linux/arch/ia64/kernel/smpboot.c
<<
>>
Prefs
   1/*
   2 * SMP boot-related support
   3 *
   4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 * Copyright (C) 2001, 2004-2005 Intel Corp
   7 *      Rohit Seth <rohit.seth@intel.com>
   8 *      Suresh Siddha <suresh.b.siddha@intel.com>
   9 *      Gordon Jin <gordon.jin@intel.com>
  10 *      Ashok Raj  <ashok.raj@intel.com>
  11 *
  12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>   Moved SMP booting functions from smp.c to here.
  13 * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
  14 * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
  15 *                                              smp_boot_cpus()/smp_commence() is replaced by
  16 *                                              smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
  17 * 04/06/21 Ashok Raj           <ashok.raj@intel.com> Added CPU Hotplug Support
  18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
  19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
  20 *                                              Add multi-threading and multi-core detection
  21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
  22 *                                              Setup cpu_sibling_map and cpu_core_map
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/acpi.h>
  27#include <linux/bootmem.h>
  28#include <linux/cpu.h>
  29#include <linux/delay.h>
  30#include <linux/init.h>
  31#include <linux/interrupt.h>
  32#include <linux/irq.h>
  33#include <linux/kernel.h>
  34#include <linux/kernel_stat.h>
  35#include <linux/mm.h>
  36#include <linux/notifier.h>
  37#include <linux/smp.h>
  38#include <linux/spinlock.h>
  39#include <linux/efi.h>
  40#include <linux/percpu.h>
  41#include <linux/bitops.h>
  42
  43#include <linux/atomic.h>
  44#include <asm/cache.h>
  45#include <asm/current.h>
  46#include <asm/delay.h>
  47#include <asm/io.h>
  48#include <asm/irq.h>
  49#include <asm/machvec.h>
  50#include <asm/mca.h>
  51#include <asm/page.h>
  52#include <asm/paravirt.h>
  53#include <asm/pgalloc.h>
  54#include <asm/pgtable.h>
  55#include <asm/processor.h>
  56#include <asm/ptrace.h>
  57#include <asm/sal.h>
  58#include <asm/tlbflush.h>
  59#include <asm/unistd.h>
  60#include <asm/sn/arch.h>
  61
  62#define SMP_DEBUG 0
  63
  64#if SMP_DEBUG
  65#define Dprintk(x...)  printk(x)
  66#else
  67#define Dprintk(x...)
  68#endif
  69
  70#ifdef CONFIG_HOTPLUG_CPU
  71#ifdef CONFIG_PERMIT_BSP_REMOVE
  72#define bsp_remove_ok   1
  73#else
  74#define bsp_remove_ok   0
  75#endif
  76
  77/*
  78 * Global array allocated for NR_CPUS at boot time
  79 */
  80struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
  81
  82/*
  83 * start_ap in head.S uses this to store current booting cpu
  84 * info.
  85 */
  86struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
  87
  88#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
  89
  90#else
  91#define set_brendez_area(x)
  92#endif
  93
  94
  95/*
  96 * ITC synchronization related stuff:
  97 */
  98#define MASTER  (0)
  99#define SLAVE   (SMP_CACHE_BYTES/8)
 100
 101#define NUM_ROUNDS      64      /* magic value */
 102#define NUM_ITERS       5       /* likewise */
 103
 104static DEFINE_SPINLOCK(itc_sync_lock);
 105static volatile unsigned long go[SLAVE + 1];
 106
 107#define DEBUG_ITC_SYNC  0
 108
 109extern void start_ap (void);
 110extern unsigned long ia64_iobase;
 111
 112struct task_struct *task_for_booting_cpu;
 113
 114/*
 115 * State for each CPU
 116 */
 117DEFINE_PER_CPU(int, cpu_state);
 118
 119cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
 120EXPORT_SYMBOL(cpu_core_map);
 121DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
 122EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
 123
 124int smp_num_siblings = 1;
 125
 126/* which logical CPU number maps to which CPU (physical APIC ID) */
 127volatile int ia64_cpu_to_sapicid[NR_CPUS];
 128EXPORT_SYMBOL(ia64_cpu_to_sapicid);
 129
 130static volatile cpumask_t cpu_callin_map;
 131
 132struct smp_boot_data smp_boot_data __initdata;
 133
 134unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
 135
 136char __initdata no_int_routing;
 137
 138unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
 139
 140#ifdef CONFIG_FORCE_CPEI_RETARGET
 141#define CPEI_OVERRIDE_DEFAULT   (1)
 142#else
 143#define CPEI_OVERRIDE_DEFAULT   (0)
 144#endif
 145
 146unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
 147
 148static int __init
 149cmdl_force_cpei(char *str)
 150{
 151        int value=0;
 152
 153        get_option (&str, &value);
 154        force_cpei_retarget = value;
 155
 156        return 1;
 157}
 158
 159__setup("force_cpei=", cmdl_force_cpei);
 160
 161static int __init
 162nointroute (char *str)
 163{
 164        no_int_routing = 1;
 165        printk ("no_int_routing on\n");
 166        return 1;
 167}
 168
 169__setup("nointroute", nointroute);
 170
 171static void fix_b0_for_bsp(void)
 172{
 173#ifdef CONFIG_HOTPLUG_CPU
 174        int cpuid;
 175        static int fix_bsp_b0 = 1;
 176
 177        cpuid = smp_processor_id();
 178
 179        /*
 180         * Cache the b0 value on the first AP that comes up
 181         */
 182        if (!(fix_bsp_b0 && cpuid))
 183                return;
 184
 185        sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
 186        printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
 187
 188        fix_bsp_b0 = 0;
 189#endif
 190}
 191
 192void
 193sync_master (void *arg)
 194{
 195        unsigned long flags, i;
 196
 197        go[MASTER] = 0;
 198
 199        local_irq_save(flags);
 200        {
 201                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
 202                        while (!go[MASTER])
 203                                cpu_relax();
 204                        go[MASTER] = 0;
 205                        go[SLAVE] = ia64_get_itc();
 206                }
 207        }
 208        local_irq_restore(flags);
 209}
 210
 211/*
 212 * Return the number of cycles by which our itc differs from the itc on the master
 213 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
 214 * negative that it is behind.
 215 */
 216static inline long
 217get_delta (long *rt, long *master)
 218{
 219        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 220        unsigned long tcenter, t0, t1, tm;
 221        long i;
 222
 223        for (i = 0; i < NUM_ITERS; ++i) {
 224                t0 = ia64_get_itc();
 225                go[MASTER] = 1;
 226                while (!(tm = go[SLAVE]))
 227                        cpu_relax();
 228                go[SLAVE] = 0;
 229                t1 = ia64_get_itc();
 230
 231                if (t1 - t0 < best_t1 - best_t0)
 232                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 233        }
 234
 235        *rt = best_t1 - best_t0;
 236        *master = best_tm - best_t0;
 237
 238        /* average best_t0 and best_t1 without overflow: */
 239        tcenter = (best_t0/2 + best_t1/2);
 240        if (best_t0 % 2 + best_t1 % 2 == 2)
 241                ++tcenter;
 242        return tcenter - best_tm;
 243}
 244
 245/*
 246 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
 247 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
 248 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
 249 * step).  The basic idea is for the slave to ask the master what itc value it has and to
 250 * read its own itc before and after the master responds.  Each iteration gives us three
 251 * timestamps:
 252 *
 253 *      slave           master
 254 *
 255 *      t0 ---\
 256 *             ---\
 257 *                 --->
 258 *                      tm
 259 *                 /---
 260 *             /---
 261 *      t1 <---
 262 *
 263 *
 264 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
 265 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
 266 * between the slave and the master is symmetric.  Even if the interconnect were
 267 * asymmetric, we would still know that the synchronization error is smaller than the
 268 * roundtrip latency (t0 - t1).
 269 *
 270 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
 271 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
 272 * accurate to within a round-trip time, which is typically in the range of several
 273 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
 274 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
 275 * than half a micro second or so.
 276 */
 277void
 278ia64_sync_itc (unsigned int master)
 279{
 280        long i, delta, adj, adjust_latency = 0, done = 0;
 281        unsigned long flags, rt, master_time_stamp, bound;
 282#if DEBUG_ITC_SYNC
 283        struct {
 284                long rt;        /* roundtrip time */
 285                long master;    /* master's timestamp */
 286                long diff;      /* difference between midpoint and master's timestamp */
 287                long lat;       /* estimate of itc adjustment latency */
 288        } t[NUM_ROUNDS];
 289#endif
 290
 291        /*
 292         * Make sure local timer ticks are disabled while we sync.  If
 293         * they were enabled, we'd have to worry about nasty issues
 294         * like setting the ITC ahead of (or a long time before) the
 295         * next scheduled tick.
 296         */
 297        BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
 298
 299        go[MASTER] = 1;
 300
 301        if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
 302                printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
 303                return;
 304        }
 305
 306        while (go[MASTER])
 307                cpu_relax();    /* wait for master to be ready */
 308
 309        spin_lock_irqsave(&itc_sync_lock, flags);
 310        {
 311                for (i = 0; i < NUM_ROUNDS; ++i) {
 312                        delta = get_delta(&rt, &master_time_stamp);
 313                        if (delta == 0) {
 314                                done = 1;       /* let's lock on to this... */
 315                                bound = rt;
 316                        }
 317
 318                        if (!done) {
 319                                if (i > 0) {
 320                                        adjust_latency += -delta;
 321                                        adj = -delta + adjust_latency/4;
 322                                } else
 323                                        adj = -delta;
 324
 325                                ia64_set_itc(ia64_get_itc() + adj);
 326                        }
 327#if DEBUG_ITC_SYNC
 328                        t[i].rt = rt;
 329                        t[i].master = master_time_stamp;
 330                        t[i].diff = delta;
 331                        t[i].lat = adjust_latency/4;
 332#endif
 333                }
 334        }
 335        spin_unlock_irqrestore(&itc_sync_lock, flags);
 336
 337#if DEBUG_ITC_SYNC
 338        for (i = 0; i < NUM_ROUNDS; ++i)
 339                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 340                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 341#endif
 342
 343        printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
 344               "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
 345}
 346
 347/*
 348 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
 349 */
 350static inline void smp_setup_percpu_timer(void)
 351{
 352}
 353
 354static void __cpuinit
 355smp_callin (void)
 356{
 357        int cpuid, phys_id, itc_master;
 358        struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
 359        extern void ia64_init_itm(void);
 360        extern volatile int time_keeper_id;
 361
 362#ifdef CONFIG_PERFMON
 363        extern void pfm_init_percpu(void);
 364#endif
 365
 366        cpuid = smp_processor_id();
 367        phys_id = hard_smp_processor_id();
 368        itc_master = time_keeper_id;
 369
 370        if (cpu_online(cpuid)) {
 371                printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
 372                       phys_id, cpuid);
 373                BUG();
 374        }
 375
 376        fix_b0_for_bsp();
 377
 378        /*
 379         * numa_node_id() works after this.
 380         */
 381        set_numa_node(cpu_to_node_map[cpuid]);
 382        set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
 383
 384        spin_lock(&vector_lock);
 385        /* Setup the per cpu irq handling data structures */
 386        __setup_vector_irq(cpuid);
 387        notify_cpu_starting(cpuid);
 388        set_cpu_online(cpuid, true);
 389        per_cpu(cpu_state, cpuid) = CPU_ONLINE;
 390        spin_unlock(&vector_lock);
 391
 392        smp_setup_percpu_timer();
 393
 394        ia64_mca_cmc_vector_setup();    /* Setup vector on AP */
 395
 396#ifdef CONFIG_PERFMON
 397        pfm_init_percpu();
 398#endif
 399
 400        local_irq_enable();
 401
 402        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 403                /*
 404                 * Synchronize the ITC with the BP.  Need to do this after irqs are
 405                 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
 406                 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
 407                 * local_bh_enable(), which bugs out if irqs are not enabled...
 408                 */
 409                Dprintk("Going to syncup ITC with ITC Master.\n");
 410                ia64_sync_itc(itc_master);
 411        }
 412
 413        /*
 414         * Get our bogomips.
 415         */
 416        ia64_init_itm();
 417
 418        /*
 419         * Delay calibration can be skipped if new processor is identical to the
 420         * previous processor.
 421         */
 422        last_cpuinfo = cpu_data(cpuid - 1);
 423        this_cpuinfo = local_cpu_data;
 424        if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
 425            last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
 426            last_cpuinfo->features != this_cpuinfo->features ||
 427            last_cpuinfo->revision != this_cpuinfo->revision ||
 428            last_cpuinfo->family != this_cpuinfo->family ||
 429            last_cpuinfo->archrev != this_cpuinfo->archrev ||
 430            last_cpuinfo->model != this_cpuinfo->model)
 431                calibrate_delay();
 432        local_cpu_data->loops_per_jiffy = loops_per_jiffy;
 433
 434        /*
 435         * Allow the master to continue.
 436         */
 437        cpu_set(cpuid, cpu_callin_map);
 438        Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
 439}
 440
 441
 442/*
 443 * Activate a secondary processor.  head.S calls this.
 444 */
 445int __cpuinit
 446start_secondary (void *unused)
 447{
 448        /* Early console may use I/O ports */
 449        ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
 450#ifndef CONFIG_PRINTK_TIME
 451        Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
 452#endif
 453        efi_map_pal_code();
 454        cpu_init();
 455        preempt_disable();
 456        smp_callin();
 457
 458        cpu_startup_entry(CPUHP_ONLINE);
 459        return 0;
 460}
 461
 462static int __cpuinit
 463do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
 464{
 465        int timeout;
 466
 467        task_for_booting_cpu = idle;
 468        Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
 469
 470        set_brendez_area(cpu);
 471        platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
 472
 473        /*
 474         * Wait 10s total for the AP to start
 475         */
 476        Dprintk("Waiting on callin_map ...");
 477        for (timeout = 0; timeout < 100000; timeout++) {
 478                if (cpu_isset(cpu, cpu_callin_map))
 479                        break;  /* It has booted */
 480                udelay(100);
 481        }
 482        Dprintk("\n");
 483
 484        if (!cpu_isset(cpu, cpu_callin_map)) {
 485                printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
 486                ia64_cpu_to_sapicid[cpu] = -1;
 487                set_cpu_online(cpu, false);  /* was set in smp_callin() */
 488                return -EINVAL;
 489        }
 490        return 0;
 491}
 492
 493static int __init
 494decay (char *str)
 495{
 496        int ticks;
 497        get_option (&str, &ticks);
 498        return 1;
 499}
 500
 501__setup("decay=", decay);
 502
 503/*
 504 * Initialize the logical CPU number to SAPICID mapping
 505 */
 506void __init
 507smp_build_cpu_map (void)
 508{
 509        int sapicid, cpu, i;
 510        int boot_cpu_id = hard_smp_processor_id();
 511
 512        for (cpu = 0; cpu < NR_CPUS; cpu++) {
 513                ia64_cpu_to_sapicid[cpu] = -1;
 514        }
 515
 516        ia64_cpu_to_sapicid[0] = boot_cpu_id;
 517        init_cpu_present(cpumask_of(0));
 518        set_cpu_possible(0, true);
 519        for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
 520                sapicid = smp_boot_data.cpu_phys_id[i];
 521                if (sapicid == boot_cpu_id)
 522                        continue;
 523                set_cpu_present(cpu, true);
 524                set_cpu_possible(cpu, true);
 525                ia64_cpu_to_sapicid[cpu] = sapicid;
 526                cpu++;
 527        }
 528}
 529
 530/*
 531 * Cycle through the APs sending Wakeup IPIs to boot each.
 532 */
 533void __init
 534smp_prepare_cpus (unsigned int max_cpus)
 535{
 536        int boot_cpu_id = hard_smp_processor_id();
 537
 538        /*
 539         * Initialize the per-CPU profiling counter/multiplier
 540         */
 541
 542        smp_setup_percpu_timer();
 543
 544        cpu_set(0, cpu_callin_map);
 545
 546        local_cpu_data->loops_per_jiffy = loops_per_jiffy;
 547        ia64_cpu_to_sapicid[0] = boot_cpu_id;
 548
 549        printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
 550
 551        current_thread_info()->cpu = 0;
 552
 553        /*
 554         * If SMP should be disabled, then really disable it!
 555         */
 556        if (!max_cpus) {
 557                printk(KERN_INFO "SMP mode deactivated.\n");
 558                init_cpu_online(cpumask_of(0));
 559                init_cpu_present(cpumask_of(0));
 560                init_cpu_possible(cpumask_of(0));
 561                return;
 562        }
 563}
 564
 565void smp_prepare_boot_cpu(void)
 566{
 567        set_cpu_online(smp_processor_id(), true);
 568        cpu_set(smp_processor_id(), cpu_callin_map);
 569        set_numa_node(cpu_to_node_map[smp_processor_id()]);
 570        per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
 571        paravirt_post_smp_prepare_boot_cpu();
 572}
 573
 574#ifdef CONFIG_HOTPLUG_CPU
 575static inline void
 576clear_cpu_sibling_map(int cpu)
 577{
 578        int i;
 579
 580        for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
 581                cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
 582        for_each_cpu_mask(i, cpu_core_map[cpu])
 583                cpu_clear(cpu, cpu_core_map[i]);
 584
 585        per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
 586}
 587
 588static void
 589remove_siblinginfo(int cpu)
 590{
 591        int last = 0;
 592
 593        if (cpu_data(cpu)->threads_per_core == 1 &&
 594            cpu_data(cpu)->cores_per_socket == 1) {
 595                cpu_clear(cpu, cpu_core_map[cpu]);
 596                cpu_clear(cpu, per_cpu(cpu_sibling_map, cpu));
 597                return;
 598        }
 599
 600        last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
 601
 602        /* remove it from all sibling map's */
 603        clear_cpu_sibling_map(cpu);
 604}
 605
 606extern void fixup_irqs(void);
 607
 608int migrate_platform_irqs(unsigned int cpu)
 609{
 610        int new_cpei_cpu;
 611        struct irq_data *data = NULL;
 612        const struct cpumask *mask;
 613        int             retval = 0;
 614
 615        /*
 616         * dont permit CPEI target to removed.
 617         */
 618        if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
 619                printk ("CPU (%d) is CPEI Target\n", cpu);
 620                if (can_cpei_retarget()) {
 621                        /*
 622                         * Now re-target the CPEI to a different processor
 623                         */
 624                        new_cpei_cpu = cpumask_any(cpu_online_mask);
 625                        mask = cpumask_of(new_cpei_cpu);
 626                        set_cpei_target_cpu(new_cpei_cpu);
 627                        data = irq_get_irq_data(ia64_cpe_irq);
 628                        /*
 629                         * Switch for now, immediately, we need to do fake intr
 630                         * as other interrupts, but need to study CPEI behaviour with
 631                         * polling before making changes.
 632                         */
 633                        if (data && data->chip) {
 634                                data->chip->irq_disable(data);
 635                                data->chip->irq_set_affinity(data, mask, false);
 636                                data->chip->irq_enable(data);
 637                                printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
 638                        }
 639                }
 640                if (!data) {
 641                        printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
 642                        retval = -EBUSY;
 643                }
 644        }
 645        return retval;
 646}
 647
 648/* must be called with cpucontrol mutex held */
 649int __cpu_disable(void)
 650{
 651        int cpu = smp_processor_id();
 652
 653        /*
 654         * dont permit boot processor for now
 655         */
 656        if (cpu == 0 && !bsp_remove_ok) {
 657                printk ("Your platform does not support removal of BSP\n");
 658                return (-EBUSY);
 659        }
 660
 661        if (ia64_platform_is("sn2")) {
 662                if (!sn_cpu_disable_allowed(cpu))
 663                        return -EBUSY;
 664        }
 665
 666        set_cpu_online(cpu, false);
 667
 668        if (migrate_platform_irqs(cpu)) {
 669                set_cpu_online(cpu, true);
 670                return -EBUSY;
 671        }
 672
 673        remove_siblinginfo(cpu);
 674        fixup_irqs();
 675        local_flush_tlb_all();
 676        cpu_clear(cpu, cpu_callin_map);
 677        return 0;
 678}
 679
 680void __cpu_die(unsigned int cpu)
 681{
 682        unsigned int i;
 683
 684        for (i = 0; i < 100; i++) {
 685                /* They ack this in play_dead by setting CPU_DEAD */
 686                if (per_cpu(cpu_state, cpu) == CPU_DEAD)
 687                {
 688                        printk ("CPU %d is now offline\n", cpu);
 689                        return;
 690                }
 691                msleep(100);
 692        }
 693        printk(KERN_ERR "CPU %u didn't die...\n", cpu);
 694}
 695#endif /* CONFIG_HOTPLUG_CPU */
 696
 697void
 698smp_cpus_done (unsigned int dummy)
 699{
 700        int cpu;
 701        unsigned long bogosum = 0;
 702
 703        /*
 704         * Allow the user to impress friends.
 705         */
 706
 707        for_each_online_cpu(cpu) {
 708                bogosum += cpu_data(cpu)->loops_per_jiffy;
 709        }
 710
 711        printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
 712               (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
 713}
 714
 715static inline void set_cpu_sibling_map(int cpu)
 716{
 717        int i;
 718
 719        for_each_online_cpu(i) {
 720                if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
 721                        cpu_set(i, cpu_core_map[cpu]);
 722                        cpu_set(cpu, cpu_core_map[i]);
 723                        if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
 724                                cpu_set(i, per_cpu(cpu_sibling_map, cpu));
 725                                cpu_set(cpu, per_cpu(cpu_sibling_map, i));
 726                        }
 727                }
 728        }
 729}
 730
 731int __cpuinit
 732__cpu_up(unsigned int cpu, struct task_struct *tidle)
 733{
 734        int ret;
 735        int sapicid;
 736
 737        sapicid = ia64_cpu_to_sapicid[cpu];
 738        if (sapicid == -1)
 739                return -EINVAL;
 740
 741        /*
 742         * Already booted cpu? not valid anymore since we dont
 743         * do idle loop tightspin anymore.
 744         */
 745        if (cpu_isset(cpu, cpu_callin_map))
 746                return -EINVAL;
 747
 748        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 749        /* Processor goes to start_secondary(), sets online flag */
 750        ret = do_boot_cpu(sapicid, cpu, tidle);
 751        if (ret < 0)
 752                return ret;
 753
 754        if (cpu_data(cpu)->threads_per_core == 1 &&
 755            cpu_data(cpu)->cores_per_socket == 1) {
 756                cpu_set(cpu, per_cpu(cpu_sibling_map, cpu));
 757                cpu_set(cpu, cpu_core_map[cpu]);
 758                return 0;
 759        }
 760
 761        set_cpu_sibling_map(cpu);
 762
 763        return 0;
 764}
 765
 766/*
 767 * Assume that CPUs have been discovered by some platform-dependent interface.  For
 768 * SoftSDV/Lion, that would be ACPI.
 769 *
 770 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
 771 */
 772void __init
 773init_smp_config(void)
 774{
 775        struct fptr {
 776                unsigned long fp;
 777                unsigned long gp;
 778        } *ap_startup;
 779        long sal_ret;
 780
 781        /* Tell SAL where to drop the APs.  */
 782        ap_startup = (struct fptr *) start_ap;
 783        sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
 784                                       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
 785        if (sal_ret < 0)
 786                printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
 787                       ia64_sal_strerror(sal_ret));
 788}
 789
 790/*
 791 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
 792 * information related to logical execution units in per_cpu_data structure.
 793 */
 794void identify_siblings(struct cpuinfo_ia64 *c)
 795{
 796        long status;
 797        u16 pltid;
 798        pal_logical_to_physical_t info;
 799
 800        status = ia64_pal_logical_to_phys(-1, &info);
 801        if (status != PAL_STATUS_SUCCESS) {
 802                if (status != PAL_STATUS_UNIMPLEMENTED) {
 803                        printk(KERN_ERR
 804                                "ia64_pal_logical_to_phys failed with %ld\n",
 805                                status);
 806                        return;
 807                }
 808
 809                info.overview_ppid = 0;
 810                info.overview_cpp  = 1;
 811                info.overview_tpc  = 1;
 812        }
 813
 814        status = ia64_sal_physical_id_info(&pltid);
 815        if (status != PAL_STATUS_SUCCESS) {
 816                if (status != PAL_STATUS_UNIMPLEMENTED)
 817                        printk(KERN_ERR
 818                                "ia64_sal_pltid failed with %ld\n",
 819                                status);
 820                return;
 821        }
 822
 823        c->socket_id =  (pltid << 8) | info.overview_ppid;
 824
 825        if (info.overview_cpp == 1 && info.overview_tpc == 1)
 826                return;
 827
 828        c->cores_per_socket = info.overview_cpp;
 829        c->threads_per_core = info.overview_tpc;
 830        c->num_log = info.overview_num_log;
 831
 832        c->core_id = info.log1_cid;
 833        c->thread_id = info.log1_tid;
 834}
 835
 836/*
 837 * returns non zero, if multi-threading is enabled
 838 * on at least one physical package. Due to hotplug cpu
 839 * and (maxcpus=), all threads may not necessarily be enabled
 840 * even though the processor supports multi-threading.
 841 */
 842int is_multithreading_enabled(void)
 843{
 844        int i, j;
 845
 846        for_each_present_cpu(i) {
 847                for_each_present_cpu(j) {
 848                        if (j == i)
 849                                continue;
 850                        if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
 851                                if (cpu_data(j)->core_id == cpu_data(i)->core_id)
 852                                        return 1;
 853                        }
 854                }
 855        }
 856        return 0;
 857}
 858EXPORT_SYMBOL_GPL(is_multithreading_enabled);
 859