linux/arch/cris/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * CRIS pgtable.h - macros and functions to manipulate page tables.
   3 */
   4
   5#ifndef _CRIS_PGTABLE_H
   6#define _CRIS_PGTABLE_H
   7
   8#include <asm/page.h>
   9#include <asm-generic/pgtable-nopmd.h>
  10
  11#ifndef __ASSEMBLY__
  12#include <linux/sched.h>
  13#include <asm/mmu.h>
  14#endif
  15#include <arch/pgtable.h>
  16
  17/*
  18 * The Linux memory management assumes a three-level page table setup. On
  19 * CRIS, we use that, but "fold" the mid level into the top-level page
  20 * table. Since the MMU TLB is software loaded through an interrupt, it
  21 * supports any page table structure, so we could have used a three-level
  22 * setup, but for the amounts of memory we normally use, a two-level is
  23 * probably more efficient.
  24 *
  25 * This file contains the functions and defines necessary to modify and use
  26 * the CRIS page table tree.
  27 */
  28#ifndef __ASSEMBLY__
  29extern void paging_init(void);
  30#endif
  31
  32/* Certain architectures need to do special things when pte's
  33 * within a page table are directly modified.  Thus, the following
  34 * hook is made available.
  35 */
  36#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
  37#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
  38
  39/*
  40 * (pmds are folded into pgds so this doesn't get actually called,
  41 * but the define is needed for a generic inline function.)
  42 */
  43#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
  44#define set_pgu(pudptr, pudval) (*(pudptr) = pudval)
  45
  46/* PGDIR_SHIFT determines the size of the area a second-level page table can
  47 * map. It is equal to the page size times the number of PTE's that fit in
  48 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
  49 */
  50
  51#define PGDIR_SHIFT     (PAGE_SHIFT + (PAGE_SHIFT-2))
  52#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  53#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  54
  55/*
  56 * entries per page directory level: we use a two-level, so
  57 * we don't really have any PMD directory physically.
  58 * pointers are 4 bytes so we can use the page size and 
  59 * divide it by 4 (shift by 2).
  60 */
  61#define PTRS_PER_PTE    (1UL << (PAGE_SHIFT-2))
  62#define PTRS_PER_PGD    (1UL << (PAGE_SHIFT-2))
  63
  64/* calculate how many PGD entries a user-level program can use
  65 * the first mappable virtual address is 0
  66 * (TASK_SIZE is the maximum virtual address space)
  67 */
  68
  69#define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
  70#define FIRST_USER_ADDRESS      0
  71
  72/* zero page used for uninitialized stuff */
  73#ifndef __ASSEMBLY__
  74extern unsigned long empty_zero_page;
  75#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  76#endif
  77
  78/* number of bits that fit into a memory pointer */
  79#define BITS_PER_PTR                    (8*sizeof(unsigned long))
  80
  81/* to align the pointer to a pointer address */
  82#define PTR_MASK                        (~(sizeof(void*)-1))
  83
  84/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
  85/* 64-bit machines, beware!  SRB. */
  86#define SIZEOF_PTR_LOG2                 2
  87
  88/* to find an entry in a page-table */
  89#define PAGE_PTR(address) \
  90((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
  91
  92/* to set the page-dir */
  93#define SET_PAGE_DIR(tsk,pgdir)
  94
  95#define pte_none(x)     (!pte_val(x))
  96#define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
  97#define pte_clear(mm,addr,xp)   do { pte_val(*(xp)) = 0; } while (0)
  98
  99#define pmd_none(x)     (!pmd_val(x))
 100/* by removing the _PAGE_KERNEL bit from the comparison, the same pmd_bad
 101 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
 102 */
 103#define pmd_bad(x)      ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
 104#define pmd_present(x)  (pmd_val(x) & _PAGE_PRESENT)
 105#define pmd_clear(xp)   do { pmd_val(*(xp)) = 0; } while (0)
 106
 107#ifndef __ASSEMBLY__
 108
 109/*
 110 * The following only work if pte_present() is true.
 111 * Undefined behaviour if not..
 112 */
 113
 114static inline int pte_write(pte_t pte)          { return pte_val(pte) & _PAGE_WRITE; }
 115static inline int pte_dirty(pte_t pte)          { return pte_val(pte) & _PAGE_MODIFIED; }
 116static inline int pte_young(pte_t pte)          { return pte_val(pte) & _PAGE_ACCESSED; }
 117static inline int pte_file(pte_t pte)           { return pte_val(pte) & _PAGE_FILE; }
 118static inline int pte_special(pte_t pte)        { return 0; }
 119
 120static inline pte_t pte_wrprotect(pte_t pte)
 121{
 122        pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
 123        return pte;
 124}
 125
 126static inline pte_t pte_mkclean(pte_t pte)
 127{
 128        pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); 
 129        return pte; 
 130}
 131
 132static inline pte_t pte_mkold(pte_t pte)
 133{
 134        pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
 135        return pte;
 136}
 137
 138static inline pte_t pte_mkwrite(pte_t pte)
 139{
 140        pte_val(pte) |= _PAGE_WRITE;
 141        if (pte_val(pte) & _PAGE_MODIFIED)
 142                pte_val(pte) |= _PAGE_SILENT_WRITE;
 143        return pte;
 144}
 145
 146static inline pte_t pte_mkdirty(pte_t pte)
 147{
 148        pte_val(pte) |= _PAGE_MODIFIED;
 149        if (pte_val(pte) & _PAGE_WRITE)
 150                pte_val(pte) |= _PAGE_SILENT_WRITE;
 151        return pte;
 152}
 153
 154static inline pte_t pte_mkyoung(pte_t pte)
 155{
 156        pte_val(pte) |= _PAGE_ACCESSED;
 157        if (pte_val(pte) & _PAGE_READ)
 158        {
 159                pte_val(pte) |= _PAGE_SILENT_READ;
 160                if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) ==
 161                    (_PAGE_WRITE | _PAGE_MODIFIED))
 162                        pte_val(pte) |= _PAGE_SILENT_WRITE;
 163        }
 164        return pte;
 165}
 166static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
 167
 168/*
 169 * Conversion functions: convert a page and protection to a page entry,
 170 * and a page entry and page directory to the page they refer to.
 171 */
 172
 173/* What actually goes as arguments to the various functions is less than
 174 * obvious, but a rule of thumb is that struct page's goes as struct page *,
 175 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
 176 * addresses (the 0xc0xxxxxx's) goes as void *'s.
 177 */
 178
 179static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
 180{
 181        pte_t pte;
 182        /* the PTE needs a physical address */
 183        pte_val(pte) = __pa(page) | pgprot_val(pgprot);
 184        return pte;
 185}
 186
 187#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
 188
 189#define mk_pte_phys(physpage, pgprot) \
 190({                                                                      \
 191        pte_t __pte;                                                    \
 192                                                                        \
 193        pte_val(__pte) = (physpage) + pgprot_val(pgprot);               \
 194        __pte;                                                          \
 195})
 196
 197static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 198{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
 199
 200#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE))
 201
 202
 203/* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
 204 * __pte_page(pte_val) refers to the "virtual" DRAM interval
 205 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
 206 */
 207
 208static inline unsigned long __pte_page(pte_t pte)
 209{
 210        /* the PTE contains a physical address */
 211        return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
 212}
 213
 214#define pte_pagenr(pte)         ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
 215
 216/* permanent address of a page */
 217
 218#define __page_address(page)    (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
 219#define pte_page(pte)           (mem_map+pte_pagenr(pte))
 220
 221/* only the pte's themselves need to point to physical DRAM (see above)
 222 * the pagetable links are purely handled within the kernel SW and thus
 223 * don't need the __pa and __va transformations.
 224 */
 225
 226static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
 227{ pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }
 228
 229#define pmd_page(pmd)           (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
 230#define pmd_page_vaddr(pmd)     ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
 231
 232/* to find an entry in a page-table-directory. */
 233#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 234
 235/* to find an entry in a page-table-directory */
 236static inline pgd_t * pgd_offset(const struct mm_struct *mm, unsigned long address)
 237{
 238        return mm->pgd + pgd_index(address);
 239}
 240
 241/* to find an entry in a kernel page-table-directory */
 242#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 243
 244/* Find an entry in the third-level page table.. */
 245#define __pte_offset(address) \
 246        (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 247#define pte_offset_kernel(dir, address) \
 248        ((pte_t *) pmd_page_vaddr(*(dir)) +  __pte_offset(address))
 249#define pte_offset_map(dir, address) \
 250        ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
 251
 252#define pte_unmap(pte) do { } while (0)
 253#define pte_pfn(x)              ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT)
 254#define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 255
 256#define pte_ERROR(e) \
 257        printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
 258#define pgd_ERROR(e) \
 259        printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
 260
 261#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
 262                remap_pfn_range(vma, vaddr, pfn, size, prot)
 263
 264
 265extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
 266
 267/*
 268 * CRIS doesn't have any external MMU info: the kernel page
 269 * tables contain all the necessary information.
 270 * 
 271 * Actually I am not sure on what this could be used for.
 272 */
 273static inline void update_mmu_cache(struct vm_area_struct * vma,
 274        unsigned long address, pte_t *ptep)
 275{
 276}
 277
 278/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
 279/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
 280
 281#define __swp_type(x)                   (((x).val >> 5) & 0x7f)
 282#define __swp_offset(x)                 ((x).val >> 12)
 283#define __swp_entry(type, offset)       ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
 284#define __pte_to_swp_entry(pte)         ((swp_entry_t) { pte_val(pte) })
 285#define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
 286
 287#define kern_addr_valid(addr)   (1)
 288
 289#include <asm-generic/pgtable.h>
 290
 291/*
 292 * No page table caches to initialise
 293 */
 294#define pgtable_cache_init()   do { } while (0)
 295
 296#define pte_to_pgoff(x) (pte_val(x) >> 6)
 297#define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE)
 298
 299typedef pte_t *pte_addr_t;
 300
 301#endif /* __ASSEMBLY__ */
 302#endif /* _CRIS_PGTABLE_H */
 303