linux/drivers/gpu/drm/vmwgfx/vmwgfx_resource.c
<<
>>
Prefs
   1/**************************************************************************
   2 *
   3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27
  28#include "vmwgfx_drv.h"
  29#include <drm/vmwgfx_drm.h>
  30#include <drm/ttm/ttm_object.h>
  31#include <drm/ttm/ttm_placement.h>
  32#include <drm/drmP.h>
  33#include "vmwgfx_resource_priv.h"
  34#include "vmwgfx_binding.h"
  35
  36#define VMW_RES_EVICT_ERR_COUNT 10
  37
  38struct vmw_user_dma_buffer {
  39        struct ttm_prime_object prime;
  40        struct vmw_dma_buffer dma;
  41};
  42
  43struct vmw_bo_user_rep {
  44        uint32_t handle;
  45        uint64_t map_handle;
  46};
  47
  48struct vmw_stream {
  49        struct vmw_resource res;
  50        uint32_t stream_id;
  51};
  52
  53struct vmw_user_stream {
  54        struct ttm_base_object base;
  55        struct vmw_stream stream;
  56};
  57
  58
  59static uint64_t vmw_user_stream_size;
  60
  61static const struct vmw_res_func vmw_stream_func = {
  62        .res_type = vmw_res_stream,
  63        .needs_backup = false,
  64        .may_evict = false,
  65        .type_name = "video streams",
  66        .backup_placement = NULL,
  67        .create = NULL,
  68        .destroy = NULL,
  69        .bind = NULL,
  70        .unbind = NULL
  71};
  72
  73static inline struct vmw_dma_buffer *
  74vmw_dma_buffer(struct ttm_buffer_object *bo)
  75{
  76        return container_of(bo, struct vmw_dma_buffer, base);
  77}
  78
  79static inline struct vmw_user_dma_buffer *
  80vmw_user_dma_buffer(struct ttm_buffer_object *bo)
  81{
  82        struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
  83        return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
  84}
  85
  86struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
  87{
  88        kref_get(&res->kref);
  89        return res;
  90}
  91
  92struct vmw_resource *
  93vmw_resource_reference_unless_doomed(struct vmw_resource *res)
  94{
  95        return kref_get_unless_zero(&res->kref) ? res : NULL;
  96}
  97
  98/**
  99 * vmw_resource_release_id - release a resource id to the id manager.
 100 *
 101 * @res: Pointer to the resource.
 102 *
 103 * Release the resource id to the resource id manager and set it to -1
 104 */
 105void vmw_resource_release_id(struct vmw_resource *res)
 106{
 107        struct vmw_private *dev_priv = res->dev_priv;
 108        struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 109
 110        write_lock(&dev_priv->resource_lock);
 111        if (res->id != -1)
 112                idr_remove(idr, res->id);
 113        res->id = -1;
 114        write_unlock(&dev_priv->resource_lock);
 115}
 116
 117static void vmw_resource_release(struct kref *kref)
 118{
 119        struct vmw_resource *res =
 120            container_of(kref, struct vmw_resource, kref);
 121        struct vmw_private *dev_priv = res->dev_priv;
 122        int id;
 123        struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 124
 125        write_lock(&dev_priv->resource_lock);
 126        res->avail = false;
 127        list_del_init(&res->lru_head);
 128        write_unlock(&dev_priv->resource_lock);
 129        if (res->backup) {
 130                struct ttm_buffer_object *bo = &res->backup->base;
 131
 132                ttm_bo_reserve(bo, false, false, NULL);
 133                if (!list_empty(&res->mob_head) &&
 134                    res->func->unbind != NULL) {
 135                        struct ttm_validate_buffer val_buf;
 136
 137                        val_buf.bo = bo;
 138                        val_buf.shared = false;
 139                        res->func->unbind(res, false, &val_buf);
 140                }
 141                res->backup_dirty = false;
 142                list_del_init(&res->mob_head);
 143                ttm_bo_unreserve(bo);
 144                vmw_dmabuf_unreference(&res->backup);
 145        }
 146
 147        if (likely(res->hw_destroy != NULL)) {
 148                mutex_lock(&dev_priv->binding_mutex);
 149                vmw_binding_res_list_kill(&res->binding_head);
 150                mutex_unlock(&dev_priv->binding_mutex);
 151                res->hw_destroy(res);
 152        }
 153
 154        id = res->id;
 155        if (res->res_free != NULL)
 156                res->res_free(res);
 157        else
 158                kfree(res);
 159
 160        write_lock(&dev_priv->resource_lock);
 161        if (id != -1)
 162                idr_remove(idr, id);
 163        write_unlock(&dev_priv->resource_lock);
 164}
 165
 166void vmw_resource_unreference(struct vmw_resource **p_res)
 167{
 168        struct vmw_resource *res = *p_res;
 169
 170        *p_res = NULL;
 171        kref_put(&res->kref, vmw_resource_release);
 172}
 173
 174
 175/**
 176 * vmw_resource_alloc_id - release a resource id to the id manager.
 177 *
 178 * @res: Pointer to the resource.
 179 *
 180 * Allocate the lowest free resource from the resource manager, and set
 181 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
 182 */
 183int vmw_resource_alloc_id(struct vmw_resource *res)
 184{
 185        struct vmw_private *dev_priv = res->dev_priv;
 186        int ret;
 187        struct idr *idr = &dev_priv->res_idr[res->func->res_type];
 188
 189        BUG_ON(res->id != -1);
 190
 191        idr_preload(GFP_KERNEL);
 192        write_lock(&dev_priv->resource_lock);
 193
 194        ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
 195        if (ret >= 0)
 196                res->id = ret;
 197
 198        write_unlock(&dev_priv->resource_lock);
 199        idr_preload_end();
 200        return ret < 0 ? ret : 0;
 201}
 202
 203/**
 204 * vmw_resource_init - initialize a struct vmw_resource
 205 *
 206 * @dev_priv:       Pointer to a device private struct.
 207 * @res:            The struct vmw_resource to initialize.
 208 * @obj_type:       Resource object type.
 209 * @delay_id:       Boolean whether to defer device id allocation until
 210 *                  the first validation.
 211 * @res_free:       Resource destructor.
 212 * @func:           Resource function table.
 213 */
 214int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
 215                      bool delay_id,
 216                      void (*res_free) (struct vmw_resource *res),
 217                      const struct vmw_res_func *func)
 218{
 219        kref_init(&res->kref);
 220        res->hw_destroy = NULL;
 221        res->res_free = res_free;
 222        res->avail = false;
 223        res->dev_priv = dev_priv;
 224        res->func = func;
 225        INIT_LIST_HEAD(&res->lru_head);
 226        INIT_LIST_HEAD(&res->mob_head);
 227        INIT_LIST_HEAD(&res->binding_head);
 228        res->id = -1;
 229        res->backup = NULL;
 230        res->backup_offset = 0;
 231        res->backup_dirty = false;
 232        res->res_dirty = false;
 233        if (delay_id)
 234                return 0;
 235        else
 236                return vmw_resource_alloc_id(res);
 237}
 238
 239/**
 240 * vmw_resource_activate
 241 *
 242 * @res:        Pointer to the newly created resource
 243 * @hw_destroy: Destroy function. NULL if none.
 244 *
 245 * Activate a resource after the hardware has been made aware of it.
 246 * Set tye destroy function to @destroy. Typically this frees the
 247 * resource and destroys the hardware resources associated with it.
 248 * Activate basically means that the function vmw_resource_lookup will
 249 * find it.
 250 */
 251void vmw_resource_activate(struct vmw_resource *res,
 252                           void (*hw_destroy) (struct vmw_resource *))
 253{
 254        struct vmw_private *dev_priv = res->dev_priv;
 255
 256        write_lock(&dev_priv->resource_lock);
 257        res->avail = true;
 258        res->hw_destroy = hw_destroy;
 259        write_unlock(&dev_priv->resource_lock);
 260}
 261
 262static struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
 263                                                struct idr *idr, int id)
 264{
 265        struct vmw_resource *res;
 266
 267        read_lock(&dev_priv->resource_lock);
 268        res = idr_find(idr, id);
 269        if (!res || !res->avail || !kref_get_unless_zero(&res->kref))
 270                res = NULL;
 271
 272        read_unlock(&dev_priv->resource_lock);
 273
 274        if (unlikely(res == NULL))
 275                return NULL;
 276
 277        return res;
 278}
 279
 280/**
 281 * vmw_user_resource_lookup_handle - lookup a struct resource from a
 282 * TTM user-space handle and perform basic type checks
 283 *
 284 * @dev_priv:     Pointer to a device private struct
 285 * @tfile:        Pointer to a struct ttm_object_file identifying the caller
 286 * @handle:       The TTM user-space handle
 287 * @converter:    Pointer to an object describing the resource type
 288 * @p_res:        On successful return the location pointed to will contain
 289 *                a pointer to a refcounted struct vmw_resource.
 290 *
 291 * If the handle can't be found or is associated with an incorrect resource
 292 * type, -EINVAL will be returned.
 293 */
 294int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
 295                                    struct ttm_object_file *tfile,
 296                                    uint32_t handle,
 297                                    const struct vmw_user_resource_conv
 298                                    *converter,
 299                                    struct vmw_resource **p_res)
 300{
 301        struct ttm_base_object *base;
 302        struct vmw_resource *res;
 303        int ret = -EINVAL;
 304
 305        base = ttm_base_object_lookup(tfile, handle);
 306        if (unlikely(base == NULL))
 307                return -EINVAL;
 308
 309        if (unlikely(ttm_base_object_type(base) != converter->object_type))
 310                goto out_bad_resource;
 311
 312        res = converter->base_obj_to_res(base);
 313
 314        read_lock(&dev_priv->resource_lock);
 315        if (!res->avail || res->res_free != converter->res_free) {
 316                read_unlock(&dev_priv->resource_lock);
 317                goto out_bad_resource;
 318        }
 319
 320        kref_get(&res->kref);
 321        read_unlock(&dev_priv->resource_lock);
 322
 323        *p_res = res;
 324        ret = 0;
 325
 326out_bad_resource:
 327        ttm_base_object_unref(&base);
 328
 329        return ret;
 330}
 331
 332/**
 333 * Helper function that looks either a surface or dmabuf.
 334 *
 335 * The pointer this pointed at by out_surf and out_buf needs to be null.
 336 */
 337int vmw_user_lookup_handle(struct vmw_private *dev_priv,
 338                           struct ttm_object_file *tfile,
 339                           uint32_t handle,
 340                           struct vmw_surface **out_surf,
 341                           struct vmw_dma_buffer **out_buf)
 342{
 343        struct vmw_resource *res;
 344        int ret;
 345
 346        BUG_ON(*out_surf || *out_buf);
 347
 348        ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
 349                                              user_surface_converter,
 350                                              &res);
 351        if (!ret) {
 352                *out_surf = vmw_res_to_srf(res);
 353                return 0;
 354        }
 355
 356        *out_surf = NULL;
 357        ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
 358        return ret;
 359}
 360
 361/**
 362 * Buffer management.
 363 */
 364
 365/**
 366 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
 367 *
 368 * @dev_priv: Pointer to a struct vmw_private identifying the device.
 369 * @size: The requested buffer size.
 370 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
 371 */
 372static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
 373                                  bool user)
 374{
 375        static size_t struct_size, user_struct_size;
 376        size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 377        size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
 378
 379        if (unlikely(struct_size == 0)) {
 380                size_t backend_size = ttm_round_pot(vmw_tt_size);
 381
 382                struct_size = backend_size +
 383                        ttm_round_pot(sizeof(struct vmw_dma_buffer));
 384                user_struct_size = backend_size +
 385                        ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
 386        }
 387
 388        if (dev_priv->map_mode == vmw_dma_alloc_coherent)
 389                page_array_size +=
 390                        ttm_round_pot(num_pages * sizeof(dma_addr_t));
 391
 392        return ((user) ? user_struct_size : struct_size) +
 393                page_array_size;
 394}
 395
 396void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
 397{
 398        struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
 399
 400        kfree(vmw_bo);
 401}
 402
 403static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
 404{
 405        struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
 406
 407        ttm_prime_object_kfree(vmw_user_bo, prime);
 408}
 409
 410int vmw_dmabuf_init(struct vmw_private *dev_priv,
 411                    struct vmw_dma_buffer *vmw_bo,
 412                    size_t size, struct ttm_placement *placement,
 413                    bool interruptible,
 414                    void (*bo_free) (struct ttm_buffer_object *bo))
 415{
 416        struct ttm_bo_device *bdev = &dev_priv->bdev;
 417        size_t acc_size;
 418        int ret;
 419        bool user = (bo_free == &vmw_user_dmabuf_destroy);
 420
 421        BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
 422
 423        acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
 424        memset(vmw_bo, 0, sizeof(*vmw_bo));
 425
 426        INIT_LIST_HEAD(&vmw_bo->res_list);
 427
 428        ret = ttm_bo_init(bdev, &vmw_bo->base, size,
 429                          ttm_bo_type_device, placement,
 430                          0, interruptible,
 431                          NULL, acc_size, NULL, NULL, bo_free);
 432        return ret;
 433}
 434
 435static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
 436{
 437        struct vmw_user_dma_buffer *vmw_user_bo;
 438        struct ttm_base_object *base = *p_base;
 439        struct ttm_buffer_object *bo;
 440
 441        *p_base = NULL;
 442
 443        if (unlikely(base == NULL))
 444                return;
 445
 446        vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 447                                   prime.base);
 448        bo = &vmw_user_bo->dma.base;
 449        ttm_bo_unref(&bo);
 450}
 451
 452static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
 453                                            enum ttm_ref_type ref_type)
 454{
 455        struct vmw_user_dma_buffer *user_bo;
 456        user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
 457
 458        switch (ref_type) {
 459        case TTM_REF_SYNCCPU_WRITE:
 460                ttm_bo_synccpu_write_release(&user_bo->dma.base);
 461                break;
 462        default:
 463                BUG();
 464        }
 465}
 466
 467/**
 468 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
 469 *
 470 * @dev_priv: Pointer to a struct device private.
 471 * @tfile: Pointer to a struct ttm_object_file on which to register the user
 472 * object.
 473 * @size: Size of the dma buffer.
 474 * @shareable: Boolean whether the buffer is shareable with other open files.
 475 * @handle: Pointer to where the handle value should be assigned.
 476 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
 477 * should be assigned.
 478 */
 479int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
 480                          struct ttm_object_file *tfile,
 481                          uint32_t size,
 482                          bool shareable,
 483                          uint32_t *handle,
 484                          struct vmw_dma_buffer **p_dma_buf,
 485                          struct ttm_base_object **p_base)
 486{
 487        struct vmw_user_dma_buffer *user_bo;
 488        struct ttm_buffer_object *tmp;
 489        int ret;
 490
 491        user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
 492        if (unlikely(user_bo == NULL)) {
 493                DRM_ERROR("Failed to allocate a buffer.\n");
 494                return -ENOMEM;
 495        }
 496
 497        ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
 498                              (dev_priv->has_mob) ?
 499                              &vmw_sys_placement :
 500                              &vmw_vram_sys_placement, true,
 501                              &vmw_user_dmabuf_destroy);
 502        if (unlikely(ret != 0))
 503                return ret;
 504
 505        tmp = ttm_bo_reference(&user_bo->dma.base);
 506        ret = ttm_prime_object_init(tfile,
 507                                    size,
 508                                    &user_bo->prime,
 509                                    shareable,
 510                                    ttm_buffer_type,
 511                                    &vmw_user_dmabuf_release,
 512                                    &vmw_user_dmabuf_ref_obj_release);
 513        if (unlikely(ret != 0)) {
 514                ttm_bo_unref(&tmp);
 515                goto out_no_base_object;
 516        }
 517
 518        *p_dma_buf = &user_bo->dma;
 519        if (p_base) {
 520                *p_base = &user_bo->prime.base;
 521                kref_get(&(*p_base)->refcount);
 522        }
 523        *handle = user_bo->prime.base.hash.key;
 524
 525out_no_base_object:
 526        return ret;
 527}
 528
 529/**
 530 * vmw_user_dmabuf_verify_access - verify access permissions on this
 531 * buffer object.
 532 *
 533 * @bo: Pointer to the buffer object being accessed
 534 * @tfile: Identifying the caller.
 535 */
 536int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
 537                                  struct ttm_object_file *tfile)
 538{
 539        struct vmw_user_dma_buffer *vmw_user_bo;
 540
 541        if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
 542                return -EPERM;
 543
 544        vmw_user_bo = vmw_user_dma_buffer(bo);
 545
 546        /* Check that the caller has opened the object. */
 547        if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
 548                return 0;
 549
 550        DRM_ERROR("Could not grant buffer access.\n");
 551        return -EPERM;
 552}
 553
 554/**
 555 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
 556 * access, idling previous GPU operations on the buffer and optionally
 557 * blocking it for further command submissions.
 558 *
 559 * @user_bo: Pointer to the buffer object being grabbed for CPU access
 560 * @tfile: Identifying the caller.
 561 * @flags: Flags indicating how the grab should be performed.
 562 *
 563 * A blocking grab will be automatically released when @tfile is closed.
 564 */
 565static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
 566                                        struct ttm_object_file *tfile,
 567                                        uint32_t flags)
 568{
 569        struct ttm_buffer_object *bo = &user_bo->dma.base;
 570        bool existed;
 571        int ret;
 572
 573        if (flags & drm_vmw_synccpu_allow_cs) {
 574                bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
 575                long lret;
 576
 577                lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
 578                                                           nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
 579                if (!lret)
 580                        return -EBUSY;
 581                else if (lret < 0)
 582                        return lret;
 583                return 0;
 584        }
 585
 586        ret = ttm_bo_synccpu_write_grab
 587                (bo, !!(flags & drm_vmw_synccpu_dontblock));
 588        if (unlikely(ret != 0))
 589                return ret;
 590
 591        ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
 592                                 TTM_REF_SYNCCPU_WRITE, &existed, false);
 593        if (ret != 0 || existed)
 594                ttm_bo_synccpu_write_release(&user_bo->dma.base);
 595
 596        return ret;
 597}
 598
 599/**
 600 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
 601 * and unblock command submission on the buffer if blocked.
 602 *
 603 * @handle: Handle identifying the buffer object.
 604 * @tfile: Identifying the caller.
 605 * @flags: Flags indicating the type of release.
 606 */
 607static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
 608                                           struct ttm_object_file *tfile,
 609                                           uint32_t flags)
 610{
 611        if (!(flags & drm_vmw_synccpu_allow_cs))
 612                return ttm_ref_object_base_unref(tfile, handle,
 613                                                 TTM_REF_SYNCCPU_WRITE);
 614
 615        return 0;
 616}
 617
 618/**
 619 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
 620 * functionality.
 621 *
 622 * @dev: Identifies the drm device.
 623 * @data: Pointer to the ioctl argument.
 624 * @file_priv: Identifies the caller.
 625 *
 626 * This function checks the ioctl arguments for validity and calls the
 627 * relevant synccpu functions.
 628 */
 629int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
 630                                  struct drm_file *file_priv)
 631{
 632        struct drm_vmw_synccpu_arg *arg =
 633                (struct drm_vmw_synccpu_arg *) data;
 634        struct vmw_dma_buffer *dma_buf;
 635        struct vmw_user_dma_buffer *user_bo;
 636        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 637        struct ttm_base_object *buffer_base;
 638        int ret;
 639
 640        if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
 641            || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
 642                               drm_vmw_synccpu_dontblock |
 643                               drm_vmw_synccpu_allow_cs)) != 0) {
 644                DRM_ERROR("Illegal synccpu flags.\n");
 645                return -EINVAL;
 646        }
 647
 648        switch (arg->op) {
 649        case drm_vmw_synccpu_grab:
 650                ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
 651                                             &buffer_base);
 652                if (unlikely(ret != 0))
 653                        return ret;
 654
 655                user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
 656                                       dma);
 657                ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
 658                vmw_dmabuf_unreference(&dma_buf);
 659                ttm_base_object_unref(&buffer_base);
 660                if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
 661                             ret != -EBUSY)) {
 662                        DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
 663                                  (unsigned int) arg->handle);
 664                        return ret;
 665                }
 666                break;
 667        case drm_vmw_synccpu_release:
 668                ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
 669                                                      arg->flags);
 670                if (unlikely(ret != 0)) {
 671                        DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
 672                                  (unsigned int) arg->handle);
 673                        return ret;
 674                }
 675                break;
 676        default:
 677                DRM_ERROR("Invalid synccpu operation.\n");
 678                return -EINVAL;
 679        }
 680
 681        return 0;
 682}
 683
 684int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
 685                           struct drm_file *file_priv)
 686{
 687        struct vmw_private *dev_priv = vmw_priv(dev);
 688        union drm_vmw_alloc_dmabuf_arg *arg =
 689            (union drm_vmw_alloc_dmabuf_arg *)data;
 690        struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
 691        struct drm_vmw_dmabuf_rep *rep = &arg->rep;
 692        struct vmw_dma_buffer *dma_buf;
 693        uint32_t handle;
 694        int ret;
 695
 696        ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 697        if (unlikely(ret != 0))
 698                return ret;
 699
 700        ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
 701                                    req->size, false, &handle, &dma_buf,
 702                                    NULL);
 703        if (unlikely(ret != 0))
 704                goto out_no_dmabuf;
 705
 706        rep->handle = handle;
 707        rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
 708        rep->cur_gmr_id = handle;
 709        rep->cur_gmr_offset = 0;
 710
 711        vmw_dmabuf_unreference(&dma_buf);
 712
 713out_no_dmabuf:
 714        ttm_read_unlock(&dev_priv->reservation_sem);
 715
 716        return ret;
 717}
 718
 719int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
 720                           struct drm_file *file_priv)
 721{
 722        struct drm_vmw_unref_dmabuf_arg *arg =
 723            (struct drm_vmw_unref_dmabuf_arg *)data;
 724
 725        return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
 726                                         arg->handle,
 727                                         TTM_REF_USAGE);
 728}
 729
 730int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
 731                           uint32_t handle, struct vmw_dma_buffer **out,
 732                           struct ttm_base_object **p_base)
 733{
 734        struct vmw_user_dma_buffer *vmw_user_bo;
 735        struct ttm_base_object *base;
 736
 737        base = ttm_base_object_lookup(tfile, handle);
 738        if (unlikely(base == NULL)) {
 739                printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 740                       (unsigned long)handle);
 741                return -ESRCH;
 742        }
 743
 744        if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
 745                ttm_base_object_unref(&base);
 746                printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
 747                       (unsigned long)handle);
 748                return -EINVAL;
 749        }
 750
 751        vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
 752                                   prime.base);
 753        (void)ttm_bo_reference(&vmw_user_bo->dma.base);
 754        if (p_base)
 755                *p_base = base;
 756        else
 757                ttm_base_object_unref(&base);
 758        *out = &vmw_user_bo->dma;
 759
 760        return 0;
 761}
 762
 763int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
 764                              struct vmw_dma_buffer *dma_buf,
 765                              uint32_t *handle)
 766{
 767        struct vmw_user_dma_buffer *user_bo;
 768
 769        if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
 770                return -EINVAL;
 771
 772        user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
 773
 774        *handle = user_bo->prime.base.hash.key;
 775        return ttm_ref_object_add(tfile, &user_bo->prime.base,
 776                                  TTM_REF_USAGE, NULL, false);
 777}
 778
 779/*
 780 * Stream management
 781 */
 782
 783static void vmw_stream_destroy(struct vmw_resource *res)
 784{
 785        struct vmw_private *dev_priv = res->dev_priv;
 786        struct vmw_stream *stream;
 787        int ret;
 788
 789        DRM_INFO("%s: unref\n", __func__);
 790        stream = container_of(res, struct vmw_stream, res);
 791
 792        ret = vmw_overlay_unref(dev_priv, stream->stream_id);
 793        WARN_ON(ret != 0);
 794}
 795
 796static int vmw_stream_init(struct vmw_private *dev_priv,
 797                           struct vmw_stream *stream,
 798                           void (*res_free) (struct vmw_resource *res))
 799{
 800        struct vmw_resource *res = &stream->res;
 801        int ret;
 802
 803        ret = vmw_resource_init(dev_priv, res, false, res_free,
 804                                &vmw_stream_func);
 805
 806        if (unlikely(ret != 0)) {
 807                if (res_free == NULL)
 808                        kfree(stream);
 809                else
 810                        res_free(&stream->res);
 811                return ret;
 812        }
 813
 814        ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
 815        if (ret) {
 816                vmw_resource_unreference(&res);
 817                return ret;
 818        }
 819
 820        DRM_INFO("%s: claimed\n", __func__);
 821
 822        vmw_resource_activate(&stream->res, vmw_stream_destroy);
 823        return 0;
 824}
 825
 826static void vmw_user_stream_free(struct vmw_resource *res)
 827{
 828        struct vmw_user_stream *stream =
 829            container_of(res, struct vmw_user_stream, stream.res);
 830        struct vmw_private *dev_priv = res->dev_priv;
 831
 832        ttm_base_object_kfree(stream, base);
 833        ttm_mem_global_free(vmw_mem_glob(dev_priv),
 834                            vmw_user_stream_size);
 835}
 836
 837/**
 838 * This function is called when user space has no more references on the
 839 * base object. It releases the base-object's reference on the resource object.
 840 */
 841
 842static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
 843{
 844        struct ttm_base_object *base = *p_base;
 845        struct vmw_user_stream *stream =
 846            container_of(base, struct vmw_user_stream, base);
 847        struct vmw_resource *res = &stream->stream.res;
 848
 849        *p_base = NULL;
 850        vmw_resource_unreference(&res);
 851}
 852
 853int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
 854                           struct drm_file *file_priv)
 855{
 856        struct vmw_private *dev_priv = vmw_priv(dev);
 857        struct vmw_resource *res;
 858        struct vmw_user_stream *stream;
 859        struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 860        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 861        struct idr *idr = &dev_priv->res_idr[vmw_res_stream];
 862        int ret = 0;
 863
 864
 865        res = vmw_resource_lookup(dev_priv, idr, arg->stream_id);
 866        if (unlikely(res == NULL))
 867                return -EINVAL;
 868
 869        if (res->res_free != &vmw_user_stream_free) {
 870                ret = -EINVAL;
 871                goto out;
 872        }
 873
 874        stream = container_of(res, struct vmw_user_stream, stream.res);
 875        if (stream->base.tfile != tfile) {
 876                ret = -EINVAL;
 877                goto out;
 878        }
 879
 880        ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
 881out:
 882        vmw_resource_unreference(&res);
 883        return ret;
 884}
 885
 886int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
 887                           struct drm_file *file_priv)
 888{
 889        struct vmw_private *dev_priv = vmw_priv(dev);
 890        struct vmw_user_stream *stream;
 891        struct vmw_resource *res;
 892        struct vmw_resource *tmp;
 893        struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
 894        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
 895        int ret;
 896
 897        /*
 898         * Approximate idr memory usage with 128 bytes. It will be limited
 899         * by maximum number_of streams anyway?
 900         */
 901
 902        if (unlikely(vmw_user_stream_size == 0))
 903                vmw_user_stream_size = ttm_round_pot(sizeof(*stream)) + 128;
 904
 905        ret = ttm_read_lock(&dev_priv->reservation_sem, true);
 906        if (unlikely(ret != 0))
 907                return ret;
 908
 909        ret = ttm_mem_global_alloc(vmw_mem_glob(dev_priv),
 910                                   vmw_user_stream_size,
 911                                   false, true);
 912        ttm_read_unlock(&dev_priv->reservation_sem);
 913        if (unlikely(ret != 0)) {
 914                if (ret != -ERESTARTSYS)
 915                        DRM_ERROR("Out of graphics memory for stream"
 916                                  " creation.\n");
 917
 918                goto out_ret;
 919        }
 920
 921        stream = kmalloc(sizeof(*stream), GFP_KERNEL);
 922        if (unlikely(stream == NULL)) {
 923                ttm_mem_global_free(vmw_mem_glob(dev_priv),
 924                                    vmw_user_stream_size);
 925                ret = -ENOMEM;
 926                goto out_ret;
 927        }
 928
 929        res = &stream->stream.res;
 930        stream->base.shareable = false;
 931        stream->base.tfile = NULL;
 932
 933        /*
 934         * From here on, the destructor takes over resource freeing.
 935         */
 936
 937        ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
 938        if (unlikely(ret != 0))
 939                goto out_ret;
 940
 941        tmp = vmw_resource_reference(res);
 942        ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
 943                                   &vmw_user_stream_base_release, NULL);
 944
 945        if (unlikely(ret != 0)) {
 946                vmw_resource_unreference(&tmp);
 947                goto out_err;
 948        }
 949
 950        arg->stream_id = res->id;
 951out_err:
 952        vmw_resource_unreference(&res);
 953out_ret:
 954        return ret;
 955}
 956
 957int vmw_user_stream_lookup(struct vmw_private *dev_priv,
 958                           struct ttm_object_file *tfile,
 959                           uint32_t *inout_id, struct vmw_resource **out)
 960{
 961        struct vmw_user_stream *stream;
 962        struct vmw_resource *res;
 963        int ret;
 964
 965        res = vmw_resource_lookup(dev_priv, &dev_priv->res_idr[vmw_res_stream],
 966                                  *inout_id);
 967        if (unlikely(res == NULL))
 968                return -EINVAL;
 969
 970        if (res->res_free != &vmw_user_stream_free) {
 971                ret = -EINVAL;
 972                goto err_ref;
 973        }
 974
 975        stream = container_of(res, struct vmw_user_stream, stream.res);
 976        if (stream->base.tfile != tfile) {
 977                ret = -EPERM;
 978                goto err_ref;
 979        }
 980
 981        *inout_id = stream->stream.stream_id;
 982        *out = res;
 983        return 0;
 984err_ref:
 985        vmw_resource_unreference(&res);
 986        return ret;
 987}
 988
 989
 990/**
 991 * vmw_dumb_create - Create a dumb kms buffer
 992 *
 993 * @file_priv: Pointer to a struct drm_file identifying the caller.
 994 * @dev: Pointer to the drm device.
 995 * @args: Pointer to a struct drm_mode_create_dumb structure
 996 *
 997 * This is a driver callback for the core drm create_dumb functionality.
 998 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
 999 * that the arguments have a different format.
1000 */
1001int vmw_dumb_create(struct drm_file *file_priv,
1002                    struct drm_device *dev,
1003                    struct drm_mode_create_dumb *args)
1004{
1005        struct vmw_private *dev_priv = vmw_priv(dev);
1006        struct vmw_dma_buffer *dma_buf;
1007        int ret;
1008
1009        args->pitch = args->width * ((args->bpp + 7) / 8);
1010        args->size = args->pitch * args->height;
1011
1012        ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1013        if (unlikely(ret != 0))
1014                return ret;
1015
1016        ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
1017                                    args->size, false, &args->handle,
1018                                    &dma_buf, NULL);
1019        if (unlikely(ret != 0))
1020                goto out_no_dmabuf;
1021
1022        vmw_dmabuf_unreference(&dma_buf);
1023out_no_dmabuf:
1024        ttm_read_unlock(&dev_priv->reservation_sem);
1025        return ret;
1026}
1027
1028/**
1029 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
1030 *
1031 * @file_priv: Pointer to a struct drm_file identifying the caller.
1032 * @dev: Pointer to the drm device.
1033 * @handle: Handle identifying the dumb buffer.
1034 * @offset: The address space offset returned.
1035 *
1036 * This is a driver callback for the core drm dumb_map_offset functionality.
1037 */
1038int vmw_dumb_map_offset(struct drm_file *file_priv,
1039                        struct drm_device *dev, uint32_t handle,
1040                        uint64_t *offset)
1041{
1042        struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1043        struct vmw_dma_buffer *out_buf;
1044        int ret;
1045
1046        ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
1047        if (ret != 0)
1048                return -EINVAL;
1049
1050        *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
1051        vmw_dmabuf_unreference(&out_buf);
1052        return 0;
1053}
1054
1055/**
1056 * vmw_dumb_destroy - Destroy a dumb boffer
1057 *
1058 * @file_priv: Pointer to a struct drm_file identifying the caller.
1059 * @dev: Pointer to the drm device.
1060 * @handle: Handle identifying the dumb buffer.
1061 *
1062 * This is a driver callback for the core drm dumb_destroy functionality.
1063 */
1064int vmw_dumb_destroy(struct drm_file *file_priv,
1065                     struct drm_device *dev,
1066                     uint32_t handle)
1067{
1068        return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
1069                                         handle, TTM_REF_USAGE);
1070}
1071
1072/**
1073 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
1074 *
1075 * @res:            The resource for which to allocate a backup buffer.
1076 * @interruptible:  Whether any sleeps during allocation should be
1077 *                  performed while interruptible.
1078 */
1079static int vmw_resource_buf_alloc(struct vmw_resource *res,
1080                                  bool interruptible)
1081{
1082        unsigned long size =
1083                (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
1084        struct vmw_dma_buffer *backup;
1085        int ret;
1086
1087        if (likely(res->backup)) {
1088                BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
1089                return 0;
1090        }
1091
1092        backup = kzalloc(sizeof(*backup), GFP_KERNEL);
1093        if (unlikely(backup == NULL))
1094                return -ENOMEM;
1095
1096        ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
1097                              res->func->backup_placement,
1098                              interruptible,
1099                              &vmw_dmabuf_bo_free);
1100        if (unlikely(ret != 0))
1101                goto out_no_dmabuf;
1102
1103        res->backup = backup;
1104
1105out_no_dmabuf:
1106        return ret;
1107}
1108
1109/**
1110 * vmw_resource_do_validate - Make a resource up-to-date and visible
1111 *                            to the device.
1112 *
1113 * @res:            The resource to make visible to the device.
1114 * @val_buf:        Information about a buffer possibly
1115 *                  containing backup data if a bind operation is needed.
1116 *
1117 * On hardware resource shortage, this function returns -EBUSY and
1118 * should be retried once resources have been freed up.
1119 */
1120static int vmw_resource_do_validate(struct vmw_resource *res,
1121                                    struct ttm_validate_buffer *val_buf)
1122{
1123        int ret = 0;
1124        const struct vmw_res_func *func = res->func;
1125
1126        if (unlikely(res->id == -1)) {
1127                ret = func->create(res);
1128                if (unlikely(ret != 0))
1129                        return ret;
1130        }
1131
1132        if (func->bind &&
1133            ((func->needs_backup && list_empty(&res->mob_head) &&
1134              val_buf->bo != NULL) ||
1135             (!func->needs_backup && val_buf->bo != NULL))) {
1136                ret = func->bind(res, val_buf);
1137                if (unlikely(ret != 0))
1138                        goto out_bind_failed;
1139                if (func->needs_backup)
1140                        list_add_tail(&res->mob_head, &res->backup->res_list);
1141        }
1142
1143        /*
1144         * Only do this on write operations, and move to
1145         * vmw_resource_unreserve if it can be called after
1146         * backup buffers have been unreserved. Otherwise
1147         * sort out locking.
1148         */
1149        res->res_dirty = true;
1150
1151        return 0;
1152
1153out_bind_failed:
1154        func->destroy(res);
1155
1156        return ret;
1157}
1158
1159/**
1160 * vmw_resource_unreserve - Unreserve a resource previously reserved for
1161 * command submission.
1162 *
1163 * @res:               Pointer to the struct vmw_resource to unreserve.
1164 * @switch_backup:     Backup buffer has been switched.
1165 * @new_backup:        Pointer to new backup buffer if command submission
1166 *                     switched. May be NULL.
1167 * @new_backup_offset: New backup offset if @switch_backup is true.
1168 *
1169 * Currently unreserving a resource means putting it back on the device's
1170 * resource lru list, so that it can be evicted if necessary.
1171 */
1172void vmw_resource_unreserve(struct vmw_resource *res,
1173                            bool switch_backup,
1174                            struct vmw_dma_buffer *new_backup,
1175                            unsigned long new_backup_offset)
1176{
1177        struct vmw_private *dev_priv = res->dev_priv;
1178
1179        if (!list_empty(&res->lru_head))
1180                return;
1181
1182        if (switch_backup && new_backup != res->backup) {
1183                if (res->backup) {
1184                        lockdep_assert_held(&res->backup->base.resv->lock.base);
1185                        list_del_init(&res->mob_head);
1186                        vmw_dmabuf_unreference(&res->backup);
1187                }
1188
1189                if (new_backup) {
1190                        res->backup = vmw_dmabuf_reference(new_backup);
1191                        lockdep_assert_held(&new_backup->base.resv->lock.base);
1192                        list_add_tail(&res->mob_head, &new_backup->res_list);
1193                } else {
1194                        res->backup = NULL;
1195                }
1196        }
1197        if (switch_backup)
1198                res->backup_offset = new_backup_offset;
1199
1200        if (!res->func->may_evict || res->id == -1 || res->pin_count)
1201                return;
1202
1203        write_lock(&dev_priv->resource_lock);
1204        list_add_tail(&res->lru_head,
1205                      &res->dev_priv->res_lru[res->func->res_type]);
1206        write_unlock(&dev_priv->resource_lock);
1207}
1208
1209/**
1210 * vmw_resource_check_buffer - Check whether a backup buffer is needed
1211 *                             for a resource and in that case, allocate
1212 *                             one, reserve and validate it.
1213 *
1214 * @res:            The resource for which to allocate a backup buffer.
1215 * @interruptible:  Whether any sleeps during allocation should be
1216 *                  performed while interruptible.
1217 * @val_buf:        On successful return contains data about the
1218 *                  reserved and validated backup buffer.
1219 */
1220static int
1221vmw_resource_check_buffer(struct vmw_resource *res,
1222                          bool interruptible,
1223                          struct ttm_validate_buffer *val_buf)
1224{
1225        struct list_head val_list;
1226        bool backup_dirty = false;
1227        int ret;
1228
1229        if (unlikely(res->backup == NULL)) {
1230                ret = vmw_resource_buf_alloc(res, interruptible);
1231                if (unlikely(ret != 0))
1232                        return ret;
1233        }
1234
1235        INIT_LIST_HEAD(&val_list);
1236        val_buf->bo = ttm_bo_reference(&res->backup->base);
1237        val_buf->shared = false;
1238        list_add_tail(&val_buf->head, &val_list);
1239        ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
1240        if (unlikely(ret != 0))
1241                goto out_no_reserve;
1242
1243        if (res->func->needs_backup && list_empty(&res->mob_head))
1244                return 0;
1245
1246        backup_dirty = res->backup_dirty;
1247        ret = ttm_bo_validate(&res->backup->base,
1248                              res->func->backup_placement,
1249                              true, false);
1250
1251        if (unlikely(ret != 0))
1252                goto out_no_validate;
1253
1254        return 0;
1255
1256out_no_validate:
1257        ttm_eu_backoff_reservation(NULL, &val_list);
1258out_no_reserve:
1259        ttm_bo_unref(&val_buf->bo);
1260        if (backup_dirty)
1261                vmw_dmabuf_unreference(&res->backup);
1262
1263        return ret;
1264}
1265
1266/**
1267 * vmw_resource_reserve - Reserve a resource for command submission
1268 *
1269 * @res:            The resource to reserve.
1270 *
1271 * This function takes the resource off the LRU list and make sure
1272 * a backup buffer is present for guest-backed resources. However,
1273 * the buffer may not be bound to the resource at this point.
1274 *
1275 */
1276int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1277                         bool no_backup)
1278{
1279        struct vmw_private *dev_priv = res->dev_priv;
1280        int ret;
1281
1282        write_lock(&dev_priv->resource_lock);
1283        list_del_init(&res->lru_head);
1284        write_unlock(&dev_priv->resource_lock);
1285
1286        if (res->func->needs_backup && res->backup == NULL &&
1287            !no_backup) {
1288                ret = vmw_resource_buf_alloc(res, interruptible);
1289                if (unlikely(ret != 0)) {
1290                        DRM_ERROR("Failed to allocate a backup buffer "
1291                                  "of size %lu. bytes\n",
1292                                  (unsigned long) res->backup_size);
1293                        return ret;
1294                }
1295        }
1296
1297        return 0;
1298}
1299
1300/**
1301 * vmw_resource_backoff_reservation - Unreserve and unreference a
1302 *                                    backup buffer
1303 *.
1304 * @val_buf:        Backup buffer information.
1305 */
1306static void
1307vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1308{
1309        struct list_head val_list;
1310
1311        if (likely(val_buf->bo == NULL))
1312                return;
1313
1314        INIT_LIST_HEAD(&val_list);
1315        list_add_tail(&val_buf->head, &val_list);
1316        ttm_eu_backoff_reservation(NULL, &val_list);
1317        ttm_bo_unref(&val_buf->bo);
1318}
1319
1320/**
1321 * vmw_resource_do_evict - Evict a resource, and transfer its data
1322 *                         to a backup buffer.
1323 *
1324 * @res:            The resource to evict.
1325 * @interruptible:  Whether to wait interruptible.
1326 */
1327static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1328{
1329        struct ttm_validate_buffer val_buf;
1330        const struct vmw_res_func *func = res->func;
1331        int ret;
1332
1333        BUG_ON(!func->may_evict);
1334
1335        val_buf.bo = NULL;
1336        val_buf.shared = false;
1337        ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1338        if (unlikely(ret != 0))
1339                return ret;
1340
1341        if (unlikely(func->unbind != NULL &&
1342                     (!func->needs_backup || !list_empty(&res->mob_head)))) {
1343                ret = func->unbind(res, res->res_dirty, &val_buf);
1344                if (unlikely(ret != 0))
1345                        goto out_no_unbind;
1346                list_del_init(&res->mob_head);
1347        }
1348        ret = func->destroy(res);
1349        res->backup_dirty = true;
1350        res->res_dirty = false;
1351out_no_unbind:
1352        vmw_resource_backoff_reservation(&val_buf);
1353
1354        return ret;
1355}
1356
1357
1358/**
1359 * vmw_resource_validate - Make a resource up-to-date and visible
1360 *                         to the device.
1361 *
1362 * @res:            The resource to make visible to the device.
1363 *
1364 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1365 * be reserved and validated.
1366 * On hardware resource shortage, this function will repeatedly evict
1367 * resources of the same type until the validation succeeds.
1368 */
1369int vmw_resource_validate(struct vmw_resource *res)
1370{
1371        int ret;
1372        struct vmw_resource *evict_res;
1373        struct vmw_private *dev_priv = res->dev_priv;
1374        struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1375        struct ttm_validate_buffer val_buf;
1376        unsigned err_count = 0;
1377
1378        if (!res->func->create)
1379                return 0;
1380
1381        val_buf.bo = NULL;
1382        val_buf.shared = false;
1383        if (res->backup)
1384                val_buf.bo = &res->backup->base;
1385        do {
1386                ret = vmw_resource_do_validate(res, &val_buf);
1387                if (likely(ret != -EBUSY))
1388                        break;
1389
1390                write_lock(&dev_priv->resource_lock);
1391                if (list_empty(lru_list) || !res->func->may_evict) {
1392                        DRM_ERROR("Out of device device resources "
1393                                  "for %s.\n", res->func->type_name);
1394                        ret = -EBUSY;
1395                        write_unlock(&dev_priv->resource_lock);
1396                        break;
1397                }
1398
1399                evict_res = vmw_resource_reference
1400                        (list_first_entry(lru_list, struct vmw_resource,
1401                                          lru_head));
1402                list_del_init(&evict_res->lru_head);
1403
1404                write_unlock(&dev_priv->resource_lock);
1405
1406                ret = vmw_resource_do_evict(evict_res, true);
1407                if (unlikely(ret != 0)) {
1408                        write_lock(&dev_priv->resource_lock);
1409                        list_add_tail(&evict_res->lru_head, lru_list);
1410                        write_unlock(&dev_priv->resource_lock);
1411                        if (ret == -ERESTARTSYS ||
1412                            ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1413                                vmw_resource_unreference(&evict_res);
1414                                goto out_no_validate;
1415                        }
1416                }
1417
1418                vmw_resource_unreference(&evict_res);
1419        } while (1);
1420
1421        if (unlikely(ret != 0))
1422                goto out_no_validate;
1423        else if (!res->func->needs_backup && res->backup) {
1424                list_del_init(&res->mob_head);
1425                vmw_dmabuf_unreference(&res->backup);
1426        }
1427
1428        return 0;
1429
1430out_no_validate:
1431        return ret;
1432}
1433
1434/**
1435 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1436 *                       object without unreserving it.
1437 *
1438 * @bo:             Pointer to the struct ttm_buffer_object to fence.
1439 * @fence:          Pointer to the fence. If NULL, this function will
1440 *                  insert a fence into the command stream..
1441 *
1442 * Contrary to the ttm_eu version of this function, it takes only
1443 * a single buffer object instead of a list, and it also doesn't
1444 * unreserve the buffer object, which needs to be done separately.
1445 */
1446void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1447                         struct vmw_fence_obj *fence)
1448{
1449        struct ttm_bo_device *bdev = bo->bdev;
1450
1451        struct vmw_private *dev_priv =
1452                container_of(bdev, struct vmw_private, bdev);
1453
1454        if (fence == NULL) {
1455                vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1456                reservation_object_add_excl_fence(bo->resv, &fence->base);
1457                dma_fence_put(&fence->base);
1458        } else
1459                reservation_object_add_excl_fence(bo->resv, &fence->base);
1460}
1461
1462/**
1463 * vmw_resource_move_notify - TTM move_notify_callback
1464 *
1465 * @bo: The TTM buffer object about to move.
1466 * @mem: The struct ttm_mem_reg indicating to what memory
1467 *       region the move is taking place.
1468 *
1469 * Evicts the Guest Backed hardware resource if the backup
1470 * buffer is being moved out of MOB memory.
1471 * Note that this function should not race with the resource
1472 * validation code as long as it accesses only members of struct
1473 * resource that remain static while bo::res is !NULL and
1474 * while we have @bo reserved. struct resource::backup is *not* a
1475 * static member. The resource validation code will take care
1476 * to set @bo::res to NULL, while having @bo reserved when the
1477 * buffer is no longer bound to the resource, so @bo:res can be
1478 * used to determine whether there is a need to unbind and whether
1479 * it is safe to unbind.
1480 */
1481void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1482                              struct ttm_mem_reg *mem)
1483{
1484        struct vmw_dma_buffer *dma_buf;
1485
1486        if (mem == NULL)
1487                return;
1488
1489        if (bo->destroy != vmw_dmabuf_bo_free &&
1490            bo->destroy != vmw_user_dmabuf_destroy)
1491                return;
1492
1493        dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1494
1495        if (mem->mem_type != VMW_PL_MOB) {
1496                struct vmw_resource *res, *n;
1497                struct ttm_validate_buffer val_buf;
1498
1499                val_buf.bo = bo;
1500                val_buf.shared = false;
1501
1502                list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1503
1504                        if (unlikely(res->func->unbind == NULL))
1505                                continue;
1506
1507                        (void) res->func->unbind(res, true, &val_buf);
1508                        res->backup_dirty = true;
1509                        res->res_dirty = false;
1510                        list_del_init(&res->mob_head);
1511                }
1512
1513                (void) ttm_bo_wait(bo, false, false);
1514        }
1515}
1516
1517
1518
1519/**
1520 * vmw_query_readback_all - Read back cached query states
1521 *
1522 * @dx_query_mob: Buffer containing the DX query MOB
1523 *
1524 * Read back cached states from the device if they exist.  This function
1525 * assumings binding_mutex is held.
1526 */
1527int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1528{
1529        struct vmw_resource *dx_query_ctx;
1530        struct vmw_private *dev_priv;
1531        struct {
1532                SVGA3dCmdHeader header;
1533                SVGA3dCmdDXReadbackAllQuery body;
1534        } *cmd;
1535
1536
1537        /* No query bound, so do nothing */
1538        if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1539                return 0;
1540
1541        dx_query_ctx = dx_query_mob->dx_query_ctx;
1542        dev_priv     = dx_query_ctx->dev_priv;
1543
1544        cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1545        if (unlikely(cmd == NULL)) {
1546                DRM_ERROR("Failed reserving FIFO space for "
1547                          "query MOB read back.\n");
1548                return -ENOMEM;
1549        }
1550
1551        cmd->header.id   = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1552        cmd->header.size = sizeof(cmd->body);
1553        cmd->body.cid    = dx_query_ctx->id;
1554
1555        vmw_fifo_commit(dev_priv, sizeof(*cmd));
1556
1557        /* Triggers a rebind the next time affected context is bound */
1558        dx_query_mob->dx_query_ctx = NULL;
1559
1560        return 0;
1561}
1562
1563
1564
1565/**
1566 * vmw_query_move_notify - Read back cached query states
1567 *
1568 * @bo: The TTM buffer object about to move.
1569 * @mem: The memory region @bo is moving to.
1570 *
1571 * Called before the query MOB is swapped out to read back cached query
1572 * states from the device.
1573 */
1574void vmw_query_move_notify(struct ttm_buffer_object *bo,
1575                           struct ttm_mem_reg *mem)
1576{
1577        struct vmw_dma_buffer *dx_query_mob;
1578        struct ttm_bo_device *bdev = bo->bdev;
1579        struct vmw_private *dev_priv;
1580
1581
1582        dev_priv = container_of(bdev, struct vmw_private, bdev);
1583
1584        mutex_lock(&dev_priv->binding_mutex);
1585
1586        dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1587        if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1588                mutex_unlock(&dev_priv->binding_mutex);
1589                return;
1590        }
1591
1592        /* If BO is being moved from MOB to system memory */
1593        if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1594                struct vmw_fence_obj *fence;
1595
1596                (void) vmw_query_readback_all(dx_query_mob);
1597                mutex_unlock(&dev_priv->binding_mutex);
1598
1599                /* Create a fence and attach the BO to it */
1600                (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1601                vmw_fence_single_bo(bo, fence);
1602
1603                if (fence != NULL)
1604                        vmw_fence_obj_unreference(&fence);
1605
1606                (void) ttm_bo_wait(bo, false, false);
1607        } else
1608                mutex_unlock(&dev_priv->binding_mutex);
1609
1610}
1611
1612/**
1613 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1614 *
1615 * @res:            The resource being queried.
1616 */
1617bool vmw_resource_needs_backup(const struct vmw_resource *res)
1618{
1619        return res->func->needs_backup;
1620}
1621
1622/**
1623 * vmw_resource_evict_type - Evict all resources of a specific type
1624 *
1625 * @dev_priv:       Pointer to a device private struct
1626 * @type:           The resource type to evict
1627 *
1628 * To avoid thrashing starvation or as part of the hibernation sequence,
1629 * try to evict all evictable resources of a specific type.
1630 */
1631static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1632                                    enum vmw_res_type type)
1633{
1634        struct list_head *lru_list = &dev_priv->res_lru[type];
1635        struct vmw_resource *evict_res;
1636        unsigned err_count = 0;
1637        int ret;
1638
1639        do {
1640                write_lock(&dev_priv->resource_lock);
1641
1642                if (list_empty(lru_list))
1643                        goto out_unlock;
1644
1645                evict_res = vmw_resource_reference(
1646                        list_first_entry(lru_list, struct vmw_resource,
1647                                         lru_head));
1648                list_del_init(&evict_res->lru_head);
1649                write_unlock(&dev_priv->resource_lock);
1650
1651                ret = vmw_resource_do_evict(evict_res, false);
1652                if (unlikely(ret != 0)) {
1653                        write_lock(&dev_priv->resource_lock);
1654                        list_add_tail(&evict_res->lru_head, lru_list);
1655                        write_unlock(&dev_priv->resource_lock);
1656                        if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1657                                vmw_resource_unreference(&evict_res);
1658                                return;
1659                        }
1660                }
1661
1662                vmw_resource_unreference(&evict_res);
1663        } while (1);
1664
1665out_unlock:
1666        write_unlock(&dev_priv->resource_lock);
1667}
1668
1669/**
1670 * vmw_resource_evict_all - Evict all evictable resources
1671 *
1672 * @dev_priv:       Pointer to a device private struct
1673 *
1674 * To avoid thrashing starvation or as part of the hibernation sequence,
1675 * evict all evictable resources. In particular this means that all
1676 * guest-backed resources that are registered with the device are
1677 * evicted and the OTable becomes clean.
1678 */
1679void vmw_resource_evict_all(struct vmw_private *dev_priv)
1680{
1681        enum vmw_res_type type;
1682
1683        mutex_lock(&dev_priv->cmdbuf_mutex);
1684
1685        for (type = 0; type < vmw_res_max; ++type)
1686                vmw_resource_evict_type(dev_priv, type);
1687
1688        mutex_unlock(&dev_priv->cmdbuf_mutex);
1689}
1690
1691/**
1692 * vmw_resource_pin - Add a pin reference on a resource
1693 *
1694 * @res: The resource to add a pin reference on
1695 *
1696 * This function adds a pin reference, and if needed validates the resource.
1697 * Having a pin reference means that the resource can never be evicted, and
1698 * its id will never change as long as there is a pin reference.
1699 * This function returns 0 on success and a negative error code on failure.
1700 */
1701int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1702{
1703        struct vmw_private *dev_priv = res->dev_priv;
1704        int ret;
1705
1706        ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1707        mutex_lock(&dev_priv->cmdbuf_mutex);
1708        ret = vmw_resource_reserve(res, interruptible, false);
1709        if (ret)
1710                goto out_no_reserve;
1711
1712        if (res->pin_count == 0) {
1713                struct vmw_dma_buffer *vbo = NULL;
1714
1715                if (res->backup) {
1716                        vbo = res->backup;
1717
1718                        ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1719                        if (!vbo->pin_count) {
1720                                ret = ttm_bo_validate
1721                                        (&vbo->base,
1722                                         res->func->backup_placement,
1723                                         interruptible, false);
1724                                if (ret) {
1725                                        ttm_bo_unreserve(&vbo->base);
1726                                        goto out_no_validate;
1727                                }
1728                        }
1729
1730                        /* Do we really need to pin the MOB as well? */
1731                        vmw_bo_pin_reserved(vbo, true);
1732                }
1733                ret = vmw_resource_validate(res);
1734                if (vbo)
1735                        ttm_bo_unreserve(&vbo->base);
1736                if (ret)
1737                        goto out_no_validate;
1738        }
1739        res->pin_count++;
1740
1741out_no_validate:
1742        vmw_resource_unreserve(res, false, NULL, 0UL);
1743out_no_reserve:
1744        mutex_unlock(&dev_priv->cmdbuf_mutex);
1745        ttm_write_unlock(&dev_priv->reservation_sem);
1746
1747        return ret;
1748}
1749
1750/**
1751 * vmw_resource_unpin - Remove a pin reference from a resource
1752 *
1753 * @res: The resource to remove a pin reference from
1754 *
1755 * Having a pin reference means that the resource can never be evicted, and
1756 * its id will never change as long as there is a pin reference.
1757 */
1758void vmw_resource_unpin(struct vmw_resource *res)
1759{
1760        struct vmw_private *dev_priv = res->dev_priv;
1761        int ret;
1762
1763        ttm_read_lock(&dev_priv->reservation_sem, false);
1764        mutex_lock(&dev_priv->cmdbuf_mutex);
1765
1766        ret = vmw_resource_reserve(res, false, true);
1767        WARN_ON(ret);
1768
1769        WARN_ON(res->pin_count == 0);
1770        if (--res->pin_count == 0 && res->backup) {
1771                struct vmw_dma_buffer *vbo = res->backup;
1772
1773                ttm_bo_reserve(&vbo->base, false, false, NULL);
1774                vmw_bo_pin_reserved(vbo, false);
1775                ttm_bo_unreserve(&vbo->base);
1776        }
1777
1778        vmw_resource_unreserve(res, false, NULL, 0UL);
1779
1780        mutex_unlock(&dev_priv->cmdbuf_mutex);
1781        ttm_read_unlock(&dev_priv->reservation_sem);
1782}
1783
1784/**
1785 * vmw_res_type - Return the resource type
1786 *
1787 * @res: Pointer to the resource
1788 */
1789enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1790{
1791        return res->func->res_type;
1792}
1793