linux/arch/x86/mm/init_64.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/x86_64/mm/init.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
   6 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
   7 */
   8
   9#include <linux/signal.h>
  10#include <linux/sched.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/string.h>
  14#include <linux/types.h>
  15#include <linux/ptrace.h>
  16#include <linux/mman.h>
  17#include <linux/mm.h>
  18#include <linux/swap.h>
  19#include <linux/smp.h>
  20#include <linux/init.h>
  21#include <linux/initrd.h>
  22#include <linux/pagemap.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/proc_fs.h>
  26#include <linux/pci.h>
  27#include <linux/pfn.h>
  28#include <linux/poison.h>
  29#include <linux/dma-mapping.h>
  30#include <linux/module.h>
  31#include <linux/memory.h>
  32#include <linux/memory_hotplug.h>
  33#include <linux/memremap.h>
  34#include <linux/nmi.h>
  35#include <linux/gfp.h>
  36#include <linux/kcore.h>
  37
  38#include <asm/processor.h>
  39#include <asm/bios_ebda.h>
  40#include <asm/uaccess.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/e820.h>
  46#include <asm/apic.h>
  47#include <asm/tlb.h>
  48#include <asm/mmu_context.h>
  49#include <asm/proto.h>
  50#include <asm/smp.h>
  51#include <asm/sections.h>
  52#include <asm/kdebug.h>
  53#include <asm/numa.h>
  54#include <asm/cacheflush.h>
  55#include <asm/init.h>
  56#include <asm/uv/uv.h>
  57#include <asm/setup.h>
  58
  59#include "mm_internal.h"
  60
  61#include "ident_map.c"
  62
  63static int __init parse_direct_gbpages_off(char *arg)
  64{
  65        direct_gbpages = 0;
  66        return 0;
  67}
  68early_param("nogbpages", parse_direct_gbpages_off);
  69
  70static int __init parse_direct_gbpages_on(char *arg)
  71{
  72        direct_gbpages = 1;
  73        return 0;
  74}
  75early_param("gbpages", parse_direct_gbpages_on);
  76
  77/*
  78 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  79 * physical space so we can cache the place of the first one and move
  80 * around without checking the pgd every time.
  81 */
  82
  83pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  84EXPORT_SYMBOL_GPL(__supported_pte_mask);
  85
  86int force_personality32;
  87
  88/*
  89 * noexec32=on|off
  90 * Control non executable heap for 32bit processes.
  91 * To control the stack too use noexec=off
  92 *
  93 * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  94 * off  PROT_READ implies PROT_EXEC
  95 */
  96static int __init nonx32_setup(char *str)
  97{
  98        if (!strcmp(str, "on"))
  99                force_personality32 &= ~READ_IMPLIES_EXEC;
 100        else if (!strcmp(str, "off"))
 101                force_personality32 |= READ_IMPLIES_EXEC;
 102        return 1;
 103}
 104__setup("noexec32=", nonx32_setup);
 105
 106/*
 107 * When memory was added/removed make sure all the processes MM have
 108 * suitable PGD entries in the local PGD level page.
 109 */
 110void sync_global_pgds(unsigned long start, unsigned long end, int removed)
 111{
 112        unsigned long addr;
 113
 114        for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 115                const pgd_t *pgd_ref = pgd_offset_k(addr);
 116                struct page *page;
 117
 118                /*
 119                 * When it is called after memory hot remove, pgd_none()
 120                 * returns true. In this case (removed == 1), we must clear
 121                 * the PGD entries in the local PGD level page.
 122                 */
 123                if (pgd_none(*pgd_ref) && !removed)
 124                        continue;
 125
 126                spin_lock(&pgd_lock);
 127                list_for_each_entry(page, &pgd_list, lru) {
 128                        pgd_t *pgd;
 129                        spinlock_t *pgt_lock;
 130
 131                        pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 132                        /* the pgt_lock only for Xen */
 133                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 134                        spin_lock(pgt_lock);
 135
 136                        if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 137                                BUG_ON(pgd_page_vaddr(*pgd)
 138                                       != pgd_page_vaddr(*pgd_ref));
 139
 140                        if (removed) {
 141                                if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
 142                                        pgd_clear(pgd);
 143                        } else {
 144                                if (pgd_none(*pgd))
 145                                        set_pgd(pgd, *pgd_ref);
 146                        }
 147
 148                        spin_unlock(pgt_lock);
 149                }
 150                spin_unlock(&pgd_lock);
 151        }
 152}
 153
 154/*
 155 * NOTE: This function is marked __ref because it calls __init function
 156 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 157 */
 158static __ref void *spp_getpage(void)
 159{
 160        void *ptr;
 161
 162        if (after_bootmem)
 163                ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
 164        else
 165                ptr = alloc_bootmem_pages(PAGE_SIZE);
 166
 167        if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 168                panic("set_pte_phys: cannot allocate page data %s\n",
 169                        after_bootmem ? "after bootmem" : "");
 170        }
 171
 172        pr_debug("spp_getpage %p\n", ptr);
 173
 174        return ptr;
 175}
 176
 177static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
 178{
 179        if (pgd_none(*pgd)) {
 180                pud_t *pud = (pud_t *)spp_getpage();
 181                pgd_populate(&init_mm, pgd, pud);
 182                if (pud != pud_offset(pgd, 0))
 183                        printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 184                               pud, pud_offset(pgd, 0));
 185        }
 186        return pud_offset(pgd, vaddr);
 187}
 188
 189static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 190{
 191        if (pud_none(*pud)) {
 192                pmd_t *pmd = (pmd_t *) spp_getpage();
 193                pud_populate(&init_mm, pud, pmd);
 194                if (pmd != pmd_offset(pud, 0))
 195                        printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 196                               pmd, pmd_offset(pud, 0));
 197        }
 198        return pmd_offset(pud, vaddr);
 199}
 200
 201static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 202{
 203        if (pmd_none(*pmd)) {
 204                pte_t *pte = (pte_t *) spp_getpage();
 205                pmd_populate_kernel(&init_mm, pmd, pte);
 206                if (pte != pte_offset_kernel(pmd, 0))
 207                        printk(KERN_ERR "PAGETABLE BUG #02!\n");
 208        }
 209        return pte_offset_kernel(pmd, vaddr);
 210}
 211
 212void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 213{
 214        pud_t *pud;
 215        pmd_t *pmd;
 216        pte_t *pte;
 217
 218        pud = pud_page + pud_index(vaddr);
 219        pmd = fill_pmd(pud, vaddr);
 220        pte = fill_pte(pmd, vaddr);
 221
 222        set_pte(pte, new_pte);
 223
 224        /*
 225         * It's enough to flush this one mapping.
 226         * (PGE mappings get flushed as well)
 227         */
 228        __flush_tlb_one(vaddr);
 229}
 230
 231void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 232{
 233        pgd_t *pgd;
 234        pud_t *pud_page;
 235
 236        pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 237
 238        pgd = pgd_offset_k(vaddr);
 239        if (pgd_none(*pgd)) {
 240                printk(KERN_ERR
 241                        "PGD FIXMAP MISSING, it should be setup in head.S!\n");
 242                return;
 243        }
 244        pud_page = (pud_t*)pgd_page_vaddr(*pgd);
 245        set_pte_vaddr_pud(pud_page, vaddr, pteval);
 246}
 247
 248pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 249{
 250        pgd_t *pgd;
 251        pud_t *pud;
 252
 253        pgd = pgd_offset_k(vaddr);
 254        pud = fill_pud(pgd, vaddr);
 255        return fill_pmd(pud, vaddr);
 256}
 257
 258pte_t * __init populate_extra_pte(unsigned long vaddr)
 259{
 260        pmd_t *pmd;
 261
 262        pmd = populate_extra_pmd(vaddr);
 263        return fill_pte(pmd, vaddr);
 264}
 265
 266/*
 267 * Create large page table mappings for a range of physical addresses.
 268 */
 269static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 270                                                pgprot_t prot)
 271{
 272        pgd_t *pgd;
 273        pud_t *pud;
 274        pmd_t *pmd;
 275
 276        BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 277        for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 278                pgd = pgd_offset_k((unsigned long)__va(phys));
 279                if (pgd_none(*pgd)) {
 280                        pud = (pud_t *) spp_getpage();
 281                        set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
 282                                                _PAGE_USER));
 283                }
 284                pud = pud_offset(pgd, (unsigned long)__va(phys));
 285                if (pud_none(*pud)) {
 286                        pmd = (pmd_t *) spp_getpage();
 287                        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 288                                                _PAGE_USER));
 289                }
 290                pmd = pmd_offset(pud, phys);
 291                BUG_ON(!pmd_none(*pmd));
 292                set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 293        }
 294}
 295
 296void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 297{
 298        __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
 299}
 300
 301void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 302{
 303        __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
 304}
 305
 306/*
 307 * The head.S code sets up the kernel high mapping:
 308 *
 309 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 310 *
 311 * phys_addr holds the negative offset to the kernel, which is added
 312 * to the compile time generated pmds. This results in invalid pmds up
 313 * to the point where we hit the physaddr 0 mapping.
 314 *
 315 * We limit the mappings to the region from _text to _brk_end.  _brk_end
 316 * is rounded up to the 2MB boundary. This catches the invalid pmds as
 317 * well, as they are located before _text:
 318 */
 319void __init cleanup_highmap(void)
 320{
 321        unsigned long vaddr = __START_KERNEL_map;
 322        unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 323        unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 324        pmd_t *pmd = level2_kernel_pgt;
 325
 326        /*
 327         * Native path, max_pfn_mapped is not set yet.
 328         * Xen has valid max_pfn_mapped set in
 329         *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 330         */
 331        if (max_pfn_mapped)
 332                vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 333
 334        for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 335                if (pmd_none(*pmd))
 336                        continue;
 337                if (vaddr < (unsigned long) _text || vaddr > end)
 338                        set_pmd(pmd, __pmd(0));
 339        }
 340}
 341
 342/*
 343 * Create PTE level page table mapping for physical addresses.
 344 * It returns the last physical address mapped.
 345 */
 346static unsigned long __meminit
 347phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 348              pgprot_t prot)
 349{
 350        unsigned long pages = 0, paddr_next;
 351        unsigned long paddr_last = paddr_end;
 352        pte_t *pte;
 353        int i;
 354
 355        pte = pte_page + pte_index(paddr);
 356        i = pte_index(paddr);
 357
 358        for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 359                paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 360                if (paddr >= paddr_end) {
 361                        if (!after_bootmem &&
 362                            !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
 363                                             E820_RAM) &&
 364                            !e820_any_mapped(paddr & PAGE_MASK, paddr_next,
 365                                             E820_RESERVED_KERN))
 366                                set_pte(pte, __pte(0));
 367                        continue;
 368                }
 369
 370                /*
 371                 * We will re-use the existing mapping.
 372                 * Xen for example has some special requirements, like mapping
 373                 * pagetable pages as RO. So assume someone who pre-setup
 374                 * these mappings are more intelligent.
 375                 */
 376                if (!pte_none(*pte)) {
 377                        if (!after_bootmem)
 378                                pages++;
 379                        continue;
 380                }
 381
 382                if (0)
 383                        pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 384                                pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 385                pages++;
 386                set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
 387                paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 388        }
 389
 390        update_page_count(PG_LEVEL_4K, pages);
 391
 392        return paddr_last;
 393}
 394
 395/*
 396 * Create PMD level page table mapping for physical addresses. The virtual
 397 * and physical address have to be aligned at this level.
 398 * It returns the last physical address mapped.
 399 */
 400static unsigned long __meminit
 401phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 402              unsigned long page_size_mask, pgprot_t prot)
 403{
 404        unsigned long pages = 0, paddr_next;
 405        unsigned long paddr_last = paddr_end;
 406
 407        int i = pmd_index(paddr);
 408
 409        for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 410                pmd_t *pmd = pmd_page + pmd_index(paddr);
 411                pte_t *pte;
 412                pgprot_t new_prot = prot;
 413
 414                paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 415                if (paddr >= paddr_end) {
 416                        if (!after_bootmem &&
 417                            !e820_any_mapped(paddr & PMD_MASK, paddr_next,
 418                                             E820_RAM) &&
 419                            !e820_any_mapped(paddr & PMD_MASK, paddr_next,
 420                                             E820_RESERVED_KERN))
 421                                set_pmd(pmd, __pmd(0));
 422                        continue;
 423                }
 424
 425                if (!pmd_none(*pmd)) {
 426                        if (!pmd_large(*pmd)) {
 427                                spin_lock(&init_mm.page_table_lock);
 428                                pte = (pte_t *)pmd_page_vaddr(*pmd);
 429                                paddr_last = phys_pte_init(pte, paddr,
 430                                                           paddr_end, prot);
 431                                spin_unlock(&init_mm.page_table_lock);
 432                                continue;
 433                        }
 434                        /*
 435                         * If we are ok with PG_LEVEL_2M mapping, then we will
 436                         * use the existing mapping,
 437                         *
 438                         * Otherwise, we will split the large page mapping but
 439                         * use the same existing protection bits except for
 440                         * large page, so that we don't violate Intel's TLB
 441                         * Application note (317080) which says, while changing
 442                         * the page sizes, new and old translations should
 443                         * not differ with respect to page frame and
 444                         * attributes.
 445                         */
 446                        if (page_size_mask & (1 << PG_LEVEL_2M)) {
 447                                if (!after_bootmem)
 448                                        pages++;
 449                                paddr_last = paddr_next;
 450                                continue;
 451                        }
 452                        new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 453                }
 454
 455                if (page_size_mask & (1<<PG_LEVEL_2M)) {
 456                        pages++;
 457                        spin_lock(&init_mm.page_table_lock);
 458                        set_pte((pte_t *)pmd,
 459                                pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
 460                                        __pgprot(pgprot_val(prot) | _PAGE_PSE)));
 461                        spin_unlock(&init_mm.page_table_lock);
 462                        paddr_last = paddr_next;
 463                        continue;
 464                }
 465
 466                pte = alloc_low_page();
 467                paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot);
 468
 469                spin_lock(&init_mm.page_table_lock);
 470                pmd_populate_kernel(&init_mm, pmd, pte);
 471                spin_unlock(&init_mm.page_table_lock);
 472        }
 473        update_page_count(PG_LEVEL_2M, pages);
 474        return paddr_last;
 475}
 476
 477/*
 478 * Create PUD level page table mapping for physical addresses. The virtual
 479 * and physical address do not have to be aligned at this level. KASLR can
 480 * randomize virtual addresses up to this level.
 481 * It returns the last physical address mapped.
 482 */
 483static unsigned long __meminit
 484phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 485              unsigned long page_size_mask)
 486{
 487        unsigned long pages = 0, paddr_next;
 488        unsigned long paddr_last = paddr_end;
 489        unsigned long vaddr = (unsigned long)__va(paddr);
 490        int i = pud_index(vaddr);
 491
 492        for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 493                pud_t *pud;
 494                pmd_t *pmd;
 495                pgprot_t prot = PAGE_KERNEL;
 496
 497                vaddr = (unsigned long)__va(paddr);
 498                pud = pud_page + pud_index(vaddr);
 499                paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 500
 501                if (paddr >= paddr_end) {
 502                        if (!after_bootmem &&
 503                            !e820_any_mapped(paddr & PUD_MASK, paddr_next,
 504                                             E820_RAM) &&
 505                            !e820_any_mapped(paddr & PUD_MASK, paddr_next,
 506                                             E820_RESERVED_KERN))
 507                                set_pud(pud, __pud(0));
 508                        continue;
 509                }
 510
 511                if (!pud_none(*pud)) {
 512                        if (!pud_large(*pud)) {
 513                                pmd = pmd_offset(pud, 0);
 514                                paddr_last = phys_pmd_init(pmd, paddr,
 515                                                           paddr_end,
 516                                                           page_size_mask,
 517                                                           prot);
 518                                __flush_tlb_all();
 519                                continue;
 520                        }
 521                        /*
 522                         * If we are ok with PG_LEVEL_1G mapping, then we will
 523                         * use the existing mapping.
 524                         *
 525                         * Otherwise, we will split the gbpage mapping but use
 526                         * the same existing protection  bits except for large
 527                         * page, so that we don't violate Intel's TLB
 528                         * Application note (317080) which says, while changing
 529                         * the page sizes, new and old translations should
 530                         * not differ with respect to page frame and
 531                         * attributes.
 532                         */
 533                        if (page_size_mask & (1 << PG_LEVEL_1G)) {
 534                                if (!after_bootmem)
 535                                        pages++;
 536                                paddr_last = paddr_next;
 537                                continue;
 538                        }
 539                        prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 540                }
 541
 542                if (page_size_mask & (1<<PG_LEVEL_1G)) {
 543                        pages++;
 544                        spin_lock(&init_mm.page_table_lock);
 545                        set_pte((pte_t *)pud,
 546                                pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
 547                                        PAGE_KERNEL_LARGE));
 548                        spin_unlock(&init_mm.page_table_lock);
 549                        paddr_last = paddr_next;
 550                        continue;
 551                }
 552
 553                pmd = alloc_low_page();
 554                paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 555                                           page_size_mask, prot);
 556
 557                spin_lock(&init_mm.page_table_lock);
 558                pud_populate(&init_mm, pud, pmd);
 559                spin_unlock(&init_mm.page_table_lock);
 560        }
 561        __flush_tlb_all();
 562
 563        update_page_count(PG_LEVEL_1G, pages);
 564
 565        return paddr_last;
 566}
 567
 568/*
 569 * Create page table mapping for the physical memory for specific physical
 570 * addresses. The virtual and physical addresses have to be aligned on PMD level
 571 * down. It returns the last physical address mapped.
 572 */
 573unsigned long __meminit
 574kernel_physical_mapping_init(unsigned long paddr_start,
 575                             unsigned long paddr_end,
 576                             unsigned long page_size_mask)
 577{
 578        bool pgd_changed = false;
 579        unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 580
 581        paddr_last = paddr_end;
 582        vaddr = (unsigned long)__va(paddr_start);
 583        vaddr_end = (unsigned long)__va(paddr_end);
 584        vaddr_start = vaddr;
 585
 586        for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 587                pgd_t *pgd = pgd_offset_k(vaddr);
 588                pud_t *pud;
 589
 590                vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 591
 592                if (pgd_val(*pgd)) {
 593                        pud = (pud_t *)pgd_page_vaddr(*pgd);
 594                        paddr_last = phys_pud_init(pud, __pa(vaddr),
 595                                                   __pa(vaddr_end),
 596                                                   page_size_mask);
 597                        continue;
 598                }
 599
 600                pud = alloc_low_page();
 601                paddr_last = phys_pud_init(pud, __pa(vaddr), __pa(vaddr_end),
 602                                           page_size_mask);
 603
 604                spin_lock(&init_mm.page_table_lock);
 605                pgd_populate(&init_mm, pgd, pud);
 606                spin_unlock(&init_mm.page_table_lock);
 607                pgd_changed = true;
 608        }
 609
 610        if (pgd_changed)
 611                sync_global_pgds(vaddr_start, vaddr_end - 1, 0);
 612
 613        __flush_tlb_all();
 614
 615        return paddr_last;
 616}
 617
 618#ifndef CONFIG_NUMA
 619void __init initmem_init(void)
 620{
 621        memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
 622}
 623#endif
 624
 625void __init paging_init(void)
 626{
 627        sparse_memory_present_with_active_regions(MAX_NUMNODES);
 628        sparse_init();
 629
 630        /*
 631         * clear the default setting with node 0
 632         * note: don't use nodes_clear here, that is really clearing when
 633         *       numa support is not compiled in, and later node_set_state
 634         *       will not set it back.
 635         */
 636        node_clear_state(0, N_MEMORY);
 637        if (N_MEMORY != N_NORMAL_MEMORY)
 638                node_clear_state(0, N_NORMAL_MEMORY);
 639
 640        zone_sizes_init();
 641}
 642
 643/*
 644 * Memory hotplug specific functions
 645 */
 646#ifdef CONFIG_MEMORY_HOTPLUG
 647/*
 648 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 649 * updating.
 650 */
 651static void  update_end_of_memory_vars(u64 start, u64 size)
 652{
 653        unsigned long end_pfn = PFN_UP(start + size);
 654
 655        if (end_pfn > max_pfn) {
 656                max_pfn = end_pfn;
 657                max_low_pfn = end_pfn;
 658                high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 659        }
 660}
 661
 662/*
 663 * Memory is added always to NORMAL zone. This means you will never get
 664 * additional DMA/DMA32 memory.
 665 */
 666int add_pages(int nid, unsigned long start,
 667              unsigned long size, bool for_device)
 668{
 669        struct pglist_data *pgdat = NODE_DATA(nid);
 670        int zoneid = zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
 671        struct zone *zone = pgdat->node_zones + zoneid;
 672        int ret;
 673
 674#ifdef CONFIG_ZONE_DEVICE
 675        if (zoneid == ZONE_DEVICE)
 676                zone = pgdat->zone_device;
 677#endif
 678
 679        ret = __add_pages(nid, zone, start >> PAGE_SHIFT, size >> PAGE_SHIFT);
 680        WARN_ON_ONCE(ret);
 681
 682        /* update max_pfn, max_low_pfn and high_memory */
 683        update_end_of_memory_vars(start, size);
 684
 685        return ret;
 686}
 687
 688int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
 689{
 690        init_memory_mapping(start, start + size);
 691
 692        return add_pages(nid, start, size, for_device);
 693}
 694EXPORT_SYMBOL_GPL(arch_add_memory);
 695
 696#define PAGE_INUSE 0xFD
 697
 698static void __meminit free_pagetable(struct page *page, int order)
 699{
 700        unsigned long magic;
 701        unsigned int nr_pages = 1 << order;
 702        struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
 703
 704        if (altmap) {
 705                vmem_altmap_free(altmap, nr_pages);
 706                return;
 707        }
 708
 709        /* bootmem page has reserved flag */
 710        if (PageReserved(page)) {
 711                __ClearPageReserved(page);
 712
 713                magic = (unsigned long)page->freelist;
 714                if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 715                        while (nr_pages--)
 716                                put_page_bootmem(page++);
 717                } else
 718                        while (nr_pages--)
 719                                free_reserved_page(page++);
 720        } else
 721                free_pages((unsigned long)page_address(page), order);
 722}
 723
 724static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
 725{
 726        pte_t *pte;
 727        int i;
 728
 729        for (i = 0; i < PTRS_PER_PTE; i++) {
 730                pte = pte_start + i;
 731                if (!pte_none(*pte))
 732                        return;
 733        }
 734
 735        /* free a pte talbe */
 736        free_pagetable(pmd_page(*pmd), 0);
 737        spin_lock(&init_mm.page_table_lock);
 738        pmd_clear(pmd);
 739        spin_unlock(&init_mm.page_table_lock);
 740}
 741
 742static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 743{
 744        pmd_t *pmd;
 745        int i;
 746
 747        for (i = 0; i < PTRS_PER_PMD; i++) {
 748                pmd = pmd_start + i;
 749                if (!pmd_none(*pmd))
 750                        return;
 751        }
 752
 753        /* free a pmd talbe */
 754        free_pagetable(pud_page(*pud), 0);
 755        spin_lock(&init_mm.page_table_lock);
 756        pud_clear(pud);
 757        spin_unlock(&init_mm.page_table_lock);
 758}
 759
 760static void __meminit
 761remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
 762                 bool direct)
 763{
 764        unsigned long next, pages = 0;
 765        pte_t *pte;
 766        void *page_addr;
 767        phys_addr_t phys_addr;
 768
 769        pte = pte_start + pte_index(addr);
 770        for (; addr < end; addr = next, pte++) {
 771                next = (addr + PAGE_SIZE) & PAGE_MASK;
 772                if (next > end)
 773                        next = end;
 774
 775                if (!pte_present(*pte))
 776                        continue;
 777
 778                /*
 779                 * We mapped [0,1G) memory as identity mapping when
 780                 * initializing, in arch/x86/kernel/head_64.S. These
 781                 * pagetables cannot be removed.
 782                 */
 783                phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
 784                if (phys_addr < (phys_addr_t)0x40000000)
 785                        return;
 786
 787                if (IS_ALIGNED(addr, PAGE_SIZE) &&
 788                    IS_ALIGNED(next, PAGE_SIZE)) {
 789                        /*
 790                         * Do not free direct mapping pages since they were
 791                         * freed when offlining, or simplely not in use.
 792                         */
 793                        if (!direct)
 794                                free_pagetable(pte_page(*pte), 0);
 795
 796                        spin_lock(&init_mm.page_table_lock);
 797                        pte_clear(&init_mm, addr, pte);
 798                        spin_unlock(&init_mm.page_table_lock);
 799
 800                        /* For non-direct mapping, pages means nothing. */
 801                        pages++;
 802                } else {
 803                        /*
 804                         * If we are here, we are freeing vmemmap pages since
 805                         * direct mapped memory ranges to be freed are aligned.
 806                         *
 807                         * If we are not removing the whole page, it means
 808                         * other page structs in this page are being used and
 809                         * we canot remove them. So fill the unused page_structs
 810                         * with 0xFD, and remove the page when it is wholly
 811                         * filled with 0xFD.
 812                         */
 813                        memset((void *)addr, PAGE_INUSE, next - addr);
 814
 815                        page_addr = page_address(pte_page(*pte));
 816                        if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
 817                                free_pagetable(pte_page(*pte), 0);
 818
 819                                spin_lock(&init_mm.page_table_lock);
 820                                pte_clear(&init_mm, addr, pte);
 821                                spin_unlock(&init_mm.page_table_lock);
 822                        }
 823                }
 824        }
 825
 826        /* Call free_pte_table() in remove_pmd_table(). */
 827        flush_tlb_all();
 828        if (direct)
 829                update_page_count(PG_LEVEL_4K, -pages);
 830}
 831
 832static void __meminit
 833remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
 834                 bool direct)
 835{
 836        unsigned long next, pages = 0;
 837        pte_t *pte_base;
 838        pmd_t *pmd;
 839        void *page_addr;
 840
 841        pmd = pmd_start + pmd_index(addr);
 842        for (; addr < end; addr = next, pmd++) {
 843                next = pmd_addr_end(addr, end);
 844
 845                if (!pmd_present(*pmd))
 846                        continue;
 847
 848                if (pmd_large(*pmd)) {
 849                        if (IS_ALIGNED(addr, PMD_SIZE) &&
 850                            IS_ALIGNED(next, PMD_SIZE)) {
 851                                if (!direct)
 852                                        free_pagetable(pmd_page(*pmd),
 853                                                       get_order(PMD_SIZE));
 854
 855                                spin_lock(&init_mm.page_table_lock);
 856                                pmd_clear(pmd);
 857                                spin_unlock(&init_mm.page_table_lock);
 858                                pages++;
 859                        } else {
 860                                /* If here, we are freeing vmemmap pages. */
 861                                memset((void *)addr, PAGE_INUSE, next - addr);
 862
 863                                page_addr = page_address(pmd_page(*pmd));
 864                                if (!memchr_inv(page_addr, PAGE_INUSE,
 865                                                PMD_SIZE)) {
 866                                        free_pagetable(pmd_page(*pmd),
 867                                                       get_order(PMD_SIZE));
 868
 869                                        spin_lock(&init_mm.page_table_lock);
 870                                        pmd_clear(pmd);
 871                                        spin_unlock(&init_mm.page_table_lock);
 872                                }
 873                        }
 874
 875                        continue;
 876                }
 877
 878                pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 879                remove_pte_table(pte_base, addr, next, direct);
 880                free_pte_table(pte_base, pmd);
 881        }
 882
 883        /* Call free_pmd_table() in remove_pud_table(). */
 884        if (direct)
 885                update_page_count(PG_LEVEL_2M, -pages);
 886}
 887
 888static void __meminit
 889remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
 890                 bool direct)
 891{
 892        unsigned long next, pages = 0;
 893        pmd_t *pmd_base;
 894        pud_t *pud;
 895        void *page_addr;
 896
 897        pud = pud_start + pud_index(addr);
 898        for (; addr < end; addr = next, pud++) {
 899                next = pud_addr_end(addr, end);
 900
 901                if (!pud_present(*pud))
 902                        continue;
 903
 904                if (pud_large(*pud)) {
 905                        if (IS_ALIGNED(addr, PUD_SIZE) &&
 906                            IS_ALIGNED(next, PUD_SIZE)) {
 907                                if (!direct)
 908                                        free_pagetable(pud_page(*pud),
 909                                                       get_order(PUD_SIZE));
 910
 911                                spin_lock(&init_mm.page_table_lock);
 912                                pud_clear(pud);
 913                                spin_unlock(&init_mm.page_table_lock);
 914                                pages++;
 915                        } else {
 916                                /* If here, we are freeing vmemmap pages. */
 917                                memset((void *)addr, PAGE_INUSE, next - addr);
 918
 919                                page_addr = page_address(pud_page(*pud));
 920                                if (!memchr_inv(page_addr, PAGE_INUSE,
 921                                                PUD_SIZE)) {
 922                                        free_pagetable(pud_page(*pud),
 923                                                       get_order(PUD_SIZE));
 924
 925                                        spin_lock(&init_mm.page_table_lock);
 926                                        pud_clear(pud);
 927                                        spin_unlock(&init_mm.page_table_lock);
 928                                }
 929                        }
 930
 931                        continue;
 932                }
 933
 934                pmd_base = (pmd_t *)pud_page_vaddr(*pud);
 935                remove_pmd_table(pmd_base, addr, next, direct);
 936                free_pmd_table(pmd_base, pud);
 937        }
 938
 939        if (direct)
 940                update_page_count(PG_LEVEL_1G, -pages);
 941}
 942
 943/* start and end are both virtual address. */
 944static void __meminit
 945remove_pagetable(unsigned long start, unsigned long end, bool direct)
 946{
 947        unsigned long next;
 948        unsigned long addr;
 949        pgd_t *pgd;
 950        pud_t *pud;
 951
 952        for (addr = start; addr < end; addr = next) {
 953                next = pgd_addr_end(addr, end);
 954
 955                pgd = pgd_offset_k(addr);
 956                if (!pgd_present(*pgd))
 957                        continue;
 958
 959                pud = (pud_t *)pgd_page_vaddr(*pgd);
 960                remove_pud_table(pud, addr, next, direct);
 961        }
 962
 963        flush_tlb_all();
 964}
 965
 966void __ref vmemmap_free(unsigned long start, unsigned long end)
 967{
 968        remove_pagetable(start, end, false);
 969}
 970
 971#ifdef CONFIG_MEMORY_HOTREMOVE
 972static void __meminit
 973kernel_physical_mapping_remove(unsigned long start, unsigned long end)
 974{
 975        start = (unsigned long)__va(start);
 976        end = (unsigned long)__va(end);
 977
 978        remove_pagetable(start, end, true);
 979}
 980
 981int __ref arch_remove_memory(u64 start, u64 size)
 982{
 983        unsigned long start_pfn = start >> PAGE_SHIFT;
 984        unsigned long nr_pages = size >> PAGE_SHIFT;
 985        struct page *page = pfn_to_page(start_pfn);
 986        struct vmem_altmap *altmap;
 987        struct zone *zone;
 988        int ret;
 989
 990        /* With altmap the first mapped page is offset from @start */
 991        altmap = to_vmem_altmap((unsigned long) page);
 992        if (altmap)
 993                page += vmem_altmap_offset(altmap);
 994        zone = page_zone(page);
 995        ret = __remove_pages(zone, start_pfn, nr_pages);
 996        WARN_ON_ONCE(ret);
 997        kernel_physical_mapping_remove(start, start + size);
 998
 999        return ret;
1000}
1001#endif
1002#endif /* CONFIG_MEMORY_HOTPLUG */
1003
1004static struct kcore_list kcore_vsyscall;
1005
1006static void __init register_page_bootmem_info(void)
1007{
1008#ifdef CONFIG_NUMA
1009        int i;
1010
1011        for_each_online_node(i)
1012                register_page_bootmem_info_node(NODE_DATA(i));
1013#endif
1014}
1015
1016void __init mem_init(void)
1017{
1018        long codesize, reservedpages, datasize, initsize;
1019        unsigned long absent_pages;
1020
1021        pci_iommu_alloc();
1022
1023        /* clear_bss() already clear the empty_zero_page */
1024
1025        register_page_bootmem_info();
1026
1027        /* this will put all memory onto the freelists */
1028        totalram_pages = free_all_bootmem();
1029
1030        absent_pages = absent_pages_in_range(0, max_pfn);
1031        reservedpages = max_pfn - totalram_pages - absent_pages;
1032        after_bootmem = 1;
1033
1034        codesize =  (unsigned long) &_etext - (unsigned long) &_text;
1035        datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
1036        initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
1037
1038        /* Register memory areas for /proc/kcore */
1039        kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
1040                         VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
1041
1042        printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
1043                         "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
1044                nr_free_pages() << (PAGE_SHIFT-10),
1045                max_pfn << (PAGE_SHIFT-10),
1046                codesize >> 10,
1047                absent_pages << (PAGE_SHIFT-10),
1048                reservedpages << (PAGE_SHIFT-10),
1049                datasize >> 10,
1050                initsize >> 10);
1051}
1052
1053#ifdef CONFIG_DEBUG_RODATA
1054const int rodata_test_data = 0xC3;
1055EXPORT_SYMBOL_GPL(rodata_test_data);
1056
1057int kernel_set_to_readonly;
1058
1059void set_kernel_text_rw(void)
1060{
1061        unsigned long start = PFN_ALIGN(_text);
1062        unsigned long end = PFN_ALIGN(__stop___ex_table);
1063
1064        if (!kernel_set_to_readonly)
1065                return;
1066
1067        pr_debug("Set kernel text: %lx - %lx for read write\n",
1068                 start, end);
1069
1070        /*
1071         * Make the kernel identity mapping for text RW. Kernel text
1072         * mapping will always be RO. Refer to the comment in
1073         * static_protections() in pageattr.c
1074         */
1075        set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1076}
1077
1078void set_kernel_text_ro(void)
1079{
1080        unsigned long start = PFN_ALIGN(_text);
1081        unsigned long end = PFN_ALIGN(__stop___ex_table);
1082
1083        if (!kernel_set_to_readonly)
1084                return;
1085
1086        pr_debug("Set kernel text: %lx - %lx for read only\n",
1087                 start, end);
1088
1089        /*
1090         * Set the kernel identity mapping for text RO.
1091         */
1092        set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1093}
1094
1095void mark_rodata_ro(void)
1096{
1097        unsigned long start = PFN_ALIGN(_text);
1098        unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1099        unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1100        unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1101        unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1102        unsigned long all_end = PFN_ALIGN(&_end);
1103
1104        printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1105               (end - start) >> 10);
1106        set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1107
1108        kernel_set_to_readonly = 1;
1109
1110        /*
1111         * The rodata/data/bss/brk section (but not the kernel text!)
1112         * should also be not-executable.
1113         */
1114        set_memory_nx(rodata_start, (all_end - rodata_start) >> PAGE_SHIFT);
1115
1116        rodata_test();
1117
1118#ifdef CONFIG_CPA_DEBUG
1119        printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1120        set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1121
1122        printk(KERN_INFO "Testing CPA: again\n");
1123        set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1124#endif
1125
1126        free_init_pages("unused kernel memory",
1127                        (unsigned long) __va(__pa_symbol(text_end)),
1128                        (unsigned long) __va(__pa_symbol(rodata_start)));
1129
1130        free_init_pages("unused kernel memory",
1131                        (unsigned long) __va(__pa_symbol(rodata_end)),
1132                        (unsigned long) __va(__pa_symbol(_sdata)));
1133}
1134
1135#endif
1136
1137int kern_addr_valid(unsigned long addr)
1138{
1139        unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1140        pgd_t *pgd;
1141        pud_t *pud;
1142        pmd_t *pmd;
1143        pte_t *pte;
1144
1145        if (above != 0 && above != -1UL)
1146                return 0;
1147
1148        pgd = pgd_offset_k(addr);
1149        if (pgd_none(*pgd))
1150                return 0;
1151
1152        pud = pud_offset(pgd, addr);
1153        if (pud_none(*pud))
1154                return 0;
1155
1156        if (pud_large(*pud))
1157                return pfn_valid(pud_pfn(*pud));
1158
1159        pmd = pmd_offset(pud, addr);
1160        if (pmd_none(*pmd))
1161                return 0;
1162
1163        if (pmd_large(*pmd))
1164                return pfn_valid(pmd_pfn(*pmd));
1165
1166        pte = pte_offset_kernel(pmd, addr);
1167        if (pte_none(*pte))
1168                return 0;
1169
1170        return pfn_valid(pte_pfn(*pte));
1171}
1172
1173/*
1174 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
1175 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
1176 * not need special handling anymore:
1177 */
1178static struct vm_area_struct gate_vma = {
1179        .vm_start       = VSYSCALL_START,
1180        .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
1181        .vm_page_prot   = PAGE_READONLY_EXEC,
1182        .vm_flags       = VM_READ | VM_EXEC
1183};
1184
1185struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
1186{
1187#ifdef CONFIG_IA32_EMULATION
1188        if (!mm || mm->context.ia32_compat)
1189                return NULL;
1190#endif
1191        return &gate_vma;
1192}
1193
1194int in_gate_area(struct mm_struct *mm, unsigned long addr)
1195{
1196        struct vm_area_struct *vma = get_gate_vma(mm);
1197
1198        if (!vma)
1199                return 0;
1200
1201        return (addr >= vma->vm_start) && (addr < vma->vm_end);
1202}
1203
1204/*
1205 * Use this when you have no reliable mm, typically from interrupt
1206 * context. It is less reliable than using a task's mm and may give
1207 * false positives.
1208 */
1209int in_gate_area_no_mm(unsigned long addr)
1210{
1211        return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
1212}
1213
1214const char *arch_vma_name(struct vm_area_struct *vma)
1215{
1216        if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
1217                return "[vdso]";
1218        if (vma == &gate_vma)
1219                return "[vsyscall]";
1220        return NULL;
1221}
1222
1223#ifdef CONFIG_X86_UV
1224unsigned long memory_block_size_bytes(void)
1225{
1226        if (is_uv_system()) {
1227                printk(KERN_INFO "UV: memory block size 2GB\n");
1228                return 2UL * 1024 * 1024 * 1024;
1229        }
1230        return MIN_MEMORY_BLOCK_SIZE;
1231}
1232#endif
1233
1234#ifdef CONFIG_SPARSEMEM_VMEMMAP
1235/*
1236 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1237 */
1238static long __meminitdata addr_start, addr_end;
1239static void __meminitdata *p_start, *p_end;
1240static int __meminitdata node_start;
1241
1242static int __meminit vmemmap_populate_hugepages(unsigned long start,
1243                unsigned long end, int node, struct vmem_altmap *altmap)
1244{
1245        unsigned long addr;
1246        unsigned long next;
1247        pgd_t *pgd;
1248        pud_t *pud;
1249        pmd_t *pmd;
1250
1251        for (addr = start; addr < end; addr = next) {
1252                next = pmd_addr_end(addr, end);
1253
1254                pgd = vmemmap_pgd_populate(addr, node);
1255                if (!pgd)
1256                        return -ENOMEM;
1257
1258                pud = vmemmap_pud_populate(pgd, addr, node);
1259                if (!pud)
1260                        return -ENOMEM;
1261
1262                pmd = pmd_offset(pud, addr);
1263                if (pmd_none(*pmd)) {
1264                        void *p;
1265
1266                        p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1267                        if (p) {
1268                                pte_t entry;
1269
1270                                entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1271                                                PAGE_KERNEL_LARGE);
1272                                set_pmd(pmd, __pmd(pte_val(entry)));
1273
1274                                /* check to see if we have contiguous blocks */
1275                                if (p_end != p || node_start != node) {
1276                                        if (p_start)
1277                                                pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1278                                                       addr_start, addr_end-1, p_start, p_end-1, node_start);
1279                                        addr_start = addr;
1280                                        node_start = node;
1281                                        p_start = p;
1282                                }
1283
1284                                addr_end = addr + PMD_SIZE;
1285                                p_end = p + PMD_SIZE;
1286                                continue;
1287                        } else if (altmap)
1288                                return -ENOMEM; /* no fallback */
1289                } else if (pmd_large(*pmd)) {
1290                        vmemmap_verify((pte_t *)pmd, node, addr, next);
1291                        continue;
1292                }
1293                pr_warn_once("vmemmap: falling back to regular page backing\n");
1294                if (vmemmap_populate_basepages(addr, next, node))
1295                        return -ENOMEM;
1296        }
1297        return 0;
1298}
1299
1300int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1301{
1302        struct vmem_altmap *altmap = to_vmem_altmap(start);
1303        int err;
1304
1305        if (cpu_has_pse)
1306                err = vmemmap_populate_hugepages(start, end, node, altmap);
1307        else if (altmap) {
1308                pr_err_once("%s: no cpu support for altmap allocations\n",
1309                                __func__);
1310                err = -ENOMEM;
1311        } else
1312                err = vmemmap_populate_basepages(start, end, node);
1313        if (!err)
1314                sync_global_pgds(start, end - 1, 0);
1315        return err;
1316}
1317
1318#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1319void register_page_bootmem_memmap(unsigned long section_nr,
1320                                  struct page *start_page, unsigned long size)
1321{
1322        unsigned long addr = (unsigned long)start_page;
1323        unsigned long end = (unsigned long)(start_page + size);
1324        unsigned long next;
1325        pgd_t *pgd;
1326        pud_t *pud;
1327        pmd_t *pmd;
1328        unsigned int nr_pages;
1329        struct page *page;
1330
1331        for (; addr < end; addr = next) {
1332                pte_t *pte = NULL;
1333
1334                pgd = pgd_offset_k(addr);
1335                if (pgd_none(*pgd)) {
1336                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1337                        continue;
1338                }
1339                get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1340
1341                pud = pud_offset(pgd, addr);
1342                if (pud_none(*pud)) {
1343                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1344                        continue;
1345                }
1346                get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1347
1348                if (!cpu_has_pse) {
1349                        next = (addr + PAGE_SIZE) & PAGE_MASK;
1350                        pmd = pmd_offset(pud, addr);
1351                        if (pmd_none(*pmd))
1352                                continue;
1353                        get_page_bootmem(section_nr, pmd_page(*pmd),
1354                                         MIX_SECTION_INFO);
1355
1356                        pte = pte_offset_kernel(pmd, addr);
1357                        if (pte_none(*pte))
1358                                continue;
1359                        get_page_bootmem(section_nr, pte_page(*pte),
1360                                         SECTION_INFO);
1361                } else {
1362                        next = pmd_addr_end(addr, end);
1363
1364                        pmd = pmd_offset(pud, addr);
1365                        if (pmd_none(*pmd))
1366                                continue;
1367
1368                        nr_pages = 1 << (get_order(PMD_SIZE));
1369                        page = pmd_page(*pmd);
1370                        while (nr_pages--)
1371                                get_page_bootmem(section_nr, page++,
1372                                                 SECTION_INFO);
1373                }
1374        }
1375}
1376#endif
1377
1378void __meminit vmemmap_populate_print_last(void)
1379{
1380        if (p_start) {
1381                pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1382                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1383                p_start = NULL;
1384                p_end = NULL;
1385                node_start = 0;
1386        }
1387}
1388#endif
1389