linux/drivers/gpu/drm/amd/powerplay/smumgr/fiji_smc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2015 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23
  24#include "fiji_smc.h"
  25#include "smu7_dyn_defaults.h"
  26
  27#include "smu7_hwmgr.h"
  28#include "hardwaremanager.h"
  29#include "ppatomctrl.h"
  30#include "pp_debug.h"
  31#include "cgs_common.h"
  32#include "atombios.h"
  33#include "fiji_smumgr.h"
  34#include "pppcielanes.h"
  35#include "smu7_ppsmc.h"
  36#include "smu73.h"
  37#include "smu/smu_7_1_3_d.h"
  38#include "smu/smu_7_1_3_sh_mask.h"
  39#include "gmc/gmc_8_1_d.h"
  40#include "gmc/gmc_8_1_sh_mask.h"
  41#include "bif/bif_5_0_d.h"
  42#include "bif/bif_5_0_sh_mask.h"
  43#include "dce/dce_10_0_d.h"
  44#include "dce/dce_10_0_sh_mask.h"
  45#include "smu7_smumgr.h"
  46
  47#define VOLTAGE_SCALE 4
  48#define POWERTUNE_DEFAULT_SET_MAX    1
  49#define VOLTAGE_VID_OFFSET_SCALE1   625
  50#define VOLTAGE_VID_OFFSET_SCALE2   100
  51#define VDDC_VDDCI_DELTA            300
  52#define MC_CG_ARB_FREQ_F1           0x0b
  53
  54/* [2.5%,~2.5%] Clock stretched is multiple of 2.5% vs
  55 * not and [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ]
  56 */
  57static const uint16_t fiji_clock_stretcher_lookup_table[2][4] = {
  58                                {600, 1050, 3, 0}, {600, 1050, 6, 1} };
  59
  60/* [FF, SS] type, [] 4 voltage ranges, and
  61 * [Floor Freq, Boundary Freq, VID min , VID max]
  62 */
  63static const uint32_t fiji_clock_stretcher_ddt_table[2][4][4] = {
  64        { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
  65        { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} } };
  66
  67/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%]
  68 * (coming from PWR_CKS_CNTL.stretch_amount reg spec)
  69 */
  70static const uint8_t fiji_clock_stretch_amount_conversion[2][6] = {
  71                                {0, 1, 3, 2, 4, 5}, {0, 2, 4, 5, 6, 5} };
  72
  73static const struct fiji_pt_defaults fiji_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
  74                /*sviLoadLIneEn,  SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc */
  75                {1,               0xF,             0xFD,
  76                /* TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase */
  77                0x19,        5,               45}
  78};
  79
  80/* PPGen has the gain setting generated in x * 100 unit
  81 * This function is to convert the unit to x * 4096(0x1000) unit.
  82 *  This is the unit expected by SMC firmware
  83 */
  84static int fiji_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
  85                struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
  86                uint32_t clock, uint32_t *voltage, uint32_t *mvdd)
  87{
  88        uint32_t i;
  89        uint16_t vddci;
  90        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
  91        *voltage = *mvdd = 0;
  92
  93
  94        /* clock - voltage dependency table is empty table */
  95        if (dep_table->count == 0)
  96                return -EINVAL;
  97
  98        for (i = 0; i < dep_table->count; i++) {
  99                /* find first sclk bigger than request */
 100                if (dep_table->entries[i].clk >= clock) {
 101                        *voltage |= (dep_table->entries[i].vddc *
 102                                        VOLTAGE_SCALE) << VDDC_SHIFT;
 103                        if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
 104                                *voltage |= (data->vbios_boot_state.vddci_bootup_value *
 105                                                VOLTAGE_SCALE) << VDDCI_SHIFT;
 106                        else if (dep_table->entries[i].vddci)
 107                                *voltage |= (dep_table->entries[i].vddci *
 108                                                VOLTAGE_SCALE) << VDDCI_SHIFT;
 109                        else {
 110                                vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
 111                                                (dep_table->entries[i].vddc -
 112                                                                VDDC_VDDCI_DELTA));
 113                                *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
 114                        }
 115
 116                        if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
 117                                *mvdd = data->vbios_boot_state.mvdd_bootup_value *
 118                                        VOLTAGE_SCALE;
 119                        else if (dep_table->entries[i].mvdd)
 120                                *mvdd = (uint32_t) dep_table->entries[i].mvdd *
 121                                        VOLTAGE_SCALE;
 122
 123                        *voltage |= 1 << PHASES_SHIFT;
 124                        return 0;
 125                }
 126        }
 127
 128        /* sclk is bigger than max sclk in the dependence table */
 129        *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
 130
 131        if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
 132                *voltage |= (data->vbios_boot_state.vddci_bootup_value *
 133                                VOLTAGE_SCALE) << VDDCI_SHIFT;
 134        else if (dep_table->entries[i-1].vddci) {
 135                vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
 136                                (dep_table->entries[i].vddc -
 137                                                VDDC_VDDCI_DELTA));
 138                *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
 139        }
 140
 141        if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
 142                *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
 143        else if (dep_table->entries[i].mvdd)
 144                *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
 145
 146        return 0;
 147}
 148
 149
 150static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
 151{
 152        uint32_t tmp;
 153        tmp = raw_setting * 4096 / 100;
 154        return (uint16_t)tmp;
 155}
 156
 157static void get_scl_sda_value(uint8_t line, uint8_t *scl, uint8_t *sda)
 158{
 159        switch (line) {
 160        case SMU7_I2CLineID_DDC1:
 161                *scl = SMU7_I2C_DDC1CLK;
 162                *sda = SMU7_I2C_DDC1DATA;
 163                break;
 164        case SMU7_I2CLineID_DDC2:
 165                *scl = SMU7_I2C_DDC2CLK;
 166                *sda = SMU7_I2C_DDC2DATA;
 167                break;
 168        case SMU7_I2CLineID_DDC3:
 169                *scl = SMU7_I2C_DDC3CLK;
 170                *sda = SMU7_I2C_DDC3DATA;
 171                break;
 172        case SMU7_I2CLineID_DDC4:
 173                *scl = SMU7_I2C_DDC4CLK;
 174                *sda = SMU7_I2C_DDC4DATA;
 175                break;
 176        case SMU7_I2CLineID_DDC5:
 177                *scl = SMU7_I2C_DDC5CLK;
 178                *sda = SMU7_I2C_DDC5DATA;
 179                break;
 180        case SMU7_I2CLineID_DDC6:
 181                *scl = SMU7_I2C_DDC6CLK;
 182                *sda = SMU7_I2C_DDC6DATA;
 183                break;
 184        case SMU7_I2CLineID_SCLSDA:
 185                *scl = SMU7_I2C_SCL;
 186                *sda = SMU7_I2C_SDA;
 187                break;
 188        case SMU7_I2CLineID_DDCVGA:
 189                *scl = SMU7_I2C_DDCVGACLK;
 190                *sda = SMU7_I2C_DDCVGADATA;
 191                break;
 192        default:
 193                *scl = 0;
 194                *sda = 0;
 195                break;
 196        }
 197}
 198
 199static void fiji_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
 200{
 201        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 202        struct phm_ppt_v1_information *table_info =
 203                        (struct  phm_ppt_v1_information *)(hwmgr->pptable);
 204
 205        if (table_info &&
 206                        table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
 207                        table_info->cac_dtp_table->usPowerTuneDataSetID)
 208                smu_data->power_tune_defaults =
 209                                &fiji_power_tune_data_set_array
 210                                [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
 211        else
 212                smu_data->power_tune_defaults = &fiji_power_tune_data_set_array[0];
 213
 214}
 215
 216static int fiji_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
 217{
 218
 219        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 220        const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 221
 222        SMU73_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
 223
 224        struct phm_ppt_v1_information *table_info =
 225                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 226        struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
 227        struct pp_advance_fan_control_parameters *fan_table =
 228                        &hwmgr->thermal_controller.advanceFanControlParameters;
 229        uint8_t uc_scl, uc_sda;
 230
 231        /* TDP number of fraction bits are changed from 8 to 7 for Fiji
 232         * as requested by SMC team
 233         */
 234        dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
 235                        (uint16_t)(cac_dtp_table->usTDP * 128));
 236        dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
 237                        (uint16_t)(cac_dtp_table->usTDP * 128));
 238
 239        PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
 240                        "Target Operating Temp is out of Range!",
 241                        );
 242
 243        dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
 244        dpm_table->GpuTjHyst = 8;
 245
 246        dpm_table->DTEAmbientTempBase = defaults->DTEAmbientTempBase;
 247
 248        /* The following are for new Fiji Multi-input fan/thermal control */
 249        dpm_table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
 250                        cac_dtp_table->usTargetOperatingTemp * 256);
 251        dpm_table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
 252                        cac_dtp_table->usTemperatureLimitHotspot * 256);
 253        dpm_table->TemperatureLimitLiquid1 = PP_HOST_TO_SMC_US(
 254                        cac_dtp_table->usTemperatureLimitLiquid1 * 256);
 255        dpm_table->TemperatureLimitLiquid2 = PP_HOST_TO_SMC_US(
 256                        cac_dtp_table->usTemperatureLimitLiquid2 * 256);
 257        dpm_table->TemperatureLimitVrVddc = PP_HOST_TO_SMC_US(
 258                        cac_dtp_table->usTemperatureLimitVrVddc * 256);
 259        dpm_table->TemperatureLimitVrMvdd = PP_HOST_TO_SMC_US(
 260                        cac_dtp_table->usTemperatureLimitVrMvdd * 256);
 261        dpm_table->TemperatureLimitPlx = PP_HOST_TO_SMC_US(
 262                        cac_dtp_table->usTemperatureLimitPlx * 256);
 263
 264        dpm_table->FanGainEdge = PP_HOST_TO_SMC_US(
 265                        scale_fan_gain_settings(fan_table->usFanGainEdge));
 266        dpm_table->FanGainHotspot = PP_HOST_TO_SMC_US(
 267                        scale_fan_gain_settings(fan_table->usFanGainHotspot));
 268        dpm_table->FanGainLiquid = PP_HOST_TO_SMC_US(
 269                        scale_fan_gain_settings(fan_table->usFanGainLiquid));
 270        dpm_table->FanGainVrVddc = PP_HOST_TO_SMC_US(
 271                        scale_fan_gain_settings(fan_table->usFanGainVrVddc));
 272        dpm_table->FanGainVrMvdd = PP_HOST_TO_SMC_US(
 273                        scale_fan_gain_settings(fan_table->usFanGainVrMvdd));
 274        dpm_table->FanGainPlx = PP_HOST_TO_SMC_US(
 275                        scale_fan_gain_settings(fan_table->usFanGainPlx));
 276        dpm_table->FanGainHbm = PP_HOST_TO_SMC_US(
 277                        scale_fan_gain_settings(fan_table->usFanGainHbm));
 278
 279        dpm_table->Liquid1_I2C_address = cac_dtp_table->ucLiquid1_I2C_address;
 280        dpm_table->Liquid2_I2C_address = cac_dtp_table->ucLiquid2_I2C_address;
 281        dpm_table->Vr_I2C_address = cac_dtp_table->ucVr_I2C_address;
 282        dpm_table->Plx_I2C_address = cac_dtp_table->ucPlx_I2C_address;
 283
 284        get_scl_sda_value(cac_dtp_table->ucLiquid_I2C_Line, &uc_scl, &uc_sda);
 285        dpm_table->Liquid_I2C_LineSCL = uc_scl;
 286        dpm_table->Liquid_I2C_LineSDA = uc_sda;
 287
 288        get_scl_sda_value(cac_dtp_table->ucVr_I2C_Line, &uc_scl, &uc_sda);
 289        dpm_table->Vr_I2C_LineSCL = uc_scl;
 290        dpm_table->Vr_I2C_LineSDA = uc_sda;
 291
 292        get_scl_sda_value(cac_dtp_table->ucPlx_I2C_Line, &uc_scl, &uc_sda);
 293        dpm_table->Plx_I2C_LineSCL = uc_scl;
 294        dpm_table->Plx_I2C_LineSDA = uc_sda;
 295
 296        return 0;
 297}
 298
 299
 300static int fiji_populate_svi_load_line(struct pp_hwmgr *hwmgr)
 301{
 302        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 303        const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 304
 305        smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
 306        smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
 307        smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
 308        smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
 309
 310        return 0;
 311}
 312
 313
 314static int fiji_populate_tdc_limit(struct pp_hwmgr *hwmgr)
 315{
 316        uint16_t tdc_limit;
 317        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 318        struct phm_ppt_v1_information *table_info =
 319                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 320        const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 321
 322        /* TDC number of fraction bits are changed from 8 to 7
 323         * for Fiji as requested by SMC team
 324         */
 325        tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
 326        smu_data->power_tune_table.TDC_VDDC_PkgLimit =
 327                        CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
 328        smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
 329                        defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
 330        smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
 331
 332        return 0;
 333}
 334
 335static int fiji_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
 336{
 337        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 338        const struct fiji_pt_defaults *defaults = smu_data->power_tune_defaults;
 339        uint32_t temp;
 340
 341        if (smu7_read_smc_sram_dword(hwmgr->smumgr,
 342                        fuse_table_offset +
 343                        offsetof(SMU73_Discrete_PmFuses, TdcWaterfallCtl),
 344                        (uint32_t *)&temp, SMC_RAM_END))
 345                PP_ASSERT_WITH_CODE(false,
 346                                "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
 347                                return -EINVAL);
 348        else {
 349                smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
 350                smu_data->power_tune_table.LPMLTemperatureMin =
 351                                (uint8_t)((temp >> 16) & 0xff);
 352                smu_data->power_tune_table.LPMLTemperatureMax =
 353                                (uint8_t)((temp >> 8) & 0xff);
 354                smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
 355        }
 356        return 0;
 357}
 358
 359static int fiji_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
 360{
 361        int i;
 362        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 363
 364        /* Currently not used. Set all to zero. */
 365        for (i = 0; i < 16; i++)
 366                smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
 367
 368        return 0;
 369}
 370
 371static int fiji_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
 372{
 373        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 374
 375        if ((hwmgr->thermal_controller.advanceFanControlParameters.
 376                        usFanOutputSensitivity & (1 << 15)) ||
 377                        0 == hwmgr->thermal_controller.advanceFanControlParameters.
 378                        usFanOutputSensitivity)
 379                hwmgr->thermal_controller.advanceFanControlParameters.
 380                usFanOutputSensitivity = hwmgr->thermal_controller.
 381                        advanceFanControlParameters.usDefaultFanOutputSensitivity;
 382
 383        smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
 384                        PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
 385                                        advanceFanControlParameters.usFanOutputSensitivity);
 386        return 0;
 387}
 388
 389static int fiji_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
 390{
 391        int i;
 392        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 393
 394        /* Currently not used. Set all to zero. */
 395        for (i = 0; i < 16; i++)
 396                smu_data->power_tune_table.GnbLPML[i] = 0;
 397
 398        return 0;
 399}
 400
 401static int fiji_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
 402{
 403        return 0;
 404}
 405
 406static int fiji_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
 407{
 408        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 409        struct phm_ppt_v1_information *table_info =
 410                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 411        uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
 412        uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
 413        struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
 414
 415        HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
 416        LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
 417
 418        smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
 419                        CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
 420        smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
 421                        CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
 422
 423        return 0;
 424}
 425
 426static int fiji_populate_pm_fuses(struct pp_hwmgr *hwmgr)
 427{
 428        uint32_t pm_fuse_table_offset;
 429        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 430
 431        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 432                        PHM_PlatformCaps_PowerContainment)) {
 433                if (smu7_read_smc_sram_dword(hwmgr->smumgr,
 434                                SMU7_FIRMWARE_HEADER_LOCATION +
 435                                offsetof(SMU73_Firmware_Header, PmFuseTable),
 436                                &pm_fuse_table_offset, SMC_RAM_END))
 437                        PP_ASSERT_WITH_CODE(false,
 438                                        "Attempt to get pm_fuse_table_offset Failed!",
 439                                        return -EINVAL);
 440
 441                /* DW6 */
 442                if (fiji_populate_svi_load_line(hwmgr))
 443                        PP_ASSERT_WITH_CODE(false,
 444                                        "Attempt to populate SviLoadLine Failed!",
 445                                        return -EINVAL);
 446                /* DW7 */
 447                if (fiji_populate_tdc_limit(hwmgr))
 448                        PP_ASSERT_WITH_CODE(false,
 449                                        "Attempt to populate TDCLimit Failed!", return -EINVAL);
 450                /* DW8 */
 451                if (fiji_populate_dw8(hwmgr, pm_fuse_table_offset))
 452                        PP_ASSERT_WITH_CODE(false,
 453                                        "Attempt to populate TdcWaterfallCtl, "
 454                                        "LPMLTemperature Min and Max Failed!",
 455                                        return -EINVAL);
 456
 457                /* DW9-DW12 */
 458                if (0 != fiji_populate_temperature_scaler(hwmgr))
 459                        PP_ASSERT_WITH_CODE(false,
 460                                        "Attempt to populate LPMLTemperatureScaler Failed!",
 461                                        return -EINVAL);
 462
 463                /* DW13-DW14 */
 464                if (fiji_populate_fuzzy_fan(hwmgr))
 465                        PP_ASSERT_WITH_CODE(false,
 466                                        "Attempt to populate Fuzzy Fan Control parameters Failed!",
 467                                        return -EINVAL);
 468
 469                /* DW15-DW18 */
 470                if (fiji_populate_gnb_lpml(hwmgr))
 471                        PP_ASSERT_WITH_CODE(false,
 472                                        "Attempt to populate GnbLPML Failed!",
 473                                        return -EINVAL);
 474
 475                /* DW19 */
 476                if (fiji_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
 477                        PP_ASSERT_WITH_CODE(false,
 478                                        "Attempt to populate GnbLPML Min and Max Vid Failed!",
 479                                        return -EINVAL);
 480
 481                /* DW20 */
 482                if (fiji_populate_bapm_vddc_base_leakage_sidd(hwmgr))
 483                        PP_ASSERT_WITH_CODE(false,
 484                                        "Attempt to populate BapmVddCBaseLeakage Hi and Lo "
 485                                        "Sidd Failed!", return -EINVAL);
 486
 487                if (smu7_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
 488                                (uint8_t *)&smu_data->power_tune_table,
 489                                sizeof(struct SMU73_Discrete_PmFuses), SMC_RAM_END))
 490                        PP_ASSERT_WITH_CODE(false,
 491                                        "Attempt to download PmFuseTable Failed!",
 492                                        return -EINVAL);
 493        }
 494        return 0;
 495}
 496
 497/**
 498* Preparation of vddc and vddgfx CAC tables for SMC.
 499*
 500* @param    hwmgr  the address of the hardware manager
 501* @param    table  the SMC DPM table structure to be populated
 502* @return   always 0
 503*/
 504static int fiji_populate_cac_table(struct pp_hwmgr *hwmgr,
 505                struct SMU73_Discrete_DpmTable *table)
 506{
 507        uint32_t count;
 508        uint8_t index;
 509        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 510        struct phm_ppt_v1_information *table_info =
 511                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 512        struct phm_ppt_v1_voltage_lookup_table *lookup_table =
 513                        table_info->vddc_lookup_table;
 514        /* tables is already swapped, so in order to use the value from it,
 515         * we need to swap it back.
 516         * We are populating vddc CAC data to BapmVddc table
 517         * in split and merged mode
 518         */
 519
 520        for (count = 0; count < lookup_table->count; count++) {
 521                index = phm_get_voltage_index(lookup_table,
 522                                data->vddc_voltage_table.entries[count].value);
 523                table->BapmVddcVidLoSidd[count] =
 524                        convert_to_vid(lookup_table->entries[index].us_cac_low);
 525                table->BapmVddcVidHiSidd[count] =
 526                        convert_to_vid(lookup_table->entries[index].us_cac_high);
 527        }
 528
 529        return 0;
 530}
 531
 532/**
 533* Preparation of voltage tables for SMC.
 534*
 535* @param    hwmgr   the address of the hardware manager
 536* @param    table   the SMC DPM table structure to be populated
 537* @return   always  0
 538*/
 539
 540static int fiji_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
 541                struct SMU73_Discrete_DpmTable *table)
 542{
 543        int result;
 544
 545        result = fiji_populate_cac_table(hwmgr, table);
 546        PP_ASSERT_WITH_CODE(0 == result,
 547                        "can not populate CAC voltage tables to SMC",
 548                        return -EINVAL);
 549
 550        return 0;
 551}
 552
 553static int fiji_populate_ulv_level(struct pp_hwmgr *hwmgr,
 554                struct SMU73_Discrete_Ulv *state)
 555{
 556        int result = 0;
 557
 558        struct phm_ppt_v1_information *table_info =
 559                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 560
 561        state->CcPwrDynRm = 0;
 562        state->CcPwrDynRm1 = 0;
 563
 564        state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
 565        state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
 566                        VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
 567
 568        state->VddcPhase = 1;
 569
 570        if (!result) {
 571                CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
 572                CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
 573                CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
 574        }
 575        return result;
 576}
 577
 578static int fiji_populate_ulv_state(struct pp_hwmgr *hwmgr,
 579                struct SMU73_Discrete_DpmTable *table)
 580{
 581        return fiji_populate_ulv_level(hwmgr, &table->Ulv);
 582}
 583
 584static int fiji_populate_smc_link_level(struct pp_hwmgr *hwmgr,
 585                struct SMU73_Discrete_DpmTable *table)
 586{
 587        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 588        struct smu7_dpm_table *dpm_table = &data->dpm_table;
 589        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 590        int i;
 591
 592        /* Index (dpm_table->pcie_speed_table.count)
 593         * is reserved for PCIE boot level. */
 594        for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
 595                table->LinkLevel[i].PcieGenSpeed  =
 596                                (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
 597                table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
 598                                dpm_table->pcie_speed_table.dpm_levels[i].param1);
 599                table->LinkLevel[i].EnabledForActivity = 1;
 600                table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
 601                table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
 602                table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
 603        }
 604
 605        smu_data->smc_state_table.LinkLevelCount =
 606                        (uint8_t)dpm_table->pcie_speed_table.count;
 607        data->dpm_level_enable_mask.pcie_dpm_enable_mask =
 608                        phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
 609
 610        return 0;
 611}
 612
 613
 614/**
 615* Calculates the SCLK dividers using the provided engine clock
 616*
 617* @param    hwmgr  the address of the hardware manager
 618* @param    clock  the engine clock to use to populate the structure
 619* @param    sclk   the SMC SCLK structure to be populated
 620*/
 621static int fiji_calculate_sclk_params(struct pp_hwmgr *hwmgr,
 622                uint32_t clock, struct SMU73_Discrete_GraphicsLevel *sclk)
 623{
 624        const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 625        struct pp_atomctrl_clock_dividers_vi dividers;
 626        uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
 627        uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
 628        uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
 629        uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
 630        uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
 631        uint32_t ref_clock;
 632        uint32_t ref_divider;
 633        uint32_t fbdiv;
 634        int result;
 635
 636        /* get the engine clock dividers for this clock value */
 637        result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
 638
 639        PP_ASSERT_WITH_CODE(result == 0,
 640                        "Error retrieving Engine Clock dividers from VBIOS.",
 641                        return result);
 642
 643        /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
 644        ref_clock = atomctrl_get_reference_clock(hwmgr);
 645        ref_divider = 1 + dividers.uc_pll_ref_div;
 646
 647        /* low 14 bits is fraction and high 12 bits is divider */
 648        fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
 649
 650        /* SPLL_FUNC_CNTL setup */
 651        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
 652                        SPLL_REF_DIV, dividers.uc_pll_ref_div);
 653        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
 654                        SPLL_PDIV_A,  dividers.uc_pll_post_div);
 655
 656        /* SPLL_FUNC_CNTL_3 setup*/
 657        spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
 658                        SPLL_FB_DIV, fbdiv);
 659
 660        /* set to use fractional accumulation*/
 661        spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
 662                        SPLL_DITHEN, 1);
 663
 664        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 665                                PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
 666                struct pp_atomctrl_internal_ss_info ssInfo;
 667
 668                uint32_t vco_freq = clock * dividers.uc_pll_post_div;
 669                if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
 670                                vco_freq, &ssInfo)) {
 671                        /*
 672                         * ss_info.speed_spectrum_percentage -- in unit of 0.01%
 673                         * ss_info.speed_spectrum_rate -- in unit of khz
 674                         *
 675                         * clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2
 676                         */
 677                        uint32_t clk_s = ref_clock * 5 /
 678                                        (ref_divider * ssInfo.speed_spectrum_rate);
 679                        /* clkv = 2 * D * fbdiv / NS */
 680                        uint32_t clk_v = 4 * ssInfo.speed_spectrum_percentage *
 681                                        fbdiv / (clk_s * 10000);
 682
 683                        cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
 684                                        CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
 685                        cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
 686                                        CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
 687                        cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
 688                                        CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
 689                }
 690        }
 691
 692        sclk->SclkFrequency        = clock;
 693        sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
 694        sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
 695        sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
 696        sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
 697        sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
 698
 699        return 0;
 700}
 701
 702/**
 703* Populates single SMC SCLK structure using the provided engine clock
 704*
 705* @param    hwmgr      the address of the hardware manager
 706* @param    clock the engine clock to use to populate the structure
 707* @param    sclk        the SMC SCLK structure to be populated
 708*/
 709
 710static int fiji_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
 711                uint32_t clock, uint16_t sclk_al_threshold,
 712                struct SMU73_Discrete_GraphicsLevel *level)
 713{
 714        int result;
 715        /* PP_Clocks minClocks; */
 716        uint32_t threshold, mvdd;
 717        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 718        struct phm_ppt_v1_information *table_info =
 719                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 720
 721        result = fiji_calculate_sclk_params(hwmgr, clock, level);
 722
 723        /* populate graphics levels */
 724        result = fiji_get_dependency_volt_by_clk(hwmgr,
 725                        table_info->vdd_dep_on_sclk, clock,
 726                        (uint32_t *)(&level->MinVoltage), &mvdd);
 727        PP_ASSERT_WITH_CODE((0 == result),
 728                        "can not find VDDC voltage value for "
 729                        "VDDC engine clock dependency table",
 730                        return result);
 731
 732        level->SclkFrequency = clock;
 733        level->ActivityLevel = sclk_al_threshold;
 734        level->CcPwrDynRm = 0;
 735        level->CcPwrDynRm1 = 0;
 736        level->EnabledForActivity = 0;
 737        level->EnabledForThrottle = 1;
 738        level->UpHyst = 10;
 739        level->DownHyst = 0;
 740        level->VoltageDownHyst = 0;
 741        level->PowerThrottle = 0;
 742
 743        threshold = clock * data->fast_watermark_threshold / 100;
 744
 745        data->display_timing.min_clock_in_sr = hwmgr->display_config.min_core_set_clock_in_sr;
 746
 747        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
 748                level->DeepSleepDivId = smu7_get_sleep_divider_id_from_clock(clock,
 749                                                                hwmgr->display_config.min_core_set_clock_in_sr);
 750
 751
 752        /* Default to slow, highest DPM level will be
 753         * set to PPSMC_DISPLAY_WATERMARK_LOW later.
 754         */
 755        level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
 756
 757        CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
 758        CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
 759        CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
 760        CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
 761        CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
 762        CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
 763        CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
 764        CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
 765        CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
 766
 767        return 0;
 768}
 769/**
 770* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
 771*
 772* @param    hwmgr      the address of the hardware manager
 773*/
 774int fiji_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
 775{
 776        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 777        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
 778
 779        struct smu7_dpm_table *dpm_table = &data->dpm_table;
 780        struct phm_ppt_v1_information *table_info =
 781                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 782        struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
 783        uint8_t pcie_entry_cnt = (uint8_t) data->dpm_table.pcie_speed_table.count;
 784        int result = 0;
 785        uint32_t array = smu_data->smu7_data.dpm_table_start +
 786                        offsetof(SMU73_Discrete_DpmTable, GraphicsLevel);
 787        uint32_t array_size = sizeof(struct SMU73_Discrete_GraphicsLevel) *
 788                        SMU73_MAX_LEVELS_GRAPHICS;
 789        struct SMU73_Discrete_GraphicsLevel *levels =
 790                        smu_data->smc_state_table.GraphicsLevel;
 791        uint32_t i, max_entry;
 792        uint8_t hightest_pcie_level_enabled = 0,
 793                        lowest_pcie_level_enabled = 0,
 794                        mid_pcie_level_enabled = 0,
 795                        count = 0;
 796
 797        for (i = 0; i < dpm_table->sclk_table.count; i++) {
 798                result = fiji_populate_single_graphic_level(hwmgr,
 799                                dpm_table->sclk_table.dpm_levels[i].value,
 800                                (uint16_t)smu_data->activity_target[i],
 801                                &levels[i]);
 802                if (result)
 803                        return result;
 804
 805                /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
 806                if (i > 1)
 807                        levels[i].DeepSleepDivId = 0;
 808        }
 809
 810        /* Only enable level 0 for now.*/
 811        levels[0].EnabledForActivity = 1;
 812
 813        /* set highest level watermark to high */
 814        levels[dpm_table->sclk_table.count - 1].DisplayWatermark =
 815                        PPSMC_DISPLAY_WATERMARK_HIGH;
 816
 817        smu_data->smc_state_table.GraphicsDpmLevelCount =
 818                        (uint8_t)dpm_table->sclk_table.count;
 819        data->dpm_level_enable_mask.sclk_dpm_enable_mask =
 820                        phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
 821
 822        if (pcie_table != NULL) {
 823                PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
 824                                "There must be 1 or more PCIE levels defined in PPTable.",
 825                                return -EINVAL);
 826                max_entry = pcie_entry_cnt - 1;
 827                for (i = 0; i < dpm_table->sclk_table.count; i++)
 828                        levels[i].pcieDpmLevel =
 829                                        (uint8_t) ((i < max_entry) ? i : max_entry);
 830        } else {
 831                while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
 832                                ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
 833                                                (1 << (hightest_pcie_level_enabled + 1))) != 0))
 834                        hightest_pcie_level_enabled++;
 835
 836                while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
 837                                ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
 838                                                (1 << lowest_pcie_level_enabled)) == 0))
 839                        lowest_pcie_level_enabled++;
 840
 841                while ((count < hightest_pcie_level_enabled) &&
 842                                ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
 843                                                (1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
 844                        count++;
 845
 846                mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
 847                                hightest_pcie_level_enabled ?
 848                                                (lowest_pcie_level_enabled + 1 + count) :
 849                                                hightest_pcie_level_enabled;
 850
 851                /* set pcieDpmLevel to hightest_pcie_level_enabled */
 852                for (i = 2; i < dpm_table->sclk_table.count; i++)
 853                        levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
 854
 855                /* set pcieDpmLevel to lowest_pcie_level_enabled */
 856                levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
 857
 858                /* set pcieDpmLevel to mid_pcie_level_enabled */
 859                levels[1].pcieDpmLevel = mid_pcie_level_enabled;
 860        }
 861        /* level count will send to smc once at init smc table and never change */
 862        result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
 863                        (uint32_t)array_size, SMC_RAM_END);
 864
 865        return result;
 866}
 867
 868
 869/**
 870 * MCLK Frequency Ratio
 871 * SEQ_CG_RESP  Bit[31:24] - 0x0
 872 * Bit[27:24] \96 DDR3 Frequency ratio
 873 * 0x0 <= 100MHz,       450 < 0x8 <= 500MHz
 874 * 100 < 0x1 <= 150MHz,       500 < 0x9 <= 550MHz
 875 * 150 < 0x2 <= 200MHz,       550 < 0xA <= 600MHz
 876 * 200 < 0x3 <= 250MHz,       600 < 0xB <= 650MHz
 877 * 250 < 0x4 <= 300MHz,       650 < 0xC <= 700MHz
 878 * 300 < 0x5 <= 350MHz,       700 < 0xD <= 750MHz
 879 * 350 < 0x6 <= 400MHz,       750 < 0xE <= 800MHz
 880 * 400 < 0x7 <= 450MHz,       800 < 0xF
 881 */
 882static uint8_t fiji_get_mclk_frequency_ratio(uint32_t mem_clock)
 883{
 884        if (mem_clock <= 10000)
 885                return 0x0;
 886        if (mem_clock <= 15000)
 887                return 0x1;
 888        if (mem_clock <= 20000)
 889                return 0x2;
 890        if (mem_clock <= 25000)
 891                return 0x3;
 892        if (mem_clock <= 30000)
 893                return 0x4;
 894        if (mem_clock <= 35000)
 895                return 0x5;
 896        if (mem_clock <= 40000)
 897                return 0x6;
 898        if (mem_clock <= 45000)
 899                return 0x7;
 900        if (mem_clock <= 50000)
 901                return 0x8;
 902        if (mem_clock <= 55000)
 903                return 0x9;
 904        if (mem_clock <= 60000)
 905                return 0xa;
 906        if (mem_clock <= 65000)
 907                return 0xb;
 908        if (mem_clock <= 70000)
 909                return 0xc;
 910        if (mem_clock <= 75000)
 911                return 0xd;
 912        if (mem_clock <= 80000)
 913                return 0xe;
 914        /* mem_clock > 800MHz */
 915        return 0xf;
 916}
 917
 918/**
 919* Populates the SMC MCLK structure using the provided memory clock
 920*
 921* @param    hwmgr   the address of the hardware manager
 922* @param    clock   the memory clock to use to populate the structure
 923* @param    sclk    the SMC SCLK structure to be populated
 924*/
 925static int fiji_calculate_mclk_params(struct pp_hwmgr *hwmgr,
 926    uint32_t clock, struct SMU73_Discrete_MemoryLevel *mclk)
 927{
 928        struct pp_atomctrl_memory_clock_param mem_param;
 929        int result;
 930
 931        result = atomctrl_get_memory_pll_dividers_vi(hwmgr, clock, &mem_param);
 932        PP_ASSERT_WITH_CODE((0 == result),
 933                        "Failed to get Memory PLL Dividers.",
 934                        );
 935
 936        /* Save the result data to outpupt memory level structure */
 937        mclk->MclkFrequency   = clock;
 938        mclk->MclkDivider     = (uint8_t)mem_param.mpll_post_divider;
 939        mclk->FreqRange       = fiji_get_mclk_frequency_ratio(clock);
 940
 941        return result;
 942}
 943
 944static int fiji_populate_single_memory_level(struct pp_hwmgr *hwmgr,
 945                uint32_t clock, struct SMU73_Discrete_MemoryLevel *mem_level)
 946{
 947        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 948        struct phm_ppt_v1_information *table_info =
 949                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 950        int result = 0;
 951        uint32_t mclk_stutter_mode_threshold = 60000;
 952
 953        if (table_info->vdd_dep_on_mclk) {
 954                result = fiji_get_dependency_volt_by_clk(hwmgr,
 955                                table_info->vdd_dep_on_mclk, clock,
 956                                (uint32_t *)(&mem_level->MinVoltage), &mem_level->MinMvdd);
 957                PP_ASSERT_WITH_CODE((0 == result),
 958                                "can not find MinVddc voltage value from memory "
 959                                "VDDC voltage dependency table", return result);
 960        }
 961
 962        mem_level->EnabledForThrottle = 1;
 963        mem_level->EnabledForActivity = 0;
 964        mem_level->UpHyst = 0;
 965        mem_level->DownHyst = 100;
 966        mem_level->VoltageDownHyst = 0;
 967        mem_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
 968        mem_level->StutterEnable = false;
 969
 970        mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
 971
 972        /* enable stutter mode if all the follow condition applied
 973         * PECI_GetNumberOfActiveDisplays(hwmgr->pPECI,
 974         * &(data->DisplayTiming.numExistingDisplays));
 975         */
 976        data->display_timing.num_existing_displays = 1;
 977
 978        if (mclk_stutter_mode_threshold &&
 979                (clock <= mclk_stutter_mode_threshold) &&
 980                (!data->is_uvd_enabled) &&
 981                (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
 982                                STUTTER_ENABLE) & 0x1))
 983                mem_level->StutterEnable = true;
 984
 985        result = fiji_calculate_mclk_params(hwmgr, clock, mem_level);
 986        if (!result) {
 987                CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
 988                CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
 989                CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
 990                CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
 991        }
 992        return result;
 993}
 994
 995/**
 996* Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states
 997*
 998* @param    hwmgr      the address of the hardware manager
 999*/
1000int fiji_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1001{
1002        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1003        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1004        struct smu7_dpm_table *dpm_table = &data->dpm_table;
1005        int result;
1006        /* populate MCLK dpm table to SMU7 */
1007        uint32_t array = smu_data->smu7_data.dpm_table_start +
1008                        offsetof(SMU73_Discrete_DpmTable, MemoryLevel);
1009        uint32_t array_size = sizeof(SMU73_Discrete_MemoryLevel) *
1010                        SMU73_MAX_LEVELS_MEMORY;
1011        struct SMU73_Discrete_MemoryLevel *levels =
1012                        smu_data->smc_state_table.MemoryLevel;
1013        uint32_t i;
1014
1015        for (i = 0; i < dpm_table->mclk_table.count; i++) {
1016                PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1017                                "can not populate memory level as memory clock is zero",
1018                                return -EINVAL);
1019                result = fiji_populate_single_memory_level(hwmgr,
1020                                dpm_table->mclk_table.dpm_levels[i].value,
1021                                &levels[i]);
1022                if (result)
1023                        return result;
1024        }
1025
1026        /* Only enable level 0 for now. */
1027        levels[0].EnabledForActivity = 1;
1028
1029        /* in order to prevent MC activity from stutter mode to push DPM up.
1030         * the UVD change complements this by putting the MCLK in
1031         * a higher state by default such that we are not effected by
1032         * up threshold or and MCLK DPM latency.
1033         */
1034        levels[0].ActivityLevel = (uint16_t)data->mclk_dpm0_activity_target;
1035        CONVERT_FROM_HOST_TO_SMC_US(levels[0].ActivityLevel);
1036
1037        smu_data->smc_state_table.MemoryDpmLevelCount =
1038                        (uint8_t)dpm_table->mclk_table.count;
1039        data->dpm_level_enable_mask.mclk_dpm_enable_mask =
1040                        phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1041        /* set highest level watermark to high */
1042        levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
1043                        PPSMC_DISPLAY_WATERMARK_HIGH;
1044
1045        /* level count will send to smc once at init smc table and never change */
1046        result = smu7_copy_bytes_to_smc(hwmgr->smumgr, array, (uint8_t *)levels,
1047                        (uint32_t)array_size, SMC_RAM_END);
1048
1049        return result;
1050}
1051
1052
1053/**
1054* Populates the SMC MVDD structure using the provided memory clock.
1055*
1056* @param    hwmgr      the address of the hardware manager
1057* @param    mclk        the MCLK value to be used in the decision if MVDD should be high or low.
1058* @param    voltage     the SMC VOLTAGE structure to be populated
1059*/
1060static int fiji_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1061                uint32_t mclk, SMIO_Pattern *smio_pat)
1062{
1063        const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1064        struct phm_ppt_v1_information *table_info =
1065                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1066        uint32_t i = 0;
1067
1068        if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1069                /* find mvdd value which clock is more than request */
1070                for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1071                        if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1072                                smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
1073                                break;
1074                        }
1075                }
1076                PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1077                                "MVDD Voltage is outside the supported range.",
1078                                return -EINVAL);
1079        } else
1080                return -EINVAL;
1081
1082        return 0;
1083}
1084
1085static int fiji_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1086                SMU73_Discrete_DpmTable *table)
1087{
1088        int result = 0;
1089        const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1090        struct phm_ppt_v1_information *table_info =
1091                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1092        struct pp_atomctrl_clock_dividers_vi dividers;
1093        SMIO_Pattern vol_level;
1094        uint32_t mvdd;
1095        uint16_t us_mvdd;
1096        uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1097        uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1098
1099        table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1100
1101        if (!data->sclk_dpm_key_disabled) {
1102                /* Get MinVoltage and Frequency from DPM0,
1103                 * already converted to SMC_UL */
1104                table->ACPILevel.SclkFrequency =
1105                                data->dpm_table.sclk_table.dpm_levels[0].value;
1106                result = fiji_get_dependency_volt_by_clk(hwmgr,
1107                                table_info->vdd_dep_on_sclk,
1108                                table->ACPILevel.SclkFrequency,
1109                                (uint32_t *)(&table->ACPILevel.MinVoltage), &mvdd);
1110                PP_ASSERT_WITH_CODE((0 == result),
1111                                "Cannot find ACPI VDDC voltage value " \
1112                                "in Clock Dependency Table",
1113                                );
1114        } else {
1115                table->ACPILevel.SclkFrequency =
1116                                data->vbios_boot_state.sclk_bootup_value;
1117                table->ACPILevel.MinVoltage =
1118                                data->vbios_boot_state.vddc_bootup_value * VOLTAGE_SCALE;
1119        }
1120
1121        /* get the engine clock dividers for this clock value */
1122        result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1123                        table->ACPILevel.SclkFrequency,  &dividers);
1124        PP_ASSERT_WITH_CODE(result == 0,
1125                        "Error retrieving Engine Clock dividers from VBIOS.",
1126                        return result);
1127
1128        table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1129        table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1130        table->ACPILevel.DeepSleepDivId = 0;
1131
1132        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1133                        SPLL_PWRON, 0);
1134        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1135                        SPLL_RESET, 1);
1136        spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1137                        SCLK_MUX_SEL, 4);
1138
1139        table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1140        table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1141        table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1142        table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1143        table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1144        table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1145        table->ACPILevel.CcPwrDynRm = 0;
1146        table->ACPILevel.CcPwrDynRm1 = 0;
1147
1148        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1149        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1150        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
1151        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1152        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1153        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1154        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1155        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1156        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1157        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1158        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1159
1160        if (!data->mclk_dpm_key_disabled) {
1161                /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */
1162                table->MemoryACPILevel.MclkFrequency =
1163                                data->dpm_table.mclk_table.dpm_levels[0].value;
1164                result = fiji_get_dependency_volt_by_clk(hwmgr,
1165                                table_info->vdd_dep_on_mclk,
1166                                table->MemoryACPILevel.MclkFrequency,
1167                        (uint32_t *)(&table->MemoryACPILevel.MinVoltage), &mvdd);
1168                PP_ASSERT_WITH_CODE((0 == result),
1169                                "Cannot find ACPI VDDCI voltage value in Clock Dependency Table",
1170                                );
1171        } else {
1172                table->MemoryACPILevel.MclkFrequency =
1173                                data->vbios_boot_state.mclk_bootup_value;
1174                table->MemoryACPILevel.MinVoltage =
1175                                data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE;
1176        }
1177
1178        us_mvdd = 0;
1179        if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) ||
1180                        (data->mclk_dpm_key_disabled))
1181                us_mvdd = data->vbios_boot_state.mvdd_bootup_value;
1182        else {
1183                if (!fiji_populate_mvdd_value(hwmgr,
1184                                data->dpm_table.mclk_table.dpm_levels[0].value,
1185                                &vol_level))
1186                        us_mvdd = vol_level.Voltage;
1187        }
1188
1189        table->MemoryACPILevel.MinMvdd =
1190                        PP_HOST_TO_SMC_UL(us_mvdd * VOLTAGE_SCALE);
1191
1192        table->MemoryACPILevel.EnabledForThrottle = 0;
1193        table->MemoryACPILevel.EnabledForActivity = 0;
1194        table->MemoryACPILevel.UpHyst = 0;
1195        table->MemoryACPILevel.DownHyst = 100;
1196        table->MemoryACPILevel.VoltageDownHyst = 0;
1197        table->MemoryACPILevel.ActivityLevel =
1198                        PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
1199
1200        table->MemoryACPILevel.StutterEnable = false;
1201        CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
1202        CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
1203
1204        return result;
1205}
1206
1207static int fiji_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1208                SMU73_Discrete_DpmTable *table)
1209{
1210        int result = -EINVAL;
1211        uint8_t count;
1212        struct pp_atomctrl_clock_dividers_vi dividers;
1213        struct phm_ppt_v1_information *table_info =
1214                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1215        struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1216                        table_info->mm_dep_table;
1217
1218        table->VceLevelCount = (uint8_t)(mm_table->count);
1219        table->VceBootLevel = 0;
1220
1221        for (count = 0; count < table->VceLevelCount; count++) {
1222                table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
1223                table->VceLevel[count].MinVoltage = 0;
1224                table->VceLevel[count].MinVoltage |=
1225                                (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
1226                table->VceLevel[count].MinVoltage |=
1227                                ((mm_table->entries[count].vddc - VDDC_VDDCI_DELTA) *
1228                                                VOLTAGE_SCALE) << VDDCI_SHIFT;
1229                table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1230
1231                /*retrieve divider value for VBIOS */
1232                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1233                                table->VceLevel[count].Frequency, &dividers);
1234                PP_ASSERT_WITH_CODE((0 == result),
1235                                "can not find divide id for VCE engine clock",
1236                                return result);
1237
1238                table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1239
1240                CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1241                CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
1242        }
1243        return result;
1244}
1245
1246static int fiji_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1247                SMU73_Discrete_DpmTable *table)
1248{
1249        int result = -EINVAL;
1250        uint8_t count;
1251        struct pp_atomctrl_clock_dividers_vi dividers;
1252        struct phm_ppt_v1_information *table_info =
1253                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1254        struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1255                        table_info->mm_dep_table;
1256
1257        table->AcpLevelCount = (uint8_t)(mm_table->count);
1258        table->AcpBootLevel = 0;
1259
1260        for (count = 0; count < table->AcpLevelCount; count++) {
1261                table->AcpLevel[count].Frequency = mm_table->entries[count].aclk;
1262                table->AcpLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1263                                VOLTAGE_SCALE) << VDDC_SHIFT;
1264                table->AcpLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1265                                VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1266                table->AcpLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1267
1268                /* retrieve divider value for VBIOS */
1269                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1270                                table->AcpLevel[count].Frequency, &dividers);
1271                PP_ASSERT_WITH_CODE((0 == result),
1272                                "can not find divide id for engine clock", return result);
1273
1274                table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1275
1276                CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1277                CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].MinVoltage);
1278        }
1279        return result;
1280}
1281
1282static int fiji_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
1283                SMU73_Discrete_DpmTable *table)
1284{
1285        int result = -EINVAL;
1286        uint8_t count;
1287        struct pp_atomctrl_clock_dividers_vi dividers;
1288        struct phm_ppt_v1_information *table_info =
1289                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1290        struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1291                        table_info->mm_dep_table;
1292
1293        table->SamuBootLevel = 0;
1294        table->SamuLevelCount = (uint8_t)(mm_table->count);
1295
1296        for (count = 0; count < table->SamuLevelCount; count++) {
1297                /* not sure whether we need evclk or not */
1298                table->SamuLevel[count].MinVoltage = 0;
1299                table->SamuLevel[count].Frequency = mm_table->entries[count].samclock;
1300                table->SamuLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1301                                VOLTAGE_SCALE) << VDDC_SHIFT;
1302                table->SamuLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1303                                VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1304                table->SamuLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1305
1306                /* retrieve divider value for VBIOS */
1307                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1308                                table->SamuLevel[count].Frequency, &dividers);
1309                PP_ASSERT_WITH_CODE((0 == result),
1310                                "can not find divide id for samu clock", return result);
1311
1312                table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1313
1314                CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
1315                CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].MinVoltage);
1316        }
1317        return result;
1318}
1319
1320static int fiji_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
1321                int32_t eng_clock, int32_t mem_clock,
1322                struct SMU73_Discrete_MCArbDramTimingTableEntry *arb_regs)
1323{
1324        uint32_t dram_timing;
1325        uint32_t dram_timing2;
1326        uint32_t burstTime;
1327        ULONG state, trrds, trrdl;
1328        int result;
1329
1330        result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1331                        eng_clock, mem_clock);
1332        PP_ASSERT_WITH_CODE(result == 0,
1333                        "Error calling VBIOS to set DRAM_TIMING.", return result);
1334
1335        dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1336        dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1337        burstTime = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
1338
1339        state = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, STATE0);
1340        trrds = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDS0);
1341        trrdl = PHM_GET_FIELD(burstTime, MC_ARB_BURST_TIME, TRRDL0);
1342
1343        arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dram_timing);
1344        arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
1345        arb_regs->McArbBurstTime   = (uint8_t)burstTime;
1346        arb_regs->TRRDS            = (uint8_t)trrds;
1347        arb_regs->TRRDL            = (uint8_t)trrdl;
1348
1349        return 0;
1350}
1351
1352static int fiji_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1353{
1354        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1355        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1356        struct SMU73_Discrete_MCArbDramTimingTable arb_regs;
1357        uint32_t i, j;
1358        int result = 0;
1359
1360        for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1361                for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1362                        result = fiji_populate_memory_timing_parameters(hwmgr,
1363                                        data->dpm_table.sclk_table.dpm_levels[i].value,
1364                                        data->dpm_table.mclk_table.dpm_levels[j].value,
1365                                        &arb_regs.entries[i][j]);
1366                        if (result)
1367                                break;
1368                }
1369        }
1370
1371        if (!result)
1372                result = smu7_copy_bytes_to_smc(
1373                                hwmgr->smumgr,
1374                                smu_data->smu7_data.arb_table_start,
1375                                (uint8_t *)&arb_regs,
1376                                sizeof(SMU73_Discrete_MCArbDramTimingTable),
1377                                SMC_RAM_END);
1378        return result;
1379}
1380
1381static int fiji_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1382                struct SMU73_Discrete_DpmTable *table)
1383{
1384        int result = -EINVAL;
1385        uint8_t count;
1386        struct pp_atomctrl_clock_dividers_vi dividers;
1387        struct phm_ppt_v1_information *table_info =
1388                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1389        struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1390                        table_info->mm_dep_table;
1391
1392        table->UvdLevelCount = (uint8_t)(mm_table->count);
1393        table->UvdBootLevel = 0;
1394
1395        for (count = 0; count < table->UvdLevelCount; count++) {
1396                table->UvdLevel[count].MinVoltage = 0;
1397                table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1398                table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1399                table->UvdLevel[count].MinVoltage |= (mm_table->entries[count].vddc *
1400                                VOLTAGE_SCALE) << VDDC_SHIFT;
1401                table->UvdLevel[count].MinVoltage |= ((mm_table->entries[count].vddc -
1402                                VDDC_VDDCI_DELTA) * VOLTAGE_SCALE) << VDDCI_SHIFT;
1403                table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
1404
1405                /* retrieve divider value for VBIOS */
1406                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1407                                table->UvdLevel[count].VclkFrequency, &dividers);
1408                PP_ASSERT_WITH_CODE((0 == result),
1409                                "can not find divide id for Vclk clock", return result);
1410
1411                table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1412
1413                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1414                                table->UvdLevel[count].DclkFrequency, &dividers);
1415                PP_ASSERT_WITH_CODE((0 == result),
1416                                "can not find divide id for Dclk clock", return result);
1417
1418                table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1419
1420                CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1421                CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1422                CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
1423
1424        }
1425        return result;
1426}
1427
1428static int fiji_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1429                struct SMU73_Discrete_DpmTable *table)
1430{
1431        int result = 0;
1432        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1433
1434        table->GraphicsBootLevel = 0;
1435        table->MemoryBootLevel = 0;
1436
1437        /* find boot level from dpm table */
1438        result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1439                        data->vbios_boot_state.sclk_bootup_value,
1440                        (uint32_t *)&(table->GraphicsBootLevel));
1441
1442        result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1443                        data->vbios_boot_state.mclk_bootup_value,
1444                        (uint32_t *)&(table->MemoryBootLevel));
1445
1446        table->BootVddc  = data->vbios_boot_state.vddc_bootup_value *
1447                        VOLTAGE_SCALE;
1448        table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
1449                        VOLTAGE_SCALE;
1450        table->BootMVdd  = data->vbios_boot_state.mvdd_bootup_value *
1451                        VOLTAGE_SCALE;
1452
1453        CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
1454        CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
1455        CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1456
1457        return 0;
1458}
1459
1460static int fiji_populate_smc_initailial_state(struct pp_hwmgr *hwmgr)
1461{
1462        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1463        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1464        struct phm_ppt_v1_information *table_info =
1465                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1466        uint8_t count, level;
1467
1468        count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
1469        for (level = 0; level < count; level++) {
1470                if (table_info->vdd_dep_on_sclk->entries[level].clk >=
1471                                data->vbios_boot_state.sclk_bootup_value) {
1472                        smu_data->smc_state_table.GraphicsBootLevel = level;
1473                        break;
1474                }
1475        }
1476
1477        count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
1478        for (level = 0; level < count; level++) {
1479                if (table_info->vdd_dep_on_mclk->entries[level].clk >=
1480                                data->vbios_boot_state.mclk_bootup_value) {
1481                        smu_data->smc_state_table.MemoryBootLevel = level;
1482                        break;
1483                }
1484        }
1485
1486        return 0;
1487}
1488
1489static int fiji_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1490{
1491        uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1492                        volt_with_cks, value;
1493        uint16_t clock_freq_u16;
1494        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1495        uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1496                        volt_offset = 0;
1497        struct phm_ppt_v1_information *table_info =
1498                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1499        struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1500                        table_info->vdd_dep_on_sclk;
1501
1502        stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1503
1504        /* Read SMU_Eefuse to read and calculate RO and determine
1505         * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1506         */
1507        efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1508                        ixSMU_EFUSE_0 + (146 * 4));
1509        efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1510                        ixSMU_EFUSE_0 + (148 * 4));
1511        efuse &= 0xFF000000;
1512        efuse = efuse >> 24;
1513        efuse2 &= 0xF;
1514
1515        if (efuse2 == 1)
1516                ro = (2300 - 1350) * efuse / 255 + 1350;
1517        else
1518                ro = (2500 - 1000) * efuse / 255 + 1000;
1519
1520        if (ro >= 1660)
1521                type = 0;
1522        else
1523                type = 1;
1524
1525        /* Populate Stretch amount */
1526        smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1527
1528        /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1529        for (i = 0; i < sclk_table->count; i++) {
1530                smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1531                                sclk_table->entries[i].cks_enable << i;
1532                volt_without_cks = (uint32_t)((14041 *
1533                        (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1534                        (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1535                volt_with_cks = (uint32_t)((13946 *
1536                        (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1537                        (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1538                if (volt_without_cks >= volt_with_cks)
1539                        volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1540                                        sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1541                smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1542        }
1543
1544        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1545                        STRETCH_ENABLE, 0x0);
1546        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1547                        masterReset, 0x1);
1548        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1549                        staticEnable, 0x1);
1550        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1551                        masterReset, 0x0);
1552
1553        /* Populate CKS Lookup Table */
1554        if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1555                stretch_amount2 = 0;
1556        else if (stretch_amount == 3 || stretch_amount == 4)
1557                stretch_amount2 = 1;
1558        else {
1559                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1560                                PHM_PlatformCaps_ClockStretcher);
1561                PP_ASSERT_WITH_CODE(false,
1562                                "Stretch Amount in PPTable not supported\n",
1563                                return -EINVAL);
1564        }
1565
1566        value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1567                        ixPWR_CKS_CNTL);
1568        value &= 0xFFC2FF87;
1569        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1570                        fiji_clock_stretcher_lookup_table[stretch_amount2][0];
1571        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1572                        fiji_clock_stretcher_lookup_table[stretch_amount2][1];
1573        clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1574                        GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1575                        SclkFrequency) / 100);
1576        if (fiji_clock_stretcher_lookup_table[stretch_amount2][0] <
1577                        clock_freq_u16 &&
1578            fiji_clock_stretcher_lookup_table[stretch_amount2][1] >
1579                        clock_freq_u16) {
1580                /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1581                value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1582                /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1583                value |= (fiji_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1584                /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1585                value |= (fiji_clock_stretch_amount_conversion
1586                                [fiji_clock_stretcher_lookup_table[stretch_amount2][3]]
1587                                 [stretch_amount]) << 3;
1588        }
1589        CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1590                        CKS_LOOKUPTableEntry[0].minFreq);
1591        CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1592                        CKS_LOOKUPTableEntry[0].maxFreq);
1593        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1594                        fiji_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1595        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1596                        (fiji_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1597
1598        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1599                        ixPWR_CKS_CNTL, value);
1600
1601        /* Populate DDT Lookup Table */
1602        for (i = 0; i < 4; i++) {
1603                /* Assign the minimum and maximum VID stored
1604                 * in the last row of Clock Stretcher Voltage Table.
1605                 */
1606                smu_data->smc_state_table.ClockStretcherDataTable.
1607                ClockStretcherDataTableEntry[i].minVID =
1608                                (uint8_t) fiji_clock_stretcher_ddt_table[type][i][2];
1609                smu_data->smc_state_table.ClockStretcherDataTable.
1610                ClockStretcherDataTableEntry[i].maxVID =
1611                                (uint8_t) fiji_clock_stretcher_ddt_table[type][i][3];
1612                /* Loop through each SCLK and check the frequency
1613                 * to see if it lies within the frequency for clock stretcher.
1614                 */
1615                for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1616                        cks_setting = 0;
1617                        clock_freq = PP_SMC_TO_HOST_UL(
1618                                        smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1619                        /* Check the allowed frequency against the sclk level[j].
1620                         *  Sclk's endianness has already been converted,
1621                         *  and it's in 10Khz unit,
1622                         *  as opposed to Data table, which is in Mhz unit.
1623                         */
1624                        if (clock_freq >=
1625                                        (fiji_clock_stretcher_ddt_table[type][i][0]) * 100) {
1626                                cks_setting |= 0x2;
1627                                if (clock_freq <
1628                                                (fiji_clock_stretcher_ddt_table[type][i][1]) * 100)
1629                                        cks_setting |= 0x1;
1630                        }
1631                        smu_data->smc_state_table.ClockStretcherDataTable.
1632                        ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1633                }
1634                CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1635                                ClockStretcherDataTable.
1636                                ClockStretcherDataTableEntry[i].setting);
1637        }
1638
1639        value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
1640        value &= 0xFFFFFFFE;
1641        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
1642
1643        return 0;
1644}
1645
1646/**
1647* Populates the SMC VRConfig field in DPM table.
1648*
1649* @param    hwmgr   the address of the hardware manager
1650* @param    table   the SMC DPM table structure to be populated
1651* @return   always 0
1652*/
1653static int fiji_populate_vr_config(struct pp_hwmgr *hwmgr,
1654                struct SMU73_Discrete_DpmTable *table)
1655{
1656        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1657        uint16_t config;
1658
1659        config = VR_MERGED_WITH_VDDC;
1660        table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
1661
1662        /* Set Vddc Voltage Controller */
1663        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1664                config = VR_SVI2_PLANE_1;
1665                table->VRConfig |= config;
1666        } else {
1667                PP_ASSERT_WITH_CODE(false,
1668                                "VDDC should be on SVI2 control in merged mode!",
1669                                );
1670        }
1671        /* Set Vddci Voltage Controller */
1672        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1673                config = VR_SVI2_PLANE_2;  /* only in merged mode */
1674                table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1675        } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1676                config = VR_SMIO_PATTERN_1;
1677                table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1678        } else {
1679                config = VR_STATIC_VOLTAGE;
1680                table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
1681        }
1682        /* Set Mvdd Voltage Controller */
1683        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
1684                config = VR_SVI2_PLANE_2;
1685                table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1686        } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1687                config = VR_SMIO_PATTERN_2;
1688                table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1689        } else {
1690                config = VR_STATIC_VOLTAGE;
1691                table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
1692        }
1693
1694        return 0;
1695}
1696
1697static int fiji_init_arb_table_index(struct pp_smumgr *smumgr)
1698{
1699        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(smumgr->backend);
1700        uint32_t tmp;
1701        int result;
1702
1703        /* This is a read-modify-write on the first byte of the ARB table.
1704         * The first byte in the SMU73_Discrete_MCArbDramTimingTable structure
1705         * is the field 'current'.
1706         * This solution is ugly, but we never write the whole table only
1707         * individual fields in it.
1708         * In reality this field should not be in that structure
1709         * but in a soft register.
1710         */
1711        result = smu7_read_smc_sram_dword(smumgr,
1712                        smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1713
1714        if (result)
1715                return result;
1716
1717        tmp &= 0x00FFFFFF;
1718        tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1719
1720        return smu7_write_smc_sram_dword(smumgr,
1721                        smu_data->smu7_data.arb_table_start,  tmp, SMC_RAM_END);
1722}
1723
1724/**
1725* Initializes the SMC table and uploads it
1726*
1727* @param    hwmgr  the address of the powerplay hardware manager.
1728* @param    pInput  the pointer to input data (PowerState)
1729* @return   always 0
1730*/
1731int fiji_init_smc_table(struct pp_hwmgr *hwmgr)
1732{
1733        int result;
1734        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1735        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1736        struct phm_ppt_v1_information *table_info =
1737                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1738        struct SMU73_Discrete_DpmTable *table = &(smu_data->smc_state_table);
1739        uint8_t i;
1740        struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1741
1742        fiji_initialize_power_tune_defaults(hwmgr);
1743
1744        if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1745                fiji_populate_smc_voltage_tables(hwmgr, table);
1746
1747        table->SystemFlags = 0;
1748
1749        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1750                        PHM_PlatformCaps_AutomaticDCTransition))
1751                table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1752
1753        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1754                        PHM_PlatformCaps_StepVddc))
1755                table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1756
1757        if (data->is_memory_gddr5)
1758                table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1759
1760        if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
1761                result = fiji_populate_ulv_state(hwmgr, table);
1762                PP_ASSERT_WITH_CODE(0 == result,
1763                                "Failed to initialize ULV state!", return result);
1764                cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1765                                ixCG_ULV_PARAMETER, 0x40035);
1766        }
1767
1768        result = fiji_populate_smc_link_level(hwmgr, table);
1769        PP_ASSERT_WITH_CODE(0 == result,
1770                        "Failed to initialize Link Level!", return result);
1771
1772        result = fiji_populate_all_graphic_levels(hwmgr);
1773        PP_ASSERT_WITH_CODE(0 == result,
1774                        "Failed to initialize Graphics Level!", return result);
1775
1776        result = fiji_populate_all_memory_levels(hwmgr);
1777        PP_ASSERT_WITH_CODE(0 == result,
1778                        "Failed to initialize Memory Level!", return result);
1779
1780        result = fiji_populate_smc_acpi_level(hwmgr, table);
1781        PP_ASSERT_WITH_CODE(0 == result,
1782                        "Failed to initialize ACPI Level!", return result);
1783
1784        result = fiji_populate_smc_vce_level(hwmgr, table);
1785        PP_ASSERT_WITH_CODE(0 == result,
1786                        "Failed to initialize VCE Level!", return result);
1787
1788        result = fiji_populate_smc_acp_level(hwmgr, table);
1789        PP_ASSERT_WITH_CODE(0 == result,
1790                        "Failed to initialize ACP Level!", return result);
1791
1792        result = fiji_populate_smc_samu_level(hwmgr, table);
1793        PP_ASSERT_WITH_CODE(0 == result,
1794                        "Failed to initialize SAMU Level!", return result);
1795
1796        /* Since only the initial state is completely set up at this point
1797         * (the other states are just copies of the boot state) we only
1798         * need to populate the  ARB settings for the initial state.
1799         */
1800        result = fiji_program_memory_timing_parameters(hwmgr);
1801        PP_ASSERT_WITH_CODE(0 == result,
1802                        "Failed to Write ARB settings for the initial state.", return result);
1803
1804        result = fiji_populate_smc_uvd_level(hwmgr, table);
1805        PP_ASSERT_WITH_CODE(0 == result,
1806                        "Failed to initialize UVD Level!", return result);
1807
1808        result = fiji_populate_smc_boot_level(hwmgr, table);
1809        PP_ASSERT_WITH_CODE(0 == result,
1810                        "Failed to initialize Boot Level!", return result);
1811
1812        result = fiji_populate_smc_initailial_state(hwmgr);
1813        PP_ASSERT_WITH_CODE(0 == result,
1814                        "Failed to initialize Boot State!", return result);
1815
1816        result = fiji_populate_bapm_parameters_in_dpm_table(hwmgr);
1817        PP_ASSERT_WITH_CODE(0 == result,
1818                        "Failed to populate BAPM Parameters!", return result);
1819
1820        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1821                        PHM_PlatformCaps_ClockStretcher)) {
1822                result = fiji_populate_clock_stretcher_data_table(hwmgr);
1823                PP_ASSERT_WITH_CODE(0 == result,
1824                                "Failed to populate Clock Stretcher Data Table!",
1825                                return result);
1826        }
1827
1828        table->GraphicsVoltageChangeEnable  = 1;
1829        table->GraphicsThermThrottleEnable  = 1;
1830        table->GraphicsInterval = 1;
1831        table->VoltageInterval  = 1;
1832        table->ThermalInterval  = 1;
1833        table->TemperatureLimitHigh =
1834                        table_info->cac_dtp_table->usTargetOperatingTemp *
1835                        SMU7_Q88_FORMAT_CONVERSION_UNIT;
1836        table->TemperatureLimitLow  =
1837                        (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
1838                        SMU7_Q88_FORMAT_CONVERSION_UNIT;
1839        table->MemoryVoltageChangeEnable = 1;
1840        table->MemoryInterval = 1;
1841        table->VoltageResponseTime = 0;
1842        table->PhaseResponseTime = 0;
1843        table->MemoryThermThrottleEnable = 1;
1844        table->PCIeBootLinkLevel = 0;      /* 0:Gen1 1:Gen2 2:Gen3*/
1845        table->PCIeGenInterval = 1;
1846        table->VRConfig = 0;
1847
1848        result = fiji_populate_vr_config(hwmgr, table);
1849        PP_ASSERT_WITH_CODE(0 == result,
1850                        "Failed to populate VRConfig setting!", return result);
1851
1852        table->ThermGpio = 17;
1853        table->SclkStepSize = 0x4000;
1854
1855        if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
1856                table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
1857                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1858                                PHM_PlatformCaps_RegulatorHot);
1859        } else {
1860                table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
1861                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1862                                PHM_PlatformCaps_RegulatorHot);
1863        }
1864
1865        if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
1866                        &gpio_pin)) {
1867                table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
1868                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1869                                PHM_PlatformCaps_AutomaticDCTransition);
1870        } else {
1871                table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
1872                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1873                                PHM_PlatformCaps_AutomaticDCTransition);
1874        }
1875
1876        /* Thermal Output GPIO */
1877        if (atomctrl_get_pp_assign_pin(hwmgr, THERMAL_INT_OUTPUT_GPIO_PINID,
1878                        &gpio_pin)) {
1879                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
1880                                PHM_PlatformCaps_ThermalOutGPIO);
1881
1882                table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
1883
1884                /* For porlarity read GPIOPAD_A with assigned Gpio pin
1885                 * since VBIOS will program this register to set 'inactive state',
1886                 * driver can then determine 'active state' from this and
1887                 * program SMU with correct polarity
1888                 */
1889                table->ThermOutPolarity = (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
1890                                (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
1891                table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
1892
1893                /* if required, combine VRHot/PCC with thermal out GPIO */
1894                if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1895                                PHM_PlatformCaps_RegulatorHot) &&
1896                        phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1897                                        PHM_PlatformCaps_CombinePCCWithThermalSignal))
1898                        table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
1899        } else {
1900                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1901                                PHM_PlatformCaps_ThermalOutGPIO);
1902                table->ThermOutGpio = 17;
1903                table->ThermOutPolarity = 1;
1904                table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
1905        }
1906
1907        for (i = 0; i < SMU73_MAX_ENTRIES_SMIO; i++)
1908                table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
1909
1910        CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
1911        CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
1912        CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
1913        CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
1914        CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
1915        CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
1916        CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
1917        CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
1918        CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
1919
1920        /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
1921        result = smu7_copy_bytes_to_smc(hwmgr->smumgr,
1922                        smu_data->smu7_data.dpm_table_start +
1923                        offsetof(SMU73_Discrete_DpmTable, SystemFlags),
1924                        (uint8_t *)&(table->SystemFlags),
1925                        sizeof(SMU73_Discrete_DpmTable) - 3 * sizeof(SMU73_PIDController),
1926                        SMC_RAM_END);
1927        PP_ASSERT_WITH_CODE(0 == result,
1928                        "Failed to upload dpm data to SMC memory!", return result);
1929
1930        result = fiji_init_arb_table_index(hwmgr->smumgr);
1931        PP_ASSERT_WITH_CODE(0 == result,
1932                        "Failed to upload arb data to SMC memory!", return result);
1933
1934        result = fiji_populate_pm_fuses(hwmgr);
1935        PP_ASSERT_WITH_CODE(0 == result,
1936                        "Failed to  populate PM fuses to SMC memory!", return result);
1937        return 0;
1938}
1939
1940/**
1941* Set up the fan table to control the fan using the SMC.
1942* @param    hwmgr  the address of the powerplay hardware manager.
1943* @param    pInput the pointer to input data
1944* @param    pOutput the pointer to output data
1945* @param    pStorage the pointer to temporary storage
1946* @param    Result the last failure code
1947* @return   result from set temperature range routine
1948*/
1949int fiji_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
1950{
1951        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
1952
1953        SMU73_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
1954        uint32_t duty100;
1955        uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
1956        uint16_t fdo_min, slope1, slope2;
1957        uint32_t reference_clock;
1958        int res;
1959        uint64_t tmp64;
1960
1961        if (hwmgr->thermal_controller.fanInfo.bNoFan) {
1962                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1963                        PHM_PlatformCaps_MicrocodeFanControl);
1964                return 0;
1965        }
1966
1967        if (smu_data->smu7_data.fan_table_start == 0) {
1968                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1969                                PHM_PlatformCaps_MicrocodeFanControl);
1970                return 0;
1971        }
1972
1973        duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
1974                        CG_FDO_CTRL1, FMAX_DUTY100);
1975
1976        if (duty100 == 0) {
1977                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1978                                PHM_PlatformCaps_MicrocodeFanControl);
1979                return 0;
1980        }
1981
1982        tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.
1983                        usPWMMin * duty100;
1984        do_div(tmp64, 10000);
1985        fdo_min = (uint16_t)tmp64;
1986
1987        t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
1988                        hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
1989        t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
1990                        hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
1991
1992        pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
1993                        hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
1994        pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
1995                        hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
1996
1997        slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
1998        slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
1999
2000        fan_table.TempMin = cpu_to_be16((50 + hwmgr->
2001                        thermal_controller.advanceFanControlParameters.usTMin) / 100);
2002        fan_table.TempMed = cpu_to_be16((50 + hwmgr->
2003                        thermal_controller.advanceFanControlParameters.usTMed) / 100);
2004        fan_table.TempMax = cpu_to_be16((50 + hwmgr->
2005                        thermal_controller.advanceFanControlParameters.usTMax) / 100);
2006
2007        fan_table.Slope1 = cpu_to_be16(slope1);
2008        fan_table.Slope2 = cpu_to_be16(slope2);
2009
2010        fan_table.FdoMin = cpu_to_be16(fdo_min);
2011
2012        fan_table.HystDown = cpu_to_be16(hwmgr->
2013                        thermal_controller.advanceFanControlParameters.ucTHyst);
2014
2015        fan_table.HystUp = cpu_to_be16(1);
2016
2017        fan_table.HystSlope = cpu_to_be16(1);
2018
2019        fan_table.TempRespLim = cpu_to_be16(5);
2020
2021        reference_clock = smu7_get_xclk(hwmgr);
2022
2023        fan_table.RefreshPeriod = cpu_to_be32((hwmgr->
2024                        thermal_controller.advanceFanControlParameters.ulCycleDelay *
2025                        reference_clock) / 1600);
2026
2027        fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2028
2029        fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(
2030                        hwmgr->device, CGS_IND_REG__SMC,
2031                        CG_MULT_THERMAL_CTRL, TEMP_SEL);
2032
2033        res = smu7_copy_bytes_to_smc(hwmgr->smumgr, smu_data->smu7_data.fan_table_start,
2034                        (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table),
2035                        SMC_RAM_END);
2036
2037        if (!res && hwmgr->thermal_controller.
2038                        advanceFanControlParameters.ucMinimumPWMLimit)
2039                res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2040                                PPSMC_MSG_SetFanMinPwm,
2041                                hwmgr->thermal_controller.
2042                                advanceFanControlParameters.ucMinimumPWMLimit);
2043
2044        if (!res && hwmgr->thermal_controller.
2045                        advanceFanControlParameters.ulMinFanSCLKAcousticLimit)
2046                res = smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2047                                PPSMC_MSG_SetFanSclkTarget,
2048                                hwmgr->thermal_controller.
2049                                advanceFanControlParameters.ulMinFanSCLKAcousticLimit);
2050
2051        if (res)
2052                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2053                                PHM_PlatformCaps_MicrocodeFanControl);
2054
2055        return 0;
2056}
2057
2058static int fiji_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2059{
2060        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2061
2062        if (data->need_update_smu7_dpm_table &
2063                (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2064                return fiji_program_memory_timing_parameters(hwmgr);
2065
2066        return 0;
2067}
2068
2069int fiji_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2070{
2071        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2072        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2073
2074        int result = 0;
2075        uint32_t low_sclk_interrupt_threshold = 0;
2076
2077        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2078                        PHM_PlatformCaps_SclkThrottleLowNotification)
2079                && (hwmgr->gfx_arbiter.sclk_threshold !=
2080                                data->low_sclk_interrupt_threshold)) {
2081                data->low_sclk_interrupt_threshold =
2082                                hwmgr->gfx_arbiter.sclk_threshold;
2083                low_sclk_interrupt_threshold =
2084                                data->low_sclk_interrupt_threshold;
2085
2086                CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2087
2088                result = smu7_copy_bytes_to_smc(
2089                                hwmgr->smumgr,
2090                                smu_data->smu7_data.dpm_table_start +
2091                                offsetof(SMU73_Discrete_DpmTable,
2092                                        LowSclkInterruptThreshold),
2093                                (uint8_t *)&low_sclk_interrupt_threshold,
2094                                sizeof(uint32_t),
2095                                SMC_RAM_END);
2096        }
2097        result = fiji_program_mem_timing_parameters(hwmgr);
2098        PP_ASSERT_WITH_CODE((result == 0),
2099                        "Failed to program memory timing parameters!",
2100                        );
2101        return result;
2102}
2103
2104uint32_t fiji_get_offsetof(uint32_t type, uint32_t member)
2105{
2106        switch (type) {
2107        case SMU_SoftRegisters:
2108                switch (member) {
2109                case HandshakeDisables:
2110                        return offsetof(SMU73_SoftRegisters, HandshakeDisables);
2111                case VoltageChangeTimeout:
2112                        return offsetof(SMU73_SoftRegisters, VoltageChangeTimeout);
2113                case AverageGraphicsActivity:
2114                        return offsetof(SMU73_SoftRegisters, AverageGraphicsActivity);
2115                case PreVBlankGap:
2116                        return offsetof(SMU73_SoftRegisters, PreVBlankGap);
2117                case VBlankTimeout:
2118                        return offsetof(SMU73_SoftRegisters, VBlankTimeout);
2119                case UcodeLoadStatus:
2120                        return offsetof(SMU73_SoftRegisters, UcodeLoadStatus);
2121                }
2122        case SMU_Discrete_DpmTable:
2123                switch (member) {
2124                case UvdBootLevel:
2125                        return offsetof(SMU73_Discrete_DpmTable, UvdBootLevel);
2126                case VceBootLevel:
2127                        return offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2128                case SamuBootLevel:
2129                        return offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
2130                case LowSclkInterruptThreshold:
2131                        return offsetof(SMU73_Discrete_DpmTable, LowSclkInterruptThreshold);
2132                }
2133        }
2134        printk(KERN_WARNING "can't get the offset of type %x member %x\n", type, member);
2135        return 0;
2136}
2137
2138uint32_t fiji_get_mac_definition(uint32_t value)
2139{
2140        switch (value) {
2141        case SMU_MAX_LEVELS_GRAPHICS:
2142                return SMU73_MAX_LEVELS_GRAPHICS;
2143        case SMU_MAX_LEVELS_MEMORY:
2144                return SMU73_MAX_LEVELS_MEMORY;
2145        case SMU_MAX_LEVELS_LINK:
2146                return SMU73_MAX_LEVELS_LINK;
2147        case SMU_MAX_ENTRIES_SMIO:
2148                return SMU73_MAX_ENTRIES_SMIO;
2149        case SMU_MAX_LEVELS_VDDC:
2150                return SMU73_MAX_LEVELS_VDDC;
2151        case SMU_MAX_LEVELS_VDDGFX:
2152                return SMU73_MAX_LEVELS_VDDGFX;
2153        case SMU_MAX_LEVELS_VDDCI:
2154                return SMU73_MAX_LEVELS_VDDCI;
2155        case SMU_MAX_LEVELS_MVDD:
2156                return SMU73_MAX_LEVELS_MVDD;
2157        }
2158
2159        printk(KERN_WARNING "can't get the mac of %x\n", value);
2160        return 0;
2161}
2162
2163
2164static int fiji_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2165{
2166        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2167        uint32_t mm_boot_level_offset, mm_boot_level_value;
2168        struct phm_ppt_v1_information *table_info =
2169                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
2170
2171        smu_data->smc_state_table.UvdBootLevel = 0;
2172        if (table_info->mm_dep_table->count > 0)
2173                smu_data->smc_state_table.UvdBootLevel =
2174                                (uint8_t) (table_info->mm_dep_table->count - 1);
2175        mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU73_Discrete_DpmTable,
2176                                                UvdBootLevel);
2177        mm_boot_level_offset /= 4;
2178        mm_boot_level_offset *= 4;
2179        mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2180                        CGS_IND_REG__SMC, mm_boot_level_offset);
2181        mm_boot_level_value &= 0x00FFFFFF;
2182        mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2183        cgs_write_ind_register(hwmgr->device,
2184                        CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2185
2186        if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2187                        PHM_PlatformCaps_UVDDPM) ||
2188                phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2189                        PHM_PlatformCaps_StablePState))
2190                smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2191                                PPSMC_MSG_UVDDPM_SetEnabledMask,
2192                                (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
2193        return 0;
2194}
2195
2196static int fiji_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2197{
2198        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2199        uint32_t mm_boot_level_offset, mm_boot_level_value;
2200        struct phm_ppt_v1_information *table_info =
2201                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
2202
2203        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2204                                        PHM_PlatformCaps_StablePState))
2205                smu_data->smc_state_table.VceBootLevel =
2206                        (uint8_t) (table_info->mm_dep_table->count - 1);
2207        else
2208                smu_data->smc_state_table.VceBootLevel = 0;
2209
2210        mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2211                                        offsetof(SMU73_Discrete_DpmTable, VceBootLevel);
2212        mm_boot_level_offset /= 4;
2213        mm_boot_level_offset *= 4;
2214        mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2215                        CGS_IND_REG__SMC, mm_boot_level_offset);
2216        mm_boot_level_value &= 0xFF00FFFF;
2217        mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2218        cgs_write_ind_register(hwmgr->device,
2219                        CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2220
2221        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
2222                smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2223                                PPSMC_MSG_VCEDPM_SetEnabledMask,
2224                                (uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
2225        return 0;
2226}
2227
2228static int fiji_update_samu_smc_table(struct pp_hwmgr *hwmgr)
2229{
2230        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2231        uint32_t mm_boot_level_offset, mm_boot_level_value;
2232
2233
2234        smu_data->smc_state_table.SamuBootLevel = 0;
2235        mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2236                                offsetof(SMU73_Discrete_DpmTable, SamuBootLevel);
2237
2238        mm_boot_level_offset /= 4;
2239        mm_boot_level_offset *= 4;
2240        mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2241                        CGS_IND_REG__SMC, mm_boot_level_offset);
2242        mm_boot_level_value &= 0xFFFFFF00;
2243        mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
2244        cgs_write_ind_register(hwmgr->device,
2245                        CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2246
2247        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2248                        PHM_PlatformCaps_StablePState))
2249                smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
2250                                PPSMC_MSG_SAMUDPM_SetEnabledMask,
2251                                (uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
2252        return 0;
2253}
2254
2255int fiji_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2256{
2257        switch (type) {
2258        case SMU_UVD_TABLE:
2259                fiji_update_uvd_smc_table(hwmgr);
2260                break;
2261        case SMU_VCE_TABLE:
2262                fiji_update_vce_smc_table(hwmgr);
2263                break;
2264        case SMU_SAMU_TABLE:
2265                fiji_update_samu_smc_table(hwmgr);
2266                break;
2267        default:
2268                break;
2269        }
2270        return 0;
2271}
2272
2273
2274/**
2275* Get the location of various tables inside the FW image.
2276*
2277* @param    hwmgr  the address of the powerplay hardware manager.
2278* @return   always  0
2279*/
2280int fiji_process_firmware_header(struct pp_hwmgr *hwmgr)
2281{
2282        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2283        struct fiji_smumgr *smu_data = (struct fiji_smumgr *)(hwmgr->smumgr->backend);
2284        uint32_t tmp;
2285        int result;
2286        bool error = false;
2287
2288        result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2289                        SMU7_FIRMWARE_HEADER_LOCATION +
2290                        offsetof(SMU73_Firmware_Header, DpmTable),
2291                        &tmp, SMC_RAM_END);
2292
2293        if (0 == result)
2294                smu_data->smu7_data.dpm_table_start = tmp;
2295
2296        error |= (0 != result);
2297
2298        result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2299                        SMU7_FIRMWARE_HEADER_LOCATION +
2300                        offsetof(SMU73_Firmware_Header, SoftRegisters),
2301                        &tmp, SMC_RAM_END);
2302
2303        if (!result) {
2304                data->soft_regs_start = tmp;
2305                smu_data->smu7_data.soft_regs_start = tmp;
2306        }
2307
2308        error |= (0 != result);
2309
2310        result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2311                        SMU7_FIRMWARE_HEADER_LOCATION +
2312                        offsetof(SMU73_Firmware_Header, mcRegisterTable),
2313                        &tmp, SMC_RAM_END);
2314
2315        if (!result)
2316                smu_data->smu7_data.mc_reg_table_start = tmp;
2317
2318        result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2319                        SMU7_FIRMWARE_HEADER_LOCATION +
2320                        offsetof(SMU73_Firmware_Header, FanTable),
2321                        &tmp, SMC_RAM_END);
2322
2323        if (!result)
2324                smu_data->smu7_data.fan_table_start = tmp;
2325
2326        error |= (0 != result);
2327
2328        result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2329                        SMU7_FIRMWARE_HEADER_LOCATION +
2330                        offsetof(SMU73_Firmware_Header, mcArbDramTimingTable),
2331                        &tmp, SMC_RAM_END);
2332
2333        if (!result)
2334                smu_data->smu7_data.arb_table_start = tmp;
2335
2336        error |= (0 != result);
2337
2338        result = smu7_read_smc_sram_dword(hwmgr->smumgr,
2339                        SMU7_FIRMWARE_HEADER_LOCATION +
2340                        offsetof(SMU73_Firmware_Header, Version),
2341                        &tmp, SMC_RAM_END);
2342
2343        if (!result)
2344                hwmgr->microcode_version_info.SMC = tmp;
2345
2346        error |= (0 != result);
2347
2348        return error ? -1 : 0;
2349}
2350
2351int fiji_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2352{
2353
2354        /* Program additional LP registers
2355         * that are no longer programmed by VBIOS
2356         */
2357        cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
2358                        cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2359        cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
2360                        cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2361        cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
2362                        cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2363        cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
2364                        cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2365        cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
2366                        cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2367        cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
2368                        cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2369        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
2370                        cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2371
2372        return 0;
2373}
2374
2375bool fiji_is_dpm_running(struct pp_hwmgr *hwmgr)
2376{
2377        return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2378                        CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2379                        ? true : false;
2380}
2381