linux/drivers/md/bcache/request.c
<<
>>
Prefs
   1/*
   2 * Main bcache entry point - handle a read or a write request and decide what to
   3 * do with it; the make_request functions are called by the block layer.
   4 *
   5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
   6 * Copyright 2012 Google, Inc.
   7 */
   8
   9#include "bcache.h"
  10#include "btree.h"
  11#include "debug.h"
  12#include "request.h"
  13
  14#include <linux/cgroup.h>
  15#include <linux/module.h>
  16#include <linux/hash.h>
  17#include <linux/random.h>
  18#include "blk-cgroup.h"
  19
  20#include <trace/events/bcache.h>
  21
  22#define CUTOFF_CACHE_ADD        95
  23#define CUTOFF_CACHE_READA      90
  24#define CUTOFF_WRITEBACK        50
  25#define CUTOFF_WRITEBACK_SYNC   75
  26
  27struct kmem_cache *bch_search_cache;
  28
  29static void check_should_skip(struct cached_dev *, struct search *);
  30
  31/* Cgroup interface */
  32
  33#ifdef CONFIG_CGROUP_BCACHE
  34static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  35
  36static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  37{
  38        struct cgroup_subsys_state *css;
  39        return cgroup &&
  40                (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  41                ? container_of(css, struct bch_cgroup, css)
  42                : &bcache_default_cgroup;
  43}
  44
  45struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  46{
  47        struct cgroup_subsys_state *css = bio->bi_css
  48                ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  49                : task_subsys_state(current, bcache_subsys_id);
  50
  51        return css
  52                ? container_of(css, struct bch_cgroup, css)
  53                : &bcache_default_cgroup;
  54}
  55
  56static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  57                        struct file *file,
  58                        char __user *buf, size_t nbytes, loff_t *ppos)
  59{
  60        char tmp[1024];
  61        int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  62                                          cgroup_to_bcache(cgrp)->cache_mode + 1);
  63
  64        if (len < 0)
  65                return len;
  66
  67        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  68}
  69
  70static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  71                            const char *buf)
  72{
  73        int v = bch_read_string_list(buf, bch_cache_modes);
  74        if (v < 0)
  75                return v;
  76
  77        cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  78        return 0;
  79}
  80
  81static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  82{
  83        return cgroup_to_bcache(cgrp)->verify;
  84}
  85
  86static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  87{
  88        cgroup_to_bcache(cgrp)->verify = val;
  89        return 0;
  90}
  91
  92static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  93{
  94        struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  95        return atomic_read(&bcachecg->stats.cache_hits);
  96}
  97
  98static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  99{
 100        struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
 101        return atomic_read(&bcachecg->stats.cache_misses);
 102}
 103
 104static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
 105                                         struct cftype *cft)
 106{
 107        struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
 108        return atomic_read(&bcachecg->stats.cache_bypass_hits);
 109}
 110
 111static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
 112                                           struct cftype *cft)
 113{
 114        struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
 115        return atomic_read(&bcachecg->stats.cache_bypass_misses);
 116}
 117
 118static struct cftype bch_files[] = {
 119        {
 120                .name           = "cache_mode",
 121                .read           = cache_mode_read,
 122                .write_string   = cache_mode_write,
 123        },
 124        {
 125                .name           = "verify",
 126                .read_u64       = bch_verify_read,
 127                .write_u64      = bch_verify_write,
 128        },
 129        {
 130                .name           = "cache_hits",
 131                .read_u64       = bch_cache_hits_read,
 132        },
 133        {
 134                .name           = "cache_misses",
 135                .read_u64       = bch_cache_misses_read,
 136        },
 137        {
 138                .name           = "cache_bypass_hits",
 139                .read_u64       = bch_cache_bypass_hits_read,
 140        },
 141        {
 142                .name           = "cache_bypass_misses",
 143                .read_u64       = bch_cache_bypass_misses_read,
 144        },
 145        { }     /* terminate */
 146};
 147
 148static void init_bch_cgroup(struct bch_cgroup *cg)
 149{
 150        cg->cache_mode = -1;
 151}
 152
 153static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
 154{
 155        struct bch_cgroup *cg;
 156
 157        cg = kzalloc(sizeof(*cg), GFP_KERNEL);
 158        if (!cg)
 159                return ERR_PTR(-ENOMEM);
 160        init_bch_cgroup(cg);
 161        return &cg->css;
 162}
 163
 164static void bcachecg_destroy(struct cgroup *cgroup)
 165{
 166        struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
 167        free_css_id(&bcache_subsys, &cg->css);
 168        kfree(cg);
 169}
 170
 171struct cgroup_subsys bcache_subsys = {
 172        .create         = bcachecg_create,
 173        .destroy        = bcachecg_destroy,
 174        .subsys_id      = bcache_subsys_id,
 175        .name           = "bcache",
 176        .module         = THIS_MODULE,
 177};
 178EXPORT_SYMBOL_GPL(bcache_subsys);
 179#endif
 180
 181static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
 182{
 183#ifdef CONFIG_CGROUP_BCACHE
 184        int r = bch_bio_to_cgroup(bio)->cache_mode;
 185        if (r >= 0)
 186                return r;
 187#endif
 188        return BDEV_CACHE_MODE(&dc->sb);
 189}
 190
 191static bool verify(struct cached_dev *dc, struct bio *bio)
 192{
 193#ifdef CONFIG_CGROUP_BCACHE
 194        if (bch_bio_to_cgroup(bio)->verify)
 195                return true;
 196#endif
 197        return dc->verify;
 198}
 199
 200static void bio_csum(struct bio *bio, struct bkey *k)
 201{
 202        struct bio_vec *bv;
 203        uint64_t csum = 0;
 204        int i;
 205
 206        bio_for_each_segment(bv, bio, i) {
 207                void *d = kmap(bv->bv_page) + bv->bv_offset;
 208                csum = bch_crc64_update(csum, d, bv->bv_len);
 209                kunmap(bv->bv_page);
 210        }
 211
 212        k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
 213}
 214
 215/* Insert data into cache */
 216
 217static void bio_invalidate(struct closure *cl)
 218{
 219        struct btree_op *op = container_of(cl, struct btree_op, cl);
 220        struct bio *bio = op->cache_bio;
 221
 222        pr_debug("invalidating %i sectors from %llu",
 223                 bio_sectors(bio), (uint64_t) bio->bi_sector);
 224
 225        while (bio_sectors(bio)) {
 226                unsigned len = min(bio_sectors(bio), 1U << 14);
 227
 228                if (bch_keylist_realloc(&op->keys, 0, op->c))
 229                        goto out;
 230
 231                bio->bi_sector  += len;
 232                bio->bi_size    -= len << 9;
 233
 234                bch_keylist_add(&op->keys,
 235                                &KEY(op->inode, bio->bi_sector, len));
 236        }
 237
 238        op->insert_data_done = true;
 239        bio_put(bio);
 240out:
 241        continue_at(cl, bch_journal, bcache_wq);
 242}
 243
 244struct open_bucket {
 245        struct list_head        list;
 246        struct task_struct      *last;
 247        unsigned                sectors_free;
 248        BKEY_PADDED(key);
 249};
 250
 251void bch_open_buckets_free(struct cache_set *c)
 252{
 253        struct open_bucket *b;
 254
 255        while (!list_empty(&c->data_buckets)) {
 256                b = list_first_entry(&c->data_buckets,
 257                                     struct open_bucket, list);
 258                list_del(&b->list);
 259                kfree(b);
 260        }
 261}
 262
 263int bch_open_buckets_alloc(struct cache_set *c)
 264{
 265        int i;
 266
 267        spin_lock_init(&c->data_bucket_lock);
 268
 269        for (i = 0; i < 6; i++) {
 270                struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
 271                if (!b)
 272                        return -ENOMEM;
 273
 274                list_add(&b->list, &c->data_buckets);
 275        }
 276
 277        return 0;
 278}
 279
 280/*
 281 * We keep multiple buckets open for writes, and try to segregate different
 282 * write streams for better cache utilization: first we look for a bucket where
 283 * the last write to it was sequential with the current write, and failing that
 284 * we look for a bucket that was last used by the same task.
 285 *
 286 * The ideas is if you've got multiple tasks pulling data into the cache at the
 287 * same time, you'll get better cache utilization if you try to segregate their
 288 * data and preserve locality.
 289 *
 290 * For example, say you've starting Firefox at the same time you're copying a
 291 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 292 * cache awhile, but the data you copied might not be; if you wrote all that
 293 * data to the same buckets it'd get invalidated at the same time.
 294 *
 295 * Both of those tasks will be doing fairly random IO so we can't rely on
 296 * detecting sequential IO to segregate their data, but going off of the task
 297 * should be a sane heuristic.
 298 */
 299static struct open_bucket *pick_data_bucket(struct cache_set *c,
 300                                            const struct bkey *search,
 301                                            struct task_struct *task,
 302                                            struct bkey *alloc)
 303{
 304        struct open_bucket *ret, *ret_task = NULL;
 305
 306        list_for_each_entry_reverse(ret, &c->data_buckets, list)
 307                if (!bkey_cmp(&ret->key, search))
 308                        goto found;
 309                else if (ret->last == task)
 310                        ret_task = ret;
 311
 312        ret = ret_task ?: list_first_entry(&c->data_buckets,
 313                                           struct open_bucket, list);
 314found:
 315        if (!ret->sectors_free && KEY_PTRS(alloc)) {
 316                ret->sectors_free = c->sb.bucket_size;
 317                bkey_copy(&ret->key, alloc);
 318                bkey_init(alloc);
 319        }
 320
 321        if (!ret->sectors_free)
 322                ret = NULL;
 323
 324        return ret;
 325}
 326
 327/*
 328 * Allocates some space in the cache to write to, and k to point to the newly
 329 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 330 * end of the newly allocated space).
 331 *
 332 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 333 * sectors were actually allocated.
 334 *
 335 * If s->writeback is true, will not fail.
 336 */
 337static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
 338                              struct search *s)
 339{
 340        struct cache_set *c = s->op.c;
 341        struct open_bucket *b;
 342        BKEY_PADDED(key) alloc;
 343        struct closure cl, *w = NULL;
 344        unsigned i;
 345
 346        if (s->writeback) {
 347                closure_init_stack(&cl);
 348                w = &cl;
 349        }
 350
 351        /*
 352         * We might have to allocate a new bucket, which we can't do with a
 353         * spinlock held. So if we have to allocate, we drop the lock, allocate
 354         * and then retry. KEY_PTRS() indicates whether alloc points to
 355         * allocated bucket(s).
 356         */
 357
 358        bkey_init(&alloc.key);
 359        spin_lock(&c->data_bucket_lock);
 360
 361        while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
 362                unsigned watermark = s->op.write_prio
 363                        ? WATERMARK_MOVINGGC
 364                        : WATERMARK_NONE;
 365
 366                spin_unlock(&c->data_bucket_lock);
 367
 368                if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
 369                        return false;
 370
 371                spin_lock(&c->data_bucket_lock);
 372        }
 373
 374        /*
 375         * If we had to allocate, we might race and not need to allocate the
 376         * second time we call find_data_bucket(). If we allocated a bucket but
 377         * didn't use it, drop the refcount bch_bucket_alloc_set() took:
 378         */
 379        if (KEY_PTRS(&alloc.key))
 380                __bkey_put(c, &alloc.key);
 381
 382        for (i = 0; i < KEY_PTRS(&b->key); i++)
 383                EBUG_ON(ptr_stale(c, &b->key, i));
 384
 385        /* Set up the pointer to the space we're allocating: */
 386
 387        for (i = 0; i < KEY_PTRS(&b->key); i++)
 388                k->ptr[i] = b->key.ptr[i];
 389
 390        sectors = min(sectors, b->sectors_free);
 391
 392        SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
 393        SET_KEY_SIZE(k, sectors);
 394        SET_KEY_PTRS(k, KEY_PTRS(&b->key));
 395
 396        /*
 397         * Move b to the end of the lru, and keep track of what this bucket was
 398         * last used for:
 399         */
 400        list_move_tail(&b->list, &c->data_buckets);
 401        bkey_copy_key(&b->key, k);
 402        b->last = s->task;
 403
 404        b->sectors_free -= sectors;
 405
 406        for (i = 0; i < KEY_PTRS(&b->key); i++) {
 407                SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
 408
 409                atomic_long_add(sectors,
 410                                &PTR_CACHE(c, &b->key, i)->sectors_written);
 411        }
 412
 413        if (b->sectors_free < c->sb.block_size)
 414                b->sectors_free = 0;
 415
 416        /*
 417         * k takes refcounts on the buckets it points to until it's inserted
 418         * into the btree, but if we're done with this bucket we just transfer
 419         * get_data_bucket()'s refcount.
 420         */
 421        if (b->sectors_free)
 422                for (i = 0; i < KEY_PTRS(&b->key); i++)
 423                        atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
 424
 425        spin_unlock(&c->data_bucket_lock);
 426        return true;
 427}
 428
 429static void bch_insert_data_error(struct closure *cl)
 430{
 431        struct btree_op *op = container_of(cl, struct btree_op, cl);
 432
 433        /*
 434         * Our data write just errored, which means we've got a bunch of keys to
 435         * insert that point to data that wasn't succesfully written.
 436         *
 437         * We don't have to insert those keys but we still have to invalidate
 438         * that region of the cache - so, if we just strip off all the pointers
 439         * from the keys we'll accomplish just that.
 440         */
 441
 442        struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
 443
 444        while (src != op->keys.top) {
 445                struct bkey *n = bkey_next(src);
 446
 447                SET_KEY_PTRS(src, 0);
 448                bkey_copy(dst, src);
 449
 450                dst = bkey_next(dst);
 451                src = n;
 452        }
 453
 454        op->keys.top = dst;
 455
 456        bch_journal(cl);
 457}
 458
 459static void bch_insert_data_endio(struct bio *bio, int error)
 460{
 461        struct closure *cl = bio->bi_private;
 462        struct btree_op *op = container_of(cl, struct btree_op, cl);
 463        struct search *s = container_of(op, struct search, op);
 464
 465        if (error) {
 466                /* TODO: We could try to recover from this. */
 467                if (s->writeback)
 468                        s->error = error;
 469                else if (s->write)
 470                        set_closure_fn(cl, bch_insert_data_error, bcache_wq);
 471                else
 472                        set_closure_fn(cl, NULL, NULL);
 473        }
 474
 475        bch_bbio_endio(op->c, bio, error, "writing data to cache");
 476}
 477
 478static void bch_insert_data_loop(struct closure *cl)
 479{
 480        struct btree_op *op = container_of(cl, struct btree_op, cl);
 481        struct search *s = container_of(op, struct search, op);
 482        struct bio *bio = op->cache_bio, *n;
 483
 484        if (op->skip)
 485                return bio_invalidate(cl);
 486
 487        if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
 488                set_gc_sectors(op->c);
 489                bch_queue_gc(op->c);
 490        }
 491
 492        /*
 493         * Journal writes are marked REQ_FLUSH; if the original write was a
 494         * flush, it'll wait on the journal write.
 495         */
 496        bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
 497
 498        do {
 499                unsigned i;
 500                struct bkey *k;
 501                struct bio_set *split = s->d
 502                        ? s->d->bio_split : op->c->bio_split;
 503
 504                /* 1 for the device pointer and 1 for the chksum */
 505                if (bch_keylist_realloc(&op->keys,
 506                                        1 + (op->csum ? 1 : 0),
 507                                        op->c))
 508                        continue_at(cl, bch_journal, bcache_wq);
 509
 510                k = op->keys.top;
 511                bkey_init(k);
 512                SET_KEY_INODE(k, op->inode);
 513                SET_KEY_OFFSET(k, bio->bi_sector);
 514
 515                if (!bch_alloc_sectors(k, bio_sectors(bio), s))
 516                        goto err;
 517
 518                n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
 519                if (!n) {
 520                        __bkey_put(op->c, k);
 521                        continue_at(cl, bch_insert_data_loop, bcache_wq);
 522                }
 523
 524                n->bi_end_io    = bch_insert_data_endio;
 525                n->bi_private   = cl;
 526
 527                if (s->writeback) {
 528                        SET_KEY_DIRTY(k, true);
 529
 530                        for (i = 0; i < KEY_PTRS(k); i++)
 531                                SET_GC_MARK(PTR_BUCKET(op->c, k, i),
 532                                            GC_MARK_DIRTY);
 533                }
 534
 535                SET_KEY_CSUM(k, op->csum);
 536                if (KEY_CSUM(k))
 537                        bio_csum(n, k);
 538
 539                pr_debug("%s", pkey(k));
 540                bch_keylist_push(&op->keys);
 541
 542                trace_bcache_cache_insert(n, n->bi_sector, n->bi_bdev);
 543                n->bi_rw |= REQ_WRITE;
 544                bch_submit_bbio(n, op->c, k, 0);
 545        } while (n != bio);
 546
 547        op->insert_data_done = true;
 548        continue_at(cl, bch_journal, bcache_wq);
 549err:
 550        /* bch_alloc_sectors() blocks if s->writeback = true */
 551        BUG_ON(s->writeback);
 552
 553        /*
 554         * But if it's not a writeback write we'd rather just bail out if
 555         * there aren't any buckets ready to write to - it might take awhile and
 556         * we might be starving btree writes for gc or something.
 557         */
 558
 559        if (s->write) {
 560                /*
 561                 * Writethrough write: We can't complete the write until we've
 562                 * updated the index. But we don't want to delay the write while
 563                 * we wait for buckets to be freed up, so just invalidate the
 564                 * rest of the write.
 565                 */
 566                op->skip = true;
 567                return bio_invalidate(cl);
 568        } else {
 569                /*
 570                 * From a cache miss, we can just insert the keys for the data
 571                 * we have written or bail out if we didn't do anything.
 572                 */
 573                op->insert_data_done = true;
 574                bio_put(bio);
 575
 576                if (!bch_keylist_empty(&op->keys))
 577                        continue_at(cl, bch_journal, bcache_wq);
 578                else
 579                        closure_return(cl);
 580        }
 581}
 582
 583/**
 584 * bch_insert_data - stick some data in the cache
 585 *
 586 * This is the starting point for any data to end up in a cache device; it could
 587 * be from a normal write, or a writeback write, or a write to a flash only
 588 * volume - it's also used by the moving garbage collector to compact data in
 589 * mostly empty buckets.
 590 *
 591 * It first writes the data to the cache, creating a list of keys to be inserted
 592 * (if the data had to be fragmented there will be multiple keys); after the
 593 * data is written it calls bch_journal, and after the keys have been added to
 594 * the next journal write they're inserted into the btree.
 595 *
 596 * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
 597 * and op->inode is used for the key inode.
 598 *
 599 * If op->skip is true, instead of inserting the data it invalidates the region
 600 * of the cache represented by op->cache_bio and op->inode.
 601 */
 602void bch_insert_data(struct closure *cl)
 603{
 604        struct btree_op *op = container_of(cl, struct btree_op, cl);
 605
 606        bch_keylist_init(&op->keys);
 607        bio_get(op->cache_bio);
 608        bch_insert_data_loop(cl);
 609}
 610
 611void bch_btree_insert_async(struct closure *cl)
 612{
 613        struct btree_op *op = container_of(cl, struct btree_op, cl);
 614        struct search *s = container_of(op, struct search, op);
 615
 616        if (bch_btree_insert(op, op->c)) {
 617                s->error                = -ENOMEM;
 618                op->insert_data_done    = true;
 619        }
 620
 621        if (op->insert_data_done) {
 622                bch_keylist_free(&op->keys);
 623                closure_return(cl);
 624        } else
 625                continue_at(cl, bch_insert_data_loop, bcache_wq);
 626}
 627
 628/* Common code for the make_request functions */
 629
 630static void request_endio(struct bio *bio, int error)
 631{
 632        struct closure *cl = bio->bi_private;
 633
 634        if (error) {
 635                struct search *s = container_of(cl, struct search, cl);
 636                s->error = error;
 637                /* Only cache read errors are recoverable */
 638                s->recoverable = false;
 639        }
 640
 641        bio_put(bio);
 642        closure_put(cl);
 643}
 644
 645void bch_cache_read_endio(struct bio *bio, int error)
 646{
 647        struct bbio *b = container_of(bio, struct bbio, bio);
 648        struct closure *cl = bio->bi_private;
 649        struct search *s = container_of(cl, struct search, cl);
 650
 651        /*
 652         * If the bucket was reused while our bio was in flight, we might have
 653         * read the wrong data. Set s->error but not error so it doesn't get
 654         * counted against the cache device, but we'll still reread the data
 655         * from the backing device.
 656         */
 657
 658        if (error)
 659                s->error = error;
 660        else if (ptr_stale(s->op.c, &b->key, 0)) {
 661                atomic_long_inc(&s->op.c->cache_read_races);
 662                s->error = -EINTR;
 663        }
 664
 665        bch_bbio_endio(s->op.c, bio, error, "reading from cache");
 666}
 667
 668static void bio_complete(struct search *s)
 669{
 670        if (s->orig_bio) {
 671                int cpu, rw = bio_data_dir(s->orig_bio);
 672                unsigned long duration = jiffies - s->start_time;
 673
 674                cpu = part_stat_lock();
 675                part_round_stats(cpu, &s->d->disk->part0);
 676                part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
 677                part_stat_unlock();
 678
 679                trace_bcache_request_end(s, s->orig_bio);
 680                bio_endio(s->orig_bio, s->error);
 681                s->orig_bio = NULL;
 682        }
 683}
 684
 685static void do_bio_hook(struct search *s)
 686{
 687        struct bio *bio = &s->bio.bio;
 688        memcpy(bio, s->orig_bio, sizeof(struct bio));
 689
 690        bio->bi_end_io          = request_endio;
 691        bio->bi_private         = &s->cl;
 692        atomic_set(&bio->bi_cnt, 3);
 693}
 694
 695static void search_free(struct closure *cl)
 696{
 697        struct search *s = container_of(cl, struct search, cl);
 698        bio_complete(s);
 699
 700        if (s->op.cache_bio)
 701                bio_put(s->op.cache_bio);
 702
 703        if (s->unaligned_bvec)
 704                mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
 705
 706        closure_debug_destroy(cl);
 707        mempool_free(s, s->d->c->search);
 708}
 709
 710static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
 711{
 712        struct bio_vec *bv;
 713        struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
 714        memset(s, 0, offsetof(struct search, op.keys));
 715
 716        __closure_init(&s->cl, NULL);
 717
 718        s->op.inode             = d->id;
 719        s->op.c                 = d->c;
 720        s->d                    = d;
 721        s->op.lock              = -1;
 722        s->task                 = current;
 723        s->orig_bio             = bio;
 724        s->write                = (bio->bi_rw & REQ_WRITE) != 0;
 725        s->op.flush_journal     = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
 726        s->op.skip              = (bio->bi_rw & REQ_DISCARD) != 0;
 727        s->recoverable          = 1;
 728        s->start_time           = jiffies;
 729        do_bio_hook(s);
 730
 731        if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
 732                bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
 733                memcpy(bv, bio_iovec(bio),
 734                       sizeof(struct bio_vec) * bio_segments(bio));
 735
 736                s->bio.bio.bi_io_vec    = bv;
 737                s->unaligned_bvec       = 1;
 738        }
 739
 740        return s;
 741}
 742
 743static void btree_read_async(struct closure *cl)
 744{
 745        struct btree_op *op = container_of(cl, struct btree_op, cl);
 746
 747        int ret = btree_root(search_recurse, op->c, op);
 748
 749        if (ret == -EAGAIN)
 750                continue_at(cl, btree_read_async, bcache_wq);
 751
 752        closure_return(cl);
 753}
 754
 755/* Cached devices */
 756
 757static void cached_dev_bio_complete(struct closure *cl)
 758{
 759        struct search *s = container_of(cl, struct search, cl);
 760        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 761
 762        search_free(cl);
 763        cached_dev_put(dc);
 764}
 765
 766/* Process reads */
 767
 768static void cached_dev_read_complete(struct closure *cl)
 769{
 770        struct search *s = container_of(cl, struct search, cl);
 771
 772        if (s->op.insert_collision)
 773                bch_mark_cache_miss_collision(s);
 774
 775        if (s->op.cache_bio) {
 776                int i;
 777                struct bio_vec *bv;
 778
 779                __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
 780                        __free_page(bv->bv_page);
 781        }
 782
 783        cached_dev_bio_complete(cl);
 784}
 785
 786static void request_read_error(struct closure *cl)
 787{
 788        struct search *s = container_of(cl, struct search, cl);
 789        struct bio_vec *bv;
 790        int i;
 791
 792        if (s->recoverable) {
 793                /* The cache read failed, but we can retry from the backing
 794                 * device.
 795                 */
 796                pr_debug("recovering at sector %llu",
 797                         (uint64_t) s->orig_bio->bi_sector);
 798
 799                s->error = 0;
 800                bv = s->bio.bio.bi_io_vec;
 801                do_bio_hook(s);
 802                s->bio.bio.bi_io_vec = bv;
 803
 804                if (!s->unaligned_bvec)
 805                        bio_for_each_segment(bv, s->orig_bio, i)
 806                                bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
 807                else
 808                        memcpy(s->bio.bio.bi_io_vec,
 809                               bio_iovec(s->orig_bio),
 810                               sizeof(struct bio_vec) *
 811                               bio_segments(s->orig_bio));
 812
 813                /* XXX: invalidate cache */
 814
 815                trace_bcache_read_retry(&s->bio.bio);
 816                closure_bio_submit(&s->bio.bio, &s->cl, s->d);
 817        }
 818
 819        continue_at(cl, cached_dev_read_complete, NULL);
 820}
 821
 822static void request_read_done(struct closure *cl)
 823{
 824        struct search *s = container_of(cl, struct search, cl);
 825        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 826
 827        /*
 828         * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
 829         * contains data ready to be inserted into the cache.
 830         *
 831         * First, we copy the data we just read from cache_bio's bounce buffers
 832         * to the buffers the original bio pointed to:
 833         */
 834
 835        if (s->op.cache_bio) {
 836                struct bio_vec *src, *dst;
 837                unsigned src_offset, dst_offset, bytes;
 838                void *dst_ptr;
 839
 840                bio_reset(s->op.cache_bio);
 841                s->op.cache_bio->bi_sector      = s->cache_miss->bi_sector;
 842                s->op.cache_bio->bi_bdev        = s->cache_miss->bi_bdev;
 843                s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
 844                bch_bio_map(s->op.cache_bio, NULL);
 845
 846                src = bio_iovec(s->op.cache_bio);
 847                dst = bio_iovec(s->cache_miss);
 848                src_offset = src->bv_offset;
 849                dst_offset = dst->bv_offset;
 850                dst_ptr = kmap(dst->bv_page);
 851
 852                while (1) {
 853                        if (dst_offset == dst->bv_offset + dst->bv_len) {
 854                                kunmap(dst->bv_page);
 855                                dst++;
 856                                if (dst == bio_iovec_idx(s->cache_miss,
 857                                                s->cache_miss->bi_vcnt))
 858                                        break;
 859
 860                                dst_offset = dst->bv_offset;
 861                                dst_ptr = kmap(dst->bv_page);
 862                        }
 863
 864                        if (src_offset == src->bv_offset + src->bv_len) {
 865                                src++;
 866                                if (src == bio_iovec_idx(s->op.cache_bio,
 867                                                 s->op.cache_bio->bi_vcnt))
 868                                        BUG();
 869
 870                                src_offset = src->bv_offset;
 871                        }
 872
 873                        bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
 874                                    src->bv_offset + src->bv_len - src_offset);
 875
 876                        memcpy(dst_ptr + dst_offset,
 877                               page_address(src->bv_page) + src_offset,
 878                               bytes);
 879
 880                        src_offset      += bytes;
 881                        dst_offset      += bytes;
 882                }
 883
 884                bio_put(s->cache_miss);
 885                s->cache_miss = NULL;
 886        }
 887
 888        if (verify(dc, &s->bio.bio) && s->recoverable)
 889                bch_data_verify(s);
 890
 891        bio_complete(s);
 892
 893        if (s->op.cache_bio &&
 894            !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
 895                s->op.type = BTREE_REPLACE;
 896                closure_call(&s->op.cl, bch_insert_data, NULL, cl);
 897        }
 898
 899        continue_at(cl, cached_dev_read_complete, NULL);
 900}
 901
 902static void request_read_done_bh(struct closure *cl)
 903{
 904        struct search *s = container_of(cl, struct search, cl);
 905        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 906
 907        bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
 908
 909        if (s->error)
 910                continue_at_nobarrier(cl, request_read_error, bcache_wq);
 911        else if (s->op.cache_bio || verify(dc, &s->bio.bio))
 912                continue_at_nobarrier(cl, request_read_done, bcache_wq);
 913        else
 914                continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
 915}
 916
 917static int cached_dev_cache_miss(struct btree *b, struct search *s,
 918                                 struct bio *bio, unsigned sectors)
 919{
 920        int ret = 0;
 921        unsigned reada;
 922        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
 923        struct bio *miss;
 924
 925        miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
 926        if (!miss)
 927                return -EAGAIN;
 928
 929        if (miss == bio)
 930                s->op.lookup_done = true;
 931
 932        miss->bi_end_io         = request_endio;
 933        miss->bi_private        = &s->cl;
 934
 935        if (s->cache_miss || s->op.skip)
 936                goto out_submit;
 937
 938        if (miss != bio ||
 939            (bio->bi_rw & REQ_RAHEAD) ||
 940            (bio->bi_rw & REQ_META) ||
 941            s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
 942                reada = 0;
 943        else {
 944                reada = min(dc->readahead >> 9,
 945                            sectors - bio_sectors(miss));
 946
 947                if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
 948                        reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
 949        }
 950
 951        s->cache_bio_sectors = bio_sectors(miss) + reada;
 952        s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
 953                        DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
 954                        dc->disk.bio_split);
 955
 956        if (!s->op.cache_bio)
 957                goto out_submit;
 958
 959        s->op.cache_bio->bi_sector      = miss->bi_sector;
 960        s->op.cache_bio->bi_bdev        = miss->bi_bdev;
 961        s->op.cache_bio->bi_size        = s->cache_bio_sectors << 9;
 962
 963        s->op.cache_bio->bi_end_io      = request_endio;
 964        s->op.cache_bio->bi_private     = &s->cl;
 965
 966        /* btree_search_recurse()'s btree iterator is no good anymore */
 967        ret = -EINTR;
 968        if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
 969                goto out_put;
 970
 971        bch_bio_map(s->op.cache_bio, NULL);
 972        if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
 973                goto out_put;
 974
 975        s->cache_miss = miss;
 976        bio_get(s->op.cache_bio);
 977
 978        trace_bcache_cache_miss(s->orig_bio);
 979        closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
 980
 981        return ret;
 982out_put:
 983        bio_put(s->op.cache_bio);
 984        s->op.cache_bio = NULL;
 985out_submit:
 986        closure_bio_submit(miss, &s->cl, s->d);
 987        return ret;
 988}
 989
 990static void request_read(struct cached_dev *dc, struct search *s)
 991{
 992        struct closure *cl = &s->cl;
 993
 994        check_should_skip(dc, s);
 995        closure_call(&s->op.cl, btree_read_async, NULL, cl);
 996
 997        continue_at(cl, request_read_done_bh, NULL);
 998}
 999
1000/* Process writes */
1001
1002static void cached_dev_write_complete(struct closure *cl)
1003{
1004        struct search *s = container_of(cl, struct search, cl);
1005        struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1006
1007        up_read_non_owner(&dc->writeback_lock);
1008        cached_dev_bio_complete(cl);
1009}
1010
1011static bool should_writeback(struct cached_dev *dc, struct bio *bio)
1012{
1013        unsigned threshold = (bio->bi_rw & REQ_SYNC)
1014                ? CUTOFF_WRITEBACK_SYNC
1015                : CUTOFF_WRITEBACK;
1016
1017        return !atomic_read(&dc->disk.detaching) &&
1018                cache_mode(dc, bio) == CACHE_MODE_WRITEBACK &&
1019                dc->disk.c->gc_stats.in_use < threshold;
1020}
1021
1022static void request_write(struct cached_dev *dc, struct search *s)
1023{
1024        struct closure *cl = &s->cl;
1025        struct bio *bio = &s->bio.bio;
1026        struct bkey start, end;
1027        start = KEY(dc->disk.id, bio->bi_sector, 0);
1028        end = KEY(dc->disk.id, bio_end(bio), 0);
1029
1030        bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
1031
1032        check_should_skip(dc, s);
1033        down_read_non_owner(&dc->writeback_lock);
1034
1035        if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1036                s->op.skip      = false;
1037                s->writeback    = true;
1038        }
1039
1040        if (bio->bi_rw & REQ_DISCARD)
1041                goto skip;
1042
1043        if (s->op.skip)
1044                goto skip;
1045
1046        if (should_writeback(dc, s->orig_bio))
1047                s->writeback = true;
1048
1049        if (!s->writeback) {
1050                s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1051                                                   dc->disk.bio_split);
1052
1053                trace_bcache_writethrough(s->orig_bio);
1054                closure_bio_submit(bio, cl, s->d);
1055        } else {
1056                trace_bcache_writeback(s->orig_bio);
1057                bch_writeback_add(dc, bio_sectors(bio));
1058                s->op.cache_bio = bio;
1059
1060                if (bio->bi_rw & REQ_FLUSH) {
1061                        /* Also need to send a flush to the backing device */
1062                        struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1063                                                             dc->disk.bio_split);
1064
1065                        flush->bi_rw    = WRITE_FLUSH;
1066                        flush->bi_bdev  = bio->bi_bdev;
1067                        flush->bi_end_io = request_endio;
1068                        flush->bi_private = cl;
1069
1070                        closure_bio_submit(flush, cl, s->d);
1071                }
1072        }
1073out:
1074        closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1075        continue_at(cl, cached_dev_write_complete, NULL);
1076skip:
1077        s->op.skip = true;
1078        s->op.cache_bio = s->orig_bio;
1079        bio_get(s->op.cache_bio);
1080        trace_bcache_write_skip(s->orig_bio);
1081
1082        if ((bio->bi_rw & REQ_DISCARD) &&
1083            !blk_queue_discard(bdev_get_queue(dc->bdev)))
1084                goto out;
1085
1086        closure_bio_submit(bio, cl, s->d);
1087        goto out;
1088}
1089
1090static void request_nodata(struct cached_dev *dc, struct search *s)
1091{
1092        struct closure *cl = &s->cl;
1093        struct bio *bio = &s->bio.bio;
1094
1095        if (bio->bi_rw & REQ_DISCARD) {
1096                request_write(dc, s);
1097                return;
1098        }
1099
1100        if (s->op.flush_journal)
1101                bch_journal_meta(s->op.c, cl);
1102
1103        closure_bio_submit(bio, cl, s->d);
1104
1105        continue_at(cl, cached_dev_bio_complete, NULL);
1106}
1107
1108/* Cached devices - read & write stuff */
1109
1110int bch_get_congested(struct cache_set *c)
1111{
1112        int i;
1113
1114        if (!c->congested_read_threshold_us &&
1115            !c->congested_write_threshold_us)
1116                return 0;
1117
1118        i = (local_clock_us() - c->congested_last_us) / 1024;
1119        if (i < 0)
1120                return 0;
1121
1122        i += atomic_read(&c->congested);
1123        if (i >= 0)
1124                return 0;
1125
1126        i += CONGESTED_MAX;
1127
1128        return i <= 0 ? 1 : fract_exp_two(i, 6);
1129}
1130
1131static void add_sequential(struct task_struct *t)
1132{
1133        ewma_add(t->sequential_io_avg,
1134                 t->sequential_io, 8, 0);
1135
1136        t->sequential_io = 0;
1137}
1138
1139static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
1140{
1141        return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
1142}
1143
1144static void check_should_skip(struct cached_dev *dc, struct search *s)
1145{
1146        struct cache_set *c = s->op.c;
1147        struct bio *bio = &s->bio.bio;
1148
1149        long rand;
1150        int cutoff = bch_get_congested(c);
1151        unsigned mode = cache_mode(dc, bio);
1152
1153        if (atomic_read(&dc->disk.detaching) ||
1154            c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
1155            (bio->bi_rw & REQ_DISCARD))
1156                goto skip;
1157
1158        if (mode == CACHE_MODE_NONE ||
1159            (mode == CACHE_MODE_WRITEAROUND &&
1160             (bio->bi_rw & REQ_WRITE)))
1161                goto skip;
1162
1163        if (bio->bi_sector   & (c->sb.block_size - 1) ||
1164            bio_sectors(bio) & (c->sb.block_size - 1)) {
1165                pr_debug("skipping unaligned io");
1166                goto skip;
1167        }
1168
1169        if (!cutoff) {
1170                cutoff = dc->sequential_cutoff >> 9;
1171
1172                if (!cutoff)
1173                        goto rescale;
1174
1175                if (mode == CACHE_MODE_WRITEBACK &&
1176                    (bio->bi_rw & REQ_WRITE) &&
1177                    (bio->bi_rw & REQ_SYNC))
1178                        goto rescale;
1179        }
1180
1181        if (dc->sequential_merge) {
1182                struct io *i;
1183
1184                spin_lock(&dc->io_lock);
1185
1186                hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
1187                        if (i->last == bio->bi_sector &&
1188                            time_before(jiffies, i->jiffies))
1189                                goto found;
1190
1191                i = list_first_entry(&dc->io_lru, struct io, lru);
1192
1193                add_sequential(s->task);
1194                i->sequential = 0;
1195found:
1196                if (i->sequential + bio->bi_size > i->sequential)
1197                        i->sequential   += bio->bi_size;
1198
1199                i->last                  = bio_end(bio);
1200                i->jiffies               = jiffies + msecs_to_jiffies(5000);
1201                s->task->sequential_io   = i->sequential;
1202
1203                hlist_del(&i->hash);
1204                hlist_add_head(&i->hash, iohash(dc, i->last));
1205                list_move_tail(&i->lru, &dc->io_lru);
1206
1207                spin_unlock(&dc->io_lock);
1208        } else {
1209                s->task->sequential_io = bio->bi_size;
1210
1211                add_sequential(s->task);
1212        }
1213
1214        rand = get_random_int();
1215        cutoff -= bitmap_weight(&rand, BITS_PER_LONG);
1216
1217        if (cutoff <= (int) (max(s->task->sequential_io,
1218                                 s->task->sequential_io_avg) >> 9))
1219                goto skip;
1220
1221rescale:
1222        bch_rescale_priorities(c, bio_sectors(bio));
1223        return;
1224skip:
1225        bch_mark_sectors_bypassed(s, bio_sectors(bio));
1226        s->op.skip = true;
1227}
1228
1229static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1230{
1231        struct search *s;
1232        struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1233        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1234        int cpu, rw = bio_data_dir(bio);
1235
1236        cpu = part_stat_lock();
1237        part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1238        part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1239        part_stat_unlock();
1240
1241        bio->bi_bdev = dc->bdev;
1242        bio->bi_sector += dc->sb.data_offset;
1243
1244        if (cached_dev_get(dc)) {
1245                s = search_alloc(bio, d);
1246                trace_bcache_request_start(s, bio);
1247
1248                if (!bio_has_data(bio))
1249                        request_nodata(dc, s);
1250                else if (rw)
1251                        request_write(dc, s);
1252                else
1253                        request_read(dc, s);
1254        } else {
1255                if ((bio->bi_rw & REQ_DISCARD) &&
1256                    !blk_queue_discard(bdev_get_queue(dc->bdev)))
1257                        bio_endio(bio, 0);
1258                else
1259                        bch_generic_make_request(bio, &d->bio_split_hook);
1260        }
1261}
1262
1263static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1264                            unsigned int cmd, unsigned long arg)
1265{
1266        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1267        return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1268}
1269
1270static int cached_dev_congested(void *data, int bits)
1271{
1272        struct bcache_device *d = data;
1273        struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1274        struct request_queue *q = bdev_get_queue(dc->bdev);
1275        int ret = 0;
1276
1277        if (bdi_congested(&q->backing_dev_info, bits))
1278                return 1;
1279
1280        if (cached_dev_get(dc)) {
1281                unsigned i;
1282                struct cache *ca;
1283
1284                for_each_cache(ca, d->c, i) {
1285                        q = bdev_get_queue(ca->bdev);
1286                        ret |= bdi_congested(&q->backing_dev_info, bits);
1287                }
1288
1289                cached_dev_put(dc);
1290        }
1291
1292        return ret;
1293}
1294
1295void bch_cached_dev_request_init(struct cached_dev *dc)
1296{
1297        struct gendisk *g = dc->disk.disk;
1298
1299        g->queue->make_request_fn               = cached_dev_make_request;
1300        g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1301        dc->disk.cache_miss                     = cached_dev_cache_miss;
1302        dc->disk.ioctl                          = cached_dev_ioctl;
1303}
1304
1305/* Flash backed devices */
1306
1307static int flash_dev_cache_miss(struct btree *b, struct search *s,
1308                                struct bio *bio, unsigned sectors)
1309{
1310        /* Zero fill bio */
1311
1312        while (bio->bi_idx != bio->bi_vcnt) {
1313                struct bio_vec *bv = bio_iovec(bio);
1314                unsigned j = min(bv->bv_len >> 9, sectors);
1315
1316                void *p = kmap(bv->bv_page);
1317                memset(p + bv->bv_offset, 0, j << 9);
1318                kunmap(bv->bv_page);
1319
1320                bv->bv_len      -= j << 9;
1321                bv->bv_offset   += j << 9;
1322
1323                if (bv->bv_len)
1324                        return 0;
1325
1326                bio->bi_sector  += j;
1327                bio->bi_size    -= j << 9;
1328
1329                bio->bi_idx++;
1330                sectors         -= j;
1331        }
1332
1333        s->op.lookup_done = true;
1334
1335        return 0;
1336}
1337
1338static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1339{
1340        struct search *s;
1341        struct closure *cl;
1342        struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1343        int cpu, rw = bio_data_dir(bio);
1344
1345        cpu = part_stat_lock();
1346        part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1347        part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1348        part_stat_unlock();
1349
1350        s = search_alloc(bio, d);
1351        cl = &s->cl;
1352        bio = &s->bio.bio;
1353
1354        trace_bcache_request_start(s, bio);
1355
1356        if (bio_has_data(bio) && !rw) {
1357                closure_call(&s->op.cl, btree_read_async, NULL, cl);
1358        } else if (bio_has_data(bio) || s->op.skip) {
1359                bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
1360                                             &KEY(d->id, bio->bi_sector, 0),
1361                                             &KEY(d->id, bio_end(bio), 0));
1362
1363                s->writeback    = true;
1364                s->op.cache_bio = bio;
1365
1366                closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1367        } else {
1368                /* No data - probably a cache flush */
1369                if (s->op.flush_journal)
1370                        bch_journal_meta(s->op.c, cl);
1371        }
1372
1373        continue_at(cl, search_free, NULL);
1374}
1375
1376static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1377                           unsigned int cmd, unsigned long arg)
1378{
1379        return -ENOTTY;
1380}
1381
1382static int flash_dev_congested(void *data, int bits)
1383{
1384        struct bcache_device *d = data;
1385        struct request_queue *q;
1386        struct cache *ca;
1387        unsigned i;
1388        int ret = 0;
1389
1390        for_each_cache(ca, d->c, i) {
1391                q = bdev_get_queue(ca->bdev);
1392                ret |= bdi_congested(&q->backing_dev_info, bits);
1393        }
1394
1395        return ret;
1396}
1397
1398void bch_flash_dev_request_init(struct bcache_device *d)
1399{
1400        struct gendisk *g = d->disk;
1401
1402        g->queue->make_request_fn               = flash_dev_make_request;
1403        g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1404        d->cache_miss                           = flash_dev_cache_miss;
1405        d->ioctl                                = flash_dev_ioctl;
1406}
1407
1408void bch_request_exit(void)
1409{
1410#ifdef CONFIG_CGROUP_BCACHE
1411        cgroup_unload_subsys(&bcache_subsys);
1412#endif
1413        if (bch_search_cache)
1414                kmem_cache_destroy(bch_search_cache);
1415}
1416
1417int __init bch_request_init(void)
1418{
1419        bch_search_cache = KMEM_CACHE(search, 0);
1420        if (!bch_search_cache)
1421                return -ENOMEM;
1422
1423#ifdef CONFIG_CGROUP_BCACHE
1424        cgroup_load_subsys(&bcache_subsys);
1425        init_bch_cgroup(&bcache_default_cgroup);
1426
1427        cgroup_add_cftypes(&bcache_subsys, bch_files);
1428#endif
1429        return 0;
1430}
1431