linux/arch/powerpc/kernel/eeh_cache.c
<<
>>
Prefs
   1/*
   2 * PCI address cache; allows the lookup of PCI devices based on I/O address
   3 *
   4 * Copyright IBM Corporation 2004
   5 * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License as published by
   9 * the Free Software Foundation; either version 2 of the License, or
  10 * (at your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  20 */
  21
  22#include <linux/list.h>
  23#include <linux/pci.h>
  24#include <linux/rbtree.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27#include <linux/atomic.h>
  28#include <asm/pci-bridge.h>
  29#include <asm/ppc-pci.h>
  30
  31
  32/**
  33 * The pci address cache subsystem.  This subsystem places
  34 * PCI device address resources into a red-black tree, sorted
  35 * according to the address range, so that given only an i/o
  36 * address, the corresponding PCI device can be **quickly**
  37 * found. It is safe to perform an address lookup in an interrupt
  38 * context; this ability is an important feature.
  39 *
  40 * Currently, the only customer of this code is the EEH subsystem;
  41 * thus, this code has been somewhat tailored to suit EEH better.
  42 * In particular, the cache does *not* hold the addresses of devices
  43 * for which EEH is not enabled.
  44 *
  45 * (Implementation Note: The RB tree seems to be better/faster
  46 * than any hash algo I could think of for this problem, even
  47 * with the penalty of slow pointer chases for d-cache misses).
  48 */
  49struct pci_io_addr_range {
  50        struct rb_node rb_node;
  51        resource_size_t addr_lo;
  52        resource_size_t addr_hi;
  53        struct eeh_dev *edev;
  54        struct pci_dev *pcidev;
  55        unsigned long flags;
  56};
  57
  58static struct pci_io_addr_cache {
  59        struct rb_root rb_root;
  60        spinlock_t piar_lock;
  61} pci_io_addr_cache_root;
  62
  63static inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
  64{
  65        struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
  66
  67        while (n) {
  68                struct pci_io_addr_range *piar;
  69                piar = rb_entry(n, struct pci_io_addr_range, rb_node);
  70
  71                if (addr < piar->addr_lo)
  72                        n = n->rb_left;
  73                else if (addr > piar->addr_hi)
  74                        n = n->rb_right;
  75                else
  76                        return piar->edev;
  77        }
  78
  79        return NULL;
  80}
  81
  82/**
  83 * eeh_addr_cache_get_dev - Get device, given only address
  84 * @addr: mmio (PIO) phys address or i/o port number
  85 *
  86 * Given an mmio phys address, or a port number, find a pci device
  87 * that implements this address.  Be sure to pci_dev_put the device
  88 * when finished.  I/O port numbers are assumed to be offset
  89 * from zero (that is, they do *not* have pci_io_addr added in).
  90 * It is safe to call this function within an interrupt.
  91 */
  92struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
  93{
  94        struct eeh_dev *edev;
  95        unsigned long flags;
  96
  97        spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
  98        edev = __eeh_addr_cache_get_device(addr);
  99        spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 100        return edev;
 101}
 102
 103#ifdef DEBUG
 104/*
 105 * Handy-dandy debug print routine, does nothing more
 106 * than print out the contents of our addr cache.
 107 */
 108static void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
 109{
 110        struct rb_node *n;
 111        int cnt = 0;
 112
 113        n = rb_first(&cache->rb_root);
 114        while (n) {
 115                struct pci_io_addr_range *piar;
 116                piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 117                pr_debug("PCI: %s addr range %d [%lx-%lx]: %s\n",
 118                       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
 119                       piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
 120                cnt++;
 121                n = rb_next(n);
 122        }
 123}
 124#endif
 125
 126/* Insert address range into the rb tree. */
 127static struct pci_io_addr_range *
 128eeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
 129                      resource_size_t ahi, unsigned long flags)
 130{
 131        struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
 132        struct rb_node *parent = NULL;
 133        struct pci_io_addr_range *piar;
 134
 135        /* Walk tree, find a place to insert into tree */
 136        while (*p) {
 137                parent = *p;
 138                piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
 139                if (ahi < piar->addr_lo) {
 140                        p = &parent->rb_left;
 141                } else if (alo > piar->addr_hi) {
 142                        p = &parent->rb_right;
 143                } else {
 144                        if (dev != piar->pcidev ||
 145                            alo != piar->addr_lo || ahi != piar->addr_hi) {
 146                                pr_warn("PIAR: overlapping address range\n");
 147                        }
 148                        return piar;
 149                }
 150        }
 151        piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
 152        if (!piar)
 153                return NULL;
 154
 155        piar->addr_lo = alo;
 156        piar->addr_hi = ahi;
 157        piar->edev = pci_dev_to_eeh_dev(dev);
 158        piar->pcidev = dev;
 159        piar->flags = flags;
 160
 161#ifdef DEBUG
 162        pr_debug("PIAR: insert range=[%lx:%lx] dev=%s\n",
 163                          alo, ahi, pci_name(dev));
 164#endif
 165
 166        rb_link_node(&piar->rb_node, parent, p);
 167        rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
 168
 169        return piar;
 170}
 171
 172static void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
 173{
 174        struct pci_dn *pdn;
 175        struct eeh_dev *edev;
 176        int i;
 177
 178        pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
 179        if (!pdn) {
 180                pr_warn("PCI: no pci dn found for dev=%s\n",
 181                        pci_name(dev));
 182                return;
 183        }
 184
 185        edev = pdn_to_eeh_dev(pdn);
 186        if (!edev) {
 187                pr_warn("PCI: no EEH dev found for %s\n",
 188                        pci_name(dev));
 189                return;
 190        }
 191
 192        /* Skip any devices for which EEH is not enabled. */
 193        if (!edev->pe) {
 194                dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
 195                return;
 196        }
 197
 198        /*
 199         * Walk resources on this device, poke the first 7 (6 normal BAR and 1
 200         * ROM BAR) into the tree.
 201         */
 202        for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
 203                resource_size_t start = pci_resource_start(dev,i);
 204                resource_size_t end = pci_resource_end(dev,i);
 205                unsigned long flags = pci_resource_flags(dev,i);
 206
 207                /* We are interested only bus addresses, not dma or other stuff */
 208                if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
 209                        continue;
 210                if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
 211                         continue;
 212                eeh_addr_cache_insert(dev, start, end, flags);
 213        }
 214}
 215
 216/**
 217 * eeh_addr_cache_insert_dev - Add a device to the address cache
 218 * @dev: PCI device whose I/O addresses we are interested in.
 219 *
 220 * In order to support the fast lookup of devices based on addresses,
 221 * we maintain a cache of devices that can be quickly searched.
 222 * This routine adds a device to that cache.
 223 */
 224void eeh_addr_cache_insert_dev(struct pci_dev *dev)
 225{
 226        unsigned long flags;
 227
 228        spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 229        __eeh_addr_cache_insert_dev(dev);
 230        spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 231}
 232
 233static inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
 234{
 235        struct rb_node *n;
 236
 237restart:
 238        n = rb_first(&pci_io_addr_cache_root.rb_root);
 239        while (n) {
 240                struct pci_io_addr_range *piar;
 241                piar = rb_entry(n, struct pci_io_addr_range, rb_node);
 242
 243                if (piar->pcidev == dev) {
 244                        rb_erase(n, &pci_io_addr_cache_root.rb_root);
 245                        kfree(piar);
 246                        goto restart;
 247                }
 248                n = rb_next(n);
 249        }
 250}
 251
 252/**
 253 * eeh_addr_cache_rmv_dev - remove pci device from addr cache
 254 * @dev: device to remove
 255 *
 256 * Remove a device from the addr-cache tree.
 257 * This is potentially expensive, since it will walk
 258 * the tree multiple times (once per resource).
 259 * But so what; device removal doesn't need to be that fast.
 260 */
 261void eeh_addr_cache_rmv_dev(struct pci_dev *dev)
 262{
 263        unsigned long flags;
 264
 265        spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
 266        __eeh_addr_cache_rmv_dev(dev);
 267        spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
 268}
 269
 270/**
 271 * eeh_addr_cache_build - Build a cache of I/O addresses
 272 *
 273 * Build a cache of pci i/o addresses.  This cache will be used to
 274 * find the pci device that corresponds to a given address.
 275 * This routine scans all pci busses to build the cache.
 276 * Must be run late in boot process, after the pci controllers
 277 * have been scanned for devices (after all device resources are known).
 278 */
 279void eeh_addr_cache_build(void)
 280{
 281        struct pci_dn *pdn;
 282        struct eeh_dev *edev;
 283        struct pci_dev *dev = NULL;
 284
 285        spin_lock_init(&pci_io_addr_cache_root.piar_lock);
 286
 287        for_each_pci_dev(dev) {
 288                pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
 289                if (!pdn)
 290                        continue;
 291
 292                edev = pdn_to_eeh_dev(pdn);
 293                if (!edev)
 294                        continue;
 295
 296                dev->dev.archdata.edev = edev;
 297                edev->pdev = dev;
 298
 299                eeh_addr_cache_insert_dev(dev);
 300                eeh_sysfs_add_device(dev);
 301        }
 302
 303#ifdef DEBUG
 304        /* Verify tree built up above, echo back the list of addrs. */
 305        eeh_addr_cache_print(&pci_io_addr_cache_root);
 306#endif
 307}
 308