linux/drivers/md/dm-bufio.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2009-2011 Red Hat, Inc.
   3 *
   4 * Author: Mikulas Patocka <mpatocka@redhat.com>
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include "dm-bufio.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/slab.h>
  14#include <linux/jiffies.h>
  15#include <linux/vmalloc.h>
  16#include <linux/shrinker.h>
  17#include <linux/module.h>
  18#include <linux/rbtree.h>
  19#include <linux/stacktrace.h>
  20
  21#define DM_MSG_PREFIX "bufio"
  22
  23/*
  24 * Memory management policy:
  25 *      Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
  26 *      or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
  27 *      Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
  28 *      Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
  29 *      dirty buffers.
  30 */
  31#define DM_BUFIO_MIN_BUFFERS            8
  32
  33#define DM_BUFIO_MEMORY_PERCENT         2
  34#define DM_BUFIO_VMALLOC_PERCENT        25
  35#define DM_BUFIO_WRITEBACK_PERCENT      75
  36
  37/*
  38 * Check buffer ages in this interval (seconds)
  39 */
  40#define DM_BUFIO_WORK_TIMER_SECS        30
  41
  42/*
  43 * Free buffers when they are older than this (seconds)
  44 */
  45#define DM_BUFIO_DEFAULT_AGE_SECS       300
  46
  47/*
  48 * The nr of bytes of cached data to keep around.
  49 */
  50#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
  51
  52/*
  53 * The number of bvec entries that are embedded directly in the buffer.
  54 * If the chunk size is larger, dm-io is used to do the io.
  55 */
  56#define DM_BUFIO_INLINE_VECS            16
  57
  58/*
  59 * Don't try to use kmem_cache_alloc for blocks larger than this.
  60 * For explanation, see alloc_buffer_data below.
  61 */
  62#define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT  (PAGE_SIZE >> 1)
  63#define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT   (PAGE_SIZE << (MAX_ORDER - 1))
  64
  65/*
  66 * dm_buffer->list_mode
  67 */
  68#define LIST_CLEAN      0
  69#define LIST_DIRTY      1
  70#define LIST_SIZE       2
  71
  72/*
  73 * Linking of buffers:
  74 *      All buffers are linked to cache_hash with their hash_list field.
  75 *
  76 *      Clean buffers that are not being written (B_WRITING not set)
  77 *      are linked to lru[LIST_CLEAN] with their lru_list field.
  78 *
  79 *      Dirty and clean buffers that are being written are linked to
  80 *      lru[LIST_DIRTY] with their lru_list field. When the write
  81 *      finishes, the buffer cannot be relinked immediately (because we
  82 *      are in an interrupt context and relinking requires process
  83 *      context), so some clean-not-writing buffers can be held on
  84 *      dirty_lru too.  They are later added to lru in the process
  85 *      context.
  86 */
  87struct dm_bufio_client {
  88        struct mutex lock;
  89
  90        struct list_head lru[LIST_SIZE];
  91        unsigned long n_buffers[LIST_SIZE];
  92
  93        struct block_device *bdev;
  94        unsigned block_size;
  95        unsigned char sectors_per_block_bits;
  96        unsigned char pages_per_block_bits;
  97        unsigned char blocks_per_page_bits;
  98        unsigned aux_size;
  99        void (*alloc_callback)(struct dm_buffer *);
 100        void (*write_callback)(struct dm_buffer *);
 101
 102        struct dm_io_client *dm_io;
 103
 104        struct list_head reserved_buffers;
 105        unsigned need_reserved_buffers;
 106
 107        unsigned minimum_buffers;
 108
 109        struct rb_root buffer_tree;
 110        wait_queue_head_t free_buffer_wait;
 111
 112        int async_write_error;
 113
 114        struct list_head client_list;
 115        struct shrinker shrinker;
 116};
 117
 118/*
 119 * Buffer state bits.
 120 */
 121#define B_READING       0
 122#define B_WRITING       1
 123#define B_DIRTY         2
 124
 125/*
 126 * Describes how the block was allocated:
 127 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
 128 * See the comment at alloc_buffer_data.
 129 */
 130enum data_mode {
 131        DATA_MODE_SLAB = 0,
 132        DATA_MODE_GET_FREE_PAGES = 1,
 133        DATA_MODE_VMALLOC = 2,
 134        DATA_MODE_LIMIT = 3
 135};
 136
 137struct dm_buffer {
 138        struct rb_node node;
 139        struct list_head lru_list;
 140        sector_t block;
 141        void *data;
 142        enum data_mode data_mode;
 143        unsigned char list_mode;                /* LIST_* */
 144        unsigned hold_count;
 145        int read_error;
 146        int write_error;
 147        unsigned long state;
 148        unsigned long last_accessed;
 149        struct dm_bufio_client *c;
 150        struct list_head write_list;
 151        struct bio bio;
 152        struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
 153#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 154#define MAX_STACK 10
 155        struct stack_trace stack_trace;
 156        unsigned long stack_entries[MAX_STACK];
 157#endif
 158};
 159
 160/*----------------------------------------------------------------*/
 161
 162static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
 163static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
 164
 165static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
 166{
 167        unsigned ret = c->blocks_per_page_bits - 1;
 168
 169        BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
 170
 171        return ret;
 172}
 173
 174#define DM_BUFIO_CACHE(c)       (dm_bufio_caches[dm_bufio_cache_index(c)])
 175#define DM_BUFIO_CACHE_NAME(c)  (dm_bufio_cache_names[dm_bufio_cache_index(c)])
 176
 177#define dm_bufio_in_request()   (!!current->bio_list)
 178
 179static void dm_bufio_lock(struct dm_bufio_client *c)
 180{
 181        mutex_lock_nested(&c->lock, dm_bufio_in_request());
 182}
 183
 184static int dm_bufio_trylock(struct dm_bufio_client *c)
 185{
 186        return mutex_trylock(&c->lock);
 187}
 188
 189static void dm_bufio_unlock(struct dm_bufio_client *c)
 190{
 191        mutex_unlock(&c->lock);
 192}
 193
 194/*----------------------------------------------------------------*/
 195
 196/*
 197 * Default cache size: available memory divided by the ratio.
 198 */
 199static unsigned long dm_bufio_default_cache_size;
 200
 201/*
 202 * Total cache size set by the user.
 203 */
 204static unsigned long dm_bufio_cache_size;
 205
 206/*
 207 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
 208 * at any time.  If it disagrees, the user has changed cache size.
 209 */
 210static unsigned long dm_bufio_cache_size_latch;
 211
 212static DEFINE_SPINLOCK(param_spinlock);
 213
 214/*
 215 * Buffers are freed after this timeout
 216 */
 217static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
 218static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
 219
 220static unsigned long dm_bufio_peak_allocated;
 221static unsigned long dm_bufio_allocated_kmem_cache;
 222static unsigned long dm_bufio_allocated_get_free_pages;
 223static unsigned long dm_bufio_allocated_vmalloc;
 224static unsigned long dm_bufio_current_allocated;
 225
 226/*----------------------------------------------------------------*/
 227
 228/*
 229 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
 230 */
 231static unsigned long dm_bufio_cache_size_per_client;
 232
 233/*
 234 * The current number of clients.
 235 */
 236static int dm_bufio_client_count;
 237
 238/*
 239 * The list of all clients.
 240 */
 241static LIST_HEAD(dm_bufio_all_clients);
 242
 243/*
 244 * This mutex protects dm_bufio_cache_size_latch,
 245 * dm_bufio_cache_size_per_client and dm_bufio_client_count
 246 */
 247static DEFINE_MUTEX(dm_bufio_clients_lock);
 248
 249#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 250static void buffer_record_stack(struct dm_buffer *b)
 251{
 252        b->stack_trace.nr_entries = 0;
 253        b->stack_trace.max_entries = MAX_STACK;
 254        b->stack_trace.entries = b->stack_entries;
 255        b->stack_trace.skip = 2;
 256        save_stack_trace(&b->stack_trace);
 257}
 258#endif
 259
 260/*----------------------------------------------------------------
 261 * A red/black tree acts as an index for all the buffers.
 262 *--------------------------------------------------------------*/
 263static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
 264{
 265        struct rb_node *n = c->buffer_tree.rb_node;
 266        struct dm_buffer *b;
 267
 268        while (n) {
 269                b = container_of(n, struct dm_buffer, node);
 270
 271                if (b->block == block)
 272                        return b;
 273
 274                n = (b->block < block) ? n->rb_left : n->rb_right;
 275        }
 276
 277        return NULL;
 278}
 279
 280static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
 281{
 282        struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
 283        struct dm_buffer *found;
 284
 285        while (*new) {
 286                found = container_of(*new, struct dm_buffer, node);
 287
 288                if (found->block == b->block) {
 289                        BUG_ON(found != b);
 290                        return;
 291                }
 292
 293                parent = *new;
 294                new = (found->block < b->block) ?
 295                        &((*new)->rb_left) : &((*new)->rb_right);
 296        }
 297
 298        rb_link_node(&b->node, parent, new);
 299        rb_insert_color(&b->node, &c->buffer_tree);
 300}
 301
 302static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
 303{
 304        rb_erase(&b->node, &c->buffer_tree);
 305}
 306
 307/*----------------------------------------------------------------*/
 308
 309static void adjust_total_allocated(enum data_mode data_mode, long diff)
 310{
 311        static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
 312                &dm_bufio_allocated_kmem_cache,
 313                &dm_bufio_allocated_get_free_pages,
 314                &dm_bufio_allocated_vmalloc,
 315        };
 316
 317        spin_lock(&param_spinlock);
 318
 319        *class_ptr[data_mode] += diff;
 320
 321        dm_bufio_current_allocated += diff;
 322
 323        if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
 324                dm_bufio_peak_allocated = dm_bufio_current_allocated;
 325
 326        spin_unlock(&param_spinlock);
 327}
 328
 329/*
 330 * Change the number of clients and recalculate per-client limit.
 331 */
 332static void __cache_size_refresh(void)
 333{
 334        BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
 335        BUG_ON(dm_bufio_client_count < 0);
 336
 337        dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
 338
 339        /*
 340         * Use default if set to 0 and report the actual cache size used.
 341         */
 342        if (!dm_bufio_cache_size_latch) {
 343                (void)cmpxchg(&dm_bufio_cache_size, 0,
 344                              dm_bufio_default_cache_size);
 345                dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
 346        }
 347
 348        dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
 349                                         (dm_bufio_client_count ? : 1);
 350}
 351
 352/*
 353 * Allocating buffer data.
 354 *
 355 * Small buffers are allocated with kmem_cache, to use space optimally.
 356 *
 357 * For large buffers, we choose between get_free_pages and vmalloc.
 358 * Each has advantages and disadvantages.
 359 *
 360 * __get_free_pages can randomly fail if the memory is fragmented.
 361 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
 362 * as low as 128M) so using it for caching is not appropriate.
 363 *
 364 * If the allocation may fail we use __get_free_pages. Memory fragmentation
 365 * won't have a fatal effect here, but it just causes flushes of some other
 366 * buffers and more I/O will be performed. Don't use __get_free_pages if it
 367 * always fails (i.e. order >= MAX_ORDER).
 368 *
 369 * If the allocation shouldn't fail we use __vmalloc. This is only for the
 370 * initial reserve allocation, so there's no risk of wasting all vmalloc
 371 * space.
 372 */
 373static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
 374                               enum data_mode *data_mode)
 375{
 376        unsigned noio_flag;
 377        void *ptr;
 378
 379        if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
 380                *data_mode = DATA_MODE_SLAB;
 381                return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
 382        }
 383
 384        if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
 385            gfp_mask & __GFP_NORETRY) {
 386                *data_mode = DATA_MODE_GET_FREE_PAGES;
 387                return (void *)__get_free_pages(gfp_mask,
 388                                                c->pages_per_block_bits);
 389        }
 390
 391        *data_mode = DATA_MODE_VMALLOC;
 392
 393        /*
 394         * __vmalloc allocates the data pages and auxiliary structures with
 395         * gfp_flags that were specified, but pagetables are always allocated
 396         * with GFP_KERNEL, no matter what was specified as gfp_mask.
 397         *
 398         * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
 399         * all allocations done by this process (including pagetables) are done
 400         * as if GFP_NOIO was specified.
 401         */
 402
 403        if (gfp_mask & __GFP_NORETRY)
 404                noio_flag = memalloc_noio_save();
 405
 406        ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
 407
 408        if (gfp_mask & __GFP_NORETRY)
 409                memalloc_noio_restore(noio_flag);
 410
 411        return ptr;
 412}
 413
 414/*
 415 * Free buffer's data.
 416 */
 417static void free_buffer_data(struct dm_bufio_client *c,
 418                             void *data, enum data_mode data_mode)
 419{
 420        switch (data_mode) {
 421        case DATA_MODE_SLAB:
 422                kmem_cache_free(DM_BUFIO_CACHE(c), data);
 423                break;
 424
 425        case DATA_MODE_GET_FREE_PAGES:
 426                free_pages((unsigned long)data, c->pages_per_block_bits);
 427                break;
 428
 429        case DATA_MODE_VMALLOC:
 430                vfree(data);
 431                break;
 432
 433        default:
 434                DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
 435                       data_mode);
 436                BUG();
 437        }
 438}
 439
 440/*
 441 * Allocate buffer and its data.
 442 */
 443static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
 444{
 445        struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
 446                                      gfp_mask);
 447
 448        if (!b)
 449                return NULL;
 450
 451        b->c = c;
 452
 453        b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
 454        if (!b->data) {
 455                kfree(b);
 456                return NULL;
 457        }
 458
 459        adjust_total_allocated(b->data_mode, (long)c->block_size);
 460
 461#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
 462        memset(&b->stack_trace, 0, sizeof(b->stack_trace));
 463#endif
 464        return b;
 465}
 466
 467/*
 468 * Free buffer and its data.
 469 */
 470static void free_buffer(struct dm_buffer *b)
 471{
 472        struct dm_bufio_client *c = b->c;
 473
 474        adjust_total_allocated(b->data_mode, -(long)c->block_size);
 475
 476        free_buffer_data(c, b->data, b->data_mode);
 477        kfree(b);
 478}
 479
 480/*
 481 * Link buffer to the hash list and clean or dirty queue.
 482 */
 483static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
 484{
 485        struct dm_bufio_client *c = b->c;
 486
 487        c->n_buffers[dirty]++;
 488        b->block = block;
 489        b->list_mode = dirty;
 490        list_add(&b->lru_list, &c->lru[dirty]);
 491        __insert(b->c, b);
 492        b->last_accessed = jiffies;
 493}
 494
 495/*
 496 * Unlink buffer from the hash list and dirty or clean queue.
 497 */
 498static void __unlink_buffer(struct dm_buffer *b)
 499{
 500        struct dm_bufio_client *c = b->c;
 501
 502        BUG_ON(!c->n_buffers[b->list_mode]);
 503
 504        c->n_buffers[b->list_mode]--;
 505        __remove(b->c, b);
 506        list_del(&b->lru_list);
 507}
 508
 509/*
 510 * Place the buffer to the head of dirty or clean LRU queue.
 511 */
 512static void __relink_lru(struct dm_buffer *b, int dirty)
 513{
 514        struct dm_bufio_client *c = b->c;
 515
 516        BUG_ON(!c->n_buffers[b->list_mode]);
 517
 518        c->n_buffers[b->list_mode]--;
 519        c->n_buffers[dirty]++;
 520        b->list_mode = dirty;
 521        list_move(&b->lru_list, &c->lru[dirty]);
 522        b->last_accessed = jiffies;
 523}
 524
 525/*----------------------------------------------------------------
 526 * Submit I/O on the buffer.
 527 *
 528 * Bio interface is faster but it has some problems:
 529 *      the vector list is limited (increasing this limit increases
 530 *      memory-consumption per buffer, so it is not viable);
 531 *
 532 *      the memory must be direct-mapped, not vmalloced;
 533 *
 534 *      the I/O driver can reject requests spuriously if it thinks that
 535 *      the requests are too big for the device or if they cross a
 536 *      controller-defined memory boundary.
 537 *
 538 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
 539 * it is not vmalloced, try using the bio interface.
 540 *
 541 * If the buffer is big, if it is vmalloced or if the underlying device
 542 * rejects the bio because it is too large, use dm-io layer to do the I/O.
 543 * The dm-io layer splits the I/O into multiple requests, avoiding the above
 544 * shortcomings.
 545 *--------------------------------------------------------------*/
 546
 547/*
 548 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
 549 * that the request was handled directly with bio interface.
 550 */
 551static void dmio_complete(unsigned long error, void *context)
 552{
 553        struct dm_buffer *b = context;
 554
 555        b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
 556}
 557
 558static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
 559                     bio_end_io_t *end_io)
 560{
 561        int r;
 562        struct dm_io_request io_req = {
 563                .bi_rw = rw,
 564                .notify.fn = dmio_complete,
 565                .notify.context = b,
 566                .client = b->c->dm_io,
 567        };
 568        struct dm_io_region region = {
 569                .bdev = b->c->bdev,
 570                .sector = block << b->c->sectors_per_block_bits,
 571                .count = b->c->block_size >> SECTOR_SHIFT,
 572        };
 573
 574        if (b->data_mode != DATA_MODE_VMALLOC) {
 575                io_req.mem.type = DM_IO_KMEM;
 576                io_req.mem.ptr.addr = b->data;
 577        } else {
 578                io_req.mem.type = DM_IO_VMA;
 579                io_req.mem.ptr.vma = b->data;
 580        }
 581
 582        b->bio.bi_end_io = end_io;
 583
 584        r = dm_io(&io_req, 1, &region, NULL);
 585        if (r)
 586                end_io(&b->bio, r);
 587}
 588
 589static void inline_endio(struct bio *bio, int error)
 590{
 591        bio_end_io_t *end_fn = bio->bi_private;
 592
 593        /*
 594         * Reset the bio to free any attached resources
 595         * (e.g. bio integrity profiles).
 596         */
 597        bio_reset(bio);
 598
 599        end_fn(bio, error);
 600}
 601
 602static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
 603                           bio_end_io_t *end_io)
 604{
 605        char *ptr;
 606        int len;
 607
 608        bio_init(&b->bio);
 609        b->bio.bi_io_vec = b->bio_vec;
 610        b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
 611        b->bio.bi_sector = block << b->c->sectors_per_block_bits;
 612        b->bio.bi_bdev = b->c->bdev;
 613        b->bio.bi_end_io = inline_endio;
 614        /*
 615         * Use of .bi_private isn't a problem here because
 616         * the dm_buffer's inline bio is local to bufio.
 617         */
 618        b->bio.bi_private = end_io;
 619
 620        /*
 621         * We assume that if len >= PAGE_SIZE ptr is page-aligned.
 622         * If len < PAGE_SIZE the buffer doesn't cross page boundary.
 623         */
 624        ptr = b->data;
 625        len = b->c->block_size;
 626
 627        if (len >= PAGE_SIZE)
 628                BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
 629        else
 630                BUG_ON((unsigned long)ptr & (len - 1));
 631
 632        do {
 633                if (!bio_add_page(&b->bio, virt_to_page(ptr),
 634                                  len < PAGE_SIZE ? len : PAGE_SIZE,
 635                                  offset_in_page(ptr))) {
 636                        BUG_ON(b->c->block_size <= PAGE_SIZE);
 637                        use_dmio(b, rw, block, end_io);
 638                        return;
 639                }
 640
 641                len -= PAGE_SIZE;
 642                ptr += PAGE_SIZE;
 643        } while (len > 0);
 644
 645        submit_bio(rw, &b->bio);
 646}
 647
 648static void submit_io(struct dm_buffer *b, int rw, sector_t block,
 649                      bio_end_io_t *end_io)
 650{
 651        if (rw == WRITE && b->c->write_callback)
 652                b->c->write_callback(b);
 653
 654        if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
 655            b->data_mode != DATA_MODE_VMALLOC)
 656                use_inline_bio(b, rw, block, end_io);
 657        else
 658                use_dmio(b, rw, block, end_io);
 659}
 660
 661/*----------------------------------------------------------------
 662 * Writing dirty buffers
 663 *--------------------------------------------------------------*/
 664
 665/*
 666 * The endio routine for write.
 667 *
 668 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
 669 * it.
 670 */
 671static void write_endio(struct bio *bio, int error)
 672{
 673        struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
 674
 675        b->write_error = error;
 676        if (unlikely(error)) {
 677                struct dm_bufio_client *c = b->c;
 678                (void)cmpxchg(&c->async_write_error, 0, error);
 679        }
 680
 681        BUG_ON(!test_bit(B_WRITING, &b->state));
 682
 683        smp_mb__before_clear_bit();
 684        clear_bit(B_WRITING, &b->state);
 685        smp_mb__after_clear_bit();
 686
 687        wake_up_bit(&b->state, B_WRITING);
 688}
 689
 690/*
 691 * Initiate a write on a dirty buffer, but don't wait for it.
 692 *
 693 * - If the buffer is not dirty, exit.
 694 * - If there some previous write going on, wait for it to finish (we can't
 695 *   have two writes on the same buffer simultaneously).
 696 * - Submit our write and don't wait on it. We set B_WRITING indicating
 697 *   that there is a write in progress.
 698 */
 699static void __write_dirty_buffer(struct dm_buffer *b,
 700                                 struct list_head *write_list)
 701{
 702        if (!test_bit(B_DIRTY, &b->state))
 703                return;
 704
 705        clear_bit(B_DIRTY, &b->state);
 706        wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 707
 708        if (!write_list)
 709                submit_io(b, WRITE, b->block, write_endio);
 710        else
 711                list_add_tail(&b->write_list, write_list);
 712}
 713
 714static void __flush_write_list(struct list_head *write_list)
 715{
 716        struct blk_plug plug;
 717        blk_start_plug(&plug);
 718        while (!list_empty(write_list)) {
 719                struct dm_buffer *b =
 720                        list_entry(write_list->next, struct dm_buffer, write_list);
 721                list_del(&b->write_list);
 722                submit_io(b, WRITE, b->block, write_endio);
 723                cond_resched();
 724        }
 725        blk_finish_plug(&plug);
 726}
 727
 728/*
 729 * Wait until any activity on the buffer finishes.  Possibly write the
 730 * buffer if it is dirty.  When this function finishes, there is no I/O
 731 * running on the buffer and the buffer is not dirty.
 732 */
 733static void __make_buffer_clean(struct dm_buffer *b)
 734{
 735        BUG_ON(b->hold_count);
 736
 737        if (!b->state)  /* fast case */
 738                return;
 739
 740        wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
 741        __write_dirty_buffer(b, NULL);
 742        wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
 743}
 744
 745/*
 746 * Find some buffer that is not held by anybody, clean it, unlink it and
 747 * return it.
 748 */
 749static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
 750{
 751        struct dm_buffer *b;
 752
 753        list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
 754                BUG_ON(test_bit(B_WRITING, &b->state));
 755                BUG_ON(test_bit(B_DIRTY, &b->state));
 756
 757                if (!b->hold_count) {
 758                        __make_buffer_clean(b);
 759                        __unlink_buffer(b);
 760                        return b;
 761                }
 762                cond_resched();
 763        }
 764
 765        list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
 766                BUG_ON(test_bit(B_READING, &b->state));
 767
 768                if (!b->hold_count) {
 769                        __make_buffer_clean(b);
 770                        __unlink_buffer(b);
 771                        return b;
 772                }
 773                cond_resched();
 774        }
 775
 776        return NULL;
 777}
 778
 779/*
 780 * Wait until some other threads free some buffer or release hold count on
 781 * some buffer.
 782 *
 783 * This function is entered with c->lock held, drops it and regains it
 784 * before exiting.
 785 */
 786static void __wait_for_free_buffer(struct dm_bufio_client *c)
 787{
 788        DECLARE_WAITQUEUE(wait, current);
 789
 790        add_wait_queue(&c->free_buffer_wait, &wait);
 791        set_task_state(current, TASK_UNINTERRUPTIBLE);
 792        dm_bufio_unlock(c);
 793
 794        io_schedule();
 795
 796        set_task_state(current, TASK_RUNNING);
 797        remove_wait_queue(&c->free_buffer_wait, &wait);
 798
 799        dm_bufio_lock(c);
 800}
 801
 802enum new_flag {
 803        NF_FRESH = 0,
 804        NF_READ = 1,
 805        NF_GET = 2,
 806        NF_PREFETCH = 3
 807};
 808
 809/*
 810 * Allocate a new buffer. If the allocation is not possible, wait until
 811 * some other thread frees a buffer.
 812 *
 813 * May drop the lock and regain it.
 814 */
 815static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
 816{
 817        struct dm_buffer *b;
 818        bool tried_noio_alloc = false;
 819
 820        /*
 821         * dm-bufio is resistant to allocation failures (it just keeps
 822         * one buffer reserved in cases all the allocations fail).
 823         * So set flags to not try too hard:
 824         *      GFP_NOWAIT: don't wait; if we need to sleep we'll release our
 825         *                  mutex and wait ourselves.
 826         *      __GFP_NORETRY: don't retry and rather return failure
 827         *      __GFP_NOMEMALLOC: don't use emergency reserves
 828         *      __GFP_NOWARN: don't print a warning in case of failure
 829         *
 830         * For debugging, if we set the cache size to 1, no new buffers will
 831         * be allocated.
 832         */
 833        while (1) {
 834                if (dm_bufio_cache_size_latch != 1) {
 835                        b = alloc_buffer(c, GFP_NOWAIT | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 836                        if (b)
 837                                return b;
 838                }
 839
 840                if (nf == NF_PREFETCH)
 841                        return NULL;
 842
 843                if (dm_bufio_cache_size_latch != 1 && !tried_noio_alloc) {
 844                        dm_bufio_unlock(c);
 845                        b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
 846                        dm_bufio_lock(c);
 847                        if (b)
 848                                return b;
 849                        tried_noio_alloc = true;
 850                }
 851
 852                if (!list_empty(&c->reserved_buffers)) {
 853                        b = list_entry(c->reserved_buffers.next,
 854                                       struct dm_buffer, lru_list);
 855                        list_del(&b->lru_list);
 856                        c->need_reserved_buffers++;
 857
 858                        return b;
 859                }
 860
 861                b = __get_unclaimed_buffer(c);
 862                if (b)
 863                        return b;
 864
 865                __wait_for_free_buffer(c);
 866        }
 867}
 868
 869static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
 870{
 871        struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
 872
 873        if (!b)
 874                return NULL;
 875
 876        if (c->alloc_callback)
 877                c->alloc_callback(b);
 878
 879        return b;
 880}
 881
 882/*
 883 * Free a buffer and wake other threads waiting for free buffers.
 884 */
 885static void __free_buffer_wake(struct dm_buffer *b)
 886{
 887        struct dm_bufio_client *c = b->c;
 888
 889        if (!c->need_reserved_buffers)
 890                free_buffer(b);
 891        else {
 892                list_add(&b->lru_list, &c->reserved_buffers);
 893                c->need_reserved_buffers--;
 894        }
 895
 896        wake_up(&c->free_buffer_wait);
 897}
 898
 899static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
 900                                        struct list_head *write_list)
 901{
 902        struct dm_buffer *b, *tmp;
 903
 904        list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
 905                BUG_ON(test_bit(B_READING, &b->state));
 906
 907                if (!test_bit(B_DIRTY, &b->state) &&
 908                    !test_bit(B_WRITING, &b->state)) {
 909                        __relink_lru(b, LIST_CLEAN);
 910                        continue;
 911                }
 912
 913                if (no_wait && test_bit(B_WRITING, &b->state))
 914                        return;
 915
 916                __write_dirty_buffer(b, write_list);
 917                cond_resched();
 918        }
 919}
 920
 921/*
 922 * Get writeback threshold and buffer limit for a given client.
 923 */
 924static void __get_memory_limit(struct dm_bufio_client *c,
 925                               unsigned long *threshold_buffers,
 926                               unsigned long *limit_buffers)
 927{
 928        unsigned long buffers;
 929
 930        if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
 931                mutex_lock(&dm_bufio_clients_lock);
 932                __cache_size_refresh();
 933                mutex_unlock(&dm_bufio_clients_lock);
 934        }
 935
 936        buffers = dm_bufio_cache_size_per_client >>
 937                  (c->sectors_per_block_bits + SECTOR_SHIFT);
 938
 939        if (buffers < c->minimum_buffers)
 940                buffers = c->minimum_buffers;
 941
 942        *limit_buffers = buffers;
 943        *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
 944}
 945
 946/*
 947 * Check if we're over watermark.
 948 * If we are over threshold_buffers, start freeing buffers.
 949 * If we're over "limit_buffers", block until we get under the limit.
 950 */
 951static void __check_watermark(struct dm_bufio_client *c,
 952                              struct list_head *write_list)
 953{
 954        unsigned long threshold_buffers, limit_buffers;
 955
 956        __get_memory_limit(c, &threshold_buffers, &limit_buffers);
 957
 958        while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
 959               limit_buffers) {
 960
 961                struct dm_buffer *b = __get_unclaimed_buffer(c);
 962
 963                if (!b)
 964                        return;
 965
 966                __free_buffer_wake(b);
 967                cond_resched();
 968        }
 969
 970        if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
 971                __write_dirty_buffers_async(c, 1, write_list);
 972}
 973
 974/*----------------------------------------------------------------
 975 * Getting a buffer
 976 *--------------------------------------------------------------*/
 977
 978static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
 979                                     enum new_flag nf, int *need_submit,
 980                                     struct list_head *write_list)
 981{
 982        struct dm_buffer *b, *new_b = NULL;
 983
 984        *need_submit = 0;
 985
 986        b = __find(c, block);
 987        if (b)
 988                goto found_buffer;
 989
 990        if (nf == NF_GET)
 991                return NULL;
 992
 993        new_b = __alloc_buffer_wait(c, nf);
 994        if (!new_b)
 995                return NULL;
 996
 997        /*
 998         * We've had a period where the mutex was unlocked, so need to
 999         * recheck the hash table.
1000         */
1001        b = __find(c, block);
1002        if (b) {
1003                __free_buffer_wake(new_b);
1004                goto found_buffer;
1005        }
1006
1007        __check_watermark(c, write_list);
1008
1009        b = new_b;
1010        b->hold_count = 1;
1011        b->read_error = 0;
1012        b->write_error = 0;
1013        __link_buffer(b, block, LIST_CLEAN);
1014
1015        if (nf == NF_FRESH) {
1016                b->state = 0;
1017                return b;
1018        }
1019
1020        b->state = 1 << B_READING;
1021        *need_submit = 1;
1022
1023        return b;
1024
1025found_buffer:
1026        if (nf == NF_PREFETCH)
1027                return NULL;
1028        /*
1029         * Note: it is essential that we don't wait for the buffer to be
1030         * read if dm_bufio_get function is used. Both dm_bufio_get and
1031         * dm_bufio_prefetch can be used in the driver request routine.
1032         * If the user called both dm_bufio_prefetch and dm_bufio_get on
1033         * the same buffer, it would deadlock if we waited.
1034         */
1035        if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1036                return NULL;
1037
1038        b->hold_count++;
1039        __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1040                     test_bit(B_WRITING, &b->state));
1041        return b;
1042}
1043
1044/*
1045 * The endio routine for reading: set the error, clear the bit and wake up
1046 * anyone waiting on the buffer.
1047 */
1048static void read_endio(struct bio *bio, int error)
1049{
1050        struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1051
1052        b->read_error = error;
1053
1054        BUG_ON(!test_bit(B_READING, &b->state));
1055
1056        smp_mb__before_clear_bit();
1057        clear_bit(B_READING, &b->state);
1058        smp_mb__after_clear_bit();
1059
1060        wake_up_bit(&b->state, B_READING);
1061}
1062
1063/*
1064 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1065 * functions is similar except that dm_bufio_new doesn't read the
1066 * buffer from the disk (assuming that the caller overwrites all the data
1067 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1068 */
1069static void *new_read(struct dm_bufio_client *c, sector_t block,
1070                      enum new_flag nf, struct dm_buffer **bp)
1071{
1072        int need_submit;
1073        struct dm_buffer *b;
1074
1075        LIST_HEAD(write_list);
1076
1077        dm_bufio_lock(c);
1078        b = __bufio_new(c, block, nf, &need_submit, &write_list);
1079#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1080        if (b && b->hold_count == 1)
1081                buffer_record_stack(b);
1082#endif
1083        dm_bufio_unlock(c);
1084
1085        __flush_write_list(&write_list);
1086
1087        if (!b)
1088                return NULL;
1089
1090        if (need_submit)
1091                submit_io(b, READ, b->block, read_endio);
1092
1093        wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1094
1095        if (b->read_error) {
1096                int error = b->read_error;
1097
1098                dm_bufio_release(b);
1099
1100                return ERR_PTR(error);
1101        }
1102
1103        *bp = b;
1104
1105        return b->data;
1106}
1107
1108void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1109                   struct dm_buffer **bp)
1110{
1111        return new_read(c, block, NF_GET, bp);
1112}
1113EXPORT_SYMBOL_GPL(dm_bufio_get);
1114
1115void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1116                    struct dm_buffer **bp)
1117{
1118        BUG_ON(dm_bufio_in_request());
1119
1120        return new_read(c, block, NF_READ, bp);
1121}
1122EXPORT_SYMBOL_GPL(dm_bufio_read);
1123
1124void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1125                   struct dm_buffer **bp)
1126{
1127        BUG_ON(dm_bufio_in_request());
1128
1129        return new_read(c, block, NF_FRESH, bp);
1130}
1131EXPORT_SYMBOL_GPL(dm_bufio_new);
1132
1133void dm_bufio_prefetch(struct dm_bufio_client *c,
1134                       sector_t block, unsigned n_blocks)
1135{
1136        struct blk_plug plug;
1137
1138        LIST_HEAD(write_list);
1139
1140        BUG_ON(dm_bufio_in_request());
1141
1142        blk_start_plug(&plug);
1143        dm_bufio_lock(c);
1144
1145        for (; n_blocks--; block++) {
1146                int need_submit;
1147                struct dm_buffer *b;
1148                b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1149                                &write_list);
1150                if (unlikely(!list_empty(&write_list))) {
1151                        dm_bufio_unlock(c);
1152                        blk_finish_plug(&plug);
1153                        __flush_write_list(&write_list);
1154                        blk_start_plug(&plug);
1155                        dm_bufio_lock(c);
1156                }
1157                if (unlikely(b != NULL)) {
1158                        dm_bufio_unlock(c);
1159
1160                        if (need_submit)
1161                                submit_io(b, READ, b->block, read_endio);
1162                        dm_bufio_release(b);
1163
1164                        cond_resched();
1165
1166                        if (!n_blocks)
1167                                goto flush_plug;
1168                        dm_bufio_lock(c);
1169                }
1170        }
1171
1172        dm_bufio_unlock(c);
1173
1174flush_plug:
1175        blk_finish_plug(&plug);
1176}
1177EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1178
1179void dm_bufio_release(struct dm_buffer *b)
1180{
1181        struct dm_bufio_client *c = b->c;
1182
1183        dm_bufio_lock(c);
1184
1185        BUG_ON(!b->hold_count);
1186
1187        b->hold_count--;
1188        if (!b->hold_count) {
1189                wake_up(&c->free_buffer_wait);
1190
1191                /*
1192                 * If there were errors on the buffer, and the buffer is not
1193                 * to be written, free the buffer. There is no point in caching
1194                 * invalid buffer.
1195                 */
1196                if ((b->read_error || b->write_error) &&
1197                    !test_bit(B_READING, &b->state) &&
1198                    !test_bit(B_WRITING, &b->state) &&
1199                    !test_bit(B_DIRTY, &b->state)) {
1200                        __unlink_buffer(b);
1201                        __free_buffer_wake(b);
1202                }
1203        }
1204
1205        dm_bufio_unlock(c);
1206}
1207EXPORT_SYMBOL_GPL(dm_bufio_release);
1208
1209void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1210{
1211        struct dm_bufio_client *c = b->c;
1212
1213        dm_bufio_lock(c);
1214
1215        BUG_ON(test_bit(B_READING, &b->state));
1216
1217        if (!test_and_set_bit(B_DIRTY, &b->state))
1218                __relink_lru(b, LIST_DIRTY);
1219
1220        dm_bufio_unlock(c);
1221}
1222EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1223
1224void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1225{
1226        LIST_HEAD(write_list);
1227
1228        BUG_ON(dm_bufio_in_request());
1229
1230        dm_bufio_lock(c);
1231        __write_dirty_buffers_async(c, 0, &write_list);
1232        dm_bufio_unlock(c);
1233        __flush_write_list(&write_list);
1234}
1235EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1236
1237/*
1238 * For performance, it is essential that the buffers are written asynchronously
1239 * and simultaneously (so that the block layer can merge the writes) and then
1240 * waited upon.
1241 *
1242 * Finally, we flush hardware disk cache.
1243 */
1244int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1245{
1246        int a, f;
1247        unsigned long buffers_processed = 0;
1248        struct dm_buffer *b, *tmp;
1249
1250        LIST_HEAD(write_list);
1251
1252        dm_bufio_lock(c);
1253        __write_dirty_buffers_async(c, 0, &write_list);
1254        dm_bufio_unlock(c);
1255        __flush_write_list(&write_list);
1256        dm_bufio_lock(c);
1257
1258again:
1259        list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1260                int dropped_lock = 0;
1261
1262                if (buffers_processed < c->n_buffers[LIST_DIRTY])
1263                        buffers_processed++;
1264
1265                BUG_ON(test_bit(B_READING, &b->state));
1266
1267                if (test_bit(B_WRITING, &b->state)) {
1268                        if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1269                                dropped_lock = 1;
1270                                b->hold_count++;
1271                                dm_bufio_unlock(c);
1272                                wait_on_bit_io(&b->state, B_WRITING,
1273                                               TASK_UNINTERRUPTIBLE);
1274                                dm_bufio_lock(c);
1275                                b->hold_count--;
1276                        } else
1277                                wait_on_bit_io(&b->state, B_WRITING,
1278                                               TASK_UNINTERRUPTIBLE);
1279                }
1280
1281                if (!test_bit(B_DIRTY, &b->state) &&
1282                    !test_bit(B_WRITING, &b->state))
1283                        __relink_lru(b, LIST_CLEAN);
1284
1285                cond_resched();
1286
1287                /*
1288                 * If we dropped the lock, the list is no longer consistent,
1289                 * so we must restart the search.
1290                 *
1291                 * In the most common case, the buffer just processed is
1292                 * relinked to the clean list, so we won't loop scanning the
1293                 * same buffer again and again.
1294                 *
1295                 * This may livelock if there is another thread simultaneously
1296                 * dirtying buffers, so we count the number of buffers walked
1297                 * and if it exceeds the total number of buffers, it means that
1298                 * someone is doing some writes simultaneously with us.  In
1299                 * this case, stop, dropping the lock.
1300                 */
1301                if (dropped_lock)
1302                        goto again;
1303        }
1304        wake_up(&c->free_buffer_wait);
1305        dm_bufio_unlock(c);
1306
1307        a = xchg(&c->async_write_error, 0);
1308        f = dm_bufio_issue_flush(c);
1309        if (a)
1310                return a;
1311
1312        return f;
1313}
1314EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1315
1316/*
1317 * Use dm-io to send and empty barrier flush the device.
1318 */
1319int dm_bufio_issue_flush(struct dm_bufio_client *c)
1320{
1321        struct dm_io_request io_req = {
1322                .bi_rw = WRITE_FLUSH,
1323                .mem.type = DM_IO_KMEM,
1324                .mem.ptr.addr = NULL,
1325                .client = c->dm_io,
1326        };
1327        struct dm_io_region io_reg = {
1328                .bdev = c->bdev,
1329                .sector = 0,
1330                .count = 0,
1331        };
1332
1333        BUG_ON(dm_bufio_in_request());
1334
1335        return dm_io(&io_req, 1, &io_reg, NULL);
1336}
1337EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1338
1339/*
1340 * We first delete any other buffer that may be at that new location.
1341 *
1342 * Then, we write the buffer to the original location if it was dirty.
1343 *
1344 * Then, if we are the only one who is holding the buffer, relink the buffer
1345 * in the hash queue for the new location.
1346 *
1347 * If there was someone else holding the buffer, we write it to the new
1348 * location but not relink it, because that other user needs to have the buffer
1349 * at the same place.
1350 */
1351void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1352{
1353        struct dm_bufio_client *c = b->c;
1354        struct dm_buffer *new;
1355
1356        BUG_ON(dm_bufio_in_request());
1357
1358        dm_bufio_lock(c);
1359
1360retry:
1361        new = __find(c, new_block);
1362        if (new) {
1363                if (new->hold_count) {
1364                        __wait_for_free_buffer(c);
1365                        goto retry;
1366                }
1367
1368                /*
1369                 * FIXME: Is there any point waiting for a write that's going
1370                 * to be overwritten in a bit?
1371                 */
1372                __make_buffer_clean(new);
1373                __unlink_buffer(new);
1374                __free_buffer_wake(new);
1375        }
1376
1377        BUG_ON(!b->hold_count);
1378        BUG_ON(test_bit(B_READING, &b->state));
1379
1380        __write_dirty_buffer(b, NULL);
1381        if (b->hold_count == 1) {
1382                wait_on_bit_io(&b->state, B_WRITING,
1383                               TASK_UNINTERRUPTIBLE);
1384                set_bit(B_DIRTY, &b->state);
1385                __unlink_buffer(b);
1386                __link_buffer(b, new_block, LIST_DIRTY);
1387        } else {
1388                sector_t old_block;
1389                wait_on_bit_lock_io(&b->state, B_WRITING,
1390                                    TASK_UNINTERRUPTIBLE);
1391                /*
1392                 * Relink buffer to "new_block" so that write_callback
1393                 * sees "new_block" as a block number.
1394                 * After the write, link the buffer back to old_block.
1395                 * All this must be done in bufio lock, so that block number
1396                 * change isn't visible to other threads.
1397                 */
1398                old_block = b->block;
1399                __unlink_buffer(b);
1400                __link_buffer(b, new_block, b->list_mode);
1401                submit_io(b, WRITE, new_block, write_endio);
1402                wait_on_bit_io(&b->state, B_WRITING,
1403                               TASK_UNINTERRUPTIBLE);
1404                __unlink_buffer(b);
1405                __link_buffer(b, old_block, b->list_mode);
1406        }
1407
1408        dm_bufio_unlock(c);
1409        dm_bufio_release(b);
1410}
1411EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1412
1413/*
1414 * Free the given buffer.
1415 *
1416 * This is just a hint, if the buffer is in use or dirty, this function
1417 * does nothing.
1418 */
1419void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1420{
1421        struct dm_buffer *b;
1422
1423        dm_bufio_lock(c);
1424
1425        b = __find(c, block);
1426        if (b && likely(!b->hold_count) && likely(!b->state)) {
1427                __unlink_buffer(b);
1428                __free_buffer_wake(b);
1429        }
1430
1431        dm_bufio_unlock(c);
1432}
1433EXPORT_SYMBOL(dm_bufio_forget);
1434
1435void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1436{
1437        c->minimum_buffers = n;
1438}
1439EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1440
1441unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1442{
1443        return c->block_size;
1444}
1445EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1446
1447sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1448{
1449        return i_size_read(c->bdev->bd_inode) >>
1450                           (SECTOR_SHIFT + c->sectors_per_block_bits);
1451}
1452EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1453
1454sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1455{
1456        return b->block;
1457}
1458EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1459
1460void *dm_bufio_get_block_data(struct dm_buffer *b)
1461{
1462        return b->data;
1463}
1464EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1465
1466void *dm_bufio_get_aux_data(struct dm_buffer *b)
1467{
1468        return b + 1;
1469}
1470EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1471
1472struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1473{
1474        return b->c;
1475}
1476EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1477
1478static void drop_buffers(struct dm_bufio_client *c)
1479{
1480        struct dm_buffer *b;
1481        int i;
1482        bool warned = false;
1483
1484        BUG_ON(dm_bufio_in_request());
1485
1486        /*
1487         * An optimization so that the buffers are not written one-by-one.
1488         */
1489        dm_bufio_write_dirty_buffers_async(c);
1490
1491        dm_bufio_lock(c);
1492
1493        while ((b = __get_unclaimed_buffer(c)))
1494                __free_buffer_wake(b);
1495
1496        for (i = 0; i < LIST_SIZE; i++)
1497                list_for_each_entry(b, &c->lru[i], lru_list) {
1498                        WARN_ON(!warned);
1499                        warned = true;
1500                        DMERR("leaked buffer %llx, hold count %u, list %d",
1501                              (unsigned long long)b->block, b->hold_count, i);
1502#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1503                        print_stack_trace(&b->stack_trace, 1);
1504                        b->hold_count = 0; /* mark unclaimed to avoid BUG_ON below */
1505#endif
1506                }
1507
1508#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
1509        while ((b = __get_unclaimed_buffer(c)))
1510                __free_buffer_wake(b);
1511#endif
1512
1513        for (i = 0; i < LIST_SIZE; i++)
1514                BUG_ON(!list_empty(&c->lru[i]));
1515
1516        dm_bufio_unlock(c);
1517}
1518
1519/*
1520 * We may not be able to evict this buffer if IO pending or the client
1521 * is still using it.  Caller is expected to know buffer is too old.
1522 *
1523 * And if GFP_NOFS is used, we must not do any I/O because we hold
1524 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1525 * rerouted to different bufio client.
1526 */
1527static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1528{
1529        if (!(gfp & __GFP_FS)) {
1530                if (test_bit(B_READING, &b->state) ||
1531                    test_bit(B_WRITING, &b->state) ||
1532                    test_bit(B_DIRTY, &b->state))
1533                        return false;
1534        }
1535
1536        if (b->hold_count)
1537                return false;
1538
1539        __make_buffer_clean(b);
1540        __unlink_buffer(b);
1541        __free_buffer_wake(b);
1542
1543        return true;
1544}
1545
1546static unsigned get_retain_buffers(struct dm_bufio_client *c)
1547{
1548        unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1549        return retain_bytes / c->block_size;
1550}
1551
1552static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1553                   struct shrink_control *sc)
1554{
1555        int l;
1556        struct dm_buffer *b, *tmp;
1557        unsigned long freed = 0;
1558        unsigned long count = nr_to_scan;
1559        unsigned retain_target = get_retain_buffers(c);
1560
1561        for (l = 0; l < LIST_SIZE; l++) {
1562                list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1563                        if (__try_evict_buffer(b, sc->gfp_mask))
1564                                freed++;
1565                        if (!--nr_to_scan || ((count - freed) <= retain_target))
1566                                return;
1567                        cond_resched();
1568                }
1569        }
1570}
1571
1572static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
1573{
1574        struct dm_bufio_client *c =
1575            container_of(shrinker, struct dm_bufio_client, shrinker);
1576        unsigned long r;
1577        unsigned long nr_to_scan = sc->nr_to_scan;
1578
1579        if (sc->gfp_mask & __GFP_FS)
1580                dm_bufio_lock(c);
1581        else if (!dm_bufio_trylock(c))
1582                return !nr_to_scan ? 0 : -1;
1583
1584        if (nr_to_scan)
1585                __scan(c, nr_to_scan, sc);
1586
1587        r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1588        if (r > INT_MAX)
1589                r = INT_MAX;
1590
1591        dm_bufio_unlock(c);
1592
1593        return r;
1594}
1595
1596/*
1597 * Create the buffering interface
1598 */
1599struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1600                                               unsigned reserved_buffers, unsigned aux_size,
1601                                               void (*alloc_callback)(struct dm_buffer *),
1602                                               void (*write_callback)(struct dm_buffer *))
1603{
1604        int r;
1605        struct dm_bufio_client *c;
1606        unsigned i;
1607
1608        BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1609               (block_size & (block_size - 1)));
1610
1611        c = kzalloc(sizeof(*c), GFP_KERNEL);
1612        if (!c) {
1613                r = -ENOMEM;
1614                goto bad_client;
1615        }
1616        c->buffer_tree = RB_ROOT;
1617
1618        c->bdev = bdev;
1619        c->block_size = block_size;
1620        c->sectors_per_block_bits = __ffs(block_size) - SECTOR_SHIFT;
1621        c->pages_per_block_bits = (__ffs(block_size) >= PAGE_SHIFT) ?
1622                                  __ffs(block_size) - PAGE_SHIFT : 0;
1623        c->blocks_per_page_bits = (__ffs(block_size) < PAGE_SHIFT ?
1624                                  PAGE_SHIFT - __ffs(block_size) : 0);
1625
1626        c->aux_size = aux_size;
1627        c->alloc_callback = alloc_callback;
1628        c->write_callback = write_callback;
1629
1630        for (i = 0; i < LIST_SIZE; i++) {
1631                INIT_LIST_HEAD(&c->lru[i]);
1632                c->n_buffers[i] = 0;
1633        }
1634
1635        mutex_init(&c->lock);
1636        INIT_LIST_HEAD(&c->reserved_buffers);
1637        c->need_reserved_buffers = reserved_buffers;
1638
1639        c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1640
1641        init_waitqueue_head(&c->free_buffer_wait);
1642        c->async_write_error = 0;
1643
1644        c->dm_io = dm_io_client_create();
1645        if (IS_ERR(c->dm_io)) {
1646                r = PTR_ERR(c->dm_io);
1647                goto bad_dm_io;
1648        }
1649
1650        mutex_lock(&dm_bufio_clients_lock);
1651        if (c->blocks_per_page_bits) {
1652                if (!DM_BUFIO_CACHE_NAME(c)) {
1653                        DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1654                        if (!DM_BUFIO_CACHE_NAME(c)) {
1655                                r = -ENOMEM;
1656                                mutex_unlock(&dm_bufio_clients_lock);
1657                                goto bad_cache;
1658                        }
1659                }
1660
1661                if (!DM_BUFIO_CACHE(c)) {
1662                        DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1663                                                              c->block_size,
1664                                                              c->block_size, 0, NULL);
1665                        if (!DM_BUFIO_CACHE(c)) {
1666                                r = -ENOMEM;
1667                                mutex_unlock(&dm_bufio_clients_lock);
1668                                goto bad_cache;
1669                        }
1670                }
1671        }
1672        mutex_unlock(&dm_bufio_clients_lock);
1673
1674        while (c->need_reserved_buffers) {
1675                struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1676
1677                if (!b) {
1678                        r = -ENOMEM;
1679                        goto bad_buffer;
1680                }
1681                __free_buffer_wake(b);
1682        }
1683
1684        mutex_lock(&dm_bufio_clients_lock);
1685        dm_bufio_client_count++;
1686        list_add(&c->client_list, &dm_bufio_all_clients);
1687        __cache_size_refresh();
1688        mutex_unlock(&dm_bufio_clients_lock);
1689
1690        c->shrinker.shrink = shrink;
1691        c->shrinker.seeks = 1;
1692        c->shrinker.batch = 0;
1693        register_shrinker(&c->shrinker);
1694
1695        return c;
1696
1697bad_buffer:
1698bad_cache:
1699        while (!list_empty(&c->reserved_buffers)) {
1700                struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1701                                                 struct dm_buffer, lru_list);
1702                list_del(&b->lru_list);
1703                free_buffer(b);
1704        }
1705        dm_io_client_destroy(c->dm_io);
1706bad_dm_io:
1707        kfree(c);
1708bad_client:
1709        return ERR_PTR(r);
1710}
1711EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1712
1713/*
1714 * Free the buffering interface.
1715 * It is required that there are no references on any buffers.
1716 */
1717void dm_bufio_client_destroy(struct dm_bufio_client *c)
1718{
1719        unsigned i;
1720
1721        drop_buffers(c);
1722
1723        unregister_shrinker(&c->shrinker);
1724
1725        mutex_lock(&dm_bufio_clients_lock);
1726
1727        list_del(&c->client_list);
1728        dm_bufio_client_count--;
1729        __cache_size_refresh();
1730
1731        mutex_unlock(&dm_bufio_clients_lock);
1732
1733        BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1734        BUG_ON(c->need_reserved_buffers);
1735
1736        while (!list_empty(&c->reserved_buffers)) {
1737                struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1738                                                 struct dm_buffer, lru_list);
1739                list_del(&b->lru_list);
1740                free_buffer(b);
1741        }
1742
1743        for (i = 0; i < LIST_SIZE; i++)
1744                if (c->n_buffers[i])
1745                        DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1746
1747        for (i = 0; i < LIST_SIZE; i++)
1748                BUG_ON(c->n_buffers[i]);
1749
1750        dm_io_client_destroy(c->dm_io);
1751        kfree(c);
1752}
1753EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1754
1755static unsigned get_max_age_hz(void)
1756{
1757        unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1758
1759        if (max_age > UINT_MAX / HZ)
1760                max_age = UINT_MAX / HZ;
1761
1762        return max_age * HZ;
1763}
1764
1765static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1766{
1767        return time_after_eq(jiffies, b->last_accessed + age_hz);
1768}
1769
1770static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1771{
1772        struct dm_buffer *b, *tmp;
1773        unsigned retain_target = get_retain_buffers(c);
1774        unsigned count;
1775
1776        dm_bufio_lock(c);
1777
1778        count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1779        list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1780                if (count <= retain_target)
1781                        break;
1782
1783                if (!older_than(b, age_hz))
1784                        break;
1785
1786                if (__try_evict_buffer(b, 0))
1787                        count--;
1788
1789                cond_resched();
1790        }
1791
1792        dm_bufio_unlock(c);
1793}
1794
1795static void cleanup_old_buffers(void)
1796{
1797        unsigned long max_age_hz = get_max_age_hz();
1798        struct dm_bufio_client *c;
1799
1800        mutex_lock(&dm_bufio_clients_lock);
1801
1802        list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1803                __evict_old_buffers(c, max_age_hz);
1804
1805        mutex_unlock(&dm_bufio_clients_lock);
1806}
1807
1808static struct workqueue_struct *dm_bufio_wq;
1809static struct delayed_work dm_bufio_work;
1810
1811static void work_fn(struct work_struct *w)
1812{
1813        cleanup_old_buffers();
1814
1815        queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1816                           DM_BUFIO_WORK_TIMER_SECS * HZ);
1817}
1818
1819/*----------------------------------------------------------------
1820 * Module setup
1821 *--------------------------------------------------------------*/
1822
1823/*
1824 * This is called only once for the whole dm_bufio module.
1825 * It initializes memory limit.
1826 */
1827static int __init dm_bufio_init(void)
1828{
1829        __u64 mem;
1830
1831        dm_bufio_allocated_kmem_cache = 0;
1832        dm_bufio_allocated_get_free_pages = 0;
1833        dm_bufio_allocated_vmalloc = 0;
1834        dm_bufio_current_allocated = 0;
1835
1836        memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1837        memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1838
1839        mem = (__u64)((totalram_pages - totalhigh_pages) *
1840                      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1841
1842        if (mem > ULONG_MAX)
1843                mem = ULONG_MAX;
1844
1845#ifdef CONFIG_MMU
1846        /*
1847         * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1848         * in fs/proc/internal.h
1849         */
1850        if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1851                mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1852#endif
1853
1854        dm_bufio_default_cache_size = mem;
1855
1856        mutex_lock(&dm_bufio_clients_lock);
1857        __cache_size_refresh();
1858        mutex_unlock(&dm_bufio_clients_lock);
1859
1860        dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1861        if (!dm_bufio_wq)
1862                return -ENOMEM;
1863
1864        INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1865        queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1866                           DM_BUFIO_WORK_TIMER_SECS * HZ);
1867
1868        return 0;
1869}
1870
1871/*
1872 * This is called once when unloading the dm_bufio module.
1873 */
1874static void __exit dm_bufio_exit(void)
1875{
1876        int bug = 0;
1877        int i;
1878
1879        cancel_delayed_work_sync(&dm_bufio_work);
1880        destroy_workqueue(dm_bufio_wq);
1881
1882        for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++)
1883                kmem_cache_destroy(dm_bufio_caches[i]);
1884
1885        for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1886                kfree(dm_bufio_cache_names[i]);
1887
1888        if (dm_bufio_client_count) {
1889                DMCRIT("%s: dm_bufio_client_count leaked: %d",
1890                        __func__, dm_bufio_client_count);
1891                bug = 1;
1892        }
1893
1894        if (dm_bufio_current_allocated) {
1895                DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1896                        __func__, dm_bufio_current_allocated);
1897                bug = 1;
1898        }
1899
1900        if (dm_bufio_allocated_get_free_pages) {
1901                DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1902                       __func__, dm_bufio_allocated_get_free_pages);
1903                bug = 1;
1904        }
1905
1906        if (dm_bufio_allocated_vmalloc) {
1907                DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1908                       __func__, dm_bufio_allocated_vmalloc);
1909                bug = 1;
1910        }
1911
1912        BUG_ON(bug);
1913}
1914
1915module_init(dm_bufio_init)
1916module_exit(dm_bufio_exit)
1917
1918module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1919MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1920
1921module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1922MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1923
1924module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1925MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1926
1927module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1928MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1929
1930module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1931MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1932
1933module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1934MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1935
1936module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1937MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1938
1939module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1940MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1941
1942MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1943MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1944MODULE_LICENSE("GPL");
1945