linux/drivers/block/brd.c
<<
>>
Prefs
   1/*
   2 * Ram backed block device driver.
   3 *
   4 * Copyright (C) 2007 Nick Piggin
   5 * Copyright (C) 2007 Novell Inc.
   6 *
   7 * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
   8 * of their respective owners.
   9 */
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/moduleparam.h>
  14#include <linux/major.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/highmem.h>
  18#include <linux/mutex.h>
  19#include <linux/radix-tree.h>
  20#include <linux/fs.h>
  21#include <linux/slab.h>
  22#ifdef CONFIG_BLK_DEV_RAM_DAX
  23#include <linux/pfn_t.h>
  24#endif
  25
  26#include <asm/uaccess.h>
  27
  28#define SECTOR_SHIFT            9
  29#define PAGE_SECTORS_SHIFT      (PAGE_SHIFT - SECTOR_SHIFT)
  30#define PAGE_SECTORS            (1 << PAGE_SECTORS_SHIFT)
  31
  32/*
  33 * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  34 * the pages containing the block device's contents. A brd page's ->index is
  35 * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  36 * with, the kernel's pagecache or buffer cache (which sit above our block
  37 * device).
  38 */
  39struct brd_device {
  40        int             brd_number;
  41
  42        struct request_queue    *brd_queue;
  43        struct gendisk          *brd_disk;
  44        struct list_head        brd_list;
  45
  46        /*
  47         * Backing store of pages and lock to protect it. This is the contents
  48         * of the block device.
  49         */
  50        spinlock_t              brd_lock;
  51        struct radix_tree_root  brd_pages;
  52};
  53
  54/*
  55 * Look up and return a brd's page for a given sector.
  56 */
  57static DEFINE_MUTEX(brd_mutex);
  58static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  59{
  60        pgoff_t idx;
  61        struct page *page;
  62
  63        /*
  64         * The page lifetime is protected by the fact that we have opened the
  65         * device node -- brd pages will never be deleted under us, so we
  66         * don't need any further locking or refcounting.
  67         *
  68         * This is strictly true for the radix-tree nodes as well (ie. we
  69         * don't actually need the rcu_read_lock()), however that is not a
  70         * documented feature of the radix-tree API so it is better to be
  71         * safe here (we don't have total exclusion from radix tree updates
  72         * here, only deletes).
  73         */
  74        rcu_read_lock();
  75        idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  76        page = radix_tree_lookup(&brd->brd_pages, idx);
  77        rcu_read_unlock();
  78
  79        BUG_ON(page && page->index != idx);
  80
  81        return page;
  82}
  83
  84/*
  85 * Look up and return a brd's page for a given sector.
  86 * If one does not exist, allocate an empty page, and insert that. Then
  87 * return it.
  88 */
  89static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  90{
  91        pgoff_t idx;
  92        struct page *page;
  93        gfp_t gfp_flags;
  94
  95        page = brd_lookup_page(brd, sector);
  96        if (page)
  97                return page;
  98
  99        /*
 100         * Must use NOIO because we don't want to recurse back into the
 101         * block or filesystem layers from page reclaim.
 102         *
 103         * Cannot support DAX and highmem, because our ->direct_access
 104         * routine for DAX must return memory that is always addressable.
 105         * If DAX was reworked to use pfns and kmap throughout, this
 106         * restriction might be able to be lifted.
 107         */
 108        gfp_flags = GFP_NOIO | __GFP_ZERO;
 109#ifndef CONFIG_BLK_DEV_RAM_DAX
 110        gfp_flags |= __GFP_HIGHMEM;
 111#endif
 112        page = alloc_page(gfp_flags);
 113        if (!page)
 114                return NULL;
 115
 116        if (radix_tree_preload(GFP_NOIO)) {
 117                __free_page(page);
 118                return NULL;
 119        }
 120
 121        spin_lock(&brd->brd_lock);
 122        idx = sector >> PAGE_SECTORS_SHIFT;
 123        page->index = idx;
 124        if (radix_tree_insert(&brd->brd_pages, idx, page)) {
 125                __free_page(page);
 126                page = radix_tree_lookup(&brd->brd_pages, idx);
 127                BUG_ON(!page);
 128                BUG_ON(page->index != idx);
 129        }
 130        spin_unlock(&brd->brd_lock);
 131
 132        radix_tree_preload_end();
 133
 134        return page;
 135}
 136
 137static void brd_free_page(struct brd_device *brd, sector_t sector)
 138{
 139        struct page *page;
 140        pgoff_t idx;
 141
 142        spin_lock(&brd->brd_lock);
 143        idx = sector >> PAGE_SECTORS_SHIFT;
 144        page = radix_tree_delete(&brd->brd_pages, idx);
 145        spin_unlock(&brd->brd_lock);
 146        if (page)
 147                __free_page(page);
 148}
 149
 150static void brd_zero_page(struct brd_device *brd, sector_t sector)
 151{
 152        struct page *page;
 153
 154        page = brd_lookup_page(brd, sector);
 155        if (page)
 156                clear_highpage(page);
 157}
 158
 159/*
 160 * Free all backing store pages and radix tree. This must only be called when
 161 * there are no other users of the device.
 162 */
 163#define FREE_BATCH 16
 164static void brd_free_pages(struct brd_device *brd)
 165{
 166        unsigned long pos = 0;
 167        struct page *pages[FREE_BATCH];
 168        int nr_pages;
 169
 170        do {
 171                int i;
 172
 173                nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
 174                                (void **)pages, pos, FREE_BATCH);
 175
 176                for (i = 0; i < nr_pages; i++) {
 177                        void *ret;
 178
 179                        BUG_ON(pages[i]->index < pos);
 180                        pos = pages[i]->index;
 181                        ret = radix_tree_delete(&brd->brd_pages, pos);
 182                        BUG_ON(!ret || ret != pages[i]);
 183                        __free_page(pages[i]);
 184                }
 185
 186                pos++;
 187
 188                /*
 189                 * This assumes radix_tree_gang_lookup always returns as
 190                 * many pages as possible. If the radix-tree code changes,
 191                 * so will this have to.
 192                 */
 193        } while (nr_pages == FREE_BATCH);
 194}
 195
 196/*
 197 * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
 198 */
 199static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
 200{
 201        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 202        size_t copy;
 203
 204        copy = min_t(size_t, n, PAGE_SIZE - offset);
 205        if (!brd_insert_page(brd, sector))
 206                return -ENOSPC;
 207        if (copy < n) {
 208                sector += copy >> SECTOR_SHIFT;
 209                if (!brd_insert_page(brd, sector))
 210                        return -ENOSPC;
 211        }
 212        return 0;
 213}
 214
 215static void discard_from_brd(struct brd_device *brd,
 216                        sector_t sector, size_t n)
 217{
 218        while (n >= PAGE_SIZE) {
 219                /*
 220                 * Don't want to actually discard pages here because
 221                 * re-allocating the pages can result in writeback
 222                 * deadlocks under heavy load.
 223                 */
 224                if (0)
 225                        brd_free_page(brd, sector);
 226                else
 227                        brd_zero_page(brd, sector);
 228                sector += PAGE_SIZE >> SECTOR_SHIFT;
 229                n -= PAGE_SIZE;
 230        }
 231}
 232
 233/*
 234 * Copy n bytes from src to the brd starting at sector. Does not sleep.
 235 */
 236static void copy_to_brd(struct brd_device *brd, const void *src,
 237                        sector_t sector, size_t n)
 238{
 239        struct page *page;
 240        void *dst;
 241        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 242        size_t copy;
 243
 244        copy = min_t(size_t, n, PAGE_SIZE - offset);
 245        page = brd_lookup_page(brd, sector);
 246        BUG_ON(!page);
 247
 248        dst = kmap_atomic(page);
 249        memcpy(dst + offset, src, copy);
 250        kunmap_atomic(dst);
 251
 252        if (copy < n) {
 253                src += copy;
 254                sector += copy >> SECTOR_SHIFT;
 255                copy = n - copy;
 256                page = brd_lookup_page(brd, sector);
 257                BUG_ON(!page);
 258
 259                dst = kmap_atomic(page);
 260                memcpy(dst, src, copy);
 261                kunmap_atomic(dst);
 262        }
 263}
 264
 265/*
 266 * Copy n bytes to dst from the brd starting at sector. Does not sleep.
 267 */
 268static void copy_from_brd(void *dst, struct brd_device *brd,
 269                        sector_t sector, size_t n)
 270{
 271        struct page *page;
 272        void *src;
 273        unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
 274        size_t copy;
 275
 276        copy = min_t(size_t, n, PAGE_SIZE - offset);
 277        page = brd_lookup_page(brd, sector);
 278        if (page) {
 279                src = kmap_atomic(page);
 280                memcpy(dst, src + offset, copy);
 281                kunmap_atomic(src);
 282        } else
 283                memset(dst, 0, copy);
 284
 285        if (copy < n) {
 286                dst += copy;
 287                sector += copy >> SECTOR_SHIFT;
 288                copy = n - copy;
 289                page = brd_lookup_page(brd, sector);
 290                if (page) {
 291                        src = kmap_atomic(page);
 292                        memcpy(dst, src, copy);
 293                        kunmap_atomic(src);
 294                } else
 295                        memset(dst, 0, copy);
 296        }
 297}
 298
 299/*
 300 * Process a single bvec of a bio.
 301 */
 302static int brd_do_bvec(struct brd_device *brd, struct page *page,
 303                        unsigned int len, unsigned int off, int rw,
 304                        sector_t sector)
 305{
 306        void *mem;
 307        int err = 0;
 308
 309        if (rw != READ) {
 310                err = copy_to_brd_setup(brd, sector, len);
 311                if (err)
 312                        goto out;
 313        }
 314
 315        mem = kmap_atomic(page);
 316        if (rw == READ) {
 317                copy_from_brd(mem + off, brd, sector, len);
 318                flush_dcache_page(page);
 319        } else {
 320                flush_dcache_page(page);
 321                copy_to_brd(brd, mem + off, sector, len);
 322        }
 323        kunmap_atomic(mem);
 324
 325out:
 326        return err;
 327}
 328
 329static void brd_make_request(struct request_queue *q, struct bio *bio)
 330{
 331        struct block_device *bdev = bio->bi_bdev;
 332        struct brd_device *brd = bdev->bd_disk->private_data;
 333        int rw;
 334        struct bio_vec *bvec;
 335        sector_t sector;
 336        int i;
 337        int err = -EIO;
 338
 339        sector = bio->bi_sector;
 340        if (bio_end_sector(bio) > get_capacity(bdev->bd_disk))
 341                goto out;
 342
 343        if (unlikely(bio->bi_rw & REQ_DISCARD)) {
 344                err = 0;
 345                discard_from_brd(brd, sector, bio->bi_size);
 346                goto out;
 347        }
 348
 349        rw = bio_rw(bio);
 350        if (rw == READA)
 351                rw = READ;
 352
 353        bio_for_each_segment(bvec, bio, i) {
 354                unsigned int len = bvec->bv_len;
 355                err = brd_do_bvec(brd, bvec->bv_page, len,
 356                                        bvec->bv_offset, rw, sector);
 357                if (err)
 358                        break;
 359                sector += len >> SECTOR_SHIFT;
 360        }
 361
 362out:
 363        bio_endio(bio, err);
 364}
 365
 366static int brd_rw_page(struct block_device *bdev, sector_t sector,
 367                       struct page *page, int rw)
 368{
 369        struct brd_device *brd = bdev->bd_disk->private_data;
 370        int err = brd_do_bvec(brd, page, PAGE_CACHE_SIZE, 0, rw, sector);
 371        page_endio(page, rw & WRITE, err);
 372        return err;
 373}
 374
 375#ifdef CONFIG_BLK_DEV_RAM_DAX
 376static long brd_direct_access(struct block_device *bdev, sector_t sector,
 377                        void **kaddr, pfn_t *pfn, long size)
 378{
 379        struct brd_device *brd = bdev->bd_disk->private_data;
 380        struct page *page;
 381
 382        if (!brd)
 383                return -ENODEV;
 384        page = brd_insert_page(brd, sector);
 385        if (!page)
 386                return -ENOSPC;
 387        *kaddr = page_address(page);
 388        *pfn = page_to_pfn_t(page);
 389
 390        return PAGE_SIZE;
 391}
 392#else
 393#define brd_direct_access NULL
 394#endif
 395
 396static int brd_ioctl(struct block_device *bdev, fmode_t mode,
 397                        unsigned int cmd, unsigned long arg)
 398{
 399        int error;
 400        struct brd_device *brd = bdev->bd_disk->private_data;
 401
 402        if (cmd != BLKFLSBUF)
 403                return -ENOTTY;
 404
 405        /*
 406         * ram device BLKFLSBUF has special semantics, we want to actually
 407         * release and destroy the ramdisk data.
 408         */
 409        mutex_lock(&brd_mutex);
 410        mutex_lock(&bdev->bd_mutex);
 411        error = -EBUSY;
 412        if (bdev->bd_openers <= 1) {
 413                /*
 414                 * Kill the cache first, so it isn't written back to the
 415                 * device.
 416                 *
 417                 * Another thread might instantiate more buffercache here,
 418                 * but there is not much we can do to close that race.
 419                 */
 420                kill_bdev(bdev);
 421                brd_free_pages(brd);
 422                error = 0;
 423        }
 424        mutex_unlock(&bdev->bd_mutex);
 425        mutex_unlock(&brd_mutex);
 426
 427        return error;
 428}
 429
 430static const struct block_device_operations brd_fops = {
 431        .owner =                THIS_MODULE,
 432        .rw_page =              brd_rw_page,
 433        .ioctl =                brd_ioctl,
 434        .direct_access =        brd_direct_access,
 435};
 436
 437/*
 438 * And now the modules code and kernel interface.
 439 */
 440static int rd_nr;
 441int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
 442static int max_part;
 443static int part_shift;
 444module_param(rd_nr, int, S_IRUGO);
 445MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
 446module_param(rd_size, int, S_IRUGO);
 447MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
 448module_param(max_part, int, S_IRUGO);
 449MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
 450MODULE_LICENSE("GPL");
 451MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
 452MODULE_ALIAS("rd");
 453
 454#ifndef MODULE
 455/* Legacy boot options - nonmodular */
 456static int __init ramdisk_size(char *str)
 457{
 458        rd_size = simple_strtol(str, NULL, 0);
 459        return 1;
 460}
 461__setup("ramdisk_size=", ramdisk_size);
 462#endif
 463
 464/*
 465 * The device scheme is derived from loop.c. Keep them in synch where possible
 466 * (should share code eventually).
 467 */
 468static LIST_HEAD(brd_devices);
 469static DEFINE_MUTEX(brd_devices_mutex);
 470
 471static struct brd_device *brd_alloc(int i)
 472{
 473        struct brd_device *brd;
 474        struct gendisk *disk;
 475
 476        brd = kzalloc(sizeof(*brd), GFP_KERNEL);
 477        if (!brd)
 478                goto out;
 479        brd->brd_number         = i;
 480        spin_lock_init(&brd->brd_lock);
 481        INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
 482
 483        brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
 484        if (!brd->brd_queue)
 485                goto out_free_dev;
 486        blk_queue_make_request(brd->brd_queue, brd_make_request);
 487        blk_queue_max_hw_sectors(brd->brd_queue, 1024);
 488        blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
 489
 490        brd->brd_queue->limits.discard_granularity = PAGE_SIZE;
 491        brd->brd_queue->limits.max_discard_sectors = UINT_MAX;
 492        brd->brd_queue->limits.discard_zeroes_data = 1;
 493        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, brd->brd_queue);
 494#ifdef CONFIG_BLK_DEV_RAM_DAX
 495        queue_flag_set_unlocked(QUEUE_FLAG_DAX, brd->brd_queue);
 496#endif
 497        disk = brd->brd_disk = alloc_disk(1 << part_shift);
 498        if (!disk)
 499                goto out_free_queue;
 500        disk->major             = RAMDISK_MAJOR;
 501        disk->first_minor       = i << part_shift;
 502        disk->fops              = &brd_fops;
 503        disk->private_data      = brd;
 504        disk->queue             = brd->brd_queue;
 505        disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
 506        sprintf(disk->disk_name, "ram%d", i);
 507        set_capacity(disk, rd_size * 2);
 508
 509        return brd;
 510
 511out_free_queue:
 512        blk_cleanup_queue(brd->brd_queue);
 513out_free_dev:
 514        kfree(brd);
 515out:
 516        return NULL;
 517}
 518
 519static void brd_free(struct brd_device *brd)
 520{
 521        put_disk(brd->brd_disk);
 522        blk_cleanup_queue(brd->brd_queue);
 523        brd_free_pages(brd);
 524        kfree(brd);
 525}
 526
 527static struct brd_device *brd_init_one(int i)
 528{
 529        struct brd_device *brd;
 530
 531        list_for_each_entry(brd, &brd_devices, brd_list) {
 532                if (brd->brd_number == i)
 533                        goto out;
 534        }
 535
 536        brd = brd_alloc(i);
 537        if (brd) {
 538                add_disk(brd->brd_disk);
 539                list_add_tail(&brd->brd_list, &brd_devices);
 540        }
 541out:
 542        return brd;
 543}
 544
 545static void brd_del_one(struct brd_device *brd)
 546{
 547        list_del(&brd->brd_list);
 548        del_gendisk(brd->brd_disk);
 549        brd_free(brd);
 550}
 551
 552static struct kobject *brd_probe(dev_t dev, int *part, void *data)
 553{
 554        struct brd_device *brd;
 555        struct kobject *kobj;
 556
 557        mutex_lock(&brd_devices_mutex);
 558        brd = brd_init_one(MINOR(dev) >> part_shift);
 559        kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
 560        mutex_unlock(&brd_devices_mutex);
 561
 562        *part = 0;
 563        return kobj;
 564}
 565
 566static int __init brd_init(void)
 567{
 568        int i, nr;
 569        unsigned long range;
 570        struct brd_device *brd, *next;
 571
 572        /*
 573         * brd module now has a feature to instantiate underlying device
 574         * structure on-demand, provided that there is an access dev node.
 575         * However, this will not work well with user space tool that doesn't
 576         * know about such "feature".  In order to not break any existing
 577         * tool, we do the following:
 578         *
 579         * (1) if rd_nr is specified, create that many upfront, and this
 580         *     also becomes a hard limit.
 581         * (2) if rd_nr is not specified, create CONFIG_BLK_DEV_RAM_COUNT
 582         *     (default 16) rd device on module load, user can further
 583         *     extend brd device by create dev node themselves and have
 584         *     kernel automatically instantiate actual device on-demand.
 585         */
 586
 587        part_shift = 0;
 588        if (max_part > 0) {
 589                part_shift = fls(max_part);
 590
 591                /*
 592                 * Adjust max_part according to part_shift as it is exported
 593                 * to user space so that user can decide correct minor number
 594                 * if [s]he want to create more devices.
 595                 *
 596                 * Note that -1 is required because partition 0 is reserved
 597                 * for the whole disk.
 598                 */
 599                max_part = (1UL << part_shift) - 1;
 600        }
 601
 602        if ((1UL << part_shift) > DISK_MAX_PARTS)
 603                return -EINVAL;
 604
 605        if (rd_nr > 1UL << (MINORBITS - part_shift))
 606                return -EINVAL;
 607
 608        if (rd_nr) {
 609                nr = rd_nr;
 610                range = rd_nr << part_shift;
 611        } else {
 612                nr = CONFIG_BLK_DEV_RAM_COUNT;
 613                range = 1UL << MINORBITS;
 614        }
 615
 616        if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
 617                return -EIO;
 618
 619        for (i = 0; i < nr; i++) {
 620                brd = brd_alloc(i);
 621                if (!brd)
 622                        goto out_free;
 623                list_add_tail(&brd->brd_list, &brd_devices);
 624        }
 625
 626        /* point of no return */
 627
 628        list_for_each_entry(brd, &brd_devices, brd_list)
 629                add_disk(brd->brd_disk);
 630
 631        blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
 632                                  THIS_MODULE, brd_probe, NULL, NULL);
 633
 634        printk(KERN_INFO "brd: module loaded\n");
 635        return 0;
 636
 637out_free:
 638        list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
 639                list_del(&brd->brd_list);
 640                brd_free(brd);
 641        }
 642        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 643
 644        return -ENOMEM;
 645}
 646
 647static void __exit brd_exit(void)
 648{
 649        unsigned long range;
 650        struct brd_device *brd, *next;
 651
 652        range = rd_nr ? rd_nr << part_shift : 1UL << MINORBITS;
 653
 654        list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
 655                brd_del_one(brd);
 656
 657        blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
 658        unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
 659}
 660
 661module_init(brd_init);
 662module_exit(brd_exit);
 663
 664