linux/arch/x86/kernel/cpu/intel.c
<<
>>
Prefs
   1#include <linux/kernel.h>
   2
   3#include <linux/string.h>
   4#include <linux/bitops.h>
   5#include <linux/smp.h>
   6#include <linux/sched.h>
   7#include <linux/thread_info.h>
   8#include <linux/module.h>
   9#include <linux/uaccess.h>
  10
  11#include <asm/processor.h>
  12#include <asm/pgtable.h>
  13#include <asm/msr.h>
  14#include <asm/bugs.h>
  15#include <asm/cpu.h>
  16#include <asm/intel-family.h>
  17#include <asm/hwcap2.h>
  18#include <asm/elf.h>
  19
  20#ifdef CONFIG_X86_64
  21#include <linux/topology.h>
  22#endif
  23
  24#include "cpu.h"
  25
  26#ifdef CONFIG_X86_LOCAL_APIC
  27#include <asm/mpspec.h>
  28#include <asm/apic.h>
  29#endif
  30
  31/*
  32 * Just in case our CPU detection goes bad, or you have a weird system,
  33 * allow a way to override the automatic disabling of MPX.
  34 */
  35static int forcempx;
  36
  37static int __init forcempx_setup(char *__unused)
  38{
  39        forcempx = 1;
  40
  41        return 1;
  42}
  43__setup("intel-skd-046-workaround=disable", forcempx_setup);
  44
  45void check_mpx_erratum(struct cpuinfo_x86 *c)
  46{
  47        if (forcempx)
  48                return;
  49        /*
  50         * Turn off the MPX feature on CPUs where SMEP is not
  51         * available or disabled.
  52         *
  53         * Works around Intel Erratum SKD046: "Branch Instructions
  54         * May Initialize MPX Bound Registers Incorrectly".
  55         *
  56         * This might falsely disable MPX on systems without
  57         * SMEP, like Atom processors without SMEP.  But there
  58         * is no such hardware known at the moment.
  59         */
  60        if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
  61                setup_clear_cpu_cap(X86_FEATURE_MPX);
  62                pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
  63        }
  64}
  65
  66static bool ring3mwait_disabled __read_mostly;
  67
  68static int __init ring3mwait_disable(char *__unused)
  69{
  70        ring3mwait_disabled = true;
  71        return 0;
  72}
  73__setup("ring3mwait=disable", ring3mwait_disable);
  74
  75static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c)
  76{
  77        /*
  78         * Ring 3 MONITOR/MWAIT feature cannot be detected without
  79         * cpu model and family comparison.
  80         */
  81        if (c->x86 != 6)
  82                return;
  83        switch (c->x86_model) {
  84        case INTEL_FAM6_XEON_PHI_KNL:
  85        case INTEL_FAM6_XEON_PHI_KNM:
  86                break;
  87        default:
  88                return;
  89        }
  90
  91        if (ring3mwait_disabled) {
  92                msr_clear_bit(MSR_MISC_FEATURE_ENABLES,
  93                              MSR_MISC_FEATURE_ENABLES_RING3MWAIT_BIT);
  94                return;
  95        }
  96
  97        msr_set_bit(MSR_MISC_FEATURE_ENABLES,
  98                    MSR_MISC_FEATURE_ENABLES_RING3MWAIT_BIT);
  99
 100        set_cpu_cap(c, X86_FEATURE_RING3MWAIT);
 101
 102        if (c == &boot_cpu_data)
 103                ELF_HWCAP2 |= HWCAP2_RING3MWAIT;
 104}
 105
 106static void early_init_intel(struct cpuinfo_x86 *c)
 107{
 108        u64 misc_enable;
 109
 110        /* Unmask CPUID levels if masked: */
 111        if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 112                rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 113
 114                if (misc_enable & MSR_IA32_MISC_ENABLE_LIMIT_CPUID) {
 115                        misc_enable &= ~MSR_IA32_MISC_ENABLE_LIMIT_CPUID;
 116                        wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 117                        c->cpuid_level = cpuid_eax(0);
 118                        get_cpu_cap(c);
 119                }
 120        }
 121
 122        if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 123                (c->x86 == 0x6 && c->x86_model >= 0x0e))
 124                set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 125
 126        if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
 127                unsigned lower_word;
 128
 129                wrmsr(MSR_IA32_UCODE_REV, 0, 0);
 130                /* Required by the SDM */
 131                sync_core();
 132                rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
 133        }
 134
 135        /*
 136         * Atom erratum AAE44/AAF40/AAG38/AAH41:
 137         *
 138         * A race condition between speculative fetches and invalidating
 139         * a large page.  This is worked around in microcode, but we
 140         * need the microcode to have already been loaded... so if it is
 141         * not, recommend a BIOS update and disable large pages.
 142         */
 143        if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
 144            c->microcode < 0x20e) {
 145                printk(KERN_WARNING "Atom PSE erratum detected, BIOS microcode update recommended\n");
 146                clear_cpu_cap(c, X86_FEATURE_PSE);
 147        }
 148
 149#ifdef CONFIG_X86_64
 150        set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 151#else
 152        /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 153        if (c->x86 == 15 && c->x86_cache_alignment == 64)
 154                c->x86_cache_alignment = 128;
 155#endif
 156
 157        /* CPUID workaround for 0F33/0F34 CPU */
 158        if (c->x86 == 0xF && c->x86_model == 0x3
 159            && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
 160                c->x86_phys_bits = 36;
 161
 162        /*
 163         * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 164         * with P/T states and does not stop in deep C-states.
 165         *
 166         * It is also reliable across cores and sockets. (but not across
 167         * cabinets - we turn it off in that case explicitly.)
 168         */
 169        if (c->x86_power & (1 << 8)) {
 170                set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 171                set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 172                if (!check_tsc_unstable())
 173                        set_sched_clock_stable();
 174        }
 175
 176        /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 177        if (c->x86 == 6) {
 178                switch (c->x86_model) {
 179                case 0x27:      /* Penwell */
 180                case 0x35:      /* Cloverview */
 181                        set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
 182                        break;
 183                default:
 184                        break;
 185                }
 186        }
 187
 188        /*
 189         * There is a known erratum on Pentium III and Core Solo
 190         * and Core Duo CPUs.
 191         * " Page with PAT set to WC while associated MTRR is UC
 192         *   may consolidate to UC "
 193         * Because of this erratum, it is better to stick with
 194         * setting WC in MTRR rather than using PAT on these CPUs.
 195         *
 196         * Enable PAT WC only on P4, Core 2 or later CPUs.
 197         */
 198        if (c->x86 == 6 && c->x86_model < 15)
 199                clear_cpu_cap(c, X86_FEATURE_PAT);
 200
 201#ifdef CONFIG_KMEMCHECK
 202        /*
 203         * P4s have a "fast strings" feature which causes single-
 204         * stepping REP instructions to only generate a #DB on
 205         * cache-line boundaries.
 206         *
 207         * Ingo Molnar reported a Pentium D (model 6) and a Xeon
 208         * (model 2) with the same problem.
 209         */
 210        if (c->x86 == 15) {
 211                rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 212
 213                if (misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING) {
 214                        printk(KERN_INFO "kmemcheck: Disabling fast string operations\n");
 215
 216                        misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
 217                        wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 218                }
 219        }
 220#endif
 221
 222        /*
 223         * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
 224         * clear the fast string and enhanced fast string CPU capabilities.
 225         */
 226        if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 227                rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
 228                if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
 229                        printk(KERN_INFO "Disabled fast string operations\n");
 230                        setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
 231                        setup_clear_cpu_cap(X86_FEATURE_ERMS);
 232                }
 233        }
 234
 235        if (c->cpuid_level >= 0x00000001) {
 236                u32 eax, ebx, ecx, edx;
 237
 238                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 239                /*
 240                 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
 241                 * apicids which are reserved per package. Store the resulting
 242                 * shift value for the package management code.
 243                 */
 244                if (edx & (1U << 28))
 245                        c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
 246        }
 247
 248        check_mpx_erratum(c);
 249}
 250
 251#ifdef CONFIG_X86_32
 252/*
 253 *      Early probe support logic for ppro memory erratum #50
 254 *
 255 *      This is called before we do cpu ident work
 256 */
 257
 258int ppro_with_ram_bug(void)
 259{
 260        /* Uses data from early_cpu_detect now */
 261        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
 262            boot_cpu_data.x86 == 6 &&
 263            boot_cpu_data.x86_model == 1 &&
 264            boot_cpu_data.x86_mask < 8) {
 265                printk(KERN_INFO "Pentium Pro with Errata#50 detected. Taking evasive action.\n");
 266                return 1;
 267        }
 268        return 0;
 269}
 270
 271static void intel_smp_check(struct cpuinfo_x86 *c)
 272{
 273        /* calling is from identify_secondary_cpu() ? */
 274        if (!c->cpu_index)
 275                return;
 276
 277        /*
 278         * Mask B, Pentium, but not Pentium MMX
 279         */
 280        if (c->x86 == 5 &&
 281            c->x86_mask >= 1 && c->x86_mask <= 4 &&
 282            c->x86_model <= 3) {
 283                /*
 284                 * Remember we have B step Pentia with bugs
 285                 */
 286                WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
 287                                    "with B stepping processors.\n");
 288        }
 289}
 290
 291static void intel_workarounds(struct cpuinfo_x86 *c)
 292{
 293        unsigned long lo, hi;
 294
 295#ifdef CONFIG_X86_F00F_BUG
 296        /*
 297         * All current models of Pentium and Pentium with MMX technology CPUs
 298         * have the F0 0F bug, which lets nonprivileged users lock up the
 299         * system. Announce that the fault handler will be checking for it.
 300         */
 301        clear_cpu_bug(c, X86_BUG_F00F);
 302        if (!paravirt_enabled() && c->x86 == 5) {
 303                static int f00f_workaround_enabled;
 304
 305                set_cpu_bug(c, X86_BUG_F00F);
 306                if (!f00f_workaround_enabled) {
 307                        printk(KERN_NOTICE "Intel Pentium with F0 0F bug - workaround enabled.\n");
 308                        f00f_workaround_enabled = 1;
 309                }
 310        }
 311#endif
 312
 313        /*
 314         * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
 315         * model 3 mask 3
 316         */
 317        if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
 318                clear_cpu_cap(c, X86_FEATURE_SEP);
 319
 320        /*
 321         * P4 Xeon errata 037 workaround.
 322         * Hardware prefetcher may cause stale data to be loaded into the cache.
 323         */
 324        if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
 325                rdmsr(MSR_IA32_MISC_ENABLE, lo, hi);
 326                if ((lo & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE) == 0) {
 327                        printk (KERN_INFO "CPU: C0 stepping P4 Xeon detected.\n");
 328                        printk (KERN_INFO "CPU: Disabling hardware prefetching (Errata 037)\n");
 329                        lo |= MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE;
 330                        wrmsr(MSR_IA32_MISC_ENABLE, lo, hi);
 331                }
 332        }
 333
 334        /*
 335         * See if we have a good local APIC by checking for buggy Pentia,
 336         * i.e. all B steppings and the C2 stepping of P54C when using their
 337         * integrated APIC (see 11AP erratum in "Pentium Processor
 338         * Specification Update").
 339         */
 340        if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
 341            (c->x86_mask < 0x6 || c->x86_mask == 0xb))
 342                set_cpu_cap(c, X86_FEATURE_11AP);
 343
 344
 345#ifdef CONFIG_X86_INTEL_USERCOPY
 346        /*
 347         * Set up the preferred alignment for movsl bulk memory moves
 348         */
 349        switch (c->x86) {
 350        case 4:         /* 486: untested */
 351                break;
 352        case 5:         /* Old Pentia: untested */
 353                break;
 354        case 6:         /* PII/PIII only like movsl with 8-byte alignment */
 355                movsl_mask.mask = 7;
 356                break;
 357        case 15:        /* P4 is OK down to 8-byte alignment */
 358                movsl_mask.mask = 7;
 359                break;
 360        }
 361#endif
 362
 363#ifdef CONFIG_X86_NUMAQ
 364        numaq_tsc_disable();
 365#endif
 366
 367        intel_smp_check(c);
 368}
 369#else
 370static void intel_workarounds(struct cpuinfo_x86 *c)
 371{
 372}
 373#endif
 374
 375static void srat_detect_node(struct cpuinfo_x86 *c)
 376{
 377#ifdef CONFIG_NUMA
 378        unsigned node;
 379        int cpu = smp_processor_id();
 380
 381        /* Don't do the funky fallback heuristics the AMD version employs
 382           for now. */
 383        node = numa_cpu_node(cpu);
 384        if (node == NUMA_NO_NODE || !node_online(node)) {
 385                /* reuse the value from init_cpu_to_node() */
 386                node = cpu_to_node(cpu);
 387        }
 388        numa_set_node(cpu, node);
 389#endif
 390}
 391
 392/*
 393 * find out the number of processor cores on the die
 394 */
 395static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
 396{
 397        unsigned int eax, ebx, ecx, edx;
 398
 399        if (c->cpuid_level < 4)
 400                return 1;
 401
 402        /* Intel has a non-standard dependency on %ecx for this CPUID level. */
 403        cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 404        if (eax & 0x1f)
 405                return (eax >> 26) + 1;
 406        else
 407                return 1;
 408}
 409
 410static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
 411{
 412        /* Intel VMX MSR indicated features */
 413#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW    0x00200000
 414#define X86_VMX_FEATURE_PROC_CTLS_VNMI          0x00400000
 415#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS      0x80000000
 416#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC    0x00000001
 417#define X86_VMX_FEATURE_PROC_CTLS2_EPT          0x00000002
 418#define X86_VMX_FEATURE_PROC_CTLS2_VPID         0x00000020
 419
 420        u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
 421
 422        clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 423        clear_cpu_cap(c, X86_FEATURE_VNMI);
 424        clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 425        clear_cpu_cap(c, X86_FEATURE_EPT);
 426        clear_cpu_cap(c, X86_FEATURE_VPID);
 427
 428        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
 429        msr_ctl = vmx_msr_high | vmx_msr_low;
 430        if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
 431                set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
 432        if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
 433                set_cpu_cap(c, X86_FEATURE_VNMI);
 434        if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
 435                rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 436                      vmx_msr_low, vmx_msr_high);
 437                msr_ctl2 = vmx_msr_high | vmx_msr_low;
 438                if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
 439                    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
 440                        set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
 441                if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
 442                        set_cpu_cap(c, X86_FEATURE_EPT);
 443                if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
 444                        set_cpu_cap(c, X86_FEATURE_VPID);
 445        }
 446}
 447
 448static void init_intel(struct cpuinfo_x86 *c)
 449{
 450        unsigned int l2 = 0;
 451
 452        early_init_intel(c);
 453
 454        intel_workarounds(c);
 455
 456        /*
 457         * Detect the extended topology information if available. This
 458         * will reinitialise the initial_apicid which will be used
 459         * in init_intel_cacheinfo()
 460         */
 461        detect_extended_topology(c);
 462
 463        l2 = init_intel_cacheinfo(c);
 464        if (c->cpuid_level > 9) {
 465                unsigned eax = cpuid_eax(10);
 466                /* Check for version and the number of counters */
 467                if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
 468                        set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
 469        }
 470
 471        if (cpu_has_xmm2)
 472                set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
 473        if (cpu_has_ds) {
 474                unsigned int l1;
 475                rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
 476                if (!(l1 & (1<<11)))
 477                        set_cpu_cap(c, X86_FEATURE_BTS);
 478                if (!(l1 & (1<<12)))
 479                        set_cpu_cap(c, X86_FEATURE_PEBS);
 480        }
 481
 482        if (c->x86 == 6 && cpu_has_clflush &&
 483            (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
 484                set_cpu_cap(c, X86_FEATURE_CLFLUSH_MONITOR);
 485
 486#ifdef CONFIG_X86_64
 487        if (c->x86 == 15)
 488                c->x86_cache_alignment = c->x86_clflush_size * 2;
 489        if (c->x86 == 6)
 490                set_cpu_cap(c, X86_FEATURE_REP_GOOD);
 491#else
 492        /*
 493         * Names for the Pentium II/Celeron processors
 494         * detectable only by also checking the cache size.
 495         * Dixon is NOT a Celeron.
 496         */
 497        if (c->x86 == 6) {
 498                char *p = NULL;
 499
 500                switch (c->x86_model) {
 501                case 5:
 502                        if (l2 == 0)
 503                                p = "Celeron (Covington)";
 504                        else if (l2 == 256)
 505                                p = "Mobile Pentium II (Dixon)";
 506                        break;
 507
 508                case 6:
 509                        if (l2 == 128)
 510                                p = "Celeron (Mendocino)";
 511                        else if (c->x86_mask == 0 || c->x86_mask == 5)
 512                                p = "Celeron-A";
 513                        break;
 514
 515                case 8:
 516                        if (l2 == 128)
 517                                p = "Celeron (Coppermine)";
 518                        break;
 519                }
 520
 521                if (p)
 522                        strcpy(c->x86_model_id, p);
 523        }
 524
 525        if (c->x86 == 15)
 526                set_cpu_cap(c, X86_FEATURE_P4);
 527        if (c->x86 == 6)
 528                set_cpu_cap(c, X86_FEATURE_P3);
 529#endif
 530
 531        if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
 532                /*
 533                 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
 534                 * detection.
 535                 */
 536                c->x86_max_cores = intel_num_cpu_cores(c);
 537#ifdef CONFIG_X86_32
 538                detect_ht(c);
 539#endif
 540        }
 541
 542        /* Work around errata */
 543        srat_detect_node(c);
 544
 545        if (cpu_has(c, X86_FEATURE_VMX))
 546                detect_vmx_virtcap(c);
 547
 548        /*
 549         * Initialize MSR_IA32_ENERGY_PERF_BIAS if BIOS did not.
 550         * x86_energy_perf_policy(8) is available to change it at run-time
 551         */
 552        if (cpu_has(c, X86_FEATURE_EPB)) {
 553                u64 epb;
 554
 555                rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
 556                if ((epb & 0xF) == ENERGY_PERF_BIAS_PERFORMANCE) {
 557                        pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
 558                        pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
 559                        epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
 560                        wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
 561                }
 562        }
 563
 564        probe_xeon_phi_r3mwait(c);
 565}
 566
 567#ifdef CONFIG_X86_32
 568static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
 569{
 570        /*
 571         * Intel PIII Tualatin. This comes in two flavours.
 572         * One has 256kb of cache, the other 512. We have no way
 573         * to determine which, so we use a boottime override
 574         * for the 512kb model, and assume 256 otherwise.
 575         */
 576        if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
 577                size = 256;
 578        return size;
 579}
 580#endif
 581
 582#define TLB_INST_4K     0x01
 583#define TLB_INST_4M     0x02
 584#define TLB_INST_2M_4M  0x03
 585
 586#define TLB_INST_ALL    0x05
 587#define TLB_INST_1G     0x06
 588
 589#define TLB_DATA_4K     0x11
 590#define TLB_DATA_4M     0x12
 591#define TLB_DATA_2M_4M  0x13
 592#define TLB_DATA_4K_4M  0x14
 593
 594#define TLB_DATA_1G     0x16
 595
 596#define TLB_DATA0_4K    0x21
 597#define TLB_DATA0_4M    0x22
 598#define TLB_DATA0_2M_4M 0x23
 599
 600#define STLB_4K         0x41
 601
 602static const struct _tlb_table intel_tlb_table[] = {
 603        { 0x01, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages, 4-way set associative" },
 604        { 0x02, TLB_INST_4M,            2,      " TLB_INST 4 MByte pages, full associative" },
 605        { 0x03, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way set associative" },
 606        { 0x04, TLB_DATA_4M,            8,      " TLB_DATA 4 MByte pages, 4-way set associative" },
 607        { 0x05, TLB_DATA_4M,            32,     " TLB_DATA 4 MByte pages, 4-way set associative" },
 608        { 0x0b, TLB_INST_4M,            4,      " TLB_INST 4 MByte pages, 4-way set associative" },
 609        { 0x4f, TLB_INST_4K,            32,     " TLB_INST 4 KByte pages */" },
 610        { 0x50, TLB_INST_ALL,           64,     " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 611        { 0x51, TLB_INST_ALL,           128,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 612        { 0x52, TLB_INST_ALL,           256,    " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
 613        { 0x55, TLB_INST_2M_4M,         7,      " TLB_INST 2-MByte or 4-MByte pages, fully associative" },
 614        { 0x56, TLB_DATA0_4M,           16,     " TLB_DATA0 4 MByte pages, 4-way set associative" },
 615        { 0x57, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, 4-way associative" },
 616        { 0x59, TLB_DATA0_4K,           16,     " TLB_DATA0 4 KByte pages, fully associative" },
 617        { 0x5a, TLB_DATA0_2M_4M,        32,     " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
 618        { 0x5b, TLB_DATA_4K_4M,         64,     " TLB_DATA 4 KByte and 4 MByte pages" },
 619        { 0x5c, TLB_DATA_4K_4M,         128,    " TLB_DATA 4 KByte and 4 MByte pages" },
 620        { 0x5d, TLB_DATA_4K_4M,         256,    " TLB_DATA 4 KByte and 4 MByte pages" },
 621        { 0xb0, TLB_INST_4K,            128,    " TLB_INST 4 KByte pages, 4-way set associative" },
 622        { 0xb1, TLB_INST_2M_4M,         4,      " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
 623        { 0xb2, TLB_INST_4K,            64,     " TLB_INST 4KByte pages, 4-way set associative" },
 624        { 0xb3, TLB_DATA_4K,            128,    " TLB_DATA 4 KByte pages, 4-way set associative" },
 625        { 0xb4, TLB_DATA_4K,            256,    " TLB_DATA 4 KByte pages, 4-way associative" },
 626        { 0xba, TLB_DATA_4K,            64,     " TLB_DATA 4 KByte pages, 4-way associative" },
 627        { 0xc0, TLB_DATA_4K_4M,         8,      " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
 628        { 0xca, STLB_4K,                512,    " STLB 4 KByte pages, 4-way associative" },
 629        { 0x00, 0, 0 }
 630};
 631
 632static void intel_tlb_lookup(const unsigned char desc)
 633{
 634        unsigned char k;
 635        if (desc == 0)
 636                return;
 637
 638        /* look up this descriptor in the table */
 639        for (k = 0; intel_tlb_table[k].descriptor != desc && \
 640                        intel_tlb_table[k].descriptor != 0; k++)
 641                ;
 642
 643        if (intel_tlb_table[k].tlb_type == 0)
 644                return;
 645
 646        switch (intel_tlb_table[k].tlb_type) {
 647        case STLB_4K:
 648                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 649                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 650                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 651                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 652                break;
 653        case TLB_INST_ALL:
 654                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 655                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 656                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 657                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 658                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 659                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 660                break;
 661        case TLB_INST_4K:
 662                if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
 663                        tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
 664                break;
 665        case TLB_INST_4M:
 666                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 667                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 668                break;
 669        case TLB_INST_2M_4M:
 670                if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
 671                        tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
 672                if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
 673                        tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
 674                break;
 675        case TLB_DATA_4K:
 676        case TLB_DATA0_4K:
 677                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 678                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 679                break;
 680        case TLB_DATA_4M:
 681        case TLB_DATA0_4M:
 682                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 683                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 684                break;
 685        case TLB_DATA_2M_4M:
 686        case TLB_DATA0_2M_4M:
 687                if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
 688                        tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
 689                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 690                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 691                break;
 692        case TLB_DATA_4K_4M:
 693                if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
 694                        tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
 695                if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
 696                        tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
 697                break;
 698        }
 699}
 700
 701static void intel_tlb_flushall_shift_set(struct cpuinfo_x86 *c)
 702{
 703        switch ((c->x86 << 8) + c->x86_model) {
 704        case 0x60f: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
 705        case 0x616: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
 706        case 0x617: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
 707        case 0x61d: /* six-core 45 nm xeon "Dunnington" */
 708                tlb_flushall_shift = -1;
 709                break;
 710        case 0x63a: /* Ivybridge */
 711                tlb_flushall_shift = 2;
 712                break;
 713        case 0x61a: /* 45 nm nehalem, "Bloomfield" */
 714        case 0x61e: /* 45 nm nehalem, "Lynnfield" */
 715        case 0x625: /* 32 nm nehalem, "Clarkdale" */
 716        case 0x62c: /* 32 nm nehalem, "Gulftown" */
 717        case 0x62e: /* 45 nm nehalem-ex, "Beckton" */
 718        case 0x62f: /* 32 nm Xeon E7 */
 719        case 0x62a: /* SandyBridge */
 720        case 0x62d: /* SandyBridge, "Romely-EP" */
 721        default:
 722                tlb_flushall_shift = 6;
 723        }
 724}
 725
 726static void intel_detect_tlb(struct cpuinfo_x86 *c)
 727{
 728        int i, j, n;
 729        unsigned int regs[4];
 730        unsigned char *desc = (unsigned char *)regs;
 731
 732        if (c->cpuid_level < 2)
 733                return;
 734
 735        /* Number of times to iterate */
 736        n = cpuid_eax(2) & 0xFF;
 737
 738        for (i = 0 ; i < n ; i++) {
 739                cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
 740
 741                /* If bit 31 is set, this is an unknown format */
 742                for (j = 0 ; j < 3 ; j++)
 743                        if (regs[j] & (1 << 31))
 744                                regs[j] = 0;
 745
 746                /* Byte 0 is level count, not a descriptor */
 747                for (j = 1 ; j < 16 ; j++)
 748                        intel_tlb_lookup(desc[j]);
 749        }
 750        intel_tlb_flushall_shift_set(c);
 751}
 752
 753static const struct cpu_dev intel_cpu_dev = {
 754        .c_vendor       = "Intel",
 755        .c_ident        = { "GenuineIntel" },
 756#ifdef CONFIG_X86_32
 757        .c_models = {
 758                { .vendor = X86_VENDOR_INTEL, .family = 4, .model_names =
 759                  {
 760                          [0] = "486 DX-25/33",
 761                          [1] = "486 DX-50",
 762                          [2] = "486 SX",
 763                          [3] = "486 DX/2",
 764                          [4] = "486 SL",
 765                          [5] = "486 SX/2",
 766                          [7] = "486 DX/2-WB",
 767                          [8] = "486 DX/4",
 768                          [9] = "486 DX/4-WB"
 769                  }
 770                },
 771                { .vendor = X86_VENDOR_INTEL, .family = 5, .model_names =
 772                  {
 773                          [0] = "Pentium 60/66 A-step",
 774                          [1] = "Pentium 60/66",
 775                          [2] = "Pentium 75 - 200",
 776                          [3] = "OverDrive PODP5V83",
 777                          [4] = "Pentium MMX",
 778                          [7] = "Mobile Pentium 75 - 200",
 779                          [8] = "Mobile Pentium MMX"
 780                  }
 781                },
 782                { .vendor = X86_VENDOR_INTEL, .family = 6, .model_names =
 783                  {
 784                          [0] = "Pentium Pro A-step",
 785                          [1] = "Pentium Pro",
 786                          [3] = "Pentium II (Klamath)",
 787                          [4] = "Pentium II (Deschutes)",
 788                          [5] = "Pentium II (Deschutes)",
 789                          [6] = "Mobile Pentium II",
 790                          [7] = "Pentium III (Katmai)",
 791                          [8] = "Pentium III (Coppermine)",
 792                          [10] = "Pentium III (Cascades)",
 793                          [11] = "Pentium III (Tualatin)",
 794                  }
 795                },
 796                { .vendor = X86_VENDOR_INTEL, .family = 15, .model_names =
 797                  {
 798                          [0] = "Pentium 4 (Unknown)",
 799                          [1] = "Pentium 4 (Willamette)",
 800                          [2] = "Pentium 4 (Northwood)",
 801                          [4] = "Pentium 4 (Foster)",
 802                          [5] = "Pentium 4 (Foster)",
 803                  }
 804                },
 805        },
 806        .c_size_cache   = intel_size_cache,
 807#endif
 808        .c_detect_tlb   = intel_detect_tlb,
 809        .c_early_init   = early_init_intel,
 810        .c_init         = init_intel,
 811        .c_x86_vendor   = X86_VENDOR_INTEL,
 812};
 813
 814cpu_dev_register(intel_cpu_dev);
 815
 816