linux/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gf100.c
<<
>>
Prefs
   1/*
   2 * Copyright 2012 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24#define gf100_clk(p) container_of((p), struct gf100_clk, base)
  25#include "priv.h"
  26#include "pll.h"
  27
  28#include <subdev/bios.h>
  29#include <subdev/bios/pll.h>
  30#include <subdev/timer.h>
  31
  32struct gf100_clk_info {
  33        u32 freq;
  34        u32 ssel;
  35        u32 mdiv;
  36        u32 dsrc;
  37        u32 ddiv;
  38        u32 coef;
  39};
  40
  41struct gf100_clk {
  42        struct nvkm_clk base;
  43        struct gf100_clk_info eng[16];
  44};
  45
  46static u32 read_div(struct gf100_clk *, int, u32, u32);
  47
  48static u32
  49read_vco(struct gf100_clk *clk, u32 dsrc)
  50{
  51        struct nvkm_device *device = clk->base.subdev.device;
  52        u32 ssrc = nvkm_rd32(device, dsrc);
  53        if (!(ssrc & 0x00000100))
  54                return nvkm_clk_read(&clk->base, nv_clk_src_sppll0);
  55        return nvkm_clk_read(&clk->base, nv_clk_src_sppll1);
  56}
  57
  58static u32
  59read_pll(struct gf100_clk *clk, u32 pll)
  60{
  61        struct nvkm_device *device = clk->base.subdev.device;
  62        u32 ctrl = nvkm_rd32(device, pll + 0x00);
  63        u32 coef = nvkm_rd32(device, pll + 0x04);
  64        u32 P = (coef & 0x003f0000) >> 16;
  65        u32 N = (coef & 0x0000ff00) >> 8;
  66        u32 M = (coef & 0x000000ff) >> 0;
  67        u32 sclk;
  68
  69        if (!(ctrl & 0x00000001))
  70                return 0;
  71
  72        switch (pll) {
  73        case 0x00e800:
  74        case 0x00e820:
  75                sclk = device->crystal;
  76                P = 1;
  77                break;
  78        case 0x132000:
  79                sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrc);
  80                break;
  81        case 0x132020:
  82                sclk = nvkm_clk_read(&clk->base, nv_clk_src_mpllsrcref);
  83                break;
  84        case 0x137000:
  85        case 0x137020:
  86        case 0x137040:
  87        case 0x1370e0:
  88                sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
  89                break;
  90        default:
  91                return 0;
  92        }
  93
  94        return sclk * N / M / P;
  95}
  96
  97static u32
  98read_div(struct gf100_clk *clk, int doff, u32 dsrc, u32 dctl)
  99{
 100        struct nvkm_device *device = clk->base.subdev.device;
 101        u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
 102        u32 sclk, sctl, sdiv = 2;
 103
 104        switch (ssrc & 0x00000003) {
 105        case 0:
 106                if ((ssrc & 0x00030000) != 0x00030000)
 107                        return device->crystal;
 108                return 108000;
 109        case 2:
 110                return 100000;
 111        case 3:
 112                sclk = read_vco(clk, dsrc + (doff * 4));
 113
 114                /* Memclk has doff of 0 despite its alt. location */
 115                if (doff <= 2) {
 116                        sctl = nvkm_rd32(device, dctl + (doff * 4));
 117
 118                        if (sctl & 0x80000000) {
 119                                if (ssrc & 0x100)
 120                                        sctl >>= 8;
 121
 122                                sdiv = (sctl & 0x3f) + 2;
 123                        }
 124                }
 125
 126                return (sclk * 2) / sdiv;
 127        default:
 128                return 0;
 129        }
 130}
 131
 132static u32
 133read_clk(struct gf100_clk *clk, int idx)
 134{
 135        struct nvkm_device *device = clk->base.subdev.device;
 136        u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
 137        u32 ssel = nvkm_rd32(device, 0x137100);
 138        u32 sclk, sdiv;
 139
 140        if (ssel & (1 << idx)) {
 141                if (idx < 7)
 142                        sclk = read_pll(clk, 0x137000 + (idx * 0x20));
 143                else
 144                        sclk = read_pll(clk, 0x1370e0);
 145                sdiv = ((sctl & 0x00003f00) >> 8) + 2;
 146        } else {
 147                sclk = read_div(clk, idx, 0x137160, 0x1371d0);
 148                sdiv = ((sctl & 0x0000003f) >> 0) + 2;
 149        }
 150
 151        if (sctl & 0x80000000)
 152                return (sclk * 2) / sdiv;
 153
 154        return sclk;
 155}
 156
 157static int
 158gf100_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
 159{
 160        struct gf100_clk *clk = gf100_clk(base);
 161        struct nvkm_subdev *subdev = &clk->base.subdev;
 162        struct nvkm_device *device = subdev->device;
 163
 164        switch (src) {
 165        case nv_clk_src_crystal:
 166                return device->crystal;
 167        case nv_clk_src_href:
 168                return 100000;
 169        case nv_clk_src_sppll0:
 170                return read_pll(clk, 0x00e800);
 171        case nv_clk_src_sppll1:
 172                return read_pll(clk, 0x00e820);
 173
 174        case nv_clk_src_mpllsrcref:
 175                return read_div(clk, 0, 0x137320, 0x137330);
 176        case nv_clk_src_mpllsrc:
 177                return read_pll(clk, 0x132020);
 178        case nv_clk_src_mpll:
 179                return read_pll(clk, 0x132000);
 180        case nv_clk_src_mdiv:
 181                return read_div(clk, 0, 0x137300, 0x137310);
 182        case nv_clk_src_mem:
 183                if (nvkm_rd32(device, 0x1373f0) & 0x00000002)
 184                        return nvkm_clk_read(&clk->base, nv_clk_src_mpll);
 185                return nvkm_clk_read(&clk->base, nv_clk_src_mdiv);
 186
 187        case nv_clk_src_gpc:
 188                return read_clk(clk, 0x00);
 189        case nv_clk_src_rop:
 190                return read_clk(clk, 0x01);
 191        case nv_clk_src_hubk07:
 192                return read_clk(clk, 0x02);
 193        case nv_clk_src_hubk06:
 194                return read_clk(clk, 0x07);
 195        case nv_clk_src_hubk01:
 196                return read_clk(clk, 0x08);
 197        case nv_clk_src_copy:
 198                return read_clk(clk, 0x09);
 199        case nv_clk_src_pmu:
 200                return read_clk(clk, 0x0c);
 201        case nv_clk_src_vdec:
 202                return read_clk(clk, 0x0e);
 203        default:
 204                nvkm_error(subdev, "invalid clock source %d\n", src);
 205                return -EINVAL;
 206        }
 207}
 208
 209static u32
 210calc_div(struct gf100_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
 211{
 212        u32 div = min((ref * 2) / freq, (u32)65);
 213        if (div < 2)
 214                div = 2;
 215
 216        *ddiv = div - 2;
 217        return (ref * 2) / div;
 218}
 219
 220static u32
 221calc_src(struct gf100_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
 222{
 223        u32 sclk;
 224
 225        /* use one of the fixed frequencies if possible */
 226        *ddiv = 0x00000000;
 227        switch (freq) {
 228        case  27000:
 229        case 108000:
 230                *dsrc = 0x00000000;
 231                if (freq == 108000)
 232                        *dsrc |= 0x00030000;
 233                return freq;
 234        case 100000:
 235                *dsrc = 0x00000002;
 236                return freq;
 237        default:
 238                *dsrc = 0x00000003;
 239                break;
 240        }
 241
 242        /* otherwise, calculate the closest divider */
 243        sclk = read_vco(clk, 0x137160 + (idx * 4));
 244        if (idx < 7)
 245                sclk = calc_div(clk, idx, sclk, freq, ddiv);
 246        return sclk;
 247}
 248
 249static u32
 250calc_pll(struct gf100_clk *clk, int idx, u32 freq, u32 *coef)
 251{
 252        struct nvkm_subdev *subdev = &clk->base.subdev;
 253        struct nvkm_bios *bios = subdev->device->bios;
 254        struct nvbios_pll limits;
 255        int N, M, P, ret;
 256
 257        ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
 258        if (ret)
 259                return 0;
 260
 261        limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
 262        if (!limits.refclk)
 263                return 0;
 264
 265        ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
 266        if (ret <= 0)
 267                return 0;
 268
 269        *coef = (P << 16) | (N << 8) | M;
 270        return ret;
 271}
 272
 273static int
 274calc_clk(struct gf100_clk *clk, struct nvkm_cstate *cstate, int idx, int dom)
 275{
 276        struct gf100_clk_info *info = &clk->eng[idx];
 277        u32 freq = cstate->domain[dom];
 278        u32 src0, div0, div1D, div1P = 0;
 279        u32 clk0, clk1 = 0;
 280
 281        /* invalid clock domain */
 282        if (!freq)
 283                return 0;
 284
 285        /* first possible path, using only dividers */
 286        clk0 = calc_src(clk, idx, freq, &src0, &div0);
 287        clk0 = calc_div(clk, idx, clk0, freq, &div1D);
 288
 289        /* see if we can get any closer using PLLs */
 290        if (clk0 != freq && (0x00004387 & (1 << idx))) {
 291                if (idx <= 7)
 292                        clk1 = calc_pll(clk, idx, freq, &info->coef);
 293                else
 294                        clk1 = cstate->domain[nv_clk_src_hubk06];
 295                clk1 = calc_div(clk, idx, clk1, freq, &div1P);
 296        }
 297
 298        /* select the method which gets closest to target freq */
 299        if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
 300                info->dsrc = src0;
 301                if (div0) {
 302                        info->ddiv |= 0x80000000;
 303                        info->ddiv |= div0 << 8;
 304                        info->ddiv |= div0;
 305                }
 306                if (div1D) {
 307                        info->mdiv |= 0x80000000;
 308                        info->mdiv |= div1D;
 309                }
 310                info->ssel = info->coef = 0;
 311                info->freq = clk0;
 312        } else {
 313                if (div1P) {
 314                        info->mdiv |= 0x80000000;
 315                        info->mdiv |= div1P << 8;
 316                }
 317                info->ssel = (1 << idx);
 318                info->freq = clk1;
 319        }
 320
 321        return 0;
 322}
 323
 324static int
 325gf100_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
 326{
 327        struct gf100_clk *clk = gf100_clk(base);
 328        int ret;
 329
 330        if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
 331            (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
 332            (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
 333            (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
 334            (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
 335            (ret = calc_clk(clk, cstate, 0x09, nv_clk_src_copy)) ||
 336            (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
 337            (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
 338                return ret;
 339
 340        return 0;
 341}
 342
 343static void
 344gf100_clk_prog_0(struct gf100_clk *clk, int idx)
 345{
 346        struct gf100_clk_info *info = &clk->eng[idx];
 347        struct nvkm_device *device = clk->base.subdev.device;
 348        if (idx < 7 && !info->ssel) {
 349                nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x80003f3f, info->ddiv);
 350                nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
 351        }
 352}
 353
 354static void
 355gf100_clk_prog_1(struct gf100_clk *clk, int idx)
 356{
 357        struct nvkm_device *device = clk->base.subdev.device;
 358        nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
 359        nvkm_msec(device, 2000,
 360                if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
 361                        break;
 362        );
 363}
 364
 365static void
 366gf100_clk_prog_2(struct gf100_clk *clk, int idx)
 367{
 368        struct gf100_clk_info *info = &clk->eng[idx];
 369        struct nvkm_device *device = clk->base.subdev.device;
 370        const u32 addr = 0x137000 + (idx * 0x20);
 371        if (idx <= 7) {
 372                nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
 373                nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
 374                if (info->coef) {
 375                        nvkm_wr32(device, addr + 0x04, info->coef);
 376                        nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
 377
 378                        /* Test PLL lock */
 379                        nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
 380                        nvkm_msec(device, 2000,
 381                                if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
 382                                        break;
 383                        );
 384                        nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
 385
 386                        /* Enable sync mode */
 387                        nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
 388                }
 389        }
 390}
 391
 392static void
 393gf100_clk_prog_3(struct gf100_clk *clk, int idx)
 394{
 395        struct gf100_clk_info *info = &clk->eng[idx];
 396        struct nvkm_device *device = clk->base.subdev.device;
 397        if (info->ssel) {
 398                nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
 399                nvkm_msec(device, 2000,
 400                        u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
 401                        if (tmp == info->ssel)
 402                                break;
 403                );
 404        }
 405}
 406
 407static void
 408gf100_clk_prog_4(struct gf100_clk *clk, int idx)
 409{
 410        struct gf100_clk_info *info = &clk->eng[idx];
 411        struct nvkm_device *device = clk->base.subdev.device;
 412        nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f3f, info->mdiv);
 413}
 414
 415static int
 416gf100_clk_prog(struct nvkm_clk *base)
 417{
 418        struct gf100_clk *clk = gf100_clk(base);
 419        struct {
 420                void (*exec)(struct gf100_clk *, int);
 421        } stage[] = {
 422                { gf100_clk_prog_0 }, /* div programming */
 423                { gf100_clk_prog_1 }, /* select div mode */
 424                { gf100_clk_prog_2 }, /* (maybe) program pll */
 425                { gf100_clk_prog_3 }, /* (maybe) select pll mode */
 426                { gf100_clk_prog_4 }, /* final divider */
 427        };
 428        int i, j;
 429
 430        for (i = 0; i < ARRAY_SIZE(stage); i++) {
 431                for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
 432                        if (!clk->eng[j].freq)
 433                                continue;
 434                        stage[i].exec(clk, j);
 435                }
 436        }
 437
 438        return 0;
 439}
 440
 441static void
 442gf100_clk_tidy(struct nvkm_clk *base)
 443{
 444        struct gf100_clk *clk = gf100_clk(base);
 445        memset(clk->eng, 0x00, sizeof(clk->eng));
 446}
 447
 448static const struct nvkm_clk_func
 449gf100_clk = {
 450        .read = gf100_clk_read,
 451        .calc = gf100_clk_calc,
 452        .prog = gf100_clk_prog,
 453        .tidy = gf100_clk_tidy,
 454        .domains = {
 455                { nv_clk_src_crystal, 0xff },
 456                { nv_clk_src_href   , 0xff },
 457                { nv_clk_src_hubk06 , 0x00 },
 458                { nv_clk_src_hubk01 , 0x01 },
 459                { nv_clk_src_copy   , 0x02 },
 460                { nv_clk_src_gpc    , 0x03, NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
 461                { nv_clk_src_rop    , 0x04 },
 462                { nv_clk_src_mem    , 0x05, 0, "memory", 1000 },
 463                { nv_clk_src_vdec   , 0x06 },
 464                { nv_clk_src_pmu    , 0x0a },
 465                { nv_clk_src_hubk07 , 0x0b },
 466                { nv_clk_src_max }
 467        }
 468};
 469
 470int
 471gf100_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
 472{
 473        struct gf100_clk *clk;
 474
 475        if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
 476                return -ENOMEM;
 477        *pclk = &clk->base;
 478
 479        return nvkm_clk_ctor(&gf100_clk, device, index, false, &clk->base);
 480}
 481