linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *      David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/module.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53#include <linux/security.h>
  54
  55#include <linux/errno.h>
  56#include <linux/kernel.h>
  57#include <linux/stddef.h>
  58#include <linux/unistd.h>
  59#include <linux/ptrace.h>
  60#include <linux/user.h>
  61#include <linux/delay.h>
  62
  63#include <linux/kallsyms.h>
  64#include <linux/cpufreq.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/ctype.h>
  67#include <linux/uaccess.h>
  68
  69#include <linux/percpu.h>
  70#include <linux/crash_dump.h>
  71#include <linux/tboot.h>
  72#include <linux/jiffies.h>
  73#include <linux/cpumask.h>
  74
  75#include <video/edid.h>
  76
  77#include <asm/mtrr.h>
  78#include <asm/apic.h>
  79#include <asm/realmode.h>
  80#include <asm/e820.h>
  81#include <asm/mpspec.h>
  82#include <asm/setup.h>
  83#include <asm/efi.h>
  84#include <asm/timer.h>
  85#include <asm/i8259.h>
  86#include <asm/sections.h>
  87#include <asm/io_apic.h>
  88#include <asm/ist.h>
  89#include <asm/setup_arch.h>
  90#include <asm/bios_ebda.h>
  91#include <asm/cacheflush.h>
  92#include <asm/processor.h>
  93#include <asm/bugs.h>
  94
  95#include <asm/vsyscall.h>
  96#include <asm/cpu.h>
  97#include <asm/desc.h>
  98#include <asm/dma.h>
  99#include <asm/iommu.h>
 100#include <asm/gart.h>
 101#include <asm/mmu_context.h>
 102#include <asm/proto.h>
 103
 104#include <asm/paravirt.h>
 105#include <asm/hypervisor.h>
 106#include <asm/olpc_ofw.h>
 107
 108#include <asm/percpu.h>
 109#include <asm/topology.h>
 110#include <asm/apicdef.h>
 111#include <asm/amd_nb.h>
 112#include <asm/mce.h>
 113#include <asm/alternative.h>
 114#include <asm/prom.h>
 115#include <asm/microcode.h>
 116#include <asm/kaslr.h>
 117
 118/*
 119 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 120 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 121 *
 122 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
 123 * represented by pfn_mapped
 124 */
 125unsigned long max_low_pfn_mapped;
 126unsigned long max_pfn_mapped;
 127
 128#ifdef CONFIG_DMI
 129RESERVE_BRK(dmi_alloc, 65536);
 130#endif
 131
 132
 133static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 134unsigned long _brk_end = (unsigned long)__brk_base;
 135
 136#ifdef CONFIG_X86_64
 137int default_cpu_present_to_apicid(int mps_cpu)
 138{
 139        return __default_cpu_present_to_apicid(mps_cpu);
 140}
 141
 142int default_check_phys_apicid_present(int phys_apicid)
 143{
 144        return __default_check_phys_apicid_present(phys_apicid);
 145}
 146#endif
 147
 148struct boot_params boot_params;
 149
 150/*
 151 * Machine setup..
 152 */
 153static struct resource data_resource = {
 154        .name   = "Kernel data",
 155        .start  = 0,
 156        .end    = 0,
 157        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
 158};
 159
 160static struct resource code_resource = {
 161        .name   = "Kernel code",
 162        .start  = 0,
 163        .end    = 0,
 164        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
 165};
 166
 167static struct resource bss_resource = {
 168        .name   = "Kernel bss",
 169        .start  = 0,
 170        .end    = 0,
 171        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
 172};
 173
 174
 175#ifdef CONFIG_X86_32
 176/* cpu data as detected by the assembly code in head.S */
 177struct cpuinfo_x86 new_cpu_data = {
 178        .wp_works_ok = -1,
 179};
 180/* common cpu data for all cpus */
 181struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 182        .wp_works_ok = -1,
 183};
 184EXPORT_SYMBOL(boot_cpu_data);
 185/* KABI immune per_cpu data */
 186struct rh_cpuinfo_x86 rh_boot_cpu_data __read_mostly = {
 187        .x86_cache_max_rmid = -1,
 188        .x86_cache_occ_scale = -1,
 189};
 190EXPORT_SYMBOL(rh_boot_cpu_data);
 191
 192unsigned int def_to_bigsmp;
 193
 194/* for MCA, but anyone else can use it if they want */
 195unsigned int machine_id;
 196unsigned int machine_submodel_id;
 197unsigned int BIOS_revision;
 198
 199struct apm_info apm_info;
 200EXPORT_SYMBOL(apm_info);
 201
 202#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 203        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 204struct ist_info ist_info;
 205EXPORT_SYMBOL(ist_info);
 206#else
 207struct ist_info ist_info;
 208#endif
 209
 210#else
 211struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 212        .x86_phys_bits = MAX_PHYSMEM_BITS,
 213};
 214EXPORT_SYMBOL(boot_cpu_data);
 215/* KABI immune per_cpu data */
 216struct rh_cpuinfo_x86 rh_boot_cpu_data __read_mostly = {
 217        .x86_cache_max_rmid = -1,
 218        .x86_cache_occ_scale = -1,
 219};
 220EXPORT_SYMBOL(rh_boot_cpu_data);
 221#endif
 222
 223
 224#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 225unsigned long mmu_cr4_features;
 226#else
 227unsigned long mmu_cr4_features = X86_CR4_PAE;
 228#endif
 229
 230/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 231int bootloader_type, bootloader_version;
 232
 233/*
 234 * Setup options
 235 */
 236struct screen_info screen_info;
 237EXPORT_SYMBOL(screen_info);
 238struct edid_info edid_info;
 239EXPORT_SYMBOL_GPL(edid_info);
 240
 241extern int root_mountflags;
 242
 243unsigned long saved_video_mode;
 244
 245#define RAMDISK_IMAGE_START_MASK        0x07FF
 246#define RAMDISK_PROMPT_FLAG             0x8000
 247#define RAMDISK_LOAD_FLAG               0x4000
 248
 249static char __initdata command_line[COMMAND_LINE_SIZE];
 250#ifdef CONFIG_CMDLINE_BOOL
 251static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 252#endif
 253
 254#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 255struct edd edd;
 256#ifdef CONFIG_EDD_MODULE
 257EXPORT_SYMBOL(edd);
 258#endif
 259/**
 260 * copy_edd() - Copy the BIOS EDD information
 261 *              from boot_params into a safe place.
 262 *
 263 */
 264static inline void __init copy_edd(void)
 265{
 266     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 267            sizeof(edd.mbr_signature));
 268     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 269     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 270     edd.edd_info_nr = boot_params.eddbuf_entries;
 271}
 272#else
 273static inline void __init copy_edd(void)
 274{
 275}
 276#endif
 277
 278void * __init extend_brk(size_t size, size_t align)
 279{
 280        size_t mask = align - 1;
 281        void *ret;
 282
 283        BUG_ON(_brk_start == 0);
 284        BUG_ON(align & mask);
 285
 286        _brk_end = (_brk_end + mask) & ~mask;
 287        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 288
 289        ret = (void *)_brk_end;
 290        _brk_end += size;
 291
 292        memset(ret, 0, size);
 293
 294        return ret;
 295}
 296
 297#ifdef CONFIG_X86_32
 298static void __init cleanup_highmap(void)
 299{
 300}
 301#endif
 302
 303static void __init reserve_brk(void)
 304{
 305        if (_brk_end > _brk_start)
 306                memblock_reserve(__pa_symbol(_brk_start),
 307                                 _brk_end - _brk_start);
 308
 309        /* Mark brk area as locked down and no longer taking any
 310           new allocations */
 311        _brk_start = 0;
 312}
 313
 314u64 relocated_ramdisk;
 315
 316#ifdef CONFIG_BLK_DEV_INITRD
 317
 318static u64 __init get_ramdisk_image(void)
 319{
 320        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 321
 322        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 323
 324        return ramdisk_image;
 325}
 326static u64 __init get_ramdisk_size(void)
 327{
 328        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 329
 330        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 331
 332        return ramdisk_size;
 333}
 334
 335#define MAX_MAP_CHUNK   (NR_FIX_BTMAPS << PAGE_SHIFT)
 336static void __init relocate_initrd(void)
 337{
 338        /* Assume only end is not page aligned */
 339        u64 ramdisk_image = get_ramdisk_image();
 340        u64 ramdisk_size  = get_ramdisk_size();
 341        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 342        unsigned long slop, clen, mapaddr;
 343        char *p, *q;
 344
 345        /* We need to move the initrd down into directly mapped mem */
 346        relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 347                                                   area_size, PAGE_SIZE);
 348
 349        if (!relocated_ramdisk)
 350                panic("Cannot find place for new RAMDISK of size %lld\n",
 351                      ramdisk_size);
 352
 353        /* Note: this includes all the mem currently occupied by
 354           the initrd, we rely on that fact to keep the data intact. */
 355        memblock_reserve(relocated_ramdisk, area_size);
 356        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 357        initrd_end   = initrd_start + ramdisk_size;
 358        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 359               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 360
 361        q = (char *)initrd_start;
 362
 363        /* Copy the initrd */
 364        while (ramdisk_size) {
 365                slop = ramdisk_image & ~PAGE_MASK;
 366                clen = ramdisk_size;
 367                if (clen > MAX_MAP_CHUNK-slop)
 368                        clen = MAX_MAP_CHUNK-slop;
 369                mapaddr = ramdisk_image & PAGE_MASK;
 370                p = early_memremap(mapaddr, clen+slop);
 371                memcpy(q, p+slop, clen);
 372                early_iounmap(p, clen+slop);
 373                q += clen;
 374                ramdisk_image += clen;
 375                ramdisk_size  -= clen;
 376        }
 377
 378        ramdisk_image = get_ramdisk_image();
 379        ramdisk_size  = get_ramdisk_size();
 380        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 381                " [mem %#010llx-%#010llx]\n",
 382                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 383                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 384}
 385
 386static void __init early_reserve_initrd(void)
 387{
 388        /* Assume only end is not page aligned */
 389        u64 ramdisk_image = get_ramdisk_image();
 390        u64 ramdisk_size  = get_ramdisk_size();
 391        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 392
 393        if (!boot_params.hdr.type_of_loader ||
 394            !ramdisk_image || !ramdisk_size)
 395                return;         /* No initrd provided by bootloader */
 396
 397        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 398}
 399static void __init reserve_initrd(void)
 400{
 401        /* Assume only end is not page aligned */
 402        u64 ramdisk_image = get_ramdisk_image();
 403        u64 ramdisk_size  = get_ramdisk_size();
 404        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 405        u64 mapped_size;
 406
 407        if (!boot_params.hdr.type_of_loader ||
 408            !ramdisk_image || !ramdisk_size)
 409                return;         /* No initrd provided by bootloader */
 410
 411        initrd_start = 0;
 412
 413        mapped_size = memblock_mem_size(max_pfn_mapped);
 414        if (ramdisk_size >= (mapped_size>>1))
 415                panic("initrd too large to handle, "
 416                       "disabling initrd (%lld needed, %lld available)\n",
 417                       ramdisk_size, mapped_size>>1);
 418
 419        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 420                        ramdisk_end - 1);
 421
 422        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 423                                PFN_DOWN(ramdisk_end))) {
 424                /* All are mapped, easy case */
 425                initrd_start = ramdisk_image + PAGE_OFFSET;
 426                initrd_end = initrd_start + ramdisk_size;
 427                return;
 428        }
 429
 430        relocate_initrd();
 431
 432        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 433}
 434#else
 435static void __init early_reserve_initrd(void)
 436{
 437}
 438static void __init reserve_initrd(void)
 439{
 440}
 441#endif /* CONFIG_BLK_DEV_INITRD */
 442
 443static void __init parse_setup_data(void)
 444{
 445        struct setup_data *data;
 446        u64 pa_data, pa_next;
 447
 448        pa_data = boot_params.hdr.setup_data;
 449        while (pa_data) {
 450                u32 data_len, map_len, data_type;
 451
 452                map_len = max(PAGE_SIZE - (pa_data & ~PAGE_MASK),
 453                              (u64)sizeof(struct setup_data));
 454                data = early_memremap(pa_data, map_len);
 455                data_len = data->len + sizeof(struct setup_data);
 456                data_type = data->type;
 457                pa_next = data->next;
 458                early_iounmap(data, map_len);
 459
 460                switch (data_type) {
 461                case SETUP_E820_EXT:
 462                        parse_e820_ext(pa_data, data_len);
 463                        break;
 464                case SETUP_DTB:
 465                        add_dtb(pa_data);
 466                        break;
 467                case SETUP_EFI:
 468                        parse_efi_setup(pa_data, data_len);
 469                        break;
 470                default:
 471                        break;
 472                }
 473                pa_data = pa_next;
 474        }
 475}
 476
 477static void __init e820_reserve_setup_data(void)
 478{
 479        struct setup_data *data;
 480        u64 pa_data;
 481        int found = 0;
 482
 483        pa_data = boot_params.hdr.setup_data;
 484        while (pa_data) {
 485                data = early_memremap(pa_data, sizeof(*data));
 486                e820_update_range(pa_data, sizeof(*data)+data->len,
 487                         E820_RAM, E820_RESERVED_KERN);
 488                found = 1;
 489                pa_data = data->next;
 490                early_iounmap(data, sizeof(*data));
 491        }
 492        if (!found)
 493                return;
 494
 495        sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 496        memcpy(&e820_saved, &e820, sizeof(struct e820map));
 497        printk(KERN_INFO "extended physical RAM map:\n");
 498        e820_print_map("reserve setup_data");
 499}
 500
 501static void __init memblock_x86_reserve_range_setup_data(void)
 502{
 503        struct setup_data *data;
 504        u64 pa_data;
 505
 506        pa_data = boot_params.hdr.setup_data;
 507        while (pa_data) {
 508                data = early_memremap(pa_data, sizeof(*data));
 509                memblock_reserve(pa_data, sizeof(*data) + data->len);
 510                pa_data = data->next;
 511                early_iounmap(data, sizeof(*data));
 512        }
 513}
 514
 515/*
 516 * --------- Crashkernel reservation ------------------------------
 517 */
 518
 519#ifdef CONFIG_KEXEC_CORE
 520
 521/* 16M alignment for crash kernel regions */
 522#define CRASH_ALIGN            (16 << 20)
 523
 524/*
 525 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 526 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 527 * On 64bit, old kexec-tools need to under 896MiB.
 528 */
 529#ifdef CONFIG_X86_32
 530# define CRASH_ADDR_LOW_MAX     (512 << 20)
 531# define CRASH_ADDR_HIGH_MAX    (512 << 20)
 532#else
 533# define CRASH_ADDR_LOW_MAX     (896UL << 20)
 534# define CRASH_ADDR_HIGH_MAX    MAXMEM
 535#endif
 536
 537static int __init reserve_crashkernel_low(void)
 538{
 539#ifdef CONFIG_X86_64
 540        unsigned long long base, low_base = 0, low_size = 0;
 541        unsigned long total_low_mem;
 542        int ret;
 543
 544        total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 545
 546        /* crashkernel=Y,low */
 547        ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 548        if (ret) {
 549                /*
 550                 * two parts from lib/swiotlb.c:
 551                 * -swiotlb size: user-specified with swiotlb= or default.
 552                 *
 553                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 554                 * to 8M for other buffers that may need to stay low too. Also
 555                 * make sure we allocate enough extra low memory so that we
 556                 * don't run out of DMA buffers for 32-bit devices.
 557                 */
 558                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 559        } else {
 560                /* passed with crashkernel=0,low ? */
 561                if (!low_size)
 562                        return 0;
 563        }
 564
 565        low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
 566        if (!low_base) {
 567                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 568                       (unsigned long)(low_size >> 20));
 569                return -ENOMEM;
 570        }
 571
 572        ret = memblock_reserve(low_base, low_size);
 573        if (ret) {
 574                pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 575                return ret;
 576        }
 577
 578        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 579                (unsigned long)(low_size >> 20),
 580                (unsigned long)(low_base >> 20),
 581                (unsigned long)(total_low_mem >> 20));
 582
 583        crashk_low_res.start = low_base;
 584        crashk_low_res.end   = low_base + low_size - 1;
 585        insert_resource(&iomem_resource, &crashk_low_res);
 586#endif
 587        return 0;
 588}
 589
 590static void __init reserve_crashkernel(void)
 591{
 592        unsigned long long crash_size, crash_base, total_mem;
 593        bool high = false;
 594        int ret;
 595
 596        total_mem = memblock_phys_mem_size();
 597
 598        /* crashkernel=XM */
 599        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 600        if (ret != 0 || crash_size <= 0) {
 601                /* crashkernel=X,high */
 602                ret = parse_crashkernel_high(boot_command_line, total_mem,
 603                                             &crash_size, &crash_base);
 604                if (ret != 0 || crash_size <= 0)
 605                        return;
 606                high = true;
 607        }
 608
 609        /* 0 means: find the address automatically */
 610        if (crash_base <= 0) {
 611                /*
 612                 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
 613                 */
 614                crash_base = memblock_find_in_range(CRASH_ALIGN,
 615                                                    high ? CRASH_ADDR_HIGH_MAX
 616                                                         : CRASH_ADDR_LOW_MAX,
 617                                                    crash_size, CRASH_ALIGN);
 618#ifdef CONFIG_X86_64
 619                /*
 620                 * crashkernel=X reserve below 896M fails? Try below 4G
 621                 */
 622                if (!high && !crash_base)
 623                        crash_base = memblock_find_in_range(CRASH_ALIGN,
 624                                                (1ULL << 32),
 625                                                crash_size, CRASH_ALIGN);
 626                /*
 627                 * crashkernel=X reserve below 4G fails? Try MAXMEM
 628                 */
 629                if (!high && !crash_base)
 630                        crash_base = memblock_find_in_range(CRASH_ALIGN,
 631                                                CRASH_ADDR_HIGH_MAX,
 632                                                crash_size, CRASH_ALIGN);
 633#endif
 634                if (!crash_base) {
 635                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 636                        return;
 637                }
 638
 639        } else {
 640                unsigned long long start;
 641
 642                start = memblock_find_in_range(crash_base,
 643                                               crash_base + crash_size,
 644                                               crash_size, 1 << 20);
 645                if (start != crash_base) {
 646                        pr_info("crashkernel reservation failed - memory is in use.\n");
 647                        return;
 648                }
 649        }
 650        ret = memblock_reserve(crash_base, crash_size);
 651        if (ret) {
 652                pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 653                return;
 654        }
 655
 656        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 657                memblock_free(crash_base, crash_size);
 658                return;
 659        }
 660
 661        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 662                (unsigned long)(crash_size >> 20),
 663                (unsigned long)(crash_base >> 20),
 664                (unsigned long)(total_mem >> 20));
 665
 666        crashk_res.start = crash_base;
 667        crashk_res.end   = crash_base + crash_size - 1;
 668        insert_resource(&iomem_resource, &crashk_res);
 669}
 670#else
 671static void __init reserve_crashkernel(void)
 672{
 673}
 674#endif
 675
 676static struct resource standard_io_resources[] = {
 677        { .name = "dma1", .start = 0x00, .end = 0x1f,
 678                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 679        { .name = "pic1", .start = 0x20, .end = 0x21,
 680                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 681        { .name = "timer0", .start = 0x40, .end = 0x43,
 682                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 683        { .name = "timer1", .start = 0x50, .end = 0x53,
 684                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 685        { .name = "keyboard", .start = 0x60, .end = 0x60,
 686                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 687        { .name = "keyboard", .start = 0x64, .end = 0x64,
 688                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 689        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 690                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 691        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 692                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 693        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 694                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 695        { .name = "fpu", .start = 0xf0, .end = 0xff,
 696                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 697};
 698
 699void __init reserve_standard_io_resources(void)
 700{
 701        int i;
 702
 703        /* request I/O space for devices used on all i[345]86 PCs */
 704        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 705                request_resource(&ioport_resource, &standard_io_resources[i]);
 706
 707}
 708
 709static __init void reserve_ibft_region(void)
 710{
 711        unsigned long addr, size = 0;
 712
 713        addr = find_ibft_region(&size);
 714
 715        if (size)
 716                memblock_reserve(addr, size);
 717}
 718
 719static bool __init snb_gfx_workaround_needed(void)
 720{
 721#ifdef CONFIG_PCI
 722        int i;
 723        u16 vendor, devid;
 724        static const __initconst u16 snb_ids[] = {
 725                0x0102,
 726                0x0112,
 727                0x0122,
 728                0x0106,
 729                0x0116,
 730                0x0126,
 731                0x010a,
 732        };
 733
 734        /* Assume no if something weird is going on with PCI */
 735        if (!early_pci_allowed())
 736                return false;
 737
 738        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 739        if (vendor != 0x8086)
 740                return false;
 741
 742        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 743        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 744                if (devid == snb_ids[i])
 745                        return true;
 746#endif
 747
 748        return false;
 749}
 750
 751/*
 752 * Sandy Bridge graphics has trouble with certain ranges, exclude
 753 * them from allocation.
 754 */
 755static void __init trim_snb_memory(void)
 756{
 757        static const __initconst unsigned long bad_pages[] = {
 758                0x20050000,
 759                0x20110000,
 760                0x20130000,
 761                0x20138000,
 762                0x40004000,
 763        };
 764        int i;
 765
 766        if (!snb_gfx_workaround_needed())
 767                return;
 768
 769        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 770
 771        /*
 772         * Reserve all memory below the 1 MB mark that has not
 773         * already been reserved.
 774         */
 775        memblock_reserve(0, 1<<20);
 776        
 777        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 778                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 779                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 780                               bad_pages[i]);
 781        }
 782}
 783
 784/*
 785 * Here we put platform-specific memory range workarounds, i.e.
 786 * memory known to be corrupt or otherwise in need to be reserved on
 787 * specific platforms.
 788 *
 789 * If this gets used more widely it could use a real dispatch mechanism.
 790 */
 791static void __init trim_platform_memory_ranges(void)
 792{
 793        trim_snb_memory();
 794}
 795
 796static void __init trim_bios_range(void)
 797{
 798        /*
 799         * A special case is the first 4Kb of memory;
 800         * This is a BIOS owned area, not kernel ram, but generally
 801         * not listed as such in the E820 table.
 802         *
 803         * This typically reserves additional memory (64KiB by default)
 804         * since some BIOSes are known to corrupt low memory.  See the
 805         * Kconfig help text for X86_RESERVE_LOW.
 806         */
 807        e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
 808
 809        /*
 810         * special case: Some BIOSen report the PC BIOS
 811         * area (640->1Mb) as ram even though it is not.
 812         * take them out.
 813         */
 814        e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
 815
 816        sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 817}
 818
 819/* called before trim_bios_range() to spare extra sanitize */
 820static void __init e820_add_kernel_range(void)
 821{
 822        u64 start = __pa_symbol(_text);
 823        u64 size = __pa_symbol(_end) - start;
 824
 825        /*
 826         * Complain if .text .data and .bss are not marked as E820_RAM and
 827         * attempt to fix it by adding the range. We may have a confused BIOS,
 828         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 829         * exclude kernel range. If we really are running on top non-RAM,
 830         * we will crash later anyways.
 831         */
 832        if (e820_all_mapped(start, start + size, E820_RAM))
 833                return;
 834
 835        pr_warn(".text .data .bss are not marked as E820_RAM!\n");
 836        e820_remove_range(start, size, E820_RAM, 0);
 837        e820_add_region(start, size, E820_RAM);
 838}
 839
 840static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 841
 842static int __init parse_reservelow(char *p)
 843{
 844        unsigned long long size;
 845
 846        if (!p)
 847                return -EINVAL;
 848
 849        size = memparse(p, &p);
 850
 851        if (size < 4096)
 852                size = 4096;
 853
 854        if (size > 640*1024)
 855                size = 640*1024;
 856
 857        reserve_low = size;
 858
 859        return 0;
 860}
 861
 862early_param("reservelow", parse_reservelow);
 863
 864static void __init trim_low_memory_range(void)
 865{
 866        memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 867}
 868        
 869static void rh_check_supported(void)
 870{
 871        /* RHEL7 supports single cpu on guests only */
 872        if (((boot_cpu_data.x86_max_cores * smp_num_siblings) == 1) &&
 873            !x86_hyper && !cpu_has_hypervisor && !is_kdump_kernel()) {
 874                pr_crit("Detected single cpu native boot.\n");
 875                pr_crit("Important:  In Red Hat Enterprise Linux 7, single threaded, single CPU 64-bit physical systems are unsupported by Red Hat. Please contact your Red Hat support representative for a list of certified and supported systems.");
 876        }
 877
 878        /* The RHEL7 kernel does not support this hardware.  The kernel will
 879         * attempt to boot, but no support is given for this hardware */
 880
 881        /* RHEL only supports Intel and AMD processors */
 882        if ((boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) &&
 883            (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)) {
 884                pr_crit("Detected processor %s %s\n",
 885                        boot_cpu_data.x86_vendor_id,
 886                        boot_cpu_data.x86_model_id);
 887                mark_hardware_unsupported("Processor");
 888        }
 889
 890        if ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) &&
 891            (boot_cpu_data.x86 >= 0x17)) {
 892                /* RHEL7 supports model AMD EPYC 7xxx (Naples SP3) */
 893                if (boot_cpu_data.x86 != 0x17 ||
 894                    !strstr(boot_cpu_data.x86_model_id, "AMD EPYC 7")) {
 895                        pr_crit("Detected CPU family %xh model %d\n",
 896                                boot_cpu_data.x86,
 897                                boot_cpu_data.x86_model);
 898                        mark_hardware_unsupported("AMD Processor");
 899                }
 900        }
 901
 902        /* Intel CPU family 6, model greater than 60 */
 903        if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
 904            ((boot_cpu_data.x86 == 6))) {
 905                switch (boot_cpu_data.x86_model) {
 906                case 158: /* Kabylake-H/S */
 907                case 142: /* Kabylake-U/Y */
 908                case 133: /* Knights Mill */
 909                case 95: /* Denverton */
 910                case 94: /* Skylake-S */
 911                case 87: /* Knights Landing */
 912                case 86: /* Broadwell-DE SoC */
 913                case 85: /* Purley */
 914                case 79: /* Broadwell-EP and EX */
 915                case 78: /* Skylake-Y */
 916                case 77: /* Atom Avoton */
 917                case 71: /* Broadwell-H */
 918                case 70: /* Crystal Well */
 919                case 69: /* Haswell ULT */
 920                        break;
 921                default:
 922                        if (boot_cpu_data.x86_model > 63) {
 923                                pr_crit("Detected CPU family %d model %d\n",
 924                                        boot_cpu_data.x86,
 925                                        boot_cpu_data.x86_model);
 926                                mark_hardware_unsupported("Intel Processor");
 927                        }
 928                        break;
 929                }
 930        }
 931
 932        /*
 933         * Due to the complexity of x86 lapic & ioapic enumeration, and PCI IRQ
 934         * routing, ACPI is required for x86.  acpi=off is a valid debug kernel
 935         * parameter, so just print out a loud warning in case something
 936         * goes wrong (which is most of the time).
 937         */
 938        if (acpi_disabled && !x86_hyper && !cpu_has_hypervisor)
 939                pr_crit("ACPI has been disabled or is not available on this hardware.  This may result in a single cpu boot, incorrect PCI IRQ routing, or boot failure.\n");
 940}
 941
 942/*
 943 * Dump out kernel offset information on panic.
 944 */
 945static int
 946dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 947{
 948        if (kaslr_enabled()) {
 949                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 950                         kaslr_offset(),
 951                         __START_KERNEL,
 952                         __START_KERNEL_map,
 953                         MODULES_VADDR-1);
 954        } else {
 955                pr_emerg("Kernel Offset: disabled\n");
 956        }
 957
 958        return 0;
 959}
 960
 961/*
 962 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 963 * passed the efi memmap, systab, etc., so we should use these data structures
 964 * for initialization.  Note, the efi init code path is determined by the
 965 * global efi_enabled. This allows the same kernel image to be used on existing
 966 * systems (with a traditional BIOS) as well as on EFI systems.
 967 */
 968/*
 969 * setup_arch - architecture-specific boot-time initializations
 970 *
 971 * Note: On x86_64, fixmaps are ready for use even before this is called.
 972 */
 973
 974void __init setup_arch(char **cmdline_p)
 975{
 976        memblock_reserve(__pa_symbol(_text),
 977                         (unsigned long)__bss_stop - (unsigned long)_text);
 978
 979        early_reserve_initrd();
 980
 981        /*
 982         * At this point everything still needed from the boot loader
 983         * or BIOS or kernel text should be early reserved or marked not
 984         * RAM in e820. All other memory is free game.
 985         */
 986
 987#ifdef CONFIG_X86_32
 988        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 989        visws_early_detect();
 990
 991        /*
 992         * copy kernel address range established so far and switch
 993         * to the proper swapper page table
 994         */
 995        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 996                        initial_page_table + KERNEL_PGD_BOUNDARY,
 997                        KERNEL_PGD_PTRS);
 998
 999        load_cr3(swapper_pg_dir);
1000        __flush_tlb_all();
1001#else
1002        printk(KERN_INFO "Command line: %s\n", boot_command_line);
1003#endif
1004
1005        /*
1006         * If we have OLPC OFW, we might end up relocating the fixmap due to
1007         * reserve_top(), so do this before touching the ioremap area.
1008         */
1009        olpc_ofw_detect();
1010
1011        early_trap_init();
1012        early_cpu_init();
1013        early_ioremap_init();
1014
1015        setup_olpc_ofw_pgd();
1016
1017        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
1018        screen_info = boot_params.screen_info;
1019        edid_info = boot_params.edid_info;
1020#ifdef CONFIG_X86_32
1021        apm_info.bios = boot_params.apm_bios_info;
1022        ist_info = boot_params.ist_info;
1023        if (boot_params.sys_desc_table.length != 0) {
1024                machine_id = boot_params.sys_desc_table.table[0];
1025                machine_submodel_id = boot_params.sys_desc_table.table[1];
1026                BIOS_revision = boot_params.sys_desc_table.table[2];
1027        }
1028#endif
1029        saved_video_mode = boot_params.hdr.vid_mode;
1030        bootloader_type = boot_params.hdr.type_of_loader;
1031        if ((bootloader_type >> 4) == 0xe) {
1032                bootloader_type &= 0xf;
1033                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
1034        }
1035        bootloader_version  = bootloader_type & 0xf;
1036        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
1037
1038#ifdef CONFIG_BLK_DEV_RAM
1039        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
1040        rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
1041        rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
1042#endif
1043#ifdef CONFIG_EFI
1044        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
1045                     "EL32", 4)) {
1046                set_bit(EFI_BOOT, &x86_efi_facility);
1047        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
1048                     "EL64", 4)) {
1049                set_bit(EFI_BOOT, &x86_efi_facility);
1050                set_bit(EFI_64BIT, &x86_efi_facility);
1051        }
1052
1053        if (efi_enabled(EFI_BOOT))
1054                efi_memblock_x86_reserve_range();
1055#endif
1056
1057        x86_init.oem.arch_setup();
1058
1059        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
1060        setup_memory_map();
1061        parse_setup_data();
1062
1063        copy_edd();
1064
1065        if (!boot_params.hdr.root_flags)
1066                root_mountflags &= ~MS_RDONLY;
1067        init_mm.start_code = (unsigned long) _text;
1068        init_mm.end_code = (unsigned long) _etext;
1069        init_mm.end_data = (unsigned long) _edata;
1070        init_mm.brk = _brk_end;
1071
1072        mpx_mm_init(&init_mm);
1073
1074        code_resource.start = __pa_symbol(_text);
1075        code_resource.end = __pa_symbol(_etext)-1;
1076        data_resource.start = __pa_symbol(_etext);
1077        data_resource.end = __pa_symbol(_edata)-1;
1078        bss_resource.start = __pa_symbol(__bss_start);
1079        bss_resource.end = __pa_symbol(__bss_stop)-1;
1080
1081#ifdef CONFIG_CMDLINE_BOOL
1082#ifdef CONFIG_CMDLINE_OVERRIDE
1083        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1084#else
1085        if (builtin_cmdline[0]) {
1086                /* append boot loader cmdline to builtin */
1087                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
1088                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
1089                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
1090        }
1091#endif
1092#endif
1093
1094        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
1095        *cmdline_p = command_line;
1096
1097        /*
1098         * x86_configure_nx() is called before parse_early_param() to detect
1099         * whether hardware doesn't support NX (so that the early EHCI debug
1100         * console setup can safely call set_fixmap()). It may then be called
1101         * again from within noexec_setup() during parsing early parameters
1102         * to honor the respective command line option.
1103         */
1104        x86_configure_nx();
1105
1106        parse_early_param();
1107
1108        x86_report_nx();
1109
1110        /* after early param, so could get panic from serial */
1111        memblock_x86_reserve_range_setup_data();
1112
1113        if (acpi_mps_check()) {
1114#ifdef CONFIG_X86_LOCAL_APIC
1115                disable_apic = 1;
1116#endif
1117                setup_clear_cpu_cap(X86_FEATURE_APIC);
1118        }
1119
1120#ifdef CONFIG_PCI
1121        if (pci_early_dump_regs)
1122                early_dump_pci_devices();
1123#endif
1124
1125        /* update the e820_saved too */
1126        e820_reserve_setup_data();
1127        finish_e820_parsing();
1128
1129        if (efi_enabled(EFI_BOOT))
1130                efi_init();
1131
1132        dmi_scan_machine();
1133        dmi_memdev_walk();
1134        dmi_set_dump_stack_arch_desc();
1135
1136        /*
1137         * VMware detection requires dmi to be available, so this
1138         * needs to be done after dmi_scan_machine, for the BP.
1139         */
1140        init_hypervisor_platform();
1141
1142        x86_init.resources.probe_roms();
1143
1144        /* after parse_early_param, so could debug it */
1145        insert_resource(&iomem_resource, &code_resource);
1146        insert_resource(&iomem_resource, &data_resource);
1147        insert_resource(&iomem_resource, &bss_resource);
1148
1149        e820_add_kernel_range();
1150        trim_bios_range();
1151#ifdef CONFIG_X86_32
1152        if (ppro_with_ram_bug()) {
1153                e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1154                                  E820_RESERVED);
1155                sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
1156                printk(KERN_INFO "fixed physical RAM map:\n");
1157                e820_print_map("bad_ppro");
1158        }
1159#else
1160        early_gart_iommu_check();
1161#endif
1162
1163        /*
1164         * partially used pages are not usable - thus
1165         * we are rounding upwards:
1166         */
1167        max_pfn = e820_end_of_ram_pfn();
1168
1169        /* update e820 for memory not covered by WB MTRRs */
1170        mtrr_bp_init();
1171        if (mtrr_trim_uncached_memory(max_pfn))
1172                max_pfn = e820_end_of_ram_pfn();
1173
1174        max_possible_pfn = max_pfn;
1175
1176        /*
1177         * Define random base addresses for memory sections after max_pfn is
1178         * defined and before each memory section base is used.
1179         */
1180        kernel_randomize_memory();
1181
1182#ifdef CONFIG_X86_32
1183        /* max_low_pfn get updated here */
1184        find_low_pfn_range();
1185#else
1186        num_physpages = max_pfn;
1187
1188        check_x2apic();
1189
1190        /* How many end-of-memory variables you have, grandma! */
1191        /* need this before calling reserve_initrd */
1192        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1193                max_low_pfn = e820_end_of_low_ram_pfn();
1194        else
1195                max_low_pfn = max_pfn;
1196
1197        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1198#endif
1199
1200        /*
1201         * Find and reserve possible boot-time SMP configuration:
1202         */
1203        find_smp_config();
1204
1205        reserve_ibft_region();
1206
1207        early_alloc_pgt_buf();
1208
1209        /*
1210         * Need to conclude brk, before memblock_x86_fill()
1211         *  it could use memblock_find_in_range, could overlap with
1212         *  brk area.
1213         */
1214        reserve_brk();
1215
1216        cleanup_highmap();
1217
1218        memblock_set_current_limit(ISA_END_ADDRESS);
1219        memblock_x86_fill();
1220
1221        if (efi_enabled(EFI_BOOT))
1222                efi_find_mirror();
1223
1224        /*
1225         * The EFI specification says that boot service code won't be called
1226         * after ExitBootServices(). This is, in fact, a lie.
1227         */
1228        if (efi_enabled(EFI_MEMMAP))
1229                efi_reserve_boot_services();
1230
1231        /* preallocate 4k for mptable mpc */
1232        early_reserve_e820_mpc_new();
1233
1234#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1235        setup_bios_corruption_check();
1236#endif
1237
1238#ifdef CONFIG_X86_32
1239        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1240                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1241#endif
1242
1243        reserve_real_mode();
1244
1245        trim_platform_memory_ranges();
1246        trim_low_memory_range();
1247
1248        init_mem_mapping();
1249
1250        early_trap_pf_init();
1251
1252        setup_real_mode();
1253
1254        memblock_set_current_limit(get_max_mapped());
1255        dma_contiguous_reserve(0);
1256
1257        /*
1258         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1259         */
1260
1261#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1262        if (init_ohci1394_dma_early)
1263                init_ohci1394_dma_on_all_controllers();
1264#endif
1265        /* Allocate bigger log buffer */
1266        setup_log_buf(1);
1267
1268#ifdef CONFIG_EFI_SECURE_BOOT_SECURELEVEL
1269        if (boot_params.secure_boot) {
1270                set_bit(EFI_SECURE_BOOT, &x86_efi_facility);
1271                set_securelevel(1);
1272                pr_info("Secure boot enabled\n");
1273        }
1274#endif
1275
1276        reserve_initrd();
1277
1278#if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD)
1279        acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start);
1280#endif
1281
1282        vsmp_init();
1283
1284        io_delay_init();
1285
1286        /*
1287         * Parse the ACPI tables for possible boot-time SMP configuration.
1288         */
1289        acpi_boot_table_init();
1290
1291        early_acpi_boot_init();
1292
1293        initmem_init();
1294
1295        /*
1296         * Reserve memory for crash kernel after SRAT is parsed so that it
1297         * won't consume hotpluggable memory.
1298         */
1299        reserve_crashkernel();
1300
1301        memblock_find_dma_reserve();
1302
1303#ifdef CONFIG_KVM_GUEST
1304        kvmclock_init();
1305#endif
1306
1307        x86_init.paging.pagetable_init();
1308
1309        if (boot_cpu_data.cpuid_level >= 0) {
1310                /* A CPU has %cr4 if and only if it has CPUID */
1311                mmu_cr4_features = read_cr4();
1312                if (trampoline_cr4_features)
1313                        *trampoline_cr4_features = mmu_cr4_features;
1314        }
1315
1316#ifdef CONFIG_X86_32
1317        /* sync back kernel address range */
1318        clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1319                        swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1320                        KERNEL_PGD_PTRS);
1321#endif
1322
1323        tboot_probe();
1324
1325#ifdef CONFIG_X86_64
1326        map_vsyscall();
1327#endif
1328
1329        generic_apic_probe();
1330
1331        early_quirks();
1332
1333        /*
1334         * Read APIC and some other early information from ACPI tables.
1335         */
1336        acpi_boot_init();
1337        sfi_init();
1338        x86_dtb_init();
1339
1340        /*
1341         * get boot-time SMP configuration:
1342         */
1343        if (smp_found_config)
1344                get_smp_config();
1345
1346        /*
1347         * Systems w/o ACPI and mptables might not have it mapped the local
1348         * APIC yet, but prefill_possible_map() might need to access it.
1349         */
1350        init_apic_mappings();
1351
1352        prefill_possible_map();
1353
1354        init_cpu_to_node();
1355
1356        if (x86_io_apic_ops.init)
1357                x86_io_apic_ops.init();
1358
1359        kvm_guest_init();
1360
1361        e820_reserve_resources();
1362        e820_mark_nosave_regions(max_low_pfn);
1363
1364        x86_init.resources.reserve_resources();
1365
1366        e820_setup_gap();
1367
1368#ifdef CONFIG_VT
1369#if defined(CONFIG_VGA_CONSOLE)
1370        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1371                conswitchp = &vga_con;
1372#elif defined(CONFIG_DUMMY_CONSOLE)
1373        conswitchp = &dummy_con;
1374#endif
1375#endif
1376        x86_init.oem.banner();
1377
1378        x86_init.timers.wallclock_init();
1379
1380        mcheck_init();
1381
1382        arch_init_ideal_nops();
1383
1384        register_refined_jiffies(CLOCK_TICK_RATE);
1385
1386#ifdef CONFIG_EFI
1387        if (efi_enabled(EFI_BOOT))
1388                efi_apply_memmap_quirks();
1389#endif
1390
1391        rh_check_supported();
1392}
1393
1394#ifdef CONFIG_X86_32
1395
1396static struct resource video_ram_resource = {
1397        .name   = "Video RAM area",
1398        .start  = 0xa0000,
1399        .end    = 0xbffff,
1400        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1401};
1402
1403void __init i386_reserve_resources(void)
1404{
1405        request_resource(&iomem_resource, &video_ram_resource);
1406        reserve_standard_io_resources();
1407}
1408
1409#endif /* CONFIG_X86_32 */
1410
1411static struct notifier_block kernel_offset_notifier = {
1412        .notifier_call = dump_kernel_offset
1413};
1414
1415static int __init register_kernel_offset_dumper(void)
1416{
1417        atomic_notifier_chain_register(&panic_notifier_list,
1418                                        &kernel_offset_notifier);
1419        return 0;
1420}
1421__initcall(register_kernel_offset_dumper);
1422