_map_ops *ops = get_dma_ops(dev);
 981        struct scatterlist *s;
 982        int i;
 983
 984        for_each_sg(sg, s, nents, i)
 985                ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
 986                                            dir);
 987}
 988
 989/*
 990 * Return whether the given device DMA address mask can be supported
 991 * properly.  For example, if your device can only drive the low 24-bits
 992 * during bus mastering, then you would pass 0x00ffffff as the mask
 993 * to this function.
 994 */
 995int dma_supported(struct device *dev, u64 mask)
 996{
 997        if (mask < (u64)arm_dma_limit)
 998                return 0;
 999        return 1;
1000}
1001EXPORT_SYMBOL(dma_supported);
1002
1003int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1004{
1005        if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1006                return -EIO;
1007
1008        *dev->dma_mask = dma_mask;
1009
1010        return 0;
1011}
1012
1013#define PREALLOC_DMA_DEBUG_ENTRIES      4096
1014
1015static int __init dma_debug_do_init(void)
1016{
1017        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1018        return 0;
1019}
1020fs_initcall(dma_debug_do_init);
1021
1022#ifdef CONFIG_ARM_DMA_USE_IOMMU
1023
1024/* IOMMU */
1025
1026static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1027                                      size_t size)
1028{
1029        unsigned int order = get_order(size);
1030        unsigned int align = 0;
1031        unsigned int count, start;
1032        unsigned long flags;
1033
1034        if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1035                order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1036
1037        count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1038                 (1 << mapping->order) - 1) >> mapping->order;
1039
1040        if (order > mapping->order)
1041                align = (1 << (order - mapping->order)) - 1;
1042
1043        spin_lock_irqsave(&mapping->lock, flags);
1044        start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1045                                           count, align);
1046        if (start > mapping->bits) {
1047                spin_unlock_irqrestore(&mapping->lock, flags);
1048                return DMA_ERROR_CODE;
1049        }
1050
1051        bitmap_set(mapping->bitmap, start, count);
1052        spin_unlock_irqrestore(&mapping->lock, flags);
1053
1054        return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1055}
1056
1057static inline void __free_iova(struct dma_iommu_mapping *mapping,
1058                               dma_addr_t addr, size_t size)
1059{
1060        unsigned int start = (addr - mapping->base) >>
1061                             (mapping->order + PAGE_SHIFT);
1062        unsigned int count = ((size >> PAGE_SHIFT) +
1063                              (1 << mapping->order) - 1) >> mapping->order;
1064        unsigned long flags;
1065
1066        spin_lock_irqsave(&mapping->lock, flags);
1067        bitmap_clear(mapping->bitmap, start, count);
1068        spin_unlock_irqrestore(&mapping->lock, flags);
1069}
1070
1071static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1072                                          gfp_t gfp, struct dma_attrs *attrs)
1073{
1074        struct page **pages;
1075        int count = size >> PAGE_SHIFT;
1076        int array_size = count * sizeof(struct page *);
1077        int i = 0;
1078
1079        if (array_size <= PAGE_SIZE)
1080                pages = kzalloc(array_size, gfp);
1081        else
1082                pages = vzalloc(array_size);
1083        if (!pages)
1084                return NULL;
1085
1086        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1087        {
1088                unsigned long order = get_order(size);
1089                struct page *page;
1090
1091                page = dma_alloc_from_contiguous(dev, count, order);
1092                if (!page)
1093                        goto error;
1094
1095                __dma_clear_buffer(page, size);
1096
1097                for (i = 0; i < count; i++)
1098                        pages[i] = page + i;
1099
1100                return pages;
1101        }
1102
1103        /*
1104         * IOMMU can map any pages, so himem can also be used here
1105         */
1106        gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1107
1108        while (count) {
1109                int j, order = __fls(count);
1110
1111                pages[i] = alloc_pages(gfp, order);
1112                while (!pages[i] && order)
1113                        pages[i] = alloc_pages(gfp, --order);
1114                if (!pages[i])
1115                        goto error;
1116
1117                if (order) {
1118                        split_page(pages[i], order);
1119                        j = 1 << order;
1120                        while (--j)
1121                                pages[i + j] = pages[i] + j;
1122                }
1123
1124                __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1125                i += 1 << order;
1126                count -= 1 << order;
1127        }
1128
1129        return pages;
1130error:
1131        while (i--)
1132                if (pages[i])
1133                        __free_pages(pages[i], 0);
1134        if (array_size <= PAGE_SIZE)
1135                kfree(pages);
1136        else
1137                vfree(pages);
1138        return NULL;
1139}
1140
1141static int __iommu_free_buffer(struct device *dev, struct page **pages,
1142                               size_t size, struct dma_attrs *attrs)
1143{
1144        int count = size >> PAGE_SHIFT;
1145        int array_size = count * sizeof(struct page *);
1146        int i;
1147
1148        if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1149                dma_release_from_contiguous(dev, pages[0], count);
1150        } else {
1151                for (i = 0; i < count; i++)
1152                        if (pages[i])
1153                                __free_pages(pages[i], 0);
1154        }
1155
1156        if (array_size <= PAGE_SIZE)
1157                kfree(pages);
1158        else
1159                vfree(pages);
1160        return 0;
1161}
1162
1163/*
1164 * Create a CPU mapping for a specified pages
1165 */
1166static void *
1167__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1168                    const void *caller)
1169{
1170        unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171        struct vm_struct *area;
1172        unsigned long p;
1173
1174        area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1175                                  caller);
1176        if (!area)
1177                return NULL;
1178
1179        area->pages = pages;
1180        area->nr_pages = nr_pages;
1181        p = (unsigned long)area->addr;
1182
1183        for (i = 0; i < nr_pages; i++) {
1184                phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1185                if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1186                        goto err;
1187                p += PAGE_SIZE;
1188        }
1189        return area->addr;
1190err:
1191        unmap_kernel_range((unsigned long)area->addr, size);
1192        vunmap(area->addr);
1193        return NULL;
1194}
1195
1196/*
1197 * Create a mapping in device IO address space for specified pages
1198 */
1199static dma_addr_t
1200__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1201{
1202        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1203        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1204        dma_addr_t dma_addr, iova;
1205        int i, ret = DMA_ERROR_CODE;
1206
1207        dma_addr = __alloc_iova(mapping, size);
1208        if (dma_addr == DMA_ERROR_CODE)
1209                return dma_addr;
1210
1211        iova = dma_addr;
1212        for (i = 0; i < count; ) {
1213                unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1214                phys_addr_t phys = page_to_phys(pages[i]);
1215                unsigned int len, j;
1216
1217                for (j = i + 1; j < count; j++, next_pfn++)
1218                        if (page_to_pfn(pages[j]) != next_pfn)
1219                                break;
1220
1221                len = (j - i) << PAGE_SHIFT;
1222                ret = iommu_map(mapping->domain, iova, phys, len, 0);
1223                if (ret < 0)
1224                        goto fail;
1225                iova += len;
1226                i = j;
1227        }
1228        return dma_addr;
1229fail:
1230        iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1231        __free_iova(mapping, dma_addr, size);
1232        return DMA_ERROR_CODE;
1233}
1234
1235static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1236{
1237        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1238
1239        /*
1240         * add optional in-page offset from iova to size and align
1241         * result to page size
1242         */
1243        size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1244        iova &= PAGE_MASK;
1245
1246        iommu_unmap(mapping->domain, iova, size);
1247        __free_iova(mapping, iova, size);
1248        return 0;
1249}
1250
1251static struct page **__atomic_get_pages(void *addr)
1252{
1253        struct dma_pool *pool = &atomic_pool;
1254        struct page **pages = pool->pages;
1255        int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1256
1257        return pages + offs;
1258}
1259
1260static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1261{
1262        struct vm_struct *area;
1263
1264        if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1265                return __atomic_get_pages(cpu_addr);
1266
1267        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1268                return cpu_addr;
1269
1270        area = find_vm_area(cpu_addr);
1271        if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1272                return area->pages;
1273        return NULL;
1274}
1275
1276static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1277                                  dma_addr_t *handle)
1278{
1279        struct page *page;
1280        void *addr;
1281
1282        addr = __alloc_from_pool(size, &page);
1283        if (!addr)
1284                return NULL;
1285
1286        *handle = __iommu_create_mapping(dev, &page, size);
1287        if (*handle == DMA_ERROR_CODE)
1288                goto err_mapping;
1289
1290        return addr;
1291
1292err_mapping:
1293        __free_from_pool(addr, size);
1294        return NULL;
1295}
1296
1297static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1298                                dma_addr_t handle, size_t size)
1299{
1300        __iommu_remove_mapping(dev, handle, size);
1301        __free_from_pool(cpu_addr, size);
1302}
1303
1304static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1305            dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1306{
1307        pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1308        struct page **pages;
1309        void *addr = NULL;
1310
1311        *handle = DMA_ERROR_CODE;
1312        size = PAGE_ALIGN(size);
1313
1314        if (gfp & GFP_ATOMIC)
1315                return __iommu_alloc_atomic(dev, size, handle);
1316
1317        pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1318        if (!pages)
1319                return NULL;
1320
1321        *handle = __iommu_create_mapping(dev, pages, size);
1322        if (*handle == DMA_ERROR_CODE)
1323                goto err_buffer;
1324
1325        if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1326                return pages;
1327
1328        addr = __iommu_alloc_remap(pages, size, gfp, prot,
1329                                   __builtin_return_address(0));
1330        if (!addr)
1331                goto err_mapping;
1332
1333        return addr;
1334
1335err_mapping:
1336        __iommu_remove_mapping(dev, *handle, size);
1337err_buffer:
1338        __iommu_free_buffer(dev, pages, size, attrs);
1339        return NULL;
1340}
1341
1342static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1343                    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1344                    struct dma_attrs *attrs)
1345{
1346        unsigned long uaddr = vma->vm_start;
1347        unsigned long usize = vma->vm_end - vma->vm_start;
1348        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1349
1350        vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1351
1352        if (!pages)
1353                return -ENXIO;
1354
1355        do {
1356                int ret = vm_insert_page(vma, uaddr, *pages++);
1357                if (ret) {
1358                        pr_err("Remapping memory failed: %d\n", ret);
1359                        return ret;
1360                }
1361                uaddr += PAGE_SIZE;
1362                usize -= PAGE_SIZE;
1363        } while (usize > 0);
1364
1365        return 0;
1366}
1367
1368/*
1369 * free a page as defined by the above mapping.
1370 * Must not be called with IRQs disabled.
1371 */
1372void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1373                          dma_addr_t handle, struct dma_attrs *attrs)
1374{
1375        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1376        size = PAGE_ALIGN(size);
1377
1378        if (!pages) {
1379                WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1380                return;
1381        }
1382
1383        if (__in_atomic_pool(cpu_addr, size)) {
1384                __iommu_free_atomic(dev, cpu_addr, handle, size);
1385                return;
1386        }
1387
1388        if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1389                unmap_kernel_range((unsigned long)cpu_addr, size);
1390                vunmap(cpu_addr);
1391        }
1392
1393        __iommu_remove_mapping(dev, handle, size);
1394        __iommu_free_buffer(dev, pages, size, attrs);
1395}
1396
1397static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1398                                 void *cpu_addr, dma_addr_t dma_addr,
1399                                 size_t size, struct dma_attrs *attrs)
1400{
1401        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1402        struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1403
1404        if (!pages)
1405                return -ENXIO;
1406
1407        return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1408                                         GFP_KERNEL);
1409}
1410
1411/*
1412 * Map a part of the scatter-gather list into contiguous io address space
1413 */
1414static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1415                          size_t size, dma_addr_t *handle,
1416                          enum dma_data_direction dir, struct dma_attrs *attrs,
1417                          bool is_coherent)
1418{
1419        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1420        dma_addr_t iova, iova_base;
1421        int ret = 0;
1422        unsigned int count;
1423        struct scatterlist *s;
1424
1425        size = PAGE_ALIGN(size);
1426        *handle = DMA_ERROR_CODE;
1427
1428        iova_base = iova = __alloc_iova(mapping, size);
1429        if (iova == DMA_ERROR_CODE)
1430                return -ENOMEM;
1431
1432        for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1433                phys_addr_t phys = page_to_phys(sg_page(s));
1434                unsigned int len = PAGE_ALIGN(s->offset + s->length);
1435
1436                if (!is_coherent &&
1437                        !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1438                        __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1439
1440                ret = iommu_map(mapping->domain, iova, phys, len, 0);
1441                if (ret < 0)
1442                        goto fail;
1443                count += len >> PAGE_SHIFT;
1444                iova += len;
1445        }
1446        *handle = iova_base;
1447
1448        return 0;
1449fail:
1450        iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1451        __free_iova(mapping, iova_base, size);
1452        return ret;
1453}
1454
1455static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1456                     enum dma_data_direction dir, struct dma_attrs *attrs,
1457                     bool is_coherent)
1458{
1459        struct scatterlist *s = sg, *dma = sg, *start = sg;
1460        int i, count = 0;
1461        unsigned int offset = s->offset;
1462        unsigned int size = s->offset + s->length;
1463        unsigned int max = dma_get_max_seg_size(dev);
1464
1465        for (i = 1; i < nents; i++) {
1466                s = sg_next(s);
1467
1468                s->dma_address = DMA_ERROR_CODE;
1469                s->dma_length = 0;
1470
1471                if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1472                        if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1473                            dir, attrs, is_coherent) < 0)
1474                                goto bad_mapping;
1475
1476                        dma->dma_address += offset;
1477                        dma->dma_length = size - offset;
1478
1479                        size = offset = s->offset;
1480                        start = s;
1481                        dma = sg_next(dma);
1482                        count += 1;
1483                }
1484                size += s->length;
1485        }
1486        if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1487                is_coherent) < 0)
1488                goto bad_mapping;
1489
1490        dma->dma_address += offset;
1491        dma->dma_length = size - offset;
1492
1493        return count+1;
1494
1495bad_mapping:
1496        for_each_sg(sg, s, count, i)
1497                __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1498        return 0;
1499}
1500
1501/**
1502 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1503 * @dev: valid struct device pointer
1504 * @sg: list of buffers
1505 * @nents: number of buffers to map
1506 * @dir: DMA transfer direction
1507 *
1508 * Map a set of i/o coherent buffers described by scatterlist in streaming
1509 * mode for DMA. The scatter gather list elements are merged together (if
1510 * possible) and tagged with the appropriate dma address and length. They are
1511 * obtained via sg_dma_{address,length}.
1512 */
1513int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1514                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1515{
1516        return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1517}
1518
1519/**
1520 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1521 * @dev: valid struct device pointer
1522 * @sg: list of buffers
1523 * @nents: number of buffers to map
1524 * @dir: DMA transfer direction
1525 *
1526 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1527 * The scatter gather list elements are merged together (if possible) and
1528 * tagged with the appropriate dma address and length. They are obtained via
1529 * sg_dma_{address,length}.
1530 */
1531int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1532                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1533{
1534        return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1535}
1536
1537static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1538                int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1539                bool is_coherent)
1540{
1541        struct scatterlist *s;
1542        int i;
1543
1544        for_each_sg(sg, s, nents, i) {
1545                if (sg_dma_len(s))
1546                        __iommu_remove_mapping(dev, sg_dma_address(s),
1547                                               sg_dma_len(s));
1548                if (!is_coherent &&
1549                    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1550                        __dma_page_dev_to_cpu(sg_page(s), s->offset,
1551                                              s->length, dir);
1552        }
1553}
1554
1555/**
1556 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1557 * @dev: valid struct device pointer
1558 * @sg: list of buffers
1559 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1560 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1561 *
1562 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1563 * rules concerning calls here are the same as for dma_unmap_single().
1564 */
1565void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1566                int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1567{
1568        __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1569}
1570
1571/**
1572 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1573 * @dev: valid struct device pointer
1574 * @sg: list of buffers
1575 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1576 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1577 *
1578 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1579 * rules concerning calls here are the same as for dma_unmap_single().
1580 */
1581void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1582                        enum dma_data_direction dir, struct dma_attrs *attrs)
1583{
1584        __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1585}
1586
1587/**
1588 * arm_iommu_sync_sg_for_cpu
1589 * @dev: valid struct device pointer
1590 * @sg: list of buffers
1591 * @nents: number of buffers to map (returned from dma_map_sg)
1592 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1593 */
1594void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1595                        int nents, enum dma_data_direction dir)
1596{
1597        struct scatterlist *s;
1598        int i;
1599
1600        for_each_sg(sg, s, nents, i)
1601                __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1602
1603}
1604
1605/**
1606 * arm_iommu_sync_sg_for_device
1607 * @dev: valid struct device pointer
1608 * @sg: list of buffers
1609 * @nents: number of buffers to map (returned from dma_map_sg)
1610 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1611 */
1612void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1613                        int nents, enum dma_data_direction dir)
1614{
1615        struct scatterlist *s;
1616        int i;
1617
1618        for_each_sg(sg, s, nents, i)
1619                __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1620}
1621
1622
1623/**
1624 * arm_coherent_iommu_map_page
1625 * @dev: valid struct device pointer
1626 * @page: page that buffer resides in
1627 * @offset: offset into page for start of buffer
1628 * @size: size of buffer to map
1629 * @dir: DMA transfer direction
1630 *
1631 * Coherent IOMMU aware version of arm_dma_map_page()
1632 */
1633static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1634             unsigned long offset, size_t size, enum dma_data_direction dir,
1635             struct dma_attrs *attrs)
1636{
1637        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1638        dma_addr_t dma_addr;
1639        int ret, len = PAGE_ALIGN(size + offset);
1640
1641        dma_addr = __alloc_iova(mapping, len);
1642        if (dma_addr == DMA_ERROR_CODE)
1643                return dma_addr;
1644
1645        ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1646        if (ret < 0)
1647                goto fail;
1648
1649        return dma_addr + offset;
1650fail:
1651        __free_iova(mapping, dma_addr, len);
1652        return DMA_ERROR_CODE;
1653}
1654
1655/**
1656 * arm_iommu_map_page
1657 * @dev: valid struct device pointer
1658 * @page: page that buffer resides in
1659 * @offset: offset into page for start of buffer
1660 * @size: size of buffer to map
1661 * @dir: DMA transfer direction
1662 *
1663 * IOMMU aware version of arm_dma_map_page()
1664 */
1665static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1666             unsigned long offset, size_t size, enum dma_data_direction dir,
1667             struct dma_attrs *attrs)
1668{
1669        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1670                __dma_page_cpu_to_dev(page, offset, size, dir);
1671
1672        return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1673}
1674
1675/**
1676 * arm_coherent_iommu_unmap_page
1677 * @dev: valid struct device pointer
1678 * @handle: DMA address of buffer
1679 * @size: size of buffer (same as passed to dma_map_page)
1680 * @dir: DMA transfer direction (same as passed to dma_map_page)
1681 *
1682 * Coherent IOMMU aware version of arm_dma_unmap_page()
1683 */
1684static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1685                size_t size, enum dma_data_direction dir,
1686                struct dma_attrs *attrs)
1687{
1688        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1689        dma_addr_t iova = handle & PAGE_MASK;
1690        int offset = handle & ~PAGE_MASK;
1691        int len = PAGE_ALIGN(size + offset);
1692
1693        if (!iova)
1694                return;
1695
1696        iommu_unmap(mapping->domain, iova, len);
1697        __free_iova(mapping, iova, len);
1698}
1699
1700/**
1701 * arm_iommu_unmap_page
1702 * @dev: valid struct device pointer
1703 * @handle: DMA address of buffer
1704 * @size: size of buffer (same as passed to dma_map_page)
1705 * @dir: DMA transfer direction (same as passed to dma_map_page)
1706 *
1707 * IOMMU aware version of arm_dma_unmap_page()
1708 */
1709static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1710                size_t size, enum dma_data_direction dir,
1711                struct dma_attrs *attrs)
1712{
1713        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1714        dma_addr_t iova = handle & PAGE_MASK;
1715        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1716        int offset = handle & ~PAGE_MASK;
1717        int len = PAGE_ALIGN(size + offset);
1718
1719        if (!iova)
1720                return;
1721
1722        if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1723                __dma_page_dev_to_cpu(page, offset, size, dir);
1724
1725        iommu_unmap(mapping->domain, iova, len);
1726        __free_iova(mapping, iova, len);
1727}
1728
1729static void arm_iommu_sync_single_for_cpu(struct device *dev,
1730                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1731{
1732        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1733        dma_addr_t iova = handle & PAGE_MASK;
1734        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1735        unsigned int offset = handle & ~PAGE_MASK;
1736
1737        if (!iova)
1738                return;
1739
1740        __dma_page_dev_to_cpu(page, offset, size, dir);
1741}
1742
1743static void arm_iommu_sync_single_for_device(struct device *dev,
1744                dma_addr_t handle, size_t size, enum dma_data_direction dir)
1745{
1746        struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1747        dma_addr_t iova = handle & PAGE_MASK;
1748        struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1749        unsigned int offset = handle & ~PAGE_MASK;
1750
1751        if (!iova)
1752                return;
1753
1754        __dma_page_cpu_to_dev(page, offset, size, dir);
1755}
1756
1757struct dma_map_ops iommu_ops = {
1758        .alloc          = arm_iommu_alloc_attrs,
1759        .free           = arm_iommu_free_attrs,
1760        .mmap           = arm_iommu_mmap_attrs,
1761        .get_sgtable    = arm_iommu_get_sgtable,
1762
1763        .map_page               = arm_iommu_map_page,
1764        .unmap_page             = arm_iommu_unmap_page,
1765        .sync_single_for_cpu    = arm_iommu_sync_single_for_cpu,
1766        .sync_single_for_device = arm_iommu_sync_single_for_device,
1767
1768        .map_sg                 = arm_iommu_map_sg,
1769        .unmap_sg               = arm_iommu_unmap_sg,
1770        .sync_sg_for_cpu        = arm_iommu_sync_sg_for_cpu,
1771        .sync_sg_for_device     = arm_iommu_sync_sg_for_device,
1772
1773        .set_dma_mask           = arm_dma_set_mask,
1774};
1775
1776struct dma_map_ops iommu_coherent_ops = {
1777        .alloc          = arm_iommu_alloc_attrs,
1778        .free           = arm_iommu_free_attrs,
1779        .mmap           = arm_iommu_mmap_attrs,
1780        .get_sgtable    = arm_iommu_get_sgtable,
1781
1782        .map_page       = arm_coherent_iommu_map_page,
1783        .unmap_page     = arm_coherent_iommu_unmap_page,
1784
1785        .map_sg         = arm_coherent_iommu_map_sg,
1786        .unmap_sg       = arm_coherent_iommu_unmap_sg,
1787
1788        .set_dma_mask   = arm_dma_set_mask,
1789};
1790
1791/**
1792 * arm_iommu_create_mapping
1793 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1794 * @base: start address of the valid IO address space
1795 * @size: size of the valid IO address space
1796 * @order: accuracy of the IO addresses allocations
1797 *
1798 * Creates a mapping structure which holds information about used/unused
1799 * IO address ranges, which is required to perform memory allocation and
1800 * mapping with IOMMU aware functions.
1801 *
1802 * The client device need to be attached to the mapping with
1803 * arm_iommu_attach_device function.
1804 */
1805struct dma_iommu_mapping *
1806arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1807                         int order)
1808{
1809        unsigned int count = size >> (PAGE_SHIFT + order);
1810        unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1811        struct dma_iommu_mapping *mapping;
1812        int err = -ENOMEM;
1813
1814        if (!count)
1815                return ERR_PTR(-EINVAL);
1816
1817        mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1818        if (!mapping)
1819                goto err;
1820
1821        mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1822        if (!mapping->bitmap)
1823                goto err2;
1824
1825        mapping->base = base;
1826        mapping->bits = BITS_PER_BYTE * bitmap_size;
1827        mapping->order = order;
1828        spin_lock_init(&mapping->lock);
1829
1830        mapping->domain = iommu_domain_alloc(bus);
1831        if (!mapping->domain)
1832                goto err3;
1833
1834        kref_init(&mapping->kref);
1835        return mapping;
1836err3:
1837        kfree(mapping->bitmap);
1838err2:
1839        kfree(mapping);
1840err:
1841        return ERR_PTR(err);
1842}
1843EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1844
1845static void release_iommu_mapping(struct kref *kref)
1846{
1847        struct dma_iommu_mapping *mapping =
1848                container_of(kref, struct dma_iommu_mapping, kref);
1849
1850        iommu_domain_free(mapping->domain);
1851        kfree(mapping->bitmap);
1852        kfree(mapping);
1853}
1854
1855void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1856{
1857        if (mapping)
1858                kref_put(&mapping->kref, release_iommu_mapping);
1859}
1860EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1861
1862/**
1863 * arm_iommu_attach_device
1864 * @dev: valid struct device pointer
1865 * @mapping: io address space mapping structure (returned from
1866 *      arm_iommu_create_mapping)
1867 *
1868 * Attaches specified io address space mapping to the provided device,
1869 * this replaces the dma operations (dma_map_ops pointer) with the
1870 * IOMMU aware version. More than one client might be attached to
1871 * the same io address space mapping.
1872 */
1873int arm_iommu_attach_device(struct device *dev,
1874                            struct dma_iommu_mapping *mapping)
1875{
1876        int err;
1877
1878        err = iommu_attach_device(mapping->domain, dev);
1879        if (err)
1880                return err;
1881
1882        kref_get(&mapping->kref);
1883        dev->archdata.mapping = mapping;
1884        set_dma_ops(dev, &iommu_ops);
1885
1886        pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1887        return 0;
1888}
1889EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1890
1891/**
1892 * arm_iommu_detach_device
1893 * @dev: valid struct device pointer
1894 *
1895 * Detaches the provided device from a previously attached map.
1896 * This voids the dma operations (dma_map_ops pointer)
1897 */
1898void arm_iommu_detach_device(struct device *dev)
1899{
1900        struct dma_iommu_mapping *mapping;
1901
1902        mapping = to_dma_iommu_mapping(dev);
1903        if (!mapping) {
1904                dev_warn(dev, "Not attached\n");
1905                return;
1906        }
1907
1908        iommu_detach_device(mapping->domain, dev);
1909        kref_put(&mapping->kref, release_iommu_mapping);
1910        mapping = NULL;
1911        set_dma_ops(dev, NULL);
1912
1913        pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1914}
1915EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1916
1917#endif
1918