linux/drivers/infiniband/hw/hfi1/verbs.c
<<
>>
Prefs
   1/*
   2 * Copyright(c) 2015 - 2017 Intel Corporation.
   3 *
   4 * This file is provided under a dual BSD/GPLv2 license.  When using or
   5 * redistributing this file, you may do so under either license.
   6 *
   7 * GPL LICENSE SUMMARY
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * BSD LICENSE
  19 *
  20 * Redistribution and use in source and binary forms, with or without
  21 * modification, are permitted provided that the following conditions
  22 * are met:
  23 *
  24 *  - Redistributions of source code must retain the above copyright
  25 *    notice, this list of conditions and the following disclaimer.
  26 *  - Redistributions in binary form must reproduce the above copyright
  27 *    notice, this list of conditions and the following disclaimer in
  28 *    the documentation and/or other materials provided with the
  29 *    distribution.
  30 *  - Neither the name of Intel Corporation nor the names of its
  31 *    contributors may be used to endorse or promote products derived
  32 *    from this software without specific prior written permission.
  33 *
  34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  45 *
  46 */
  47
  48#include <rdma/ib_mad.h>
  49#include <rdma/ib_user_verbs.h>
  50#include <linux/io.h>
  51#include <linux/module.h>
  52#include <linux/utsname.h>
  53#include <linux/rculist.h>
  54#include <linux/mm.h>
  55#include <linux/vmalloc.h>
  56
  57#include "hfi.h"
  58#include "common.h"
  59#include "device.h"
  60#include "trace.h"
  61#include "qp.h"
  62#include "verbs_txreq.h"
  63
  64static unsigned int hfi1_lkey_table_size = 16;
  65module_param_named(lkey_table_size, hfi1_lkey_table_size, uint,
  66                   S_IRUGO);
  67MODULE_PARM_DESC(lkey_table_size,
  68                 "LKEY table size in bits (2^n, 1 <= n <= 23)");
  69
  70static unsigned int hfi1_max_pds = 0xFFFF;
  71module_param_named(max_pds, hfi1_max_pds, uint, S_IRUGO);
  72MODULE_PARM_DESC(max_pds,
  73                 "Maximum number of protection domains to support");
  74
  75static unsigned int hfi1_max_ahs = 0xFFFF;
  76module_param_named(max_ahs, hfi1_max_ahs, uint, S_IRUGO);
  77MODULE_PARM_DESC(max_ahs, "Maximum number of address handles to support");
  78
  79unsigned int hfi1_max_cqes = 0x2FFFFF;
  80module_param_named(max_cqes, hfi1_max_cqes, uint, S_IRUGO);
  81MODULE_PARM_DESC(max_cqes,
  82                 "Maximum number of completion queue entries to support");
  83
  84unsigned int hfi1_max_cqs = 0x1FFFF;
  85module_param_named(max_cqs, hfi1_max_cqs, uint, S_IRUGO);
  86MODULE_PARM_DESC(max_cqs, "Maximum number of completion queues to support");
  87
  88unsigned int hfi1_max_qp_wrs = 0x3FFF;
  89module_param_named(max_qp_wrs, hfi1_max_qp_wrs, uint, S_IRUGO);
  90MODULE_PARM_DESC(max_qp_wrs, "Maximum number of QP WRs to support");
  91
  92unsigned int hfi1_max_qps = 32768;
  93module_param_named(max_qps, hfi1_max_qps, uint, S_IRUGO);
  94MODULE_PARM_DESC(max_qps, "Maximum number of QPs to support");
  95
  96unsigned int hfi1_max_sges = 0x60;
  97module_param_named(max_sges, hfi1_max_sges, uint, S_IRUGO);
  98MODULE_PARM_DESC(max_sges, "Maximum number of SGEs to support");
  99
 100unsigned int hfi1_max_mcast_grps = 16384;
 101module_param_named(max_mcast_grps, hfi1_max_mcast_grps, uint, S_IRUGO);
 102MODULE_PARM_DESC(max_mcast_grps,
 103                 "Maximum number of multicast groups to support");
 104
 105unsigned int hfi1_max_mcast_qp_attached = 16;
 106module_param_named(max_mcast_qp_attached, hfi1_max_mcast_qp_attached,
 107                   uint, S_IRUGO);
 108MODULE_PARM_DESC(max_mcast_qp_attached,
 109                 "Maximum number of attached QPs to support");
 110
 111unsigned int hfi1_max_srqs = 1024;
 112module_param_named(max_srqs, hfi1_max_srqs, uint, S_IRUGO);
 113MODULE_PARM_DESC(max_srqs, "Maximum number of SRQs to support");
 114
 115unsigned int hfi1_max_srq_sges = 128;
 116module_param_named(max_srq_sges, hfi1_max_srq_sges, uint, S_IRUGO);
 117MODULE_PARM_DESC(max_srq_sges, "Maximum number of SRQ SGEs to support");
 118
 119unsigned int hfi1_max_srq_wrs = 0x1FFFF;
 120module_param_named(max_srq_wrs, hfi1_max_srq_wrs, uint, S_IRUGO);
 121MODULE_PARM_DESC(max_srq_wrs, "Maximum number of SRQ WRs support");
 122
 123unsigned short piothreshold = 256;
 124module_param(piothreshold, ushort, S_IRUGO);
 125MODULE_PARM_DESC(piothreshold, "size used to determine sdma vs. pio");
 126
 127#define COPY_CACHELESS 1
 128#define COPY_ADAPTIVE  2
 129static unsigned int sge_copy_mode;
 130module_param(sge_copy_mode, uint, S_IRUGO);
 131MODULE_PARM_DESC(sge_copy_mode,
 132                 "Verbs copy mode: 0 use memcpy, 1 use cacheless copy, 2 adapt based on WSS");
 133
 134static void verbs_sdma_complete(
 135        struct sdma_txreq *cookie,
 136        int status);
 137
 138static int pio_wait(struct rvt_qp *qp,
 139                    struct send_context *sc,
 140                    struct hfi1_pkt_state *ps,
 141                    u32 flag);
 142
 143/* Length of buffer to create verbs txreq cache name */
 144#define TXREQ_NAME_LEN 24
 145
 146static uint wss_threshold;
 147module_param(wss_threshold, uint, S_IRUGO);
 148MODULE_PARM_DESC(wss_threshold, "Percentage (1-100) of LLC to use as a threshold for a cacheless copy");
 149static uint wss_clean_period = 256;
 150module_param(wss_clean_period, uint, S_IRUGO);
 151MODULE_PARM_DESC(wss_clean_period, "Count of verbs copies before an entry in the page copy table is cleaned");
 152
 153/* memory working set size */
 154struct hfi1_wss {
 155        unsigned long *entries;
 156        atomic_t total_count;
 157        atomic_t clean_counter;
 158        atomic_t clean_entry;
 159
 160        int threshold;
 161        int num_entries;
 162        long pages_mask;
 163};
 164
 165static struct hfi1_wss wss;
 166
 167int hfi1_wss_init(void)
 168{
 169        long llc_size;
 170        long llc_bits;
 171        long table_size;
 172        long table_bits;
 173
 174        /* check for a valid percent range - default to 80 if none or invalid */
 175        if (wss_threshold < 1 || wss_threshold > 100)
 176                wss_threshold = 80;
 177        /* reject a wildly large period */
 178        if (wss_clean_period > 1000000)
 179                wss_clean_period = 256;
 180        /* reject a zero period */
 181        if (wss_clean_period == 0)
 182                wss_clean_period = 1;
 183
 184        /*
 185         * Calculate the table size - the next power of 2 larger than the
 186         * LLC size.  LLC size is in KiB.
 187         */
 188        llc_size = wss_llc_size() * 1024;
 189        table_size = roundup_pow_of_two(llc_size);
 190
 191        /* one bit per page in rounded up table */
 192        llc_bits = llc_size / PAGE_SIZE;
 193        table_bits = table_size / PAGE_SIZE;
 194        wss.pages_mask = table_bits - 1;
 195        wss.num_entries = table_bits / BITS_PER_LONG;
 196
 197        wss.threshold = (llc_bits * wss_threshold) / 100;
 198        if (wss.threshold == 0)
 199                wss.threshold = 1;
 200
 201        atomic_set(&wss.clean_counter, wss_clean_period);
 202
 203        wss.entries = kcalloc(wss.num_entries, sizeof(*wss.entries),
 204                              GFP_KERNEL);
 205        if (!wss.entries) {
 206                hfi1_wss_exit();
 207                return -ENOMEM;
 208        }
 209
 210        return 0;
 211}
 212
 213void hfi1_wss_exit(void)
 214{
 215        /* coded to handle partially initialized and repeat callers */
 216        kfree(wss.entries);
 217        wss.entries = NULL;
 218}
 219
 220/*
 221 * Advance the clean counter.  When the clean period has expired,
 222 * clean an entry.
 223 *
 224 * This is implemented in atomics to avoid locking.  Because multiple
 225 * variables are involved, it can be racy which can lead to slightly
 226 * inaccurate information.  Since this is only a heuristic, this is
 227 * OK.  Any innaccuracies will clean themselves out as the counter
 228 * advances.  That said, it is unlikely the entry clean operation will
 229 * race - the next possible racer will not start until the next clean
 230 * period.
 231 *
 232 * The clean counter is implemented as a decrement to zero.  When zero
 233 * is reached an entry is cleaned.
 234 */
 235static void wss_advance_clean_counter(void)
 236{
 237        int entry;
 238        int weight;
 239        unsigned long bits;
 240
 241        /* become the cleaner if we decrement the counter to zero */
 242        if (atomic_dec_and_test(&wss.clean_counter)) {
 243                /*
 244                 * Set, not add, the clean period.  This avoids an issue
 245                 * where the counter could decrement below the clean period.
 246                 * Doing a set can result in lost decrements, slowing the
 247                 * clean advance.  Since this a heuristic, this possible
 248                 * slowdown is OK.
 249                 *
 250                 * An alternative is to loop, advancing the counter by a
 251                 * clean period until the result is > 0. However, this could
 252                 * lead to several threads keeping another in the clean loop.
 253                 * This could be mitigated by limiting the number of times
 254                 * we stay in the loop.
 255                 */
 256                atomic_set(&wss.clean_counter, wss_clean_period);
 257
 258                /*
 259                 * Uniquely grab the entry to clean and move to next.
 260                 * The current entry is always the lower bits of
 261                 * wss.clean_entry.  The table size, wss.num_entries,
 262                 * is always a power-of-2.
 263                 */
 264                entry = (atomic_inc_return(&wss.clean_entry) - 1)
 265                        & (wss.num_entries - 1);
 266
 267                /* clear the entry and count the bits */
 268                bits = xchg(&wss.entries[entry], 0);
 269                weight = hweight64((u64)bits);
 270                /* only adjust the contended total count if needed */
 271                if (weight)
 272                        atomic_sub(weight, &wss.total_count);
 273        }
 274}
 275
 276/*
 277 * Insert the given address into the working set array.
 278 */
 279static void wss_insert(void *address)
 280{
 281        u32 page = ((unsigned long)address >> PAGE_SHIFT) & wss.pages_mask;
 282        u32 entry = page / BITS_PER_LONG; /* assumes this ends up a shift */
 283        u32 nr = page & (BITS_PER_LONG - 1);
 284
 285        if (!test_and_set_bit(nr, &wss.entries[entry]))
 286                atomic_inc(&wss.total_count);
 287
 288        wss_advance_clean_counter();
 289}
 290
 291/*
 292 * Is the working set larger than the threshold?
 293 */
 294static inline int wss_exceeds_threshold(void)
 295{
 296        return atomic_read(&wss.total_count) >= wss.threshold;
 297}
 298
 299/*
 300 * Length of header by opcode, 0 --> not supported
 301 */
 302const u8 hdr_len_by_opcode[256] = {
 303        /* RC */
 304        [IB_OPCODE_RC_SEND_FIRST]                     = 12 + 8,
 305        [IB_OPCODE_RC_SEND_MIDDLE]                    = 12 + 8,
 306        [IB_OPCODE_RC_SEND_LAST]                      = 12 + 8,
 307        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 308        [IB_OPCODE_RC_SEND_ONLY]                      = 12 + 8,
 309        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 310        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 311        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 312        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = 12 + 8,
 313        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 314        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 315        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 316        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = 12 + 8 + 16,
 317        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = 12 + 8 + 4,
 318        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = 12 + 8,
 319        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = 12 + 8 + 4,
 320        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = 12 + 8 + 4,
 321        [IB_OPCODE_RC_ACKNOWLEDGE]                    = 12 + 8 + 4,
 322        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = 12 + 8 + 4 + 8,
 323        [IB_OPCODE_RC_COMPARE_SWAP]                   = 12 + 8 + 28,
 324        [IB_OPCODE_RC_FETCH_ADD]                      = 12 + 8 + 28,
 325        [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = 12 + 8 + 4,
 326        [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = 12 + 8 + 4,
 327        /* UC */
 328        [IB_OPCODE_UC_SEND_FIRST]                     = 12 + 8,
 329        [IB_OPCODE_UC_SEND_MIDDLE]                    = 12 + 8,
 330        [IB_OPCODE_UC_SEND_LAST]                      = 12 + 8,
 331        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = 12 + 8 + 4,
 332        [IB_OPCODE_UC_SEND_ONLY]                      = 12 + 8,
 333        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 4,
 334        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = 12 + 8 + 16,
 335        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = 12 + 8,
 336        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = 12 + 8,
 337        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = 12 + 8 + 4,
 338        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = 12 + 8 + 16,
 339        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = 12 + 8 + 20,
 340        /* UD */
 341        [IB_OPCODE_UD_SEND_ONLY]                      = 12 + 8 + 8,
 342        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = 12 + 8 + 12
 343};
 344
 345static const opcode_handler opcode_handler_tbl[256] = {
 346        /* RC */
 347        [IB_OPCODE_RC_SEND_FIRST]                     = &hfi1_rc_rcv,
 348        [IB_OPCODE_RC_SEND_MIDDLE]                    = &hfi1_rc_rcv,
 349        [IB_OPCODE_RC_SEND_LAST]                      = &hfi1_rc_rcv,
 350        [IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 351        [IB_OPCODE_RC_SEND_ONLY]                      = &hfi1_rc_rcv,
 352        [IB_OPCODE_RC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_rc_rcv,
 353        [IB_OPCODE_RC_RDMA_WRITE_FIRST]               = &hfi1_rc_rcv,
 354        [IB_OPCODE_RC_RDMA_WRITE_MIDDLE]              = &hfi1_rc_rcv,
 355        [IB_OPCODE_RC_RDMA_WRITE_LAST]                = &hfi1_rc_rcv,
 356        [IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 357        [IB_OPCODE_RC_RDMA_WRITE_ONLY]                = &hfi1_rc_rcv,
 358        [IB_OPCODE_RC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_rc_rcv,
 359        [IB_OPCODE_RC_RDMA_READ_REQUEST]              = &hfi1_rc_rcv,
 360        [IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST]       = &hfi1_rc_rcv,
 361        [IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE]      = &hfi1_rc_rcv,
 362        [IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST]        = &hfi1_rc_rcv,
 363        [IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY]        = &hfi1_rc_rcv,
 364        [IB_OPCODE_RC_ACKNOWLEDGE]                    = &hfi1_rc_rcv,
 365        [IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE]             = &hfi1_rc_rcv,
 366        [IB_OPCODE_RC_COMPARE_SWAP]                   = &hfi1_rc_rcv,
 367        [IB_OPCODE_RC_FETCH_ADD]                      = &hfi1_rc_rcv,
 368        [IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 369        [IB_OPCODE_RC_SEND_ONLY_WITH_INVALIDATE]      = &hfi1_rc_rcv,
 370        /* UC */
 371        [IB_OPCODE_UC_SEND_FIRST]                     = &hfi1_uc_rcv,
 372        [IB_OPCODE_UC_SEND_MIDDLE]                    = &hfi1_uc_rcv,
 373        [IB_OPCODE_UC_SEND_LAST]                      = &hfi1_uc_rcv,
 374        [IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 375        [IB_OPCODE_UC_SEND_ONLY]                      = &hfi1_uc_rcv,
 376        [IB_OPCODE_UC_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_uc_rcv,
 377        [IB_OPCODE_UC_RDMA_WRITE_FIRST]               = &hfi1_uc_rcv,
 378        [IB_OPCODE_UC_RDMA_WRITE_MIDDLE]              = &hfi1_uc_rcv,
 379        [IB_OPCODE_UC_RDMA_WRITE_LAST]                = &hfi1_uc_rcv,
 380        [IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 381        [IB_OPCODE_UC_RDMA_WRITE_ONLY]                = &hfi1_uc_rcv,
 382        [IB_OPCODE_UC_RDMA_WRITE_ONLY_WITH_IMMEDIATE] = &hfi1_uc_rcv,
 383        /* UD */
 384        [IB_OPCODE_UD_SEND_ONLY]                      = &hfi1_ud_rcv,
 385        [IB_OPCODE_UD_SEND_ONLY_WITH_IMMEDIATE]       = &hfi1_ud_rcv,
 386        /* CNP */
 387        [IB_OPCODE_CNP]                               = &hfi1_cnp_rcv
 388};
 389
 390#define OPMASK 0x1f
 391
 392static const u32 pio_opmask[BIT(3)] = {
 393        /* RC */
 394        [IB_OPCODE_RC >> 5] =
 395                BIT(RC_OP(SEND_ONLY) & OPMASK) |
 396                BIT(RC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 397                BIT(RC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 398                BIT(RC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK) |
 399                BIT(RC_OP(RDMA_READ_REQUEST) & OPMASK) |
 400                BIT(RC_OP(ACKNOWLEDGE) & OPMASK) |
 401                BIT(RC_OP(ATOMIC_ACKNOWLEDGE) & OPMASK) |
 402                BIT(RC_OP(COMPARE_SWAP) & OPMASK) |
 403                BIT(RC_OP(FETCH_ADD) & OPMASK),
 404        /* UC */
 405        [IB_OPCODE_UC >> 5] =
 406                BIT(UC_OP(SEND_ONLY) & OPMASK) |
 407                BIT(UC_OP(SEND_ONLY_WITH_IMMEDIATE) & OPMASK) |
 408                BIT(UC_OP(RDMA_WRITE_ONLY) & OPMASK) |
 409                BIT(UC_OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE) & OPMASK),
 410};
 411
 412/*
 413 * System image GUID.
 414 */
 415__be64 ib_hfi1_sys_image_guid;
 416
 417/**
 418 * hfi1_copy_sge - copy data to SGE memory
 419 * @ss: the SGE state
 420 * @data: the data to copy
 421 * @length: the length of the data
 422 * @copy_last: do a separate copy of the last 8 bytes
 423 */
 424void hfi1_copy_sge(
 425        struct rvt_sge_state *ss,
 426        void *data, u32 length,
 427        int release,
 428        int copy_last)
 429{
 430        struct rvt_sge *sge = &ss->sge;
 431        int in_last = 0;
 432        int i;
 433        int cacheless_copy = 0;
 434
 435        if (sge_copy_mode == COPY_CACHELESS) {
 436                cacheless_copy = length >= PAGE_SIZE;
 437        } else if (sge_copy_mode == COPY_ADAPTIVE) {
 438                if (length >= PAGE_SIZE) {
 439                        /*
 440                         * NOTE: this *assumes*:
 441                         * o The first vaddr is the dest.
 442                         * o If multiple pages, then vaddr is sequential.
 443                         */
 444                        wss_insert(sge->vaddr);
 445                        if (length >= (2 * PAGE_SIZE))
 446                                wss_insert(sge->vaddr + PAGE_SIZE);
 447
 448                        cacheless_copy = wss_exceeds_threshold();
 449                } else {
 450                        wss_advance_clean_counter();
 451                }
 452        }
 453        if (copy_last) {
 454                if (length > 8) {
 455                        length -= 8;
 456                } else {
 457                        copy_last = 0;
 458                        in_last = 1;
 459                }
 460        }
 461
 462again:
 463        while (length) {
 464                u32 len = sge->length;
 465
 466                if (len > length)
 467                        len = length;
 468                if (len > sge->sge_length)
 469                        len = sge->sge_length;
 470                WARN_ON_ONCE(len == 0);
 471                if (unlikely(in_last)) {
 472                        /* enforce byte transfer ordering */
 473                        for (i = 0; i < len; i++)
 474                                ((u8 *)sge->vaddr)[i] = ((u8 *)data)[i];
 475                } else if (cacheless_copy) {
 476                        cacheless_memcpy(sge->vaddr, data, len);
 477                } else {
 478                        memcpy(sge->vaddr, data, len);
 479                }
 480                sge->vaddr += len;
 481                sge->length -= len;
 482                sge->sge_length -= len;
 483                if (sge->sge_length == 0) {
 484                        if (release)
 485                                rvt_put_mr(sge->mr);
 486                        if (--ss->num_sge)
 487                                *sge = *ss->sg_list++;
 488                } else if (sge->length == 0 && sge->mr->lkey) {
 489                        if (++sge->n >= RVT_SEGSZ) {
 490                                if (++sge->m >= sge->mr->mapsz)
 491                                        break;
 492                                sge->n = 0;
 493                        }
 494                        sge->vaddr =
 495                                sge->mr->map[sge->m]->segs[sge->n].vaddr;
 496                        sge->length =
 497                                sge->mr->map[sge->m]->segs[sge->n].length;
 498                }
 499                data += len;
 500                length -= len;
 501        }
 502
 503        if (copy_last) {
 504                copy_last = 0;
 505                in_last = 1;
 506                length = 8;
 507                goto again;
 508        }
 509}
 510
 511/**
 512 * hfi1_skip_sge - skip over SGE memory
 513 * @ss: the SGE state
 514 * @length: the number of bytes to skip
 515 */
 516void hfi1_skip_sge(struct rvt_sge_state *ss, u32 length, int release)
 517{
 518        struct rvt_sge *sge = &ss->sge;
 519
 520        while (length) {
 521                u32 len = sge->length;
 522
 523                if (len > length)
 524                        len = length;
 525                if (len > sge->sge_length)
 526                        len = sge->sge_length;
 527                WARN_ON_ONCE(len == 0);
 528                sge->vaddr += len;
 529                sge->length -= len;
 530                sge->sge_length -= len;
 531                if (sge->sge_length == 0) {
 532                        if (release)
 533                                rvt_put_mr(sge->mr);
 534                        if (--ss->num_sge)
 535                                *sge = *ss->sg_list++;
 536                } else if (sge->length == 0 && sge->mr->lkey) {
 537                        if (++sge->n >= RVT_SEGSZ) {
 538                                if (++sge->m >= sge->mr->mapsz)
 539                                        break;
 540                                sge->n = 0;
 541                        }
 542                        sge->vaddr =
 543                                sge->mr->map[sge->m]->segs[sge->n].vaddr;
 544                        sge->length =
 545                                sge->mr->map[sge->m]->segs[sge->n].length;
 546                }
 547                length -= len;
 548        }
 549}
 550
 551/*
 552 * Make sure the QP is ready and able to accept the given opcode.
 553 */
 554static inline opcode_handler qp_ok(int opcode, struct hfi1_packet *packet)
 555{
 556        if (!(ib_rvt_state_ops[packet->qp->state] & RVT_PROCESS_RECV_OK))
 557                return NULL;
 558        if (((opcode & RVT_OPCODE_QP_MASK) == packet->qp->allowed_ops) ||
 559            (opcode == IB_OPCODE_CNP))
 560                return opcode_handler_tbl[opcode];
 561
 562        return NULL;
 563}
 564
 565/**
 566 * hfi1_ib_rcv - process an incoming packet
 567 * @packet: data packet information
 568 *
 569 * This is called to process an incoming packet at interrupt level.
 570 *
 571 * Tlen is the length of the header + data + CRC in bytes.
 572 */
 573void hfi1_ib_rcv(struct hfi1_packet *packet)
 574{
 575        struct hfi1_ctxtdata *rcd = packet->rcd;
 576        struct ib_header *hdr = packet->hdr;
 577        u32 tlen = packet->tlen;
 578        struct hfi1_pportdata *ppd = rcd->ppd;
 579        struct hfi1_ibport *ibp = &ppd->ibport_data;
 580        struct rvt_dev_info *rdi = &ppd->dd->verbs_dev.rdi;
 581        opcode_handler packet_handler;
 582        unsigned long flags;
 583        u32 qp_num;
 584        int lnh;
 585        u8 opcode;
 586        u16 lid;
 587
 588        /* Check for GRH */
 589        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
 590        if (lnh == HFI1_LRH_BTH) {
 591                packet->ohdr = &hdr->u.oth;
 592        } else if (lnh == HFI1_LRH_GRH) {
 593                u32 vtf;
 594
 595                packet->ohdr = &hdr->u.l.oth;
 596                if (hdr->u.l.grh.next_hdr != IB_GRH_NEXT_HDR)
 597                        goto drop;
 598                vtf = be32_to_cpu(hdr->u.l.grh.version_tclass_flow);
 599                if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
 600                        goto drop;
 601                packet->rcv_flags |= HFI1_HAS_GRH;
 602        } else {
 603                goto drop;
 604        }
 605
 606        trace_input_ibhdr(rcd->dd, hdr);
 607
 608        opcode = (be32_to_cpu(packet->ohdr->bth[0]) >> 24);
 609        inc_opstats(tlen, &rcd->opstats->stats[opcode]);
 610
 611        /* Get the destination QP number. */
 612        qp_num = be32_to_cpu(packet->ohdr->bth[1]) & RVT_QPN_MASK;
 613        lid = be16_to_cpu(hdr->lrh[1]);
 614        if (unlikely((lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
 615                     (lid != be16_to_cpu(IB_LID_PERMISSIVE)))) {
 616                struct rvt_mcast *mcast;
 617                struct rvt_mcast_qp *p;
 618
 619                if (lnh != HFI1_LRH_GRH)
 620                        goto drop;
 621                mcast = rvt_mcast_find(&ibp->rvp, &hdr->u.l.grh.dgid);
 622                if (!mcast)
 623                        goto drop;
 624                list_for_each_entry_rcu(p, &mcast->qp_list, list) {
 625                        packet->qp = p->qp;
 626                        spin_lock_irqsave(&packet->qp->r_lock, flags);
 627                        packet_handler = qp_ok(opcode, packet);
 628                        if (likely(packet_handler))
 629                                packet_handler(packet);
 630                        else
 631                                ibp->rvp.n_pkt_drops++;
 632                        spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 633                }
 634                /*
 635                 * Notify rvt_multicast_detach() if it is waiting for us
 636                 * to finish.
 637                 */
 638                if (atomic_dec_return(&mcast->refcount) <= 1)
 639                        wake_up(&mcast->wait);
 640        } else {
 641                rcu_read_lock();
 642                packet->qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
 643                if (!packet->qp) {
 644                        rcu_read_unlock();
 645                        goto drop;
 646                }
 647                spin_lock_irqsave(&packet->qp->r_lock, flags);
 648                packet_handler = qp_ok(opcode, packet);
 649                if (likely(packet_handler))
 650                        packet_handler(packet);
 651                else
 652                        ibp->rvp.n_pkt_drops++;
 653                spin_unlock_irqrestore(&packet->qp->r_lock, flags);
 654                rcu_read_unlock();
 655        }
 656        return;
 657
 658drop:
 659        ibp->rvp.n_pkt_drops++;
 660}
 661
 662/*
 663 * This is called from a timer to check for QPs
 664 * which need kernel memory in order to send a packet.
 665 */
 666static void mem_timer(unsigned long data)
 667{
 668        struct hfi1_ibdev *dev = (struct hfi1_ibdev *)data;
 669        struct list_head *list = &dev->memwait;
 670        struct rvt_qp *qp = NULL;
 671        struct iowait *wait;
 672        unsigned long flags;
 673        struct hfi1_qp_priv *priv;
 674
 675        write_seqlock_irqsave(&dev->iowait_lock, flags);
 676        if (!list_empty(list)) {
 677                wait = list_first_entry(list, struct iowait, list);
 678                qp = iowait_to_qp(wait);
 679                priv = qp->priv;
 680                list_del_init(&priv->s_iowait.list);
 681                priv->s_iowait.lock = NULL;
 682                /* refcount held until actual wake up */
 683                if (!list_empty(list))
 684                        mod_timer(&dev->mem_timer, jiffies + 1);
 685        }
 686        write_sequnlock_irqrestore(&dev->iowait_lock, flags);
 687
 688        if (qp)
 689                hfi1_qp_wakeup(qp, RVT_S_WAIT_KMEM);
 690}
 691
 692void update_sge(struct rvt_sge_state *ss, u32 length)
 693{
 694        struct rvt_sge *sge = &ss->sge;
 695
 696        sge->vaddr += length;
 697        sge->length -= length;
 698        sge->sge_length -= length;
 699        if (sge->sge_length == 0) {
 700                if (--ss->num_sge)
 701                        *sge = *ss->sg_list++;
 702        } else if (sge->length == 0 && sge->mr->lkey) {
 703                if (++sge->n >= RVT_SEGSZ) {
 704                        if (++sge->m >= sge->mr->mapsz)
 705                                return;
 706                        sge->n = 0;
 707                }
 708                sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
 709                sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
 710        }
 711}
 712
 713/*
 714 * This is called with progress side lock held.
 715 */
 716/* New API */
 717static void verbs_sdma_complete(
 718        struct sdma_txreq *cookie,
 719        int status)
 720{
 721        struct verbs_txreq *tx =
 722                container_of(cookie, struct verbs_txreq, txreq);
 723        struct rvt_qp *qp = tx->qp;
 724
 725        spin_lock(&qp->s_lock);
 726        if (tx->wqe) {
 727                hfi1_send_complete(qp, tx->wqe, IB_WC_SUCCESS);
 728        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
 729                struct ib_header *hdr;
 730
 731                hdr = &tx->phdr.hdr;
 732                hfi1_rc_send_complete(qp, hdr);
 733        }
 734        spin_unlock(&qp->s_lock);
 735
 736        hfi1_put_txreq(tx);
 737}
 738
 739static int wait_kmem(struct hfi1_ibdev *dev,
 740                     struct rvt_qp *qp,
 741                     struct hfi1_pkt_state *ps)
 742{
 743        struct hfi1_qp_priv *priv = qp->priv;
 744        unsigned long flags;
 745        int ret = 0;
 746
 747        spin_lock_irqsave(&qp->s_lock, flags);
 748        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 749                write_seqlock(&dev->iowait_lock);
 750                list_add_tail(&ps->s_txreq->txreq.list,
 751                              &priv->s_iowait.tx_head);
 752                if (list_empty(&priv->s_iowait.list)) {
 753                        if (list_empty(&dev->memwait))
 754                                mod_timer(&dev->mem_timer, jiffies + 1);
 755                        qp->s_flags |= RVT_S_WAIT_KMEM;
 756                        list_add_tail(&priv->s_iowait.list, &dev->memwait);
 757                        priv->s_iowait.lock = &dev->iowait_lock;
 758                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_KMEM);
 759                        rvt_get_qp(qp);
 760                }
 761                write_sequnlock(&dev->iowait_lock);
 762                qp->s_flags &= ~RVT_S_BUSY;
 763                ret = -EBUSY;
 764        }
 765        spin_unlock_irqrestore(&qp->s_lock, flags);
 766
 767        return ret;
 768}
 769
 770/*
 771 * This routine calls txadds for each sg entry.
 772 *
 773 * Add failures will revert the sge cursor
 774 */
 775static noinline int build_verbs_ulp_payload(
 776        struct sdma_engine *sde,
 777        u32 length,
 778        struct verbs_txreq *tx)
 779{
 780        struct rvt_sge_state *ss = tx->ss;
 781        struct rvt_sge *sg_list = ss->sg_list;
 782        struct rvt_sge sge = ss->sge;
 783        u8 num_sge = ss->num_sge;
 784        u32 len;
 785        int ret = 0;
 786
 787        while (length) {
 788                len = ss->sge.length;
 789                if (len > length)
 790                        len = length;
 791                if (len > ss->sge.sge_length)
 792                        len = ss->sge.sge_length;
 793                WARN_ON_ONCE(len == 0);
 794                ret = sdma_txadd_kvaddr(
 795                        sde->dd,
 796                        &tx->txreq,
 797                        ss->sge.vaddr,
 798                        len);
 799                if (ret)
 800                        goto bail_txadd;
 801                update_sge(ss, len);
 802                length -= len;
 803        }
 804        return ret;
 805bail_txadd:
 806        /* unwind cursor */
 807        ss->sge = sge;
 808        ss->num_sge = num_sge;
 809        ss->sg_list = sg_list;
 810        return ret;
 811}
 812
 813/*
 814 * Build the number of DMA descriptors needed to send length bytes of data.
 815 *
 816 * NOTE: DMA mapping is held in the tx until completed in the ring or
 817 *       the tx desc is freed without having been submitted to the ring
 818 *
 819 * This routine ensures all the helper routine calls succeed.
 820 */
 821/* New API */
 822static int build_verbs_tx_desc(
 823        struct sdma_engine *sde,
 824        u32 length,
 825        struct verbs_txreq *tx,
 826        struct hfi1_ahg_info *ahg_info,
 827        u64 pbc)
 828{
 829        int ret = 0;
 830        struct hfi1_sdma_header *phdr = &tx->phdr;
 831        u16 hdrbytes = tx->hdr_dwords << 2;
 832
 833        if (!ahg_info->ahgcount) {
 834                ret = sdma_txinit_ahg(
 835                        &tx->txreq,
 836                        ahg_info->tx_flags,
 837                        hdrbytes + length,
 838                        ahg_info->ahgidx,
 839                        0,
 840                        NULL,
 841                        0,
 842                        verbs_sdma_complete);
 843                if (ret)
 844                        goto bail_txadd;
 845                phdr->pbc = cpu_to_le64(pbc);
 846                ret = sdma_txadd_kvaddr(
 847                        sde->dd,
 848                        &tx->txreq,
 849                        phdr,
 850                        hdrbytes);
 851                if (ret)
 852                        goto bail_txadd;
 853        } else {
 854                ret = sdma_txinit_ahg(
 855                        &tx->txreq,
 856                        ahg_info->tx_flags,
 857                        length,
 858                        ahg_info->ahgidx,
 859                        ahg_info->ahgcount,
 860                        ahg_info->ahgdesc,
 861                        hdrbytes,
 862                        verbs_sdma_complete);
 863                if (ret)
 864                        goto bail_txadd;
 865        }
 866
 867        /* add the ulp payload - if any. tx->ss can be NULL for acks */
 868        if (tx->ss)
 869                ret = build_verbs_ulp_payload(sde, length, tx);
 870bail_txadd:
 871        return ret;
 872}
 873
 874int hfi1_verbs_send_dma(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 875                        u64 pbc)
 876{
 877        struct hfi1_qp_priv *priv = qp->priv;
 878        struct hfi1_ahg_info *ahg_info = priv->s_ahg;
 879        u32 hdrwords = qp->s_hdrwords;
 880        u32 len = ps->s_txreq->s_cur_size;
 881        u32 plen = hdrwords + ((len + 3) >> 2) + 2; /* includes pbc */
 882        struct hfi1_ibdev *dev = ps->dev;
 883        struct hfi1_pportdata *ppd = ps->ppd;
 884        struct verbs_txreq *tx;
 885        u64 pbc_flags = 0;
 886        u8 sc5 = priv->s_sc;
 887
 888        int ret;
 889
 890        tx = ps->s_txreq;
 891        if (!sdma_txreq_built(&tx->txreq)) {
 892                if (likely(pbc == 0)) {
 893                        u32 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
 894                        /* No vl15 here */
 895                        /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
 896                        pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
 897
 898                        pbc = create_pbc(ppd,
 899                                         pbc_flags,
 900                                         qp->srate_mbps,
 901                                         vl,
 902                                         plen);
 903                }
 904                tx->wqe = qp->s_wqe;
 905                ret = build_verbs_tx_desc(tx->sde, len, tx, ahg_info, pbc);
 906                if (unlikely(ret))
 907                        goto bail_build;
 908        }
 909        ret =  sdma_send_txreq(tx->sde, &priv->s_iowait, &tx->txreq);
 910        if (unlikely(ret < 0)) {
 911                if (ret == -ECOMM)
 912                        goto bail_ecomm;
 913                return ret;
 914        }
 915        trace_sdma_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
 916                                &ps->s_txreq->phdr.hdr);
 917        return ret;
 918
 919bail_ecomm:
 920        /* The current one got "sent" */
 921        return 0;
 922bail_build:
 923        ret = wait_kmem(dev, qp, ps);
 924        if (!ret) {
 925                /* free txreq - bad state */
 926                hfi1_put_txreq(ps->s_txreq);
 927                ps->s_txreq = NULL;
 928        }
 929        return ret;
 930}
 931
 932/*
 933 * If we are now in the error state, return zero to flush the
 934 * send work request.
 935 */
 936static int pio_wait(struct rvt_qp *qp,
 937                    struct send_context *sc,
 938                    struct hfi1_pkt_state *ps,
 939                    u32 flag)
 940{
 941        struct hfi1_qp_priv *priv = qp->priv;
 942        struct hfi1_devdata *dd = sc->dd;
 943        struct hfi1_ibdev *dev = &dd->verbs_dev;
 944        unsigned long flags;
 945        int ret = 0;
 946
 947        /*
 948         * Note that as soon as want_buffer() is called and
 949         * possibly before it returns, sc_piobufavail()
 950         * could be called. Therefore, put QP on the I/O wait list before
 951         * enabling the PIO avail interrupt.
 952         */
 953        spin_lock_irqsave(&qp->s_lock, flags);
 954        if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
 955                write_seqlock(&dev->iowait_lock);
 956                list_add_tail(&ps->s_txreq->txreq.list,
 957                              &priv->s_iowait.tx_head);
 958                if (list_empty(&priv->s_iowait.list)) {
 959                        struct hfi1_ibdev *dev = &dd->verbs_dev;
 960                        int was_empty;
 961
 962                        dev->n_piowait += !!(flag & RVT_S_WAIT_PIO);
 963                        dev->n_piodrain += !!(flag & RVT_S_WAIT_PIO_DRAIN);
 964                        qp->s_flags |= flag;
 965                        was_empty = list_empty(&sc->piowait);
 966                        list_add_tail(&priv->s_iowait.list, &sc->piowait);
 967                        priv->s_iowait.lock = &dev->iowait_lock;
 968                        trace_hfi1_qpsleep(qp, RVT_S_WAIT_PIO);
 969                        rvt_get_qp(qp);
 970                        /* counting: only call wantpiobuf_intr if first user */
 971                        if (was_empty)
 972                                hfi1_sc_wantpiobuf_intr(sc, 1);
 973                }
 974                write_sequnlock(&dev->iowait_lock);
 975                qp->s_flags &= ~RVT_S_BUSY;
 976                ret = -EBUSY;
 977        }
 978        spin_unlock_irqrestore(&qp->s_lock, flags);
 979        return ret;
 980}
 981
 982static void verbs_pio_complete(void *arg, int code)
 983{
 984        struct rvt_qp *qp = (struct rvt_qp *)arg;
 985        struct hfi1_qp_priv *priv = qp->priv;
 986
 987        if (iowait_pio_dec(&priv->s_iowait))
 988                iowait_drain_wakeup(&priv->s_iowait);
 989}
 990
 991int hfi1_verbs_send_pio(struct rvt_qp *qp, struct hfi1_pkt_state *ps,
 992                        u64 pbc)
 993{
 994        struct hfi1_qp_priv *priv = qp->priv;
 995        u32 hdrwords = qp->s_hdrwords;
 996        struct rvt_sge_state *ss = ps->s_txreq->ss;
 997        u32 len = ps->s_txreq->s_cur_size;
 998        u32 dwords = (len + 3) >> 2;
 999        u32 plen = hdrwords + dwords + 2; /* includes pbc */
1000        struct hfi1_pportdata *ppd = ps->ppd;
1001        u32 *hdr = (u32 *)&ps->s_txreq->phdr.hdr;
1002        u64 pbc_flags = 0;
1003        u8 sc5;
1004        unsigned long flags = 0;
1005        struct send_context *sc;
1006        struct pio_buf *pbuf;
1007        int wc_status = IB_WC_SUCCESS;
1008        int ret = 0;
1009        pio_release_cb cb = NULL;
1010
1011        /* only RC/UC use complete */
1012        switch (qp->ibqp.qp_type) {
1013        case IB_QPT_RC:
1014        case IB_QPT_UC:
1015                cb = verbs_pio_complete;
1016                break;
1017        default:
1018                break;
1019        }
1020
1021        /* vl15 special case taken care of in ud.c */
1022        sc5 = priv->s_sc;
1023        sc = ps->s_txreq->psc;
1024
1025        if (likely(pbc == 0)) {
1026                u8 vl = sc_to_vlt(dd_from_ibdev(qp->ibqp.device), sc5);
1027                /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */
1028                pbc_flags |= (!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT;
1029                pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, vl, plen);
1030        }
1031        if (cb)
1032                iowait_pio_inc(&priv->s_iowait);
1033        pbuf = sc_buffer_alloc(sc, plen, cb, qp);
1034        if (unlikely(!pbuf)) {
1035                if (cb)
1036                        verbs_pio_complete(qp, 0);
1037                if (ppd->host_link_state != HLS_UP_ACTIVE) {
1038                        /*
1039                         * If we have filled the PIO buffers to capacity and are
1040                         * not in an active state this request is not going to
1041                         * go out to so just complete it with an error or else a
1042                         * ULP or the core may be stuck waiting.
1043                         */
1044                        hfi1_cdbg(
1045                                PIO,
1046                                "alloc failed. state not active, completing");
1047                        wc_status = IB_WC_GENERAL_ERR;
1048                        goto pio_bail;
1049                } else {
1050                        /*
1051                         * This is a normal occurrence. The PIO buffs are full
1052                         * up but we are still happily sending, well we could be
1053                         * so lets continue to queue the request.
1054                         */
1055                        hfi1_cdbg(PIO, "alloc failed. state active, queuing");
1056                        ret = pio_wait(qp, sc, ps, RVT_S_WAIT_PIO);
1057                        if (!ret)
1058                                /* txreq not queued - free */
1059                                goto bail;
1060                        /* tx consumed in wait */
1061                        return ret;
1062                }
1063        }
1064
1065        if (len == 0) {
1066                pio_copy(ppd->dd, pbuf, pbc, hdr, hdrwords);
1067        } else {
1068                if (ss) {
1069                        seg_pio_copy_start(pbuf, pbc, hdr, hdrwords * 4);
1070                        while (len) {
1071                                void *addr = ss->sge.vaddr;
1072                                u32 slen = ss->sge.length;
1073
1074                                if (slen > len)
1075                                        slen = len;
1076                                update_sge(ss, slen);
1077                                seg_pio_copy_mid(pbuf, addr, slen);
1078                                len -= slen;
1079                        }
1080                        seg_pio_copy_end(pbuf);
1081                }
1082        }
1083
1084        trace_pio_output_ibhdr(dd_from_ibdev(qp->ibqp.device),
1085                               &ps->s_txreq->phdr.hdr);
1086
1087pio_bail:
1088        if (qp->s_wqe) {
1089                spin_lock_irqsave(&qp->s_lock, flags);
1090                hfi1_send_complete(qp, qp->s_wqe, wc_status);
1091                spin_unlock_irqrestore(&qp->s_lock, flags);
1092        } else if (qp->ibqp.qp_type == IB_QPT_RC) {
1093                spin_lock_irqsave(&qp->s_lock, flags);
1094                hfi1_rc_send_complete(qp, &ps->s_txreq->phdr.hdr);
1095                spin_unlock_irqrestore(&qp->s_lock, flags);
1096        }
1097
1098        ret = 0;
1099
1100bail:
1101        hfi1_put_txreq(ps->s_txreq);
1102        return ret;
1103}
1104
1105/*
1106 * egress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1107 * being an entry from the partition key table), return 0
1108 * otherwise. Use the matching criteria for egress partition keys
1109 * specified in the OPAv1 spec., section 9.1l.7.
1110 */
1111static inline int egress_pkey_matches_entry(u16 pkey, u16 ent)
1112{
1113        u16 mkey = pkey & PKEY_LOW_15_MASK;
1114        u16 mentry = ent & PKEY_LOW_15_MASK;
1115
1116        if (mkey == mentry) {
1117                /*
1118                 * If pkey[15] is set (full partition member),
1119                 * is bit 15 in the corresponding table element
1120                 * clear (limited member)?
1121                 */
1122                if (pkey & PKEY_MEMBER_MASK)
1123                        return !!(ent & PKEY_MEMBER_MASK);
1124                return 1;
1125        }
1126        return 0;
1127}
1128
1129/**
1130 * egress_pkey_check - check P_KEY of a packet
1131 * @ppd:    Physical IB port data
1132 * @lrh: Local route header
1133 * @bth: Base transport header
1134 * @sc5:    SC for packet
1135 * @s_pkey_index: It will be used for look up optimization for kernel contexts
1136 * only. If it is negative value, then it means user contexts is calling this
1137 * function.
1138 *
1139 * It checks if hdr's pkey is valid.
1140 *
1141 * Return: 0 on success, otherwise, 1
1142 */
1143int egress_pkey_check(struct hfi1_pportdata *ppd, __be16 *lrh, __be32 *bth,
1144                      u8 sc5, int8_t s_pkey_index)
1145{
1146        struct hfi1_devdata *dd;
1147        int i;
1148        u16 pkey;
1149        int is_user_ctxt_mechanism = (s_pkey_index < 0);
1150
1151        if (!(ppd->part_enforce & HFI1_PART_ENFORCE_OUT))
1152                return 0;
1153
1154        pkey = (u16)be32_to_cpu(bth[0]);
1155
1156        /* If SC15, pkey[0:14] must be 0x7fff */
1157        if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1158                goto bad;
1159
1160        /* Is the pkey = 0x0, or 0x8000? */
1161        if ((pkey & PKEY_LOW_15_MASK) == 0)
1162                goto bad;
1163
1164        /*
1165         * For the kernel contexts only, if a qp is passed into the function,
1166         * the most likely matching pkey has index qp->s_pkey_index
1167         */
1168        if (!is_user_ctxt_mechanism &&
1169            egress_pkey_matches_entry(pkey, ppd->pkeys[s_pkey_index])) {
1170                return 0;
1171        }
1172
1173        for (i = 0; i < MAX_PKEY_VALUES; i++) {
1174                if (egress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1175                        return 0;
1176        }
1177bad:
1178        /*
1179         * For the user-context mechanism, the P_KEY check would only happen
1180         * once per SDMA request, not once per packet.  Therefore, there's no
1181         * need to increment the counter for the user-context mechanism.
1182         */
1183        if (!is_user_ctxt_mechanism) {
1184                incr_cntr64(&ppd->port_xmit_constraint_errors);
1185                dd = ppd->dd;
1186                if (!(dd->err_info_xmit_constraint.status &
1187                      OPA_EI_STATUS_SMASK)) {
1188                        u16 slid = be16_to_cpu(lrh[3]);
1189
1190                        dd->err_info_xmit_constraint.status |=
1191                                OPA_EI_STATUS_SMASK;
1192                        dd->err_info_xmit_constraint.slid = slid;
1193                        dd->err_info_xmit_constraint.pkey = pkey;
1194                }
1195        }
1196        return 1;
1197}
1198
1199/**
1200 * get_send_routine - choose an egress routine
1201 *
1202 * Choose an egress routine based on QP type
1203 * and size
1204 */
1205static inline send_routine get_send_routine(struct rvt_qp *qp,
1206                                            struct verbs_txreq *tx)
1207{
1208        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1209        struct hfi1_qp_priv *priv = qp->priv;
1210        struct ib_header *h = &tx->phdr.hdr;
1211
1212        if (unlikely(!(dd->flags & HFI1_HAS_SEND_DMA)))
1213                return dd->process_pio_send;
1214        switch (qp->ibqp.qp_type) {
1215        case IB_QPT_SMI:
1216                return dd->process_pio_send;
1217        case IB_QPT_GSI:
1218        case IB_QPT_UD:
1219                break;
1220        case IB_QPT_UC:
1221        case IB_QPT_RC: {
1222                u8 op = get_opcode(h);
1223
1224                if (piothreshold &&
1225                    tx->s_cur_size <= min(piothreshold, qp->pmtu) &&
1226                    (BIT(op & OPMASK) & pio_opmask[op >> 5]) &&
1227                    iowait_sdma_pending(&priv->s_iowait) == 0 &&
1228                    !sdma_txreq_built(&tx->txreq))
1229                        return dd->process_pio_send;
1230                break;
1231        }
1232        default:
1233                break;
1234        }
1235        return dd->process_dma_send;
1236}
1237
1238/**
1239 * hfi1_verbs_send - send a packet
1240 * @qp: the QP to send on
1241 * @ps: the state of the packet to send
1242 *
1243 * Return zero if packet is sent or queued OK.
1244 * Return non-zero and clear qp->s_flags RVT_S_BUSY otherwise.
1245 */
1246int hfi1_verbs_send(struct rvt_qp *qp, struct hfi1_pkt_state *ps)
1247{
1248        struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
1249        struct hfi1_qp_priv *priv = qp->priv;
1250        struct ib_other_headers *ohdr;
1251        struct ib_header *hdr;
1252        send_routine sr;
1253        int ret;
1254        u8 lnh;
1255
1256        hdr = &ps->s_txreq->phdr.hdr;
1257        /* locate the pkey within the headers */
1258        lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1259        if (lnh == HFI1_LRH_GRH)
1260                ohdr = &hdr->u.l.oth;
1261        else
1262                ohdr = &hdr->u.oth;
1263
1264        sr = get_send_routine(qp, ps->s_txreq);
1265        ret = egress_pkey_check(dd->pport,
1266                                hdr->lrh,
1267                                ohdr->bth,
1268                                priv->s_sc,
1269                                qp->s_pkey_index);
1270        if (unlikely(ret)) {
1271                /*
1272                 * The value we are returning here does not get propagated to
1273                 * the verbs caller. Thus we need to complete the request with
1274                 * error otherwise the caller could be sitting waiting on the
1275                 * completion event. Only do this for PIO. SDMA has its own
1276                 * mechanism for handling the errors. So for SDMA we can just
1277                 * return.
1278                 */
1279                if (sr == dd->process_pio_send) {
1280                        unsigned long flags;
1281
1282                        hfi1_cdbg(PIO, "%s() Failed. Completing with err",
1283                                  __func__);
1284                        spin_lock_irqsave(&qp->s_lock, flags);
1285                        hfi1_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
1286                        spin_unlock_irqrestore(&qp->s_lock, flags);
1287                }
1288                return -EINVAL;
1289        }
1290        if (sr == dd->process_dma_send && iowait_pio_pending(&priv->s_iowait))
1291                return pio_wait(qp,
1292                                ps->s_txreq->psc,
1293                                ps,
1294                                RVT_S_WAIT_PIO_DRAIN);
1295        return sr(qp, ps, 0);
1296}
1297
1298/**
1299 * hfi1_fill_device_attr - Fill in rvt dev info device attributes.
1300 * @dd: the device data structure
1301 */
1302static void hfi1_fill_device_attr(struct hfi1_devdata *dd)
1303{
1304        struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
1305        u16 ver = dd->dc8051_ver;
1306
1307        memset(&rdi->dparms.props, 0, sizeof(rdi->dparms.props));
1308
1309        rdi->dparms.props.fw_ver = ((u64)(dc8051_ver_maj(ver)) << 16) |
1310                                    (u64)dc8051_ver_min(ver);
1311        rdi->dparms.props.device_cap_flags = IB_DEVICE_BAD_PKEY_CNTR |
1312                        IB_DEVICE_BAD_QKEY_CNTR | IB_DEVICE_SHUTDOWN_PORT |
1313                        IB_DEVICE_SYS_IMAGE_GUID | IB_DEVICE_RC_RNR_NAK_GEN |
1314                        IB_DEVICE_PORT_ACTIVE_EVENT | IB_DEVICE_SRQ_RESIZE |
1315                        IB_DEVICE_MEM_MGT_EXTENSIONS;
1316        rdi->dparms.props.page_size_cap = PAGE_SIZE;
1317        rdi->dparms.props.vendor_id = dd->oui1 << 16 | dd->oui2 << 8 | dd->oui3;
1318        rdi->dparms.props.vendor_part_id = dd->pcidev->device;
1319        rdi->dparms.props.hw_ver = dd->minrev;
1320        rdi->dparms.props.sys_image_guid = ib_hfi1_sys_image_guid;
1321        rdi->dparms.props.max_mr_size = U64_MAX;
1322        rdi->dparms.props.max_fast_reg_page_list_len = UINT_MAX;
1323        rdi->dparms.props.max_qp = hfi1_max_qps;
1324        rdi->dparms.props.max_qp_wr = hfi1_max_qp_wrs;
1325        rdi->dparms.props.max_sge = hfi1_max_sges;
1326        rdi->dparms.props.max_sge_rd = hfi1_max_sges;
1327        rdi->dparms.props.max_cq = hfi1_max_cqs;
1328        rdi->dparms.props.max_ah = hfi1_max_ahs;
1329        rdi->dparms.props.max_cqe = hfi1_max_cqes;
1330        rdi->dparms.props.max_mr = rdi->lkey_table.max;
1331        rdi->dparms.props.max_fmr = rdi->lkey_table.max;
1332        rdi->dparms.props.max_map_per_fmr = 32767;
1333        rdi->dparms.props.max_pd = hfi1_max_pds;
1334        rdi->dparms.props.max_qp_rd_atom = HFI1_MAX_RDMA_ATOMIC;
1335        rdi->dparms.props.max_qp_init_rd_atom = 255;
1336        rdi->dparms.props.max_srq = hfi1_max_srqs;
1337        rdi->dparms.props.max_srq_wr = hfi1_max_srq_wrs;
1338        rdi->dparms.props.max_srq_sge = hfi1_max_srq_sges;
1339        rdi->dparms.props.atomic_cap = IB_ATOMIC_GLOB;
1340        rdi->dparms.props.max_pkeys = hfi1_get_npkeys(dd);
1341        rdi->dparms.props.max_mcast_grp = hfi1_max_mcast_grps;
1342        rdi->dparms.props.max_mcast_qp_attach = hfi1_max_mcast_qp_attached;
1343        rdi->dparms.props.max_total_mcast_qp_attach =
1344                                        rdi->dparms.props.max_mcast_qp_attach *
1345                                        rdi->dparms.props.max_mcast_grp;
1346}
1347
1348static inline u16 opa_speed_to_ib(u16 in)
1349{
1350        u16 out = 0;
1351
1352        if (in & OPA_LINK_SPEED_25G)
1353                out |= IB_SPEED_EDR;
1354        if (in & OPA_LINK_SPEED_12_5G)
1355                out |= IB_SPEED_FDR;
1356
1357        return out;
1358}
1359
1360/*
1361 * Convert a single OPA link width (no multiple flags) to an IB value.
1362 * A zero OPA link width means link down, which means the IB width value
1363 * is a don't care.
1364 */
1365static inline u16 opa_width_to_ib(u16 in)
1366{
1367        switch (in) {
1368        case OPA_LINK_WIDTH_1X:
1369        /* map 2x and 3x to 1x as they don't exist in IB */
1370        case OPA_LINK_WIDTH_2X:
1371        case OPA_LINK_WIDTH_3X:
1372                return IB_WIDTH_1X;
1373        default: /* link down or unknown, return our largest width */
1374        case OPA_LINK_WIDTH_4X:
1375                return IB_WIDTH_4X;
1376        }
1377}
1378
1379static int query_port(struct rvt_dev_info *rdi, u8 port_num,
1380                      struct ib_port_attr *props)
1381{
1382        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1383        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1384        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1385        u16 lid = ppd->lid;
1386
1387        props->lid = lid ? lid : 0;
1388        props->lmc = ppd->lmc;
1389        /* OPA logical states match IB logical states */
1390        props->state = driver_lstate(ppd);
1391        props->phys_state = hfi1_ibphys_portstate(ppd);
1392        props->gid_tbl_len = HFI1_GUIDS_PER_PORT;
1393        props->active_width = (u8)opa_width_to_ib(ppd->link_width_active);
1394        /* see rate_show() in ib core/sysfs.c */
1395        props->active_speed = (u8)opa_speed_to_ib(ppd->link_speed_active);
1396        props->max_vl_num = ppd->vls_supported;
1397
1398        /* Once we are a "first class" citizen and have added the OPA MTUs to
1399         * the core we can advertise the larger MTU enum to the ULPs, for now
1400         * advertise only 4K.
1401         *
1402         * Those applications which are either OPA aware or pass the MTU enum
1403         * from the Path Records to us will get the new 8k MTU.  Those that
1404         * attempt to process the MTU enum may fail in various ways.
1405         */
1406        props->max_mtu = mtu_to_enum((!valid_ib_mtu(hfi1_max_mtu) ?
1407                                      4096 : hfi1_max_mtu), IB_MTU_4096);
1408        props->active_mtu = !valid_ib_mtu(ppd->ibmtu) ? props->max_mtu :
1409                mtu_to_enum(ppd->ibmtu, IB_MTU_2048);
1410
1411        return 0;
1412}
1413
1414static int modify_device(struct ib_device *device,
1415                         int device_modify_mask,
1416                         struct ib_device_modify *device_modify)
1417{
1418        struct hfi1_devdata *dd = dd_from_ibdev(device);
1419        unsigned i;
1420        int ret;
1421
1422        if (device_modify_mask & ~(IB_DEVICE_MODIFY_SYS_IMAGE_GUID |
1423                                   IB_DEVICE_MODIFY_NODE_DESC)) {
1424                ret = -EOPNOTSUPP;
1425                goto bail;
1426        }
1427
1428        if (device_modify_mask & IB_DEVICE_MODIFY_NODE_DESC) {
1429                memcpy(device->node_desc, device_modify->node_desc,
1430                       IB_DEVICE_NODE_DESC_MAX);
1431                for (i = 0; i < dd->num_pports; i++) {
1432                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1433
1434                        hfi1_node_desc_chg(ibp);
1435                }
1436        }
1437
1438        if (device_modify_mask & IB_DEVICE_MODIFY_SYS_IMAGE_GUID) {
1439                ib_hfi1_sys_image_guid =
1440                        cpu_to_be64(device_modify->sys_image_guid);
1441                for (i = 0; i < dd->num_pports; i++) {
1442                        struct hfi1_ibport *ibp = &dd->pport[i].ibport_data;
1443
1444                        hfi1_sys_guid_chg(ibp);
1445                }
1446        }
1447
1448        ret = 0;
1449
1450bail:
1451        return ret;
1452}
1453
1454static int shut_down_port(struct rvt_dev_info *rdi, u8 port_num)
1455{
1456        struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
1457        struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
1458        struct hfi1_pportdata *ppd = &dd->pport[port_num - 1];
1459        int ret;
1460
1461        set_link_down_reason(ppd, OPA_LINKDOWN_REASON_UNKNOWN, 0,
1462                             OPA_LINKDOWN_REASON_UNKNOWN);
1463        ret = set_link_state(ppd, HLS_DN_DOWNDEF);
1464        return ret;
1465}
1466
1467static int hfi1_get_guid_be(struct rvt_dev_info *rdi, struct rvt_ibport *rvp,
1468                            int guid_index, __be64 *guid)
1469{
1470        struct hfi1_ibport *ibp = container_of(rvp, struct hfi1_ibport, rvp);
1471
1472        if (guid_index >= HFI1_GUIDS_PER_PORT)
1473                return -EINVAL;
1474
1475        *guid = get_sguid(ibp, guid_index);
1476        return 0;
1477}
1478
1479/*
1480 * convert ah port,sl to sc
1481 */
1482u8 ah_to_sc(struct ib_device *ibdev, struct ib_ah_attr *ah)
1483{
1484        struct hfi1_ibport *ibp = to_iport(ibdev, ah->port_num);
1485
1486        return ibp->sl_to_sc[ah->sl];
1487}
1488
1489static int hfi1_check_ah(struct ib_device *ibdev, struct ib_ah_attr *ah_attr)
1490{
1491        struct hfi1_ibport *ibp;
1492        struct hfi1_pportdata *ppd;
1493        struct hfi1_devdata *dd;
1494        u8 sc5;
1495
1496        /* test the mapping for validity */
1497        ibp = to_iport(ibdev, ah_attr->port_num);
1498        ppd = ppd_from_ibp(ibp);
1499        sc5 = ibp->sl_to_sc[ah_attr->sl];
1500        dd = dd_from_ppd(ppd);
1501        if (sc_to_vlt(dd, sc5) > num_vls && sc_to_vlt(dd, sc5) != 0xf)
1502                return -EINVAL;
1503        return 0;
1504}
1505
1506static void hfi1_notify_new_ah(struct ib_device *ibdev,
1507                               struct ib_ah_attr *ah_attr,
1508                               struct rvt_ah *ah)
1509{
1510        struct hfi1_ibport *ibp;
1511        struct hfi1_pportdata *ppd;
1512        struct hfi1_devdata *dd;
1513        u8 sc5;
1514
1515        /*
1516         * Do not trust reading anything from rvt_ah at this point as it is not
1517         * done being setup. We can however modify things which we need to set.
1518         */
1519
1520        ibp = to_iport(ibdev, ah_attr->port_num);
1521        ppd = ppd_from_ibp(ibp);
1522        sc5 = ibp->sl_to_sc[ah->attr.sl];
1523        dd = dd_from_ppd(ppd);
1524        ah->vl = sc_to_vlt(dd, sc5);
1525        if (ah->vl < num_vls || ah->vl == 15)
1526                ah->log_pmtu = ilog2(dd->vld[ah->vl].mtu);
1527}
1528
1529struct ib_ah *hfi1_create_qp0_ah(struct hfi1_ibport *ibp, u16 dlid)
1530{
1531        struct ib_ah_attr attr;
1532        struct ib_ah *ah = ERR_PTR(-EINVAL);
1533        struct rvt_qp *qp0;
1534
1535        memset(&attr, 0, sizeof(attr));
1536        attr.dlid = dlid;
1537        attr.port_num = ppd_from_ibp(ibp)->port;
1538        rcu_read_lock();
1539        qp0 = rcu_dereference(ibp->rvp.qp[0]);
1540        if (qp0)
1541                ah = ib_create_ah(qp0->ibqp.pd, &attr);
1542        rcu_read_unlock();
1543        return ah;
1544}
1545
1546/**
1547 * hfi1_get_npkeys - return the size of the PKEY table for context 0
1548 * @dd: the hfi1_ib device
1549 */
1550unsigned hfi1_get_npkeys(struct hfi1_devdata *dd)
1551{
1552        return ARRAY_SIZE(dd->pport[0].pkeys);
1553}
1554
1555static void init_ibport(struct hfi1_pportdata *ppd)
1556{
1557        struct hfi1_ibport *ibp = &ppd->ibport_data;
1558        size_t sz = ARRAY_SIZE(ibp->sl_to_sc);
1559        int i;
1560
1561        for (i = 0; i < sz; i++) {
1562                ibp->sl_to_sc[i] = i;
1563                ibp->sc_to_sl[i] = i;
1564        }
1565
1566        spin_lock_init(&ibp->rvp.lock);
1567        /* Set the prefix to the default value (see ch. 4.1.1) */
1568        ibp->rvp.gid_prefix = IB_DEFAULT_GID_PREFIX;
1569        ibp->rvp.sm_lid = 0;
1570        /* Below should only set bits defined in OPA PortInfo.CapabilityMask */
1571        ibp->rvp.port_cap_flags = IB_PORT_AUTO_MIGR_SUP |
1572                IB_PORT_CAP_MASK_NOTICE_SUP;
1573        ibp->rvp.pma_counter_select[0] = IB_PMA_PORT_XMIT_DATA;
1574        ibp->rvp.pma_counter_select[1] = IB_PMA_PORT_RCV_DATA;
1575        ibp->rvp.pma_counter_select[2] = IB_PMA_PORT_XMIT_PKTS;
1576        ibp->rvp.pma_counter_select[3] = IB_PMA_PORT_RCV_PKTS;
1577        ibp->rvp.pma_counter_select[4] = IB_PMA_PORT_XMIT_WAIT;
1578
1579        RCU_INIT_POINTER(ibp->rvp.qp[0], NULL);
1580        RCU_INIT_POINTER(ibp->rvp.qp[1], NULL);
1581}
1582
1583static void hfi1_get_dev_fw_str(struct ib_device *ibdev, char *str,
1584                                size_t str_len)
1585{
1586        struct rvt_dev_info *rdi = ib_to_rvt(ibdev);
1587        struct hfi1_ibdev *dev = dev_from_rdi(rdi);
1588        u16 ver = dd_from_dev(dev)->dc8051_ver;
1589
1590        snprintf(str, str_len, "%u.%u", dc8051_ver_maj(ver),
1591                 dc8051_ver_min(ver));
1592}
1593
1594static const char * const driver_cntr_names[] = {
1595        /* must be element 0*/
1596        "DRIVER_KernIntr",
1597        "DRIVER_ErrorIntr",
1598        "DRIVER_Tx_Errs",
1599        "DRIVER_Rcv_Errs",
1600        "DRIVER_HW_Errs",
1601        "DRIVER_NoPIOBufs",
1602        "DRIVER_CtxtsOpen",
1603        "DRIVER_RcvLen_Errs",
1604        "DRIVER_EgrBufFull",
1605        "DRIVER_EgrHdrFull"
1606};
1607
1608static DEFINE_MUTEX(cntr_names_lock); /* protects the *_cntr_names bufers */
1609static const char **dev_cntr_names;
1610static const char **port_cntr_names;
1611static int num_driver_cntrs = ARRAY_SIZE(driver_cntr_names);
1612static int num_dev_cntrs;
1613static int num_port_cntrs;
1614static int cntr_names_initialized;
1615
1616/*
1617 * Convert a list of names separated by '\n' into an array of NULL terminated
1618 * strings. Optionally some entries can be reserved in the array to hold extra
1619 * external strings.
1620 */
1621static int init_cntr_names(const char *names_in,
1622                           const int names_len,
1623                           int num_extra_names,
1624                           int *num_cntrs,
1625                           const char ***cntr_names)
1626{
1627        char *names_out, *p, **q;
1628        int i, n;
1629
1630        n = 0;
1631        for (i = 0; i < names_len; i++)
1632                if (names_in[i] == '\n')
1633                        n++;
1634
1635        names_out = kmalloc((n + num_extra_names) * sizeof(char *) + names_len,
1636                            GFP_KERNEL);
1637        if (!names_out) {
1638                *num_cntrs = 0;
1639                *cntr_names = NULL;
1640                return -ENOMEM;
1641        }
1642
1643        p = names_out + (n + num_extra_names) * sizeof(char *);
1644        memcpy(p, names_in, names_len);
1645
1646        q = (char **)names_out;
1647        for (i = 0; i < n; i++) {
1648                q[i] = p;
1649                p = strchr(p, '\n');
1650                *p++ = '\0';
1651        }
1652
1653        *num_cntrs = n;
1654        *cntr_names = (const char **)names_out;
1655        return 0;
1656}
1657
1658static struct rdma_hw_stats *alloc_hw_stats(struct ib_device *ibdev,
1659                                            u8 port_num)
1660{
1661        int i, err;
1662
1663        mutex_lock(&cntr_names_lock);
1664        if (!cntr_names_initialized) {
1665                struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1666
1667                err = init_cntr_names(dd->cntrnames,
1668                                      dd->cntrnameslen,
1669                                      num_driver_cntrs,
1670                                      &num_dev_cntrs,
1671                                      &dev_cntr_names);
1672                if (err) {
1673                        mutex_unlock(&cntr_names_lock);
1674                        return NULL;
1675                }
1676
1677                for (i = 0; i < num_driver_cntrs; i++)
1678                        dev_cntr_names[num_dev_cntrs + i] =
1679                                driver_cntr_names[i];
1680
1681                err = init_cntr_names(dd->portcntrnames,
1682                                      dd->portcntrnameslen,
1683                                      0,
1684                                      &num_port_cntrs,
1685                                      &port_cntr_names);
1686                if (err) {
1687                        kfree(dev_cntr_names);
1688                        dev_cntr_names = NULL;
1689                        mutex_unlock(&cntr_names_lock);
1690                        return NULL;
1691                }
1692                cntr_names_initialized = 1;
1693        }
1694        mutex_unlock(&cntr_names_lock);
1695
1696        if (!port_num)
1697                return rdma_alloc_hw_stats_struct(
1698                                dev_cntr_names,
1699                                num_dev_cntrs + num_driver_cntrs,
1700                                RDMA_HW_STATS_DEFAULT_LIFESPAN);
1701        else
1702                return rdma_alloc_hw_stats_struct(
1703                                port_cntr_names,
1704                                num_port_cntrs,
1705                                RDMA_HW_STATS_DEFAULT_LIFESPAN);
1706}
1707
1708static u64 hfi1_sps_ints(void)
1709{
1710        unsigned long flags;
1711        struct hfi1_devdata *dd;
1712        u64 sps_ints = 0;
1713
1714        spin_lock_irqsave(&hfi1_devs_lock, flags);
1715        list_for_each_entry(dd, &hfi1_dev_list, list) {
1716                sps_ints += get_all_cpu_total(dd->int_counter);
1717        }
1718        spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1719        return sps_ints;
1720}
1721
1722static int get_hw_stats(struct ib_device *ibdev, struct rdma_hw_stats *stats,
1723                        u8 port, int index)
1724{
1725        u64 *values;
1726        int count;
1727
1728        if (!port) {
1729                u64 *stats = (u64 *)&hfi1_stats;
1730                int i;
1731
1732                hfi1_read_cntrs(dd_from_ibdev(ibdev), NULL, &values);
1733                values[num_dev_cntrs] = hfi1_sps_ints();
1734                for (i = 1; i < num_driver_cntrs; i++)
1735                        values[num_dev_cntrs + i] = stats[i];
1736                count = num_dev_cntrs + num_driver_cntrs;
1737        } else {
1738                struct hfi1_ibport *ibp = to_iport(ibdev, port);
1739
1740                hfi1_read_portcntrs(ppd_from_ibp(ibp), NULL, &values);
1741                count = num_port_cntrs;
1742        }
1743
1744        memcpy(stats->value, values, count * sizeof(u64));
1745        return count;
1746}
1747
1748/**
1749 * hfi1_register_ib_device - register our device with the infiniband core
1750 * @dd: the device data structure
1751 * Return 0 if successful, errno if unsuccessful.
1752 */
1753int hfi1_register_ib_device(struct hfi1_devdata *dd)
1754{
1755        struct hfi1_ibdev *dev = &dd->verbs_dev;
1756        struct ib_device *ibdev = &dev->rdi.ibdev;
1757        struct hfi1_pportdata *ppd = dd->pport;
1758        struct hfi1_ibport *ibp = &ppd->ibport_data;
1759        unsigned i;
1760        int ret;
1761        size_t lcpysz = IB_DEVICE_NAME_MAX;
1762
1763        for (i = 0; i < dd->num_pports; i++)
1764                init_ibport(ppd + i);
1765
1766        /* Only need to initialize non-zero fields. */
1767
1768        setup_timer(&dev->mem_timer, mem_timer, (unsigned long)dev);
1769
1770        seqlock_init(&dev->iowait_lock);
1771        seqlock_init(&dev->txwait_lock);
1772        INIT_LIST_HEAD(&dev->txwait);
1773        INIT_LIST_HEAD(&dev->memwait);
1774
1775        ret = verbs_txreq_init(dev);
1776        if (ret)
1777                goto err_verbs_txreq;
1778
1779        /* Use first-port GUID as node guid */
1780        ibdev->node_guid = get_sguid(ibp, HFI1_PORT_GUID_INDEX);
1781
1782        /*
1783         * The system image GUID is supposed to be the same for all
1784         * HFIs in a single system but since there can be other
1785         * device types in the system, we can't be sure this is unique.
1786         */
1787        if (!ib_hfi1_sys_image_guid)
1788                ib_hfi1_sys_image_guid = ibdev->node_guid;
1789        lcpysz = strlcpy(ibdev->name, class_name(), lcpysz);
1790        strlcpy(ibdev->name + lcpysz, "_%d", IB_DEVICE_NAME_MAX - lcpysz);
1791        ibdev->owner = THIS_MODULE;
1792        ibdev->phys_port_cnt = dd->num_pports;
1793        ibdev->dma_device = &dd->pcidev->dev;
1794        ibdev->modify_device = modify_device;
1795        ibdev->alloc_hw_stats = alloc_hw_stats;
1796        ibdev->get_hw_stats = get_hw_stats;
1797
1798        /* keep process mad in the driver */
1799        ibdev->process_mad = hfi1_process_mad;
1800        ibdev->get_dev_fw_str = hfi1_get_dev_fw_str;
1801
1802        strncpy(ibdev->node_desc, init_utsname()->nodename,
1803                sizeof(ibdev->node_desc));
1804
1805        /*
1806         * Fill in rvt info object.
1807         */
1808        dd->verbs_dev.rdi.driver_f.port_callback = hfi1_create_port_files;
1809        dd->verbs_dev.rdi.driver_f.get_card_name = get_card_name;
1810        dd->verbs_dev.rdi.driver_f.get_pci_dev = get_pci_dev;
1811        dd->verbs_dev.rdi.driver_f.check_ah = hfi1_check_ah;
1812        dd->verbs_dev.rdi.driver_f.notify_new_ah = hfi1_notify_new_ah;
1813        dd->verbs_dev.rdi.driver_f.get_guid_be = hfi1_get_guid_be;
1814        dd->verbs_dev.rdi.driver_f.query_port_state = query_port;
1815        dd->verbs_dev.rdi.driver_f.shut_down_port = shut_down_port;
1816        dd->verbs_dev.rdi.driver_f.cap_mask_chg = hfi1_cap_mask_chg;
1817        /*
1818         * Fill in rvt info device attributes.
1819         */
1820        hfi1_fill_device_attr(dd);
1821
1822        /* queue pair */
1823        dd->verbs_dev.rdi.dparms.qp_table_size = hfi1_qp_table_size;
1824        dd->verbs_dev.rdi.dparms.qpn_start = 0;
1825        dd->verbs_dev.rdi.dparms.qpn_inc = 1;
1826        dd->verbs_dev.rdi.dparms.qos_shift = dd->qos_shift;
1827        dd->verbs_dev.rdi.dparms.qpn_res_start = kdeth_qp << 16;
1828        dd->verbs_dev.rdi.dparms.qpn_res_end =
1829        dd->verbs_dev.rdi.dparms.qpn_res_start + 65535;
1830        dd->verbs_dev.rdi.dparms.max_rdma_atomic = HFI1_MAX_RDMA_ATOMIC;
1831        dd->verbs_dev.rdi.dparms.psn_mask = PSN_MASK;
1832        dd->verbs_dev.rdi.dparms.psn_shift = PSN_SHIFT;
1833        dd->verbs_dev.rdi.dparms.psn_modify_mask = PSN_MODIFY_MASK;
1834        dd->verbs_dev.rdi.dparms.core_cap_flags = RDMA_CORE_PORT_INTEL_OPA;
1835        dd->verbs_dev.rdi.dparms.max_mad_size = OPA_MGMT_MAD_SIZE;
1836
1837        dd->verbs_dev.rdi.driver_f.qp_priv_alloc = qp_priv_alloc;
1838        dd->verbs_dev.rdi.driver_f.qp_priv_free = qp_priv_free;
1839        dd->verbs_dev.rdi.driver_f.free_all_qps = free_all_qps;
1840        dd->verbs_dev.rdi.driver_f.notify_qp_reset = notify_qp_reset;
1841        dd->verbs_dev.rdi.driver_f.do_send = hfi1_do_send_from_rvt;
1842        dd->verbs_dev.rdi.driver_f.schedule_send = hfi1_schedule_send;
1843        dd->verbs_dev.rdi.driver_f.schedule_send_no_lock = _hfi1_schedule_send;
1844        dd->verbs_dev.rdi.driver_f.get_pmtu_from_attr = get_pmtu_from_attr;
1845        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1846        dd->verbs_dev.rdi.driver_f.flush_qp_waiters = flush_qp_waiters;
1847        dd->verbs_dev.rdi.driver_f.stop_send_queue = stop_send_queue;
1848        dd->verbs_dev.rdi.driver_f.quiesce_qp = quiesce_qp;
1849        dd->verbs_dev.rdi.driver_f.notify_error_qp = notify_error_qp;
1850        dd->verbs_dev.rdi.driver_f.mtu_from_qp = mtu_from_qp;
1851        dd->verbs_dev.rdi.driver_f.mtu_to_path_mtu = mtu_to_path_mtu;
1852        dd->verbs_dev.rdi.driver_f.check_modify_qp = hfi1_check_modify_qp;
1853        dd->verbs_dev.rdi.driver_f.modify_qp = hfi1_modify_qp;
1854        dd->verbs_dev.rdi.driver_f.check_send_wqe = hfi1_check_send_wqe;
1855
1856        /* completeion queue */
1857        snprintf(dd->verbs_dev.rdi.dparms.cq_name,
1858                 sizeof(dd->verbs_dev.rdi.dparms.cq_name),
1859                 "hfi1_cq%d", dd->unit);
1860        dd->verbs_dev.rdi.dparms.node = dd->node;
1861
1862        /* misc settings */
1863        dd->verbs_dev.rdi.flags = 0; /* Let rdmavt handle it all */
1864        dd->verbs_dev.rdi.dparms.lkey_table_size = hfi1_lkey_table_size;
1865        dd->verbs_dev.rdi.dparms.nports = dd->num_pports;
1866        dd->verbs_dev.rdi.dparms.npkeys = hfi1_get_npkeys(dd);
1867
1868        /* post send table */
1869        dd->verbs_dev.rdi.post_parms = hfi1_post_parms;
1870
1871        ppd = dd->pport;
1872        for (i = 0; i < dd->num_pports; i++, ppd++)
1873                rvt_init_port(&dd->verbs_dev.rdi,
1874                              &ppd->ibport_data.rvp,
1875                              i,
1876                              ppd->pkeys);
1877
1878        ret = rvt_register_device(&dd->verbs_dev.rdi);
1879        if (ret)
1880                goto err_verbs_txreq;
1881
1882        ret = hfi1_verbs_register_sysfs(dd);
1883        if (ret)
1884                goto err_class;
1885
1886        return ret;
1887
1888err_class:
1889        rvt_unregister_device(&dd->verbs_dev.rdi);
1890err_verbs_txreq:
1891        verbs_txreq_exit(dev);
1892        dd_dev_err(dd, "cannot register verbs: %d!\n", -ret);
1893        return ret;
1894}
1895
1896void hfi1_unregister_ib_device(struct hfi1_devdata *dd)
1897{
1898        struct hfi1_ibdev *dev = &dd->verbs_dev;
1899
1900        hfi1_verbs_unregister_sysfs(dd);
1901
1902        rvt_unregister_device(&dd->verbs_dev.rdi);
1903
1904        if (!list_empty(&dev->txwait))
1905                dd_dev_err(dd, "txwait list not empty!\n");
1906        if (!list_empty(&dev->memwait))
1907                dd_dev_err(dd, "memwait list not empty!\n");
1908
1909        del_timer_sync(&dev->mem_timer);
1910        verbs_txreq_exit(dev);
1911
1912        mutex_lock(&cntr_names_lock);
1913        kfree(dev_cntr_names);
1914        kfree(port_cntr_names);
1915        dev_cntr_names = NULL;
1916        port_cntr_names = NULL;
1917        cntr_names_initialized = 0;
1918        mutex_unlock(&cntr_names_lock);
1919}
1920
1921void hfi1_cnp_rcv(struct hfi1_packet *packet)
1922{
1923        struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
1924        struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1925        struct ib_header *hdr = packet->hdr;
1926        struct rvt_qp *qp = packet->qp;
1927        u32 lqpn, rqpn = 0;
1928        u16 rlid = 0;
1929        u8 sl, sc5, svc_type;
1930
1931        switch (packet->qp->ibqp.qp_type) {
1932        case IB_QPT_UC:
1933                rlid = qp->remote_ah_attr.dlid;
1934                rqpn = qp->remote_qpn;
1935                svc_type = IB_CC_SVCTYPE_UC;
1936                break;
1937        case IB_QPT_RC:
1938                rlid = qp->remote_ah_attr.dlid;
1939                rqpn = qp->remote_qpn;
1940                svc_type = IB_CC_SVCTYPE_RC;
1941                break;
1942        case IB_QPT_SMI:
1943        case IB_QPT_GSI:
1944        case IB_QPT_UD:
1945                svc_type = IB_CC_SVCTYPE_UD;
1946                break;
1947        default:
1948                ibp->rvp.n_pkt_drops++;
1949                return;
1950        }
1951
1952        sc5 = hdr2sc(hdr, packet->rhf);
1953        sl = ibp->sc_to_sl[sc5];
1954        lqpn = qp->ibqp.qp_num;
1955
1956        process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
1957}
1958