linux/arch/ia64/mm/init.c
<<
>>
Prefs
   1/*
   2 * Initialize MMU support.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 */
   7#include <linux/kernel.h>
   8#include <linux/init.h>
   9
  10#include <linux/bootmem.h>
  11#include <linux/efi.h>
  12#include <linux/elf.h>
  13#include <linux/memblock.h>
  14#include <linux/mm.h>
  15#include <linux/mmzone.h>
  16#include <linux/module.h>
  17#include <linux/personality.h>
  18#include <linux/reboot.h>
  19#include <linux/slab.h>
  20#include <linux/swap.h>
  21#include <linux/proc_fs.h>
  22#include <linux/bitops.h>
  23#include <linux/kexec.h>
  24
  25#include <asm/dma.h>
  26#include <asm/io.h>
  27#include <asm/machvec.h>
  28#include <asm/numa.h>
  29#include <asm/patch.h>
  30#include <asm/pgalloc.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33#include <asm/tlb.h>
  34#include <asm/uaccess.h>
  35#include <asm/unistd.h>
  36#include <asm/mca.h>
  37#include <asm/paravirt.h>
  38
  39extern void ia64_tlb_init (void);
  40
  41unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
  42
  43#ifdef CONFIG_VIRTUAL_MEM_MAP
  44unsigned long VMALLOC_END = VMALLOC_END_INIT;
  45EXPORT_SYMBOL(VMALLOC_END);
  46struct page *vmem_map;
  47EXPORT_SYMBOL(vmem_map);
  48#endif
  49
  50struct page *zero_page_memmap_ptr;      /* map entry for zero page */
  51EXPORT_SYMBOL(zero_page_memmap_ptr);
  52
  53void
  54__ia64_sync_icache_dcache (pte_t pte)
  55{
  56        unsigned long addr;
  57        struct page *page;
  58
  59        page = pte_page(pte);
  60        addr = (unsigned long) page_address(page);
  61
  62        if (test_bit(PG_arch_1, &page->flags))
  63                return;                         /* i-cache is already coherent with d-cache */
  64
  65        flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
  66        set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
  67}
  68
  69/*
  70 * Since DMA is i-cache coherent, any (complete) pages that were written via
  71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
  72 * flush them when they get mapped into an executable vm-area.
  73 */
  74void
  75dma_mark_clean(void *addr, size_t size)
  76{
  77        unsigned long pg_addr, end;
  78
  79        pg_addr = PAGE_ALIGN((unsigned long) addr);
  80        end = (unsigned long) addr + size;
  81        while (pg_addr + PAGE_SIZE <= end) {
  82                struct page *page = virt_to_page(pg_addr);
  83                set_bit(PG_arch_1, &page->flags);
  84                pg_addr += PAGE_SIZE;
  85        }
  86}
  87
  88inline void
  89ia64_set_rbs_bot (void)
  90{
  91        unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
  92
  93        if (stack_size > MAX_USER_STACK_SIZE)
  94                stack_size = MAX_USER_STACK_SIZE;
  95        current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
  96}
  97
  98/*
  99 * This performs some platform-dependent address space initialization.
 100 * On IA-64, we want to setup the VM area for the register backing
 101 * store (which grows upwards) and install the gateway page which is
 102 * used for signal trampolines, etc.
 103 */
 104void
 105ia64_init_addr_space (void)
 106{
 107        struct vm_area_struct *vma;
 108
 109        ia64_set_rbs_bot();
 110
 111        /*
 112         * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 113         * the problem.  When the process attempts to write to the register backing store
 114         * for the first time, it will get a SEGFAULT in this case.
 115         */
 116        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 117        if (vma) {
 118                INIT_LIST_HEAD(&vma->anon_vma_chain);
 119                vma->vm_mm = current->mm;
 120                vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 121                vma->vm_end = vma->vm_start + PAGE_SIZE;
 122                vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 123                vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 124                down_write(&current->mm->mmap_sem);
 125                if (insert_vm_struct(current->mm, vma)) {
 126                        up_write(&current->mm->mmap_sem);
 127                        kmem_cache_free(vm_area_cachep, vma);
 128                        return;
 129                }
 130                up_write(&current->mm->mmap_sem);
 131        }
 132
 133        /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 134        if (!(current->personality & MMAP_PAGE_ZERO)) {
 135                vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 136                if (vma) {
 137                        INIT_LIST_HEAD(&vma->anon_vma_chain);
 138                        vma->vm_mm = current->mm;
 139                        vma->vm_end = PAGE_SIZE;
 140                        vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 141                        vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
 142                                        VM_DONTEXPAND | VM_DONTDUMP;
 143                        down_write(&current->mm->mmap_sem);
 144                        if (insert_vm_struct(current->mm, vma)) {
 145                                up_write(&current->mm->mmap_sem);
 146                                kmem_cache_free(vm_area_cachep, vma);
 147                                return;
 148                        }
 149                        up_write(&current->mm->mmap_sem);
 150                }
 151        }
 152}
 153
 154void
 155free_initmem (void)
 156{
 157        free_reserved_area((unsigned long)ia64_imva(__init_begin),
 158                           (unsigned long)ia64_imva(__init_end),
 159                           0, "unused kernel");
 160}
 161
 162void __init
 163free_initrd_mem (unsigned long start, unsigned long end)
 164{
 165        /*
 166         * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 167         * Thus EFI and the kernel may have different page sizes. It is
 168         * therefore possible to have the initrd share the same page as
 169         * the end of the kernel (given current setup).
 170         *
 171         * To avoid freeing/using the wrong page (kernel sized) we:
 172         *      - align up the beginning of initrd
 173         *      - align down the end of initrd
 174         *
 175         *  |             |
 176         *  |=============| a000
 177         *  |             |
 178         *  |             |
 179         *  |             | 9000
 180         *  |/////////////|
 181         *  |/////////////|
 182         *  |=============| 8000
 183         *  |///INITRD////|
 184         *  |/////////////|
 185         *  |/////////////| 7000
 186         *  |             |
 187         *  |KKKKKKKKKKKKK|
 188         *  |=============| 6000
 189         *  |KKKKKKKKKKKKK|
 190         *  |KKKKKKKKKKKKK|
 191         *  K=kernel using 8KB pages
 192         *
 193         * In this example, we must free page 8000 ONLY. So we must align up
 194         * initrd_start and keep initrd_end as is.
 195         */
 196        start = PAGE_ALIGN(start);
 197        end = end & PAGE_MASK;
 198
 199        if (start < end)
 200                printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 201
 202        for (; start < end; start += PAGE_SIZE) {
 203                if (!virt_addr_valid(start))
 204                        continue;
 205                free_reserved_page(virt_to_page(start));
 206        }
 207}
 208
 209/*
 210 * This installs a clean page in the kernel's page table.
 211 */
 212static struct page * __init
 213put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 214{
 215        pgd_t *pgd;
 216        pud_t *pud;
 217        pmd_t *pmd;
 218        pte_t *pte;
 219
 220        if (!PageReserved(page))
 221                printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
 222                       page_address(page));
 223
 224        pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
 225
 226        {
 227                pud = pud_alloc(&init_mm, pgd, address);
 228                if (!pud)
 229                        goto out;
 230                pmd = pmd_alloc(&init_mm, pud, address);
 231                if (!pmd)
 232                        goto out;
 233                pte = pte_alloc_kernel(pmd, address);
 234                if (!pte)
 235                        goto out;
 236                if (!pte_none(*pte))
 237                        goto out;
 238                set_pte(pte, mk_pte(page, pgprot));
 239        }
 240  out:
 241        /* no need for flush_tlb */
 242        return page;
 243}
 244
 245static void __init
 246setup_gate (void)
 247{
 248        void *gate_section;
 249        struct page *page;
 250
 251        /*
 252         * Map the gate page twice: once read-only to export the ELF
 253         * headers etc. and once execute-only page to enable
 254         * privilege-promotion via "epc":
 255         */
 256        gate_section = paravirt_get_gate_section();
 257        page = virt_to_page(ia64_imva(gate_section));
 258        put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 259#ifdef HAVE_BUGGY_SEGREL
 260        page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
 261        put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 262#else
 263        put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 264        /* Fill in the holes (if any) with read-only zero pages: */
 265        {
 266                unsigned long addr;
 267
 268                for (addr = GATE_ADDR + PAGE_SIZE;
 269                     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 270                     addr += PAGE_SIZE)
 271                {
 272                        put_kernel_page(ZERO_PAGE(0), addr,
 273                                        PAGE_READONLY);
 274                        put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 275                                        PAGE_READONLY);
 276                }
 277        }
 278#endif
 279        ia64_patch_gate();
 280}
 281
 282void ia64_mmu_init(void *my_cpu_data)
 283{
 284        unsigned long pta, impl_va_bits;
 285        extern void tlb_init(void);
 286
 287#ifdef CONFIG_DISABLE_VHPT
 288#       define VHPT_ENABLE_BIT  0
 289#else
 290#       define VHPT_ENABLE_BIT  1
 291#endif
 292
 293        /*
 294         * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 295         * address space.  The IA-64 architecture guarantees that at least 50 bits of
 296         * virtual address space are implemented but if we pick a large enough page size
 297         * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 298         * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 299         * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 300         * problem in practice.  Alternatively, we could truncate the top of the mapped
 301         * address space to not permit mappings that would overlap with the VMLPT.
 302         * --davidm 00/12/06
 303         */
 304#       define pte_bits                 3
 305#       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 306        /*
 307         * The virtual page table has to cover the entire implemented address space within
 308         * a region even though not all of this space may be mappable.  The reason for
 309         * this is that the Access bit and Dirty bit fault handlers perform
 310         * non-speculative accesses to the virtual page table, so the address range of the
 311         * virtual page table itself needs to be covered by virtual page table.
 312         */
 313#       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
 314#       define POW2(n)                  (1ULL << (n))
 315
 316        impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 317
 318        if (impl_va_bits < 51 || impl_va_bits > 61)
 319                panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 320        /*
 321         * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 322         * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 323         * the test makes sure that our mapped space doesn't overlap the
 324         * unimplemented hole in the middle of the region.
 325         */
 326        if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 327            (mapped_space_bits > impl_va_bits - 1))
 328                panic("Cannot build a big enough virtual-linear page table"
 329                      " to cover mapped address space.\n"
 330                      " Try using a smaller page size.\n");
 331
 332
 333        /* place the VMLPT at the end of each page-table mapped region: */
 334        pta = POW2(61) - POW2(vmlpt_bits);
 335
 336        /*
 337         * Set the (virtually mapped linear) page table address.  Bit
 338         * 8 selects between the short and long format, bits 2-7 the
 339         * size of the table, and bit 0 whether the VHPT walker is
 340         * enabled.
 341         */
 342        ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 343
 344        ia64_tlb_init();
 345
 346#ifdef  CONFIG_HUGETLB_PAGE
 347        ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 348        ia64_srlz_d();
 349#endif
 350}
 351
 352#ifdef CONFIG_VIRTUAL_MEM_MAP
 353int vmemmap_find_next_valid_pfn(int node, int i)
 354{
 355        unsigned long end_address, hole_next_pfn;
 356        unsigned long stop_address;
 357        pg_data_t *pgdat = NODE_DATA(node);
 358
 359        end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 360        end_address = PAGE_ALIGN(end_address);
 361
 362        stop_address = (unsigned long) &vmem_map[
 363                pgdat->node_start_pfn + pgdat->node_spanned_pages];
 364
 365        do {
 366                pgd_t *pgd;
 367                pud_t *pud;
 368                pmd_t *pmd;
 369                pte_t *pte;
 370
 371                pgd = pgd_offset_k(end_address);
 372                if (pgd_none(*pgd)) {
 373                        end_address += PGDIR_SIZE;
 374                        continue;
 375                }
 376
 377                pud = pud_offset(pgd, end_address);
 378                if (pud_none(*pud)) {
 379                        end_address += PUD_SIZE;
 380                        continue;
 381                }
 382
 383                pmd = pmd_offset(pud, end_address);
 384                if (pmd_none(*pmd)) {
 385                        end_address += PMD_SIZE;
 386                        continue;
 387                }
 388
 389                pte = pte_offset_kernel(pmd, end_address);
 390retry_pte:
 391                if (pte_none(*pte)) {
 392                        end_address += PAGE_SIZE;
 393                        pte++;
 394                        if ((end_address < stop_address) &&
 395                            (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 396                                goto retry_pte;
 397                        continue;
 398                }
 399                /* Found next valid vmem_map page */
 400                break;
 401        } while (end_address < stop_address);
 402
 403        end_address = min(end_address, stop_address);
 404        end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 405        hole_next_pfn = end_address / sizeof(struct page);
 406        return hole_next_pfn - pgdat->node_start_pfn;
 407}
 408
 409int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 410{
 411        unsigned long address, start_page, end_page;
 412        struct page *map_start, *map_end;
 413        int node;
 414        pgd_t *pgd;
 415        pud_t *pud;
 416        pmd_t *pmd;
 417        pte_t *pte;
 418
 419        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 420        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 421
 422        start_page = (unsigned long) map_start & PAGE_MASK;
 423        end_page = PAGE_ALIGN((unsigned long) map_end);
 424        node = paddr_to_nid(__pa(start));
 425
 426        for (address = start_page; address < end_page; address += PAGE_SIZE) {
 427                pgd = pgd_offset_k(address);
 428                if (pgd_none(*pgd))
 429                        pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 430                pud = pud_offset(pgd, address);
 431
 432                if (pud_none(*pud))
 433                        pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 434                pmd = pmd_offset(pud, address);
 435
 436                if (pmd_none(*pmd))
 437                        pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
 438                pte = pte_offset_kernel(pmd, address);
 439
 440                if (pte_none(*pte))
 441                        set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
 442                                             PAGE_KERNEL));
 443        }
 444        return 0;
 445}
 446
 447struct memmap_init_callback_data {
 448        struct page *start;
 449        struct page *end;
 450        int nid;
 451        unsigned long zone;
 452};
 453
 454static int __meminit
 455virtual_memmap_init(u64 start, u64 end, void *arg)
 456{
 457        struct memmap_init_callback_data *args;
 458        struct page *map_start, *map_end;
 459
 460        args = (struct memmap_init_callback_data *) arg;
 461        map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 462        map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 463
 464        if (map_start < args->start)
 465                map_start = args->start;
 466        if (map_end > args->end)
 467                map_end = args->end;
 468
 469        /*
 470         * We have to initialize "out of bounds" struct page elements that fit completely
 471         * on the same pages that were allocated for the "in bounds" elements because they
 472         * may be referenced later (and found to be "reserved").
 473         */
 474        map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 475        map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 476                    / sizeof(struct page));
 477
 478        if (map_start < map_end)
 479                memmap_init_zone((unsigned long)(map_end - map_start),
 480                                 args->nid, args->zone, page_to_pfn(map_start),
 481                                 MEMMAP_EARLY);
 482        return 0;
 483}
 484
 485void __meminit
 486memmap_init (unsigned long size, int nid, unsigned long zone,
 487             unsigned long start_pfn)
 488{
 489        if (!vmem_map)
 490                memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
 491        else {
 492                struct page *start;
 493                struct memmap_init_callback_data args;
 494
 495                start = pfn_to_page(start_pfn);
 496                args.start = start;
 497                args.end = start + size;
 498                args.nid = nid;
 499                args.zone = zone;
 500
 501                efi_memmap_walk(virtual_memmap_init, &args);
 502        }
 503}
 504
 505int
 506ia64_pfn_valid (unsigned long pfn)
 507{
 508        char byte;
 509        struct page *pg = pfn_to_page(pfn);
 510
 511        return     (__get_user(byte, (char __user *) pg) == 0)
 512                && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 513                        || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 514}
 515EXPORT_SYMBOL(ia64_pfn_valid);
 516
 517int __init find_largest_hole(u64 start, u64 end, void *arg)
 518{
 519        u64 *max_gap = arg;
 520
 521        static u64 last_end = PAGE_OFFSET;
 522
 523        /* NOTE: this algorithm assumes efi memmap table is ordered */
 524
 525        if (*max_gap < (start - last_end))
 526                *max_gap = start - last_end;
 527        last_end = end;
 528        return 0;
 529}
 530
 531#endif /* CONFIG_VIRTUAL_MEM_MAP */
 532
 533int __init register_active_ranges(u64 start, u64 len, int nid)
 534{
 535        u64 end = start + len;
 536
 537#ifdef CONFIG_KEXEC
 538        if (start > crashk_res.start && start < crashk_res.end)
 539                start = crashk_res.end;
 540        if (end > crashk_res.start && end < crashk_res.end)
 541                end = crashk_res.start;
 542#endif
 543
 544        if (start < end)
 545                memblock_add_node(__pa(start), end - start, nid);
 546        return 0;
 547}
 548
 549static int __init
 550count_reserved_pages(u64 start, u64 end, void *arg)
 551{
 552        unsigned long num_reserved = 0;
 553        unsigned long *count = arg;
 554
 555        for (; start < end; start += PAGE_SIZE)
 556                if (PageReserved(virt_to_page(start)))
 557                        ++num_reserved;
 558        *count += num_reserved;
 559        return 0;
 560}
 561
 562int
 563find_max_min_low_pfn (u64 start, u64 end, void *arg)
 564{
 565        unsigned long pfn_start, pfn_end;
 566#ifdef CONFIG_FLATMEM
 567        pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 568        pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 569#else
 570        pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 571        pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 572#endif
 573        min_low_pfn = min(min_low_pfn, pfn_start);
 574        max_low_pfn = max(max_low_pfn, pfn_end);
 575        return 0;
 576}
 577
 578/*
 579 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 580 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 581 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 582 * useful for performance testing, but conceivably could also come in handy for debugging
 583 * purposes.
 584 */
 585
 586static int nolwsys __initdata;
 587
 588static int __init
 589nolwsys_setup (char *s)
 590{
 591        nolwsys = 1;
 592        return 1;
 593}
 594
 595__setup("nolwsys", nolwsys_setup);
 596
 597void __init
 598mem_init (void)
 599{
 600        long reserved_pages, codesize, datasize, initsize;
 601        pg_data_t *pgdat;
 602        int i;
 603
 604        BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 605        BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 606        BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 607
 608#ifdef CONFIG_PCI
 609        /*
 610         * This needs to be called _after_ the command line has been parsed but _before_
 611         * any drivers that may need the PCI DMA interface are initialized or bootmem has
 612         * been freed.
 613         */
 614        platform_dma_init();
 615#endif
 616
 617#ifdef CONFIG_FLATMEM
 618        BUG_ON(!mem_map);
 619        max_mapnr = max_low_pfn;
 620#endif
 621
 622        high_memory = __va(max_low_pfn * PAGE_SIZE);
 623
 624        for_each_online_pgdat(pgdat)
 625                if (pgdat->bdata->node_bootmem_map)
 626                        totalram_pages += free_all_bootmem_node(pgdat);
 627
 628        reserved_pages = 0;
 629        efi_memmap_walk(count_reserved_pages, &reserved_pages);
 630
 631        codesize =  (unsigned long) _etext - (unsigned long) _stext;
 632        datasize =  (unsigned long) _edata - (unsigned long) _etext;
 633        initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
 634
 635        printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
 636               "%luk data, %luk init)\n", nr_free_pages() << (PAGE_SHIFT - 10),
 637               num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
 638               reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
 639
 640
 641        /*
 642         * For fsyscall entrpoints with no light-weight handler, use the ordinary
 643         * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 644         * code can tell them apart.
 645         */
 646        for (i = 0; i < NR_syscalls; ++i) {
 647                extern unsigned long sys_call_table[NR_syscalls];
 648                unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
 649
 650                if (!fsyscall_table[i] || nolwsys)
 651                        fsyscall_table[i] = sys_call_table[i] | 1;
 652        }
 653        setup_gate();
 654}
 655
 656#ifdef CONFIG_MEMORY_HOTPLUG
 657int arch_add_memory(int nid, u64 start, u64 size)
 658{
 659        pg_data_t *pgdat;
 660        struct zone *zone;
 661        unsigned long start_pfn = start >> PAGE_SHIFT;
 662        unsigned long nr_pages = size >> PAGE_SHIFT;
 663        int ret;
 664
 665        pgdat = NODE_DATA(nid);
 666
 667        zone = pgdat->node_zones + ZONE_NORMAL;
 668        ret = __add_pages(nid, zone, start_pfn, nr_pages);
 669
 670        if (ret)
 671                printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 672                       __func__,  ret);
 673
 674        return ret;
 675}
 676
 677#ifdef CONFIG_MEMORY_HOTREMOVE
 678int arch_remove_memory(u64 start, u64 size)
 679{
 680        unsigned long start_pfn = start >> PAGE_SHIFT;
 681        unsigned long nr_pages = size >> PAGE_SHIFT;
 682        struct zone *zone;
 683        int ret;
 684
 685        zone = page_zone(pfn_to_page(start_pfn));
 686        ret = __remove_pages(zone, start_pfn, nr_pages);
 687        if (ret)
 688                pr_warn("%s: Problem encountered in __remove_pages() as"
 689                        " ret=%d\n", __func__,  ret);
 690
 691        return ret;
 692}
 693#endif
 694#endif
 695
 696/*
 697 * Even when CONFIG_IA32_SUPPORT is not enabled it is
 698 * useful to have the Linux/x86 domain registered to
 699 * avoid an attempted module load when emulators call
 700 * personality(PER_LINUX32). This saves several milliseconds
 701 * on each such call.
 702 */
 703static struct exec_domain ia32_exec_domain;
 704
 705static int __init
 706per_linux32_init(void)
 707{
 708        ia32_exec_domain.name = "Linux/x86";
 709        ia32_exec_domain.handler = NULL;
 710        ia32_exec_domain.pers_low = PER_LINUX32;
 711        ia32_exec_domain.pers_high = PER_LINUX32;
 712        ia32_exec_domain.signal_map = default_exec_domain.signal_map;
 713        ia32_exec_domain.signal_invmap = default_exec_domain.signal_invmap;
 714        register_exec_domain(&ia32_exec_domain);
 715
 716        return 0;
 717}
 718
 719__initcall(per_linux32_init);
 720