linux/drivers/mtd/nand/nandsim.c
<<
>>
Prefs
   1/*
   2 * NAND flash simulator.
   3 *
   4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
   5 *
   6 * Copyright (C) 2004 Nokia Corporation
   7 *
   8 * Note: NS means "NAND Simulator".
   9 * Note: Input means input TO flash chip, output means output FROM chip.
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2, or (at your option) any later
  14 * version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
  19 * Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/types.h>
  28#include <linux/module.h>
  29#include <linux/moduleparam.h>
  30#include <linux/vmalloc.h>
  31#include <linux/math64.h>
  32#include <linux/slab.h>
  33#include <linux/errno.h>
  34#include <linux/string.h>
  35#include <linux/mtd/mtd.h>
  36#include <linux/mtd/nand.h>
  37#include <linux/mtd/nand_bch.h>
  38#include <linux/mtd/partitions.h>
  39#include <linux/delay.h>
  40#include <linux/list.h>
  41#include <linux/random.h>
  42#include <linux/sched.h>
  43#include <linux/fs.h>
  44#include <linux/pagemap.h>
  45#include <linux/seq_file.h>
  46#include <linux/debugfs.h>
  47
  48/* Default simulator parameters values */
  49#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
  50    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
  51    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
  52    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
  53#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
  54#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
  55#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
  56#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
  57#endif
  58
  59#ifndef CONFIG_NANDSIM_ACCESS_DELAY
  60#define CONFIG_NANDSIM_ACCESS_DELAY 25
  61#endif
  62#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
  63#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
  64#endif
  65#ifndef CONFIG_NANDSIM_ERASE_DELAY
  66#define CONFIG_NANDSIM_ERASE_DELAY 2
  67#endif
  68#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
  69#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
  70#endif
  71#ifndef CONFIG_NANDSIM_INPUT_CYCLE
  72#define CONFIG_NANDSIM_INPUT_CYCLE  50
  73#endif
  74#ifndef CONFIG_NANDSIM_BUS_WIDTH
  75#define CONFIG_NANDSIM_BUS_WIDTH  8
  76#endif
  77#ifndef CONFIG_NANDSIM_DO_DELAYS
  78#define CONFIG_NANDSIM_DO_DELAYS  0
  79#endif
  80#ifndef CONFIG_NANDSIM_LOG
  81#define CONFIG_NANDSIM_LOG        0
  82#endif
  83#ifndef CONFIG_NANDSIM_DBG
  84#define CONFIG_NANDSIM_DBG        0
  85#endif
  86#ifndef CONFIG_NANDSIM_MAX_PARTS
  87#define CONFIG_NANDSIM_MAX_PARTS  32
  88#endif
  89
  90static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
  91static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
  92static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
  93static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
  94static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
  95static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
  96static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
  97static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
  98static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
  99static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
 100static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
 101static uint log            = CONFIG_NANDSIM_LOG;
 102static uint dbg            = CONFIG_NANDSIM_DBG;
 103static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
 104static unsigned int parts_num;
 105static char *badblocks = NULL;
 106static char *weakblocks = NULL;
 107static char *weakpages = NULL;
 108static unsigned int bitflips = 0;
 109static char *gravepages = NULL;
 110static unsigned int overridesize = 0;
 111static char *cache_file = NULL;
 112static unsigned int bbt;
 113static unsigned int bch;
 114
 115module_param(first_id_byte,  uint, 0400);
 116module_param(second_id_byte, uint, 0400);
 117module_param(third_id_byte,  uint, 0400);
 118module_param(fourth_id_byte, uint, 0400);
 119module_param(access_delay,   uint, 0400);
 120module_param(programm_delay, uint, 0400);
 121module_param(erase_delay,    uint, 0400);
 122module_param(output_cycle,   uint, 0400);
 123module_param(input_cycle,    uint, 0400);
 124module_param(bus_width,      uint, 0400);
 125module_param(do_delays,      uint, 0400);
 126module_param(log,            uint, 0400);
 127module_param(dbg,            uint, 0400);
 128module_param_array(parts, ulong, &parts_num, 0400);
 129module_param(badblocks,      charp, 0400);
 130module_param(weakblocks,     charp, 0400);
 131module_param(weakpages,      charp, 0400);
 132module_param(bitflips,       uint, 0400);
 133module_param(gravepages,     charp, 0400);
 134module_param(overridesize,   uint, 0400);
 135module_param(cache_file,     charp, 0400);
 136module_param(bbt,            uint, 0400);
 137module_param(bch,            uint, 0400);
 138
 139MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
 140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
 141MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
 142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
 143MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 145MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 146MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
 147MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
 148MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 149MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 150MODULE_PARM_DESC(log,            "Perform logging if not zero");
 151MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 152MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 153/* Page and erase block positions for the following parameters are independent of any partitions */
 154MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 155MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 156                                 " separated by commas e.g. 113:2 means eb 113"
 157                                 " can be erased only twice before failing");
 158MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 159                                 " separated by commas e.g. 1401:2 means page 1401"
 160                                 " can be written only twice before failing");
 161MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 162MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 163                                 " separated by commas e.g. 1401:2 means page 1401"
 164                                 " can be read only twice before failing");
 165MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 166                                 "The size is specified in erase blocks and as the exponent of a power of two"
 167                                 " e.g. 5 means a size of 32 erase blocks");
 168MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 169MODULE_PARM_DESC(bbt,            "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
 170MODULE_PARM_DESC(bch,            "Enable BCH ecc and set how many bits should "
 171                                 "be correctable in 512-byte blocks");
 172
 173/* The largest possible page size */
 174#define NS_LARGEST_PAGE_SIZE    4096
 175
 176/* The prefix for simulator output */
 177#define NS_OUTPUT_PREFIX "[nandsim]"
 178
 179/* Simulator's output macros (logging, debugging, warning, error) */
 180#define NS_LOG(args...) \
 181        do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 182#define NS_DBG(args...) \
 183        do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 184#define NS_WARN(args...) \
 185        do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 186#define NS_ERR(args...) \
 187        do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 188#define NS_INFO(args...) \
 189        do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 190
 191/* Busy-wait delay macros (microseconds, milliseconds) */
 192#define NS_UDELAY(us) \
 193        do { if (do_delays) udelay(us); } while(0)
 194#define NS_MDELAY(us) \
 195        do { if (do_delays) mdelay(us); } while(0)
 196
 197/* Is the nandsim structure initialized ? */
 198#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 199
 200/* Good operation completion status */
 201#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 202
 203/* Operation failed completion status */
 204#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 205
 206/* Calculate the page offset in flash RAM image by (row, column) address */
 207#define NS_RAW_OFFSET(ns) \
 208        (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
 209
 210/* Calculate the OOB offset in flash RAM image by (row, column) address */
 211#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 212
 213/* After a command is input, the simulator goes to one of the following states */
 214#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 215#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 216#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 217#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
 218#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 219#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 220#define STATE_CMD_STATUS       0x00000007 /* read status */
 221#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
 222#define STATE_CMD_READID       0x0000000A /* read ID */
 223#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 224#define STATE_CMD_RESET        0x0000000C /* reset */
 225#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 226#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 227#define STATE_CMD_MASK         0x0000000F /* command states mask */
 228
 229/* After an address is input, the simulator goes to one of these states */
 230#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 231#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 232#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 233#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 234#define STATE_ADDR_MASK        0x00000070 /* address states mask */
 235
 236/* During data input/output the simulator is in these states */
 237#define STATE_DATAIN           0x00000100 /* waiting for data input */
 238#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 239
 240#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 241#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 242#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 243#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
 244#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 245
 246/* Previous operation is done, ready to accept new requests */
 247#define STATE_READY            0x00000000
 248
 249/* This state is used to mark that the next state isn't known yet */
 250#define STATE_UNKNOWN          0x10000000
 251
 252/* Simulator's actions bit masks */
 253#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 254#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
 255#define ACTION_SECERASE  0x00300000 /* erase sector */
 256#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 257#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 258#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 259#define ACTION_MASK      0x00700000 /* action mask */
 260
 261#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 262#define NS_OPER_STATES   6  /* Maximum number of states in operation */
 263
 264#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 265#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 266#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 267#define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
 268#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 269#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
 270#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
 271#define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
 272
 273/* Remove action bits from state */
 274#define NS_STATE(x) ((x) & ~ACTION_MASK)
 275
 276/*
 277 * Maximum previous states which need to be saved. Currently saving is
 278 * only needed for page program operation with preceded read command
 279 * (which is only valid for 512-byte pages).
 280 */
 281#define NS_MAX_PREVSTATES 1
 282
 283/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 284#define NS_MAX_HELD_PAGES 16
 285
 286struct nandsim_debug_info {
 287        struct dentry *dfs_root;
 288        struct dentry *dfs_wear_report;
 289};
 290
 291/*
 292 * A union to represent flash memory contents and flash buffer.
 293 */
 294union ns_mem {
 295        u_char *byte;    /* for byte access */
 296        uint16_t *word;  /* for 16-bit word access */
 297};
 298
 299/*
 300 * The structure which describes all the internal simulator data.
 301 */
 302struct nandsim {
 303        struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
 304        unsigned int nbparts;
 305
 306        uint busw;              /* flash chip bus width (8 or 16) */
 307        u_char ids[4];          /* chip's ID bytes */
 308        uint32_t options;       /* chip's characteristic bits */
 309        uint32_t state;         /* current chip state */
 310        uint32_t nxstate;       /* next expected state */
 311
 312        uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 313        uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 314        uint16_t npstates;      /* number of previous states saved */
 315        uint16_t stateidx;      /* current state index */
 316
 317        /* The simulated NAND flash pages array */
 318        union ns_mem *pages;
 319
 320        /* Slab allocator for nand pages */
 321        struct kmem_cache *nand_pages_slab;
 322
 323        /* Internal buffer of page + OOB size bytes */
 324        union ns_mem buf;
 325
 326        /* NAND flash "geometry" */
 327        struct {
 328                uint64_t totsz;     /* total flash size, bytes */
 329                uint32_t secsz;     /* flash sector (erase block) size, bytes */
 330                uint pgsz;          /* NAND flash page size, bytes */
 331                uint oobsz;         /* page OOB area size, bytes */
 332                uint64_t totszoob;  /* total flash size including OOB, bytes */
 333                uint pgszoob;       /* page size including OOB , bytes*/
 334                uint secszoob;      /* sector size including OOB, bytes */
 335                uint pgnum;         /* total number of pages */
 336                uint pgsec;         /* number of pages per sector */
 337                uint secshift;      /* bits number in sector size */
 338                uint pgshift;       /* bits number in page size */
 339                uint oobshift;      /* bits number in OOB size */
 340                uint pgaddrbytes;   /* bytes per page address */
 341                uint secaddrbytes;  /* bytes per sector address */
 342                uint idbytes;       /* the number ID bytes that this chip outputs */
 343        } geom;
 344
 345        /* NAND flash internal registers */
 346        struct {
 347                unsigned command; /* the command register */
 348                u_char   status;  /* the status register */
 349                uint     row;     /* the page number */
 350                uint     column;  /* the offset within page */
 351                uint     count;   /* internal counter */
 352                uint     num;     /* number of bytes which must be processed */
 353                uint     off;     /* fixed page offset */
 354        } regs;
 355
 356        /* NAND flash lines state */
 357        struct {
 358                int ce;  /* chip Enable */
 359                int cle; /* command Latch Enable */
 360                int ale; /* address Latch Enable */
 361                int wp;  /* write Protect */
 362        } lines;
 363
 364        /* Fields needed when using a cache file */
 365        struct file *cfile; /* Open file */
 366        unsigned char *pages_written; /* Which pages have been written */
 367        void *file_buf;
 368        struct page *held_pages[NS_MAX_HELD_PAGES];
 369        int held_cnt;
 370
 371        struct nandsim_debug_info dbg;
 372};
 373
 374/*
 375 * Operations array. To perform any operation the simulator must pass
 376 * through the correspondent states chain.
 377 */
 378static struct nandsim_operations {
 379        uint32_t reqopts;  /* options which are required to perform the operation */
 380        uint32_t states[NS_OPER_STATES]; /* operation's states */
 381} ops[NS_OPER_NUM] = {
 382        /* Read page + OOB from the beginning */
 383        {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 384                        STATE_DATAOUT, STATE_READY}},
 385        /* Read page + OOB from the second half */
 386        {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 387                        STATE_DATAOUT, STATE_READY}},
 388        /* Read OOB */
 389        {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 390                        STATE_DATAOUT, STATE_READY}},
 391        /* Program page starting from the beginning */
 392        {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 393                        STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 394        /* Program page starting from the beginning */
 395        {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 396                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 397        /* Program page starting from the second half */
 398        {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 399                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 400        /* Program OOB */
 401        {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 402                              STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 403        /* Erase sector */
 404        {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 405        /* Read status */
 406        {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 407        /* Read ID */
 408        {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 409        /* Large page devices read page */
 410        {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 411                               STATE_DATAOUT, STATE_READY}},
 412        /* Large page devices random page read */
 413        {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 414                               STATE_DATAOUT, STATE_READY}},
 415};
 416
 417struct weak_block {
 418        struct list_head list;
 419        unsigned int erase_block_no;
 420        unsigned int max_erases;
 421        unsigned int erases_done;
 422};
 423
 424static LIST_HEAD(weak_blocks);
 425
 426struct weak_page {
 427        struct list_head list;
 428        unsigned int page_no;
 429        unsigned int max_writes;
 430        unsigned int writes_done;
 431};
 432
 433static LIST_HEAD(weak_pages);
 434
 435struct grave_page {
 436        struct list_head list;
 437        unsigned int page_no;
 438        unsigned int max_reads;
 439        unsigned int reads_done;
 440};
 441
 442static LIST_HEAD(grave_pages);
 443
 444static unsigned long *erase_block_wear = NULL;
 445static unsigned int wear_eb_count = 0;
 446static unsigned long total_wear = 0;
 447
 448/* MTD structure for NAND controller */
 449static struct mtd_info *nsmtd;
 450
 451static int nandsim_debugfs_show(struct seq_file *m, void *private)
 452{
 453        unsigned long wmin = -1, wmax = 0, avg;
 454        unsigned long deciles[10], decile_max[10], tot = 0;
 455        unsigned int i;
 456
 457        /* Calc wear stats */
 458        for (i = 0; i < wear_eb_count; ++i) {
 459                unsigned long wear = erase_block_wear[i];
 460                if (wear < wmin)
 461                        wmin = wear;
 462                if (wear > wmax)
 463                        wmax = wear;
 464                tot += wear;
 465        }
 466
 467        for (i = 0; i < 9; ++i) {
 468                deciles[i] = 0;
 469                decile_max[i] = (wmax * (i + 1) + 5) / 10;
 470        }
 471        deciles[9] = 0;
 472        decile_max[9] = wmax;
 473        for (i = 0; i < wear_eb_count; ++i) {
 474                int d;
 475                unsigned long wear = erase_block_wear[i];
 476                for (d = 0; d < 10; ++d)
 477                        if (wear <= decile_max[d]) {
 478                                deciles[d] += 1;
 479                                break;
 480                        }
 481        }
 482        avg = tot / wear_eb_count;
 483
 484        /* Output wear report */
 485        seq_printf(m, "Total numbers of erases:  %lu\n", tot);
 486        seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
 487        seq_printf(m, "Average number of erases: %lu\n", avg);
 488        seq_printf(m, "Maximum number of erases: %lu\n", wmax);
 489        seq_printf(m, "Minimum number of erases: %lu\n", wmin);
 490        for (i = 0; i < 10; ++i) {
 491                unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 492                if (from > decile_max[i])
 493                        continue;
 494                seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
 495                        from,
 496                        decile_max[i],
 497                        deciles[i]);
 498        }
 499
 500        return 0;
 501}
 502
 503static int nandsim_debugfs_open(struct inode *inode, struct file *file)
 504{
 505        return single_open(file, nandsim_debugfs_show, inode->i_private);
 506}
 507
 508static const struct file_operations dfs_fops = {
 509        .open           = nandsim_debugfs_open,
 510        .read           = seq_read,
 511        .llseek         = seq_lseek,
 512        .release        = single_release,
 513};
 514
 515/**
 516 * nandsim_debugfs_create - initialize debugfs
 517 * @dev: nandsim device description object
 518 *
 519 * This function creates all debugfs files for UBI device @ubi. Returns zero in
 520 * case of success and a negative error code in case of failure.
 521 */
 522static int nandsim_debugfs_create(struct nandsim *dev)
 523{
 524        struct nandsim_debug_info *dbg = &dev->dbg;
 525        struct dentry *dent;
 526        int err;
 527
 528        if (!IS_ENABLED(CONFIG_DEBUG_FS))
 529                return 0;
 530
 531        dent = debugfs_create_dir("nandsim", NULL);
 532        if (IS_ERR_OR_NULL(dent)) {
 533                int err = dent ? -ENODEV : PTR_ERR(dent);
 534
 535                NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
 536                        err);
 537                return err;
 538        }
 539        dbg->dfs_root = dent;
 540
 541        dent = debugfs_create_file("wear_report", S_IRUSR,
 542                                   dbg->dfs_root, dev, &dfs_fops);
 543        if (IS_ERR_OR_NULL(dent))
 544                goto out_remove;
 545        dbg->dfs_wear_report = dent;
 546
 547        return 0;
 548
 549out_remove:
 550        debugfs_remove_recursive(dbg->dfs_root);
 551        err = dent ? PTR_ERR(dent) : -ENODEV;
 552        return err;
 553}
 554
 555/**
 556 * nandsim_debugfs_remove - destroy all debugfs files
 557 */
 558static void nandsim_debugfs_remove(struct nandsim *ns)
 559{
 560        if (IS_ENABLED(CONFIG_DEBUG_FS))
 561                debugfs_remove_recursive(ns->dbg.dfs_root);
 562}
 563
 564/*
 565 * Allocate array of page pointers, create slab allocation for an array
 566 * and initialize the array by NULL pointers.
 567 *
 568 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 569 */
 570static int alloc_device(struct nandsim *ns)
 571{
 572        struct file *cfile;
 573        int i, err;
 574
 575        if (cache_file) {
 576                cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 577                if (IS_ERR(cfile))
 578                        return PTR_ERR(cfile);
 579                if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
 580                        NS_ERR("alloc_device: cache file not readable\n");
 581                        err = -EINVAL;
 582                        goto err_close;
 583                }
 584                if (!cfile->f_op->write && !cfile->f_op->aio_write) {
 585                        NS_ERR("alloc_device: cache file not writeable\n");
 586                        err = -EINVAL;
 587                        goto err_close;
 588                }
 589                ns->pages_written = vzalloc(ns->geom.pgnum);
 590                if (!ns->pages_written) {
 591                        NS_ERR("alloc_device: unable to allocate pages written array\n");
 592                        err = -ENOMEM;
 593                        goto err_close;
 594                }
 595                ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 596                if (!ns->file_buf) {
 597                        NS_ERR("alloc_device: unable to allocate file buf\n");
 598                        err = -ENOMEM;
 599                        goto err_free;
 600                }
 601                ns->cfile = cfile;
 602                return 0;
 603        }
 604
 605        ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 606        if (!ns->pages) {
 607                NS_ERR("alloc_device: unable to allocate page array\n");
 608                return -ENOMEM;
 609        }
 610        for (i = 0; i < ns->geom.pgnum; i++) {
 611                ns->pages[i].byte = NULL;
 612        }
 613        ns->nand_pages_slab = kmem_cache_create("nandsim",
 614                                                ns->geom.pgszoob, 0, 0, NULL);
 615        if (!ns->nand_pages_slab) {
 616                NS_ERR("cache_create: unable to create kmem_cache\n");
 617                return -ENOMEM;
 618        }
 619
 620        return 0;
 621
 622err_free:
 623        vfree(ns->pages_written);
 624err_close:
 625        filp_close(cfile, NULL);
 626        return err;
 627}
 628
 629/*
 630 * Free any allocated pages, and free the array of page pointers.
 631 */
 632static void free_device(struct nandsim *ns)
 633{
 634        int i;
 635
 636        if (ns->cfile) {
 637                kfree(ns->file_buf);
 638                vfree(ns->pages_written);
 639                filp_close(ns->cfile, NULL);
 640                return;
 641        }
 642
 643        if (ns->pages) {
 644                for (i = 0; i < ns->geom.pgnum; i++) {
 645                        if (ns->pages[i].byte)
 646                                kmem_cache_free(ns->nand_pages_slab,
 647                                                ns->pages[i].byte);
 648                }
 649                kmem_cache_destroy(ns->nand_pages_slab);
 650                vfree(ns->pages);
 651        }
 652}
 653
 654static char *get_partition_name(int i)
 655{
 656        char buf[64];
 657        sprintf(buf, "NAND simulator partition %d", i);
 658        return kstrdup(buf, GFP_KERNEL);
 659}
 660
 661/*
 662 * Initialize the nandsim structure.
 663 *
 664 * RETURNS: 0 if success, -ERRNO if failure.
 665 */
 666static int init_nandsim(struct mtd_info *mtd)
 667{
 668        struct nand_chip *chip = mtd->priv;
 669        struct nandsim   *ns   = chip->priv;
 670        int i, ret = 0;
 671        uint64_t remains;
 672        uint64_t next_offset;
 673
 674        if (NS_IS_INITIALIZED(ns)) {
 675                NS_ERR("init_nandsim: nandsim is already initialized\n");
 676                return -EIO;
 677        }
 678
 679        /* Force mtd to not do delays */
 680        chip->chip_delay = 0;
 681
 682        /* Initialize the NAND flash parameters */
 683        ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 684        ns->geom.totsz    = mtd->size;
 685        ns->geom.pgsz     = mtd->writesize;
 686        ns->geom.oobsz    = mtd->oobsize;
 687        ns->geom.secsz    = mtd->erasesize;
 688        ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 689        ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
 690        ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 691        ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 692        ns->geom.pgshift  = chip->page_shift;
 693        ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
 694        ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 695        ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 696        ns->options = 0;
 697
 698        if (ns->geom.pgsz == 512) {
 699                ns->options |= OPT_PAGE512;
 700                if (ns->busw == 8)
 701                        ns->options |= OPT_PAGE512_8BIT;
 702        } else if (ns->geom.pgsz == 2048) {
 703                ns->options |= OPT_PAGE2048;
 704        } else if (ns->geom.pgsz == 4096) {
 705                ns->options |= OPT_PAGE4096;
 706        } else {
 707                NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 708                return -EIO;
 709        }
 710
 711        if (ns->options & OPT_SMALLPAGE) {
 712                if (ns->geom.totsz <= (32 << 20)) {
 713                        ns->geom.pgaddrbytes  = 3;
 714                        ns->geom.secaddrbytes = 2;
 715                } else {
 716                        ns->geom.pgaddrbytes  = 4;
 717                        ns->geom.secaddrbytes = 3;
 718                }
 719        } else {
 720                if (ns->geom.totsz <= (128 << 20)) {
 721                        ns->geom.pgaddrbytes  = 4;
 722                        ns->geom.secaddrbytes = 2;
 723                } else {
 724                        ns->geom.pgaddrbytes  = 5;
 725                        ns->geom.secaddrbytes = 3;
 726                }
 727        }
 728
 729        /* Fill the partition_info structure */
 730        if (parts_num > ARRAY_SIZE(ns->partitions)) {
 731                NS_ERR("too many partitions.\n");
 732                ret = -EINVAL;
 733                goto error;
 734        }
 735        remains = ns->geom.totsz;
 736        next_offset = 0;
 737        for (i = 0; i < parts_num; ++i) {
 738                uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 739
 740                if (!part_sz || part_sz > remains) {
 741                        NS_ERR("bad partition size.\n");
 742                        ret = -EINVAL;
 743                        goto error;
 744                }
 745                ns->partitions[i].name   = get_partition_name(i);
 746                ns->partitions[i].offset = next_offset;
 747                ns->partitions[i].size   = part_sz;
 748                next_offset += ns->partitions[i].size;
 749                remains -= ns->partitions[i].size;
 750        }
 751        ns->nbparts = parts_num;
 752        if (remains) {
 753                if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 754                        NS_ERR("too many partitions.\n");
 755                        ret = -EINVAL;
 756                        goto error;
 757                }
 758                ns->partitions[i].name   = get_partition_name(i);
 759                ns->partitions[i].offset = next_offset;
 760                ns->partitions[i].size   = remains;
 761                ns->nbparts += 1;
 762        }
 763
 764        /* Detect how many ID bytes the NAND chip outputs */
 765        for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 766                if (second_id_byte != nand_flash_ids[i].dev_id)
 767                        continue;
 768        }
 769
 770        if (ns->busw == 16)
 771                NS_WARN("16-bit flashes support wasn't tested\n");
 772
 773        printk("flash size: %llu MiB\n",
 774                        (unsigned long long)ns->geom.totsz >> 20);
 775        printk("page size: %u bytes\n",         ns->geom.pgsz);
 776        printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 777        printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 778        printk("pages number: %u\n",            ns->geom.pgnum);
 779        printk("pages per sector: %u\n",        ns->geom.pgsec);
 780        printk("bus width: %u\n",               ns->busw);
 781        printk("bits in sector size: %u\n",     ns->geom.secshift);
 782        printk("bits in page size: %u\n",       ns->geom.pgshift);
 783        printk("bits in OOB size: %u\n",        ns->geom.oobshift);
 784        printk("flash size with OOB: %llu KiB\n",
 785                        (unsigned long long)ns->geom.totszoob >> 10);
 786        printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 787        printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 788        printk("options: %#x\n",                ns->options);
 789
 790        if ((ret = alloc_device(ns)) != 0)
 791                goto error;
 792
 793        /* Allocate / initialize the internal buffer */
 794        ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 795        if (!ns->buf.byte) {
 796                NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 797                        ns->geom.pgszoob);
 798                ret = -ENOMEM;
 799                goto error;
 800        }
 801        memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 802
 803        return 0;
 804
 805error:
 806        free_device(ns);
 807
 808        return ret;
 809}
 810
 811/*
 812 * Free the nandsim structure.
 813 */
 814static void free_nandsim(struct nandsim *ns)
 815{
 816        kfree(ns->buf.byte);
 817        free_device(ns);
 818
 819        return;
 820}
 821
 822static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 823{
 824        char *w;
 825        int zero_ok;
 826        unsigned int erase_block_no;
 827        loff_t offset;
 828
 829        if (!badblocks)
 830                return 0;
 831        w = badblocks;
 832        do {
 833                zero_ok = (*w == '0' ? 1 : 0);
 834                erase_block_no = simple_strtoul(w, &w, 0);
 835                if (!zero_ok && !erase_block_no) {
 836                        NS_ERR("invalid badblocks.\n");
 837                        return -EINVAL;
 838                }
 839                offset = erase_block_no * ns->geom.secsz;
 840                if (mtd_block_markbad(mtd, offset)) {
 841                        NS_ERR("invalid badblocks.\n");
 842                        return -EINVAL;
 843                }
 844                if (*w == ',')
 845                        w += 1;
 846        } while (*w);
 847        return 0;
 848}
 849
 850static int parse_weakblocks(void)
 851{
 852        char *w;
 853        int zero_ok;
 854        unsigned int erase_block_no;
 855        unsigned int max_erases;
 856        struct weak_block *wb;
 857
 858        if (!weakblocks)
 859                return 0;
 860        w = weakblocks;
 861        do {
 862                zero_ok = (*w == '0' ? 1 : 0);
 863                erase_block_no = simple_strtoul(w, &w, 0);
 864                if (!zero_ok && !erase_block_no) {
 865                        NS_ERR("invalid weakblocks.\n");
 866                        return -EINVAL;
 867                }
 868                max_erases = 3;
 869                if (*w == ':') {
 870                        w += 1;
 871                        max_erases = simple_strtoul(w, &w, 0);
 872                }
 873                if (*w == ',')
 874                        w += 1;
 875                wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 876                if (!wb) {
 877                        NS_ERR("unable to allocate memory.\n");
 878                        return -ENOMEM;
 879                }
 880                wb->erase_block_no = erase_block_no;
 881                wb->max_erases = max_erases;
 882                list_add(&wb->list, &weak_blocks);
 883        } while (*w);
 884        return 0;
 885}
 886
 887static int erase_error(unsigned int erase_block_no)
 888{
 889        struct weak_block *wb;
 890
 891        list_for_each_entry(wb, &weak_blocks, list)
 892                if (wb->erase_block_no == erase_block_no) {
 893                        if (wb->erases_done >= wb->max_erases)
 894                                return 1;
 895                        wb->erases_done += 1;
 896                        return 0;
 897                }
 898        return 0;
 899}
 900
 901static int parse_weakpages(void)
 902{
 903        char *w;
 904        int zero_ok;
 905        unsigned int page_no;
 906        unsigned int max_writes;
 907        struct weak_page *wp;
 908
 909        if (!weakpages)
 910                return 0;
 911        w = weakpages;
 912        do {
 913                zero_ok = (*w == '0' ? 1 : 0);
 914                page_no = simple_strtoul(w, &w, 0);
 915                if (!zero_ok && !page_no) {
 916                        NS_ERR("invalid weakpagess.\n");
 917                        return -EINVAL;
 918                }
 919                max_writes = 3;
 920                if (*w == ':') {
 921                        w += 1;
 922                        max_writes = simple_strtoul(w, &w, 0);
 923                }
 924                if (*w == ',')
 925                        w += 1;
 926                wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 927                if (!wp) {
 928                        NS_ERR("unable to allocate memory.\n");
 929                        return -ENOMEM;
 930                }
 931                wp->page_no = page_no;
 932                wp->max_writes = max_writes;
 933                list_add(&wp->list, &weak_pages);
 934        } while (*w);
 935        return 0;
 936}
 937
 938static int write_error(unsigned int page_no)
 939{
 940        struct weak_page *wp;
 941
 942        list_for_each_entry(wp, &weak_pages, list)
 943                if (wp->page_no == page_no) {
 944                        if (wp->writes_done >= wp->max_writes)
 945                                return 1;
 946                        wp->writes_done += 1;
 947                        return 0;
 948                }
 949        return 0;
 950}
 951
 952static int parse_gravepages(void)
 953{
 954        char *g;
 955        int zero_ok;
 956        unsigned int page_no;
 957        unsigned int max_reads;
 958        struct grave_page *gp;
 959
 960        if (!gravepages)
 961                return 0;
 962        g = gravepages;
 963        do {
 964                zero_ok = (*g == '0' ? 1 : 0);
 965                page_no = simple_strtoul(g, &g, 0);
 966                if (!zero_ok && !page_no) {
 967                        NS_ERR("invalid gravepagess.\n");
 968                        return -EINVAL;
 969                }
 970                max_reads = 3;
 971                if (*g == ':') {
 972                        g += 1;
 973                        max_reads = simple_strtoul(g, &g, 0);
 974                }
 975                if (*g == ',')
 976                        g += 1;
 977                gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 978                if (!gp) {
 979                        NS_ERR("unable to allocate memory.\n");
 980                        return -ENOMEM;
 981                }
 982                gp->page_no = page_no;
 983                gp->max_reads = max_reads;
 984                list_add(&gp->list, &grave_pages);
 985        } while (*g);
 986        return 0;
 987}
 988
 989static int read_error(unsigned int page_no)
 990{
 991        struct grave_page *gp;
 992
 993        list_for_each_entry(gp, &grave_pages, list)
 994                if (gp->page_no == page_no) {
 995                        if (gp->reads_done >= gp->max_reads)
 996                                return 1;
 997                        gp->reads_done += 1;
 998                        return 0;
 999                }
1000        return 0;
1001}
1002
1003static void free_lists(void)
1004{
1005        struct list_head *pos, *n;
1006        list_for_each_safe(pos, n, &weak_blocks) {
1007                list_del(pos);
1008                kfree(list_entry(pos, struct weak_block, list));
1009        }
1010        list_for_each_safe(pos, n, &weak_pages) {
1011                list_del(pos);
1012                kfree(list_entry(pos, struct weak_page, list));
1013        }
1014        list_for_each_safe(pos, n, &grave_pages) {
1015                list_del(pos);
1016                kfree(list_entry(pos, struct grave_page, list));
1017        }
1018        kfree(erase_block_wear);
1019}
1020
1021static int setup_wear_reporting(struct mtd_info *mtd)
1022{
1023        size_t mem;
1024
1025        wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1026        mem = wear_eb_count * sizeof(unsigned long);
1027        if (mem / sizeof(unsigned long) != wear_eb_count) {
1028                NS_ERR("Too many erase blocks for wear reporting\n");
1029                return -ENOMEM;
1030        }
1031        erase_block_wear = kzalloc(mem, GFP_KERNEL);
1032        if (!erase_block_wear) {
1033                NS_ERR("Too many erase blocks for wear reporting\n");
1034                return -ENOMEM;
1035        }
1036        return 0;
1037}
1038
1039static void update_wear(unsigned int erase_block_no)
1040{
1041        if (!erase_block_wear)
1042                return;
1043        total_wear += 1;
1044        /*
1045         * TODO: Notify this through a debugfs entry,
1046         * instead of showing an error message.
1047         */
1048        if (total_wear == 0)
1049                NS_ERR("Erase counter total overflow\n");
1050        erase_block_wear[erase_block_no] += 1;
1051        if (erase_block_wear[erase_block_no] == 0)
1052                NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1053}
1054
1055/*
1056 * Returns the string representation of 'state' state.
1057 */
1058static char *get_state_name(uint32_t state)
1059{
1060        switch (NS_STATE(state)) {
1061                case STATE_CMD_READ0:
1062                        return "STATE_CMD_READ0";
1063                case STATE_CMD_READ1:
1064                        return "STATE_CMD_READ1";
1065                case STATE_CMD_PAGEPROG:
1066                        return "STATE_CMD_PAGEPROG";
1067                case STATE_CMD_READOOB:
1068                        return "STATE_CMD_READOOB";
1069                case STATE_CMD_READSTART:
1070                        return "STATE_CMD_READSTART";
1071                case STATE_CMD_ERASE1:
1072                        return "STATE_CMD_ERASE1";
1073                case STATE_CMD_STATUS:
1074                        return "STATE_CMD_STATUS";
1075                case STATE_CMD_SEQIN:
1076                        return "STATE_CMD_SEQIN";
1077                case STATE_CMD_READID:
1078                        return "STATE_CMD_READID";
1079                case STATE_CMD_ERASE2:
1080                        return "STATE_CMD_ERASE2";
1081                case STATE_CMD_RESET:
1082                        return "STATE_CMD_RESET";
1083                case STATE_CMD_RNDOUT:
1084                        return "STATE_CMD_RNDOUT";
1085                case STATE_CMD_RNDOUTSTART:
1086                        return "STATE_CMD_RNDOUTSTART";
1087                case STATE_ADDR_PAGE:
1088                        return "STATE_ADDR_PAGE";
1089                case STATE_ADDR_SEC:
1090                        return "STATE_ADDR_SEC";
1091                case STATE_ADDR_ZERO:
1092                        return "STATE_ADDR_ZERO";
1093                case STATE_ADDR_COLUMN:
1094                        return "STATE_ADDR_COLUMN";
1095                case STATE_DATAIN:
1096                        return "STATE_DATAIN";
1097                case STATE_DATAOUT:
1098                        return "STATE_DATAOUT";
1099                case STATE_DATAOUT_ID:
1100                        return "STATE_DATAOUT_ID";
1101                case STATE_DATAOUT_STATUS:
1102                        return "STATE_DATAOUT_STATUS";
1103                case STATE_DATAOUT_STATUS_M:
1104                        return "STATE_DATAOUT_STATUS_M";
1105                case STATE_READY:
1106                        return "STATE_READY";
1107                case STATE_UNKNOWN:
1108                        return "STATE_UNKNOWN";
1109        }
1110
1111        NS_ERR("get_state_name: unknown state, BUG\n");
1112        return NULL;
1113}
1114
1115/*
1116 * Check if command is valid.
1117 *
1118 * RETURNS: 1 if wrong command, 0 if right.
1119 */
1120static int check_command(int cmd)
1121{
1122        switch (cmd) {
1123
1124        case NAND_CMD_READ0:
1125        case NAND_CMD_READ1:
1126        case NAND_CMD_READSTART:
1127        case NAND_CMD_PAGEPROG:
1128        case NAND_CMD_READOOB:
1129        case NAND_CMD_ERASE1:
1130        case NAND_CMD_STATUS:
1131        case NAND_CMD_SEQIN:
1132        case NAND_CMD_READID:
1133        case NAND_CMD_ERASE2:
1134        case NAND_CMD_RESET:
1135        case NAND_CMD_RNDOUT:
1136        case NAND_CMD_RNDOUTSTART:
1137                return 0;
1138
1139        default:
1140                return 1;
1141        }
1142}
1143
1144/*
1145 * Returns state after command is accepted by command number.
1146 */
1147static uint32_t get_state_by_command(unsigned command)
1148{
1149        switch (command) {
1150                case NAND_CMD_READ0:
1151                        return STATE_CMD_READ0;
1152                case NAND_CMD_READ1:
1153                        return STATE_CMD_READ1;
1154                case NAND_CMD_PAGEPROG:
1155                        return STATE_CMD_PAGEPROG;
1156                case NAND_CMD_READSTART:
1157                        return STATE_CMD_READSTART;
1158                case NAND_CMD_READOOB:
1159                        return STATE_CMD_READOOB;
1160                case NAND_CMD_ERASE1:
1161                        return STATE_CMD_ERASE1;
1162                case NAND_CMD_STATUS:
1163                        return STATE_CMD_STATUS;
1164                case NAND_CMD_SEQIN:
1165                        return STATE_CMD_SEQIN;
1166                case NAND_CMD_READID:
1167                        return STATE_CMD_READID;
1168                case NAND_CMD_ERASE2:
1169                        return STATE_CMD_ERASE2;
1170                case NAND_CMD_RESET:
1171                        return STATE_CMD_RESET;
1172                case NAND_CMD_RNDOUT:
1173                        return STATE_CMD_RNDOUT;
1174                case NAND_CMD_RNDOUTSTART:
1175                        return STATE_CMD_RNDOUTSTART;
1176        }
1177
1178        NS_ERR("get_state_by_command: unknown command, BUG\n");
1179        return 0;
1180}
1181
1182/*
1183 * Move an address byte to the correspondent internal register.
1184 */
1185static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1186{
1187        uint byte = (uint)bt;
1188
1189        if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1190                ns->regs.column |= (byte << 8 * ns->regs.count);
1191        else {
1192                ns->regs.row |= (byte << 8 * (ns->regs.count -
1193                                                ns->geom.pgaddrbytes +
1194                                                ns->geom.secaddrbytes));
1195        }
1196
1197        return;
1198}
1199
1200/*
1201 * Switch to STATE_READY state.
1202 */
1203static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1204{
1205        NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1206
1207        ns->state       = STATE_READY;
1208        ns->nxstate     = STATE_UNKNOWN;
1209        ns->op          = NULL;
1210        ns->npstates    = 0;
1211        ns->stateidx    = 0;
1212        ns->regs.num    = 0;
1213        ns->regs.count  = 0;
1214        ns->regs.off    = 0;
1215        ns->regs.row    = 0;
1216        ns->regs.column = 0;
1217        ns->regs.status = status;
1218}
1219
1220/*
1221 * If the operation isn't known yet, try to find it in the global array
1222 * of supported operations.
1223 *
1224 * Operation can be unknown because of the following.
1225 *   1. New command was accepted and this is the first call to find the
1226 *      correspondent states chain. In this case ns->npstates = 0;
1227 *   2. There are several operations which begin with the same command(s)
1228 *      (for example program from the second half and read from the
1229 *      second half operations both begin with the READ1 command). In this
1230 *      case the ns->pstates[] array contains previous states.
1231 *
1232 * Thus, the function tries to find operation containing the following
1233 * states (if the 'flag' parameter is 0):
1234 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1235 *
1236 * If (one and only one) matching operation is found, it is accepted (
1237 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1238 * zeroed).
1239 *
1240 * If there are several matches, the current state is pushed to the
1241 * ns->pstates.
1242 *
1243 * The operation can be unknown only while commands are input to the chip.
1244 * As soon as address command is accepted, the operation must be known.
1245 * In such situation the function is called with 'flag' != 0, and the
1246 * operation is searched using the following pattern:
1247 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1248 *
1249 * It is supposed that this pattern must either match one operation or
1250 * none. There can't be ambiguity in that case.
1251 *
1252 * If no matches found, the function does the following:
1253 *   1. if there are saved states present, try to ignore them and search
1254 *      again only using the last command. If nothing was found, switch
1255 *      to the STATE_READY state.
1256 *   2. if there are no saved states, switch to the STATE_READY state.
1257 *
1258 * RETURNS: -2 - no matched operations found.
1259 *          -1 - several matches.
1260 *           0 - operation is found.
1261 */
1262static int find_operation(struct nandsim *ns, uint32_t flag)
1263{
1264        int opsfound = 0;
1265        int i, j, idx = 0;
1266
1267        for (i = 0; i < NS_OPER_NUM; i++) {
1268
1269                int found = 1;
1270
1271                if (!(ns->options & ops[i].reqopts))
1272                        /* Ignore operations we can't perform */
1273                        continue;
1274
1275                if (flag) {
1276                        if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1277                                continue;
1278                } else {
1279                        if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1280                                continue;
1281                }
1282
1283                for (j = 0; j < ns->npstates; j++)
1284                        if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1285                                && (ns->options & ops[idx].reqopts)) {
1286                                found = 0;
1287                                break;
1288                        }
1289
1290                if (found) {
1291                        idx = i;
1292                        opsfound += 1;
1293                }
1294        }
1295
1296        if (opsfound == 1) {
1297                /* Exact match */
1298                ns->op = &ops[idx].states[0];
1299                if (flag) {
1300                        /*
1301                         * In this case the find_operation function was
1302                         * called when address has just began input. But it isn't
1303                         * yet fully input and the current state must
1304                         * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1305                         * state must be the next state (ns->nxstate).
1306                         */
1307                        ns->stateidx = ns->npstates - 1;
1308                } else {
1309                        ns->stateidx = ns->npstates;
1310                }
1311                ns->npstates = 0;
1312                ns->state = ns->op[ns->stateidx];
1313                ns->nxstate = ns->op[ns->stateidx + 1];
1314                NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1315                                idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1316                return 0;
1317        }
1318
1319        if (opsfound == 0) {
1320                /* Nothing was found. Try to ignore previous commands (if any) and search again */
1321                if (ns->npstates != 0) {
1322                        NS_DBG("find_operation: no operation found, try again with state %s\n",
1323                                        get_state_name(ns->state));
1324                        ns->npstates = 0;
1325                        return find_operation(ns, 0);
1326
1327                }
1328                NS_DBG("find_operation: no operations found\n");
1329                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1330                return -2;
1331        }
1332
1333        if (flag) {
1334                /* This shouldn't happen */
1335                NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1336                return -2;
1337        }
1338
1339        NS_DBG("find_operation: there is still ambiguity\n");
1340
1341        ns->pstates[ns->npstates++] = ns->state;
1342
1343        return -1;
1344}
1345
1346static void put_pages(struct nandsim *ns)
1347{
1348        int i;
1349
1350        for (i = 0; i < ns->held_cnt; i++)
1351                page_cache_release(ns->held_pages[i]);
1352}
1353
1354/* Get page cache pages in advance to provide NOFS memory allocation */
1355static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1356{
1357        pgoff_t index, start_index, end_index;
1358        struct page *page;
1359        struct address_space *mapping = file->f_mapping;
1360
1361        start_index = pos >> PAGE_CACHE_SHIFT;
1362        end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1363        if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1364                return -EINVAL;
1365        ns->held_cnt = 0;
1366        for (index = start_index; index <= end_index; index++) {
1367                page = find_get_page(mapping, index);
1368                if (page == NULL) {
1369                        page = find_or_create_page(mapping, index, GFP_NOFS);
1370                        if (page == NULL) {
1371                                write_inode_now(mapping->host, 1);
1372                                page = find_or_create_page(mapping, index, GFP_NOFS);
1373                        }
1374                        if (page == NULL) {
1375                                put_pages(ns);
1376                                return -ENOMEM;
1377                        }
1378                        unlock_page(page);
1379                }
1380                ns->held_pages[ns->held_cnt++] = page;
1381        }
1382        return 0;
1383}
1384
1385static int set_memalloc(void)
1386{
1387        if (current->flags & PF_MEMALLOC)
1388                return 0;
1389        current->flags |= PF_MEMALLOC;
1390        return 1;
1391}
1392
1393static void clear_memalloc(int memalloc)
1394{
1395        if (memalloc)
1396                current->flags &= ~PF_MEMALLOC;
1397}
1398
1399static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1400{
1401        ssize_t tx;
1402        int err, memalloc;
1403
1404        err = get_pages(ns, file, count, pos);
1405        if (err)
1406                return err;
1407        memalloc = set_memalloc();
1408        tx = kernel_read(file, pos, buf, count);
1409        clear_memalloc(memalloc);
1410        put_pages(ns);
1411        return tx;
1412}
1413
1414static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1415{
1416        ssize_t tx;
1417        int err, memalloc;
1418
1419        err = get_pages(ns, file, count, pos);
1420        if (err)
1421                return err;
1422        memalloc = set_memalloc();
1423        tx = kernel_write(file, buf, count, pos);
1424        clear_memalloc(memalloc);
1425        put_pages(ns);
1426        return tx;
1427}
1428
1429/*
1430 * Returns a pointer to the current page.
1431 */
1432static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1433{
1434        return &(ns->pages[ns->regs.row]);
1435}
1436
1437/*
1438 * Retuns a pointer to the current byte, within the current page.
1439 */
1440static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1441{
1442        return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1443}
1444
1445int do_read_error(struct nandsim *ns, int num)
1446{
1447        unsigned int page_no = ns->regs.row;
1448
1449        if (read_error(page_no)) {
1450                prandom_bytes(ns->buf.byte, num);
1451                NS_WARN("simulating read error in page %u\n", page_no);
1452                return 1;
1453        }
1454        return 0;
1455}
1456
1457void do_bit_flips(struct nandsim *ns, int num)
1458{
1459        if (bitflips && prandom_u32() < (1 << 22)) {
1460                int flips = 1;
1461                if (bitflips > 1)
1462                        flips = (prandom_u32() % (int) bitflips) + 1;
1463                while (flips--) {
1464                        int pos = prandom_u32() % (num * 8);
1465                        ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1466                        NS_WARN("read_page: flipping bit %d in page %d "
1467                                "reading from %d ecc: corrected=%u failed=%u\n",
1468                                pos, ns->regs.row, ns->regs.column + ns->regs.off,
1469                                nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1470                }
1471        }
1472}
1473
1474/*
1475 * Fill the NAND buffer with data read from the specified page.
1476 */
1477static void read_page(struct nandsim *ns, int num)
1478{
1479        union ns_mem *mypage;
1480
1481        if (ns->cfile) {
1482                if (!ns->pages_written[ns->regs.row]) {
1483                        NS_DBG("read_page: page %d not written\n", ns->regs.row);
1484                        memset(ns->buf.byte, 0xFF, num);
1485                } else {
1486                        loff_t pos;
1487                        ssize_t tx;
1488
1489                        NS_DBG("read_page: page %d written, reading from %d\n",
1490                                ns->regs.row, ns->regs.column + ns->regs.off);
1491                        if (do_read_error(ns, num))
1492                                return;
1493                        pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1494                        tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1495                        if (tx != num) {
1496                                NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1497                                return;
1498                        }
1499                        do_bit_flips(ns, num);
1500                }
1501                return;
1502        }
1503
1504        mypage = NS_GET_PAGE(ns);
1505        if (mypage->byte == NULL) {
1506                NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1507                memset(ns->buf.byte, 0xFF, num);
1508        } else {
1509                NS_DBG("read_page: page %d allocated, reading from %d\n",
1510                        ns->regs.row, ns->regs.column + ns->regs.off);
1511                if (do_read_error(ns, num))
1512                        return;
1513                memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1514                do_bit_flips(ns, num);
1515        }
1516}
1517
1518/*
1519 * Erase all pages in the specified sector.
1520 */
1521static void erase_sector(struct nandsim *ns)
1522{
1523        union ns_mem *mypage;
1524        int i;
1525
1526        if (ns->cfile) {
1527                for (i = 0; i < ns->geom.pgsec; i++)
1528                        if (ns->pages_written[ns->regs.row + i]) {
1529                                NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1530                                ns->pages_written[ns->regs.row + i] = 0;
1531                        }
1532                return;
1533        }
1534
1535        mypage = NS_GET_PAGE(ns);
1536        for (i = 0; i < ns->geom.pgsec; i++) {
1537                if (mypage->byte != NULL) {
1538                        NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1539                        kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1540                        mypage->byte = NULL;
1541                }
1542                mypage++;
1543        }
1544}
1545
1546/*
1547 * Program the specified page with the contents from the NAND buffer.
1548 */
1549static int prog_page(struct nandsim *ns, int num)
1550{
1551        int i;
1552        union ns_mem *mypage;
1553        u_char *pg_off;
1554
1555        if (ns->cfile) {
1556                loff_t off;
1557                ssize_t tx;
1558                int all;
1559
1560                NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1561                pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1562                off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1563                if (!ns->pages_written[ns->regs.row]) {
1564                        all = 1;
1565                        memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1566                } else {
1567                        all = 0;
1568                        tx = read_file(ns, ns->cfile, pg_off, num, off);
1569                        if (tx != num) {
1570                                NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1571                                return -1;
1572                        }
1573                }
1574                for (i = 0; i < num; i++)
1575                        pg_off[i] &= ns->buf.byte[i];
1576                if (all) {
1577                        loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1578                        tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1579                        if (tx != ns->geom.pgszoob) {
1580                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1581                                return -1;
1582                        }
1583                        ns->pages_written[ns->regs.row] = 1;
1584                } else {
1585                        tx = write_file(ns, ns->cfile, pg_off, num, off);
1586                        if (tx != num) {
1587                                NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1588                                return -1;
1589                        }
1590                }
1591                return 0;
1592        }
1593
1594        mypage = NS_GET_PAGE(ns);
1595        if (mypage->byte == NULL) {
1596                NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1597                /*
1598                 * We allocate memory with GFP_NOFS because a flash FS may
1599                 * utilize this. If it is holding an FS lock, then gets here,
1600                 * then kernel memory alloc runs writeback which goes to the FS
1601                 * again and deadlocks. This was seen in practice.
1602                 */
1603                mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1604                if (mypage->byte == NULL) {
1605                        NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1606                        return -1;
1607                }
1608                memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1609        }
1610
1611        pg_off = NS_PAGE_BYTE_OFF(ns);
1612        for (i = 0; i < num; i++)
1613                pg_off[i] &= ns->buf.byte[i];
1614
1615        return 0;
1616}
1617
1618/*
1619 * If state has any action bit, perform this action.
1620 *
1621 * RETURNS: 0 if success, -1 if error.
1622 */
1623static int do_state_action(struct nandsim *ns, uint32_t action)
1624{
1625        int num;
1626        int busdiv = ns->busw == 8 ? 1 : 2;
1627        unsigned int erase_block_no, page_no;
1628
1629        action &= ACTION_MASK;
1630
1631        /* Check that page address input is correct */
1632        if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1633                NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1634                return -1;
1635        }
1636
1637        switch (action) {
1638
1639        case ACTION_CPY:
1640                /*
1641                 * Copy page data to the internal buffer.
1642                 */
1643
1644                /* Column shouldn't be very large */
1645                if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1646                        NS_ERR("do_state_action: column number is too large\n");
1647                        break;
1648                }
1649                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1650                read_page(ns, num);
1651
1652                NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1653                        num, NS_RAW_OFFSET(ns) + ns->regs.off);
1654
1655                if (ns->regs.off == 0)
1656                        NS_LOG("read page %d\n", ns->regs.row);
1657                else if (ns->regs.off < ns->geom.pgsz)
1658                        NS_LOG("read page %d (second half)\n", ns->regs.row);
1659                else
1660                        NS_LOG("read OOB of page %d\n", ns->regs.row);
1661
1662                NS_UDELAY(access_delay);
1663                NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1664
1665                break;
1666
1667        case ACTION_SECERASE:
1668                /*
1669                 * Erase sector.
1670                 */
1671
1672                if (ns->lines.wp) {
1673                        NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1674                        return -1;
1675                }
1676
1677                if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1678                        || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1679                        NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1680                        return -1;
1681                }
1682
1683                ns->regs.row = (ns->regs.row <<
1684                                8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1685                ns->regs.column = 0;
1686
1687                erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1688
1689                NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1690                                ns->regs.row, NS_RAW_OFFSET(ns));
1691                NS_LOG("erase sector %u\n", erase_block_no);
1692
1693                erase_sector(ns);
1694
1695                NS_MDELAY(erase_delay);
1696
1697                if (erase_block_wear)
1698                        update_wear(erase_block_no);
1699
1700                if (erase_error(erase_block_no)) {
1701                        NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1702                        return -1;
1703                }
1704
1705                break;
1706
1707        case ACTION_PRGPAGE:
1708                /*
1709                 * Program page - move internal buffer data to the page.
1710                 */
1711
1712                if (ns->lines.wp) {
1713                        NS_WARN("do_state_action: device is write-protected, programm\n");
1714                        return -1;
1715                }
1716
1717                num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1718                if (num != ns->regs.count) {
1719                        NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1720                                        ns->regs.count, num);
1721                        return -1;
1722                }
1723
1724                if (prog_page(ns, num) == -1)
1725                        return -1;
1726
1727                page_no = ns->regs.row;
1728
1729                NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1730                        num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1731                NS_LOG("programm page %d\n", ns->regs.row);
1732
1733                NS_UDELAY(programm_delay);
1734                NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1735
1736                if (write_error(page_no)) {
1737                        NS_WARN("simulating write failure in page %u\n", page_no);
1738                        return -1;
1739                }
1740
1741                break;
1742
1743        case ACTION_ZEROOFF:
1744                NS_DBG("do_state_action: set internal offset to 0\n");
1745                ns->regs.off = 0;
1746                break;
1747
1748        case ACTION_HALFOFF:
1749                if (!(ns->options & OPT_PAGE512_8BIT)) {
1750                        NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1751                                "byte page size 8x chips\n");
1752                        return -1;
1753                }
1754                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1755                ns->regs.off = ns->geom.pgsz/2;
1756                break;
1757
1758        case ACTION_OOBOFF:
1759                NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1760                ns->regs.off = ns->geom.pgsz;
1761                break;
1762
1763        default:
1764                NS_DBG("do_state_action: BUG! unknown action\n");
1765        }
1766
1767        return 0;
1768}
1769
1770/*
1771 * Switch simulator's state.
1772 */
1773static void switch_state(struct nandsim *ns)
1774{
1775        if (ns->op) {
1776                /*
1777                 * The current operation have already been identified.
1778                 * Just follow the states chain.
1779                 */
1780
1781                ns->stateidx += 1;
1782                ns->state = ns->nxstate;
1783                ns->nxstate = ns->op[ns->stateidx + 1];
1784
1785                NS_DBG("switch_state: operation is known, switch to the next state, "
1786                        "state: %s, nxstate: %s\n",
1787                        get_state_name(ns->state), get_state_name(ns->nxstate));
1788
1789                /* See, whether we need to do some action */
1790                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1791                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1792                        return;
1793                }
1794
1795        } else {
1796                /*
1797                 * We don't yet know which operation we perform.
1798                 * Try to identify it.
1799                 */
1800
1801                /*
1802                 *  The only event causing the switch_state function to
1803                 *  be called with yet unknown operation is new command.
1804                 */
1805                ns->state = get_state_by_command(ns->regs.command);
1806
1807                NS_DBG("switch_state: operation is unknown, try to find it\n");
1808
1809                if (find_operation(ns, 0) != 0)
1810                        return;
1811
1812                if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1813                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1814                        return;
1815                }
1816        }
1817
1818        /* For 16x devices column means the page offset in words */
1819        if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1820                NS_DBG("switch_state: double the column number for 16x device\n");
1821                ns->regs.column <<= 1;
1822        }
1823
1824        if (NS_STATE(ns->nxstate) == STATE_READY) {
1825                /*
1826                 * The current state is the last. Return to STATE_READY
1827                 */
1828
1829                u_char status = NS_STATUS_OK(ns);
1830
1831                /* In case of data states, see if all bytes were input/output */
1832                if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1833                        && ns->regs.count != ns->regs.num) {
1834                        NS_WARN("switch_state: not all bytes were processed, %d left\n",
1835                                        ns->regs.num - ns->regs.count);
1836                        status = NS_STATUS_FAILED(ns);
1837                }
1838
1839                NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1840
1841                switch_to_ready_state(ns, status);
1842
1843                return;
1844        } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1845                /*
1846                 * If the next state is data input/output, switch to it now
1847                 */
1848
1849                ns->state      = ns->nxstate;
1850                ns->nxstate    = ns->op[++ns->stateidx + 1];
1851                ns->regs.num   = ns->regs.count = 0;
1852
1853                NS_DBG("switch_state: the next state is data I/O, switch, "
1854                        "state: %s, nxstate: %s\n",
1855                        get_state_name(ns->state), get_state_name(ns->nxstate));
1856
1857                /*
1858                 * Set the internal register to the count of bytes which
1859                 * are expected to be input or output
1860                 */
1861                switch (NS_STATE(ns->state)) {
1862                        case STATE_DATAIN:
1863                        case STATE_DATAOUT:
1864                                ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1865                                break;
1866
1867                        case STATE_DATAOUT_ID:
1868                                ns->regs.num = ns->geom.idbytes;
1869                                break;
1870
1871                        case STATE_DATAOUT_STATUS:
1872                        case STATE_DATAOUT_STATUS_M:
1873                                ns->regs.count = ns->regs.num = 0;
1874                                break;
1875
1876                        default:
1877                                NS_ERR("switch_state: BUG! unknown data state\n");
1878                }
1879
1880        } else if (ns->nxstate & STATE_ADDR_MASK) {
1881                /*
1882                 * If the next state is address input, set the internal
1883                 * register to the number of expected address bytes
1884                 */
1885
1886                ns->regs.count = 0;
1887
1888                switch (NS_STATE(ns->nxstate)) {
1889                        case STATE_ADDR_PAGE:
1890                                ns->regs.num = ns->geom.pgaddrbytes;
1891
1892                                break;
1893                        case STATE_ADDR_SEC:
1894                                ns->regs.num = ns->geom.secaddrbytes;
1895                                break;
1896
1897                        case STATE_ADDR_ZERO:
1898                                ns->regs.num = 1;
1899                                break;
1900
1901                        case STATE_ADDR_COLUMN:
1902                                /* Column address is always 2 bytes */
1903                                ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1904                                break;
1905
1906                        default:
1907                                NS_ERR("switch_state: BUG! unknown address state\n");
1908                }
1909        } else {
1910                /*
1911                 * Just reset internal counters.
1912                 */
1913
1914                ns->regs.num = 0;
1915                ns->regs.count = 0;
1916        }
1917}
1918
1919static u_char ns_nand_read_byte(struct mtd_info *mtd)
1920{
1921        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1922        u_char outb = 0x00;
1923
1924        /* Sanity and correctness checks */
1925        if (!ns->lines.ce) {
1926                NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1927                return outb;
1928        }
1929        if (ns->lines.ale || ns->lines.cle) {
1930                NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1931                return outb;
1932        }
1933        if (!(ns->state & STATE_DATAOUT_MASK)) {
1934                NS_WARN("read_byte: unexpected data output cycle, state is %s "
1935                        "return %#x\n", get_state_name(ns->state), (uint)outb);
1936                return outb;
1937        }
1938
1939        /* Status register may be read as many times as it is wanted */
1940        if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1941                NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1942                return ns->regs.status;
1943        }
1944
1945        /* Check if there is any data in the internal buffer which may be read */
1946        if (ns->regs.count == ns->regs.num) {
1947                NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1948                return outb;
1949        }
1950
1951        switch (NS_STATE(ns->state)) {
1952                case STATE_DATAOUT:
1953                        if (ns->busw == 8) {
1954                                outb = ns->buf.byte[ns->regs.count];
1955                                ns->regs.count += 1;
1956                        } else {
1957                                outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1958                                ns->regs.count += 2;
1959                        }
1960                        break;
1961                case STATE_DATAOUT_ID:
1962                        NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1963                        outb = ns->ids[ns->regs.count];
1964                        ns->regs.count += 1;
1965                        break;
1966                default:
1967                        BUG();
1968        }
1969
1970        if (ns->regs.count == ns->regs.num) {
1971                NS_DBG("read_byte: all bytes were read\n");
1972
1973                if (NS_STATE(ns->nxstate) == STATE_READY)
1974                        switch_state(ns);
1975        }
1976
1977        return outb;
1978}
1979
1980static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1981{
1982        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1983
1984        /* Sanity and correctness checks */
1985        if (!ns->lines.ce) {
1986                NS_ERR("write_byte: chip is disabled, ignore write\n");
1987                return;
1988        }
1989        if (ns->lines.ale && ns->lines.cle) {
1990                NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1991                return;
1992        }
1993
1994        if (ns->lines.cle == 1) {
1995                /*
1996                 * The byte written is a command.
1997                 */
1998
1999                if (byte == NAND_CMD_RESET) {
2000                        NS_LOG("reset chip\n");
2001                        switch_to_ready_state(ns, NS_STATUS_OK(ns));
2002                        return;
2003                }
2004
2005                /* Check that the command byte is correct */
2006                if (check_command(byte)) {
2007                        NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
2008                        return;
2009                }
2010
2011                if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2012                        || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
2013                        || NS_STATE(ns->state) == STATE_DATAOUT) {
2014                        int row = ns->regs.row;
2015
2016                        switch_state(ns);
2017                        if (byte == NAND_CMD_RNDOUT)
2018                                ns->regs.row = row;
2019                }
2020
2021                /* Check if chip is expecting command */
2022                if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2023                        /* Do not warn if only 2 id bytes are read */
2024                        if (!(ns->regs.command == NAND_CMD_READID &&
2025                            NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2026                                /*
2027                                 * We are in situation when something else (not command)
2028                                 * was expected but command was input. In this case ignore
2029                                 * previous command(s)/state(s) and accept the last one.
2030                                 */
2031                                NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2032                                        "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2033                        }
2034                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2035                }
2036
2037                NS_DBG("command byte corresponding to %s state accepted\n",
2038                        get_state_name(get_state_by_command(byte)));
2039                ns->regs.command = byte;
2040                switch_state(ns);
2041
2042        } else if (ns->lines.ale == 1) {
2043                /*
2044                 * The byte written is an address.
2045                 */
2046
2047                if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2048
2049                        NS_DBG("write_byte: operation isn't known yet, identify it\n");
2050
2051                        if (find_operation(ns, 1) < 0)
2052                                return;
2053
2054                        if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2055                                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2056                                return;
2057                        }
2058
2059                        ns->regs.count = 0;
2060                        switch (NS_STATE(ns->nxstate)) {
2061                                case STATE_ADDR_PAGE:
2062                                        ns->regs.num = ns->geom.pgaddrbytes;
2063                                        break;
2064                                case STATE_ADDR_SEC:
2065                                        ns->regs.num = ns->geom.secaddrbytes;
2066                                        break;
2067                                case STATE_ADDR_ZERO:
2068                                        ns->regs.num = 1;
2069                                        break;
2070                                default:
2071                                        BUG();
2072                        }
2073                }
2074
2075                /* Check that chip is expecting address */
2076                if (!(ns->nxstate & STATE_ADDR_MASK)) {
2077                        NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2078                                "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2079                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2080                        return;
2081                }
2082
2083                /* Check if this is expected byte */
2084                if (ns->regs.count == ns->regs.num) {
2085                        NS_ERR("write_byte: no more address bytes expected\n");
2086                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2087                        return;
2088                }
2089
2090                accept_addr_byte(ns, byte);
2091
2092                ns->regs.count += 1;
2093
2094                NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2095                                (uint)byte, ns->regs.count, ns->regs.num);
2096
2097                if (ns->regs.count == ns->regs.num) {
2098                        NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2099                        switch_state(ns);
2100                }
2101
2102        } else {
2103                /*
2104                 * The byte written is an input data.
2105                 */
2106
2107                /* Check that chip is expecting data input */
2108                if (!(ns->state & STATE_DATAIN_MASK)) {
2109                        NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2110                                "switch to %s\n", (uint)byte,
2111                                get_state_name(ns->state), get_state_name(STATE_READY));
2112                        switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2113                        return;
2114                }
2115
2116                /* Check if this is expected byte */
2117                if (ns->regs.count == ns->regs.num) {
2118                        NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2119                                        ns->regs.num);
2120                        return;
2121                }
2122
2123                if (ns->busw == 8) {
2124                        ns->buf.byte[ns->regs.count] = byte;
2125                        ns->regs.count += 1;
2126                } else {
2127                        ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2128                        ns->regs.count += 2;
2129                }
2130        }
2131
2132        return;
2133}
2134
2135static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2136{
2137        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2138
2139        ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2140        ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2141        ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2142
2143        if (cmd != NAND_CMD_NONE)
2144                ns_nand_write_byte(mtd, cmd);
2145}
2146
2147static int ns_device_ready(struct mtd_info *mtd)
2148{
2149        NS_DBG("device_ready\n");
2150        return 1;
2151}
2152
2153static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2154{
2155        struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2156
2157        NS_DBG("read_word\n");
2158
2159        return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2160}
2161
2162static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2163{
2164        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2165
2166        /* Check that chip is expecting data input */
2167        if (!(ns->state & STATE_DATAIN_MASK)) {
2168                NS_ERR("write_buf: data input isn't expected, state is %s, "
2169                        "switch to STATE_READY\n", get_state_name(ns->state));
2170                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2171                return;
2172        }
2173
2174        /* Check if these are expected bytes */
2175        if (ns->regs.count + len > ns->regs.num) {
2176                NS_ERR("write_buf: too many input bytes\n");
2177                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2178                return;
2179        }
2180
2181        memcpy(ns->buf.byte + ns->regs.count, buf, len);
2182        ns->regs.count += len;
2183
2184        if (ns->regs.count == ns->regs.num) {
2185                NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2186        }
2187}
2188
2189static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2190{
2191        struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2192
2193        /* Sanity and correctness checks */
2194        if (!ns->lines.ce) {
2195                NS_ERR("read_buf: chip is disabled\n");
2196                return;
2197        }
2198        if (ns->lines.ale || ns->lines.cle) {
2199                NS_ERR("read_buf: ALE or CLE pin is high\n");
2200                return;
2201        }
2202        if (!(ns->state & STATE_DATAOUT_MASK)) {
2203                NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2204                        get_state_name(ns->state));
2205                return;
2206        }
2207
2208        if (NS_STATE(ns->state) != STATE_DATAOUT) {
2209                int i;
2210
2211                for (i = 0; i < len; i++)
2212                        buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2213
2214                return;
2215        }
2216
2217        /* Check if these are expected bytes */
2218        if (ns->regs.count + len > ns->regs.num) {
2219                NS_ERR("read_buf: too many bytes to read\n");
2220                switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2221                return;
2222        }
2223
2224        memcpy(buf, ns->buf.byte + ns->regs.count, len);
2225        ns->regs.count += len;
2226
2227        if (ns->regs.count == ns->regs.num) {
2228                if (NS_STATE(ns->nxstate) == STATE_READY)
2229                        switch_state(ns);
2230        }
2231
2232        return;
2233}
2234
2235/*
2236 * Module initialization function
2237 */
2238static int __init ns_init_module(void)
2239{
2240        struct nand_chip *chip;
2241        struct nandsim *nand;
2242        int retval = -ENOMEM, i;
2243
2244        if (bus_width != 8 && bus_width != 16) {
2245                NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2246                return -EINVAL;
2247        }
2248
2249        /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2250        nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2251                                + sizeof(struct nandsim), GFP_KERNEL);
2252        if (!nsmtd) {
2253                NS_ERR("unable to allocate core structures.\n");
2254                return -ENOMEM;
2255        }
2256        chip        = (struct nand_chip *)(nsmtd + 1);
2257        nsmtd->priv = (void *)chip;
2258        nand        = (struct nandsim *)(chip + 1);
2259        chip->priv  = (void *)nand;
2260
2261        /*
2262         * Register simulator's callbacks.
2263         */
2264        chip->cmd_ctrl   = ns_hwcontrol;
2265        chip->read_byte  = ns_nand_read_byte;
2266        chip->dev_ready  = ns_device_ready;
2267        chip->write_buf  = ns_nand_write_buf;
2268        chip->read_buf   = ns_nand_read_buf;
2269        chip->read_word  = ns_nand_read_word;
2270        chip->ecc.mode   = NAND_ECC_SOFT;
2271        /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2272        /* and 'badblocks' parameters to work */
2273        chip->options   |= NAND_SKIP_BBTSCAN;
2274
2275        switch (bbt) {
2276        case 2:
2277                 chip->bbt_options |= NAND_BBT_NO_OOB;
2278        case 1:
2279                 chip->bbt_options |= NAND_BBT_USE_FLASH;
2280        case 0:
2281                break;
2282        default:
2283                NS_ERR("bbt has to be 0..2\n");
2284                retval = -EINVAL;
2285                goto error;
2286        }
2287        /*
2288         * Perform minimum nandsim structure initialization to handle
2289         * the initial ID read command correctly
2290         */
2291        if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2292                nand->geom.idbytes = 4;
2293        else
2294                nand->geom.idbytes = 2;
2295        nand->regs.status = NS_STATUS_OK(nand);
2296        nand->nxstate = STATE_UNKNOWN;
2297        nand->options |= OPT_PAGE512; /* temporary value */
2298        nand->ids[0] = first_id_byte;
2299        nand->ids[1] = second_id_byte;
2300        nand->ids[2] = third_id_byte;
2301        nand->ids[3] = fourth_id_byte;
2302        if (bus_width == 16) {
2303                nand->busw = 16;
2304                chip->options |= NAND_BUSWIDTH_16;
2305        }
2306
2307        nsmtd->owner = THIS_MODULE;
2308
2309        if ((retval = parse_weakblocks()) != 0)
2310                goto error;
2311
2312        if ((retval = parse_weakpages()) != 0)
2313                goto error;
2314
2315        if ((retval = parse_gravepages()) != 0)
2316                goto error;
2317
2318        retval = nand_scan_ident(nsmtd, 1, NULL);
2319        if (retval) {
2320                NS_ERR("cannot scan NAND Simulator device\n");
2321                if (retval > 0)
2322                        retval = -ENXIO;
2323                goto error;
2324        }
2325
2326        if (bch) {
2327                unsigned int eccsteps, eccbytes;
2328                if (!mtd_nand_has_bch()) {
2329                        NS_ERR("BCH ECC support is disabled\n");
2330                        retval = -EINVAL;
2331                        goto error;
2332                }
2333                /* use 512-byte ecc blocks */
2334                eccsteps = nsmtd->writesize/512;
2335                eccbytes = (bch*13+7)/8;
2336                /* do not bother supporting small page devices */
2337                if ((nsmtd->oobsize < 64) || !eccsteps) {
2338                        NS_ERR("bch not available on small page devices\n");
2339                        retval = -EINVAL;
2340                        goto error;
2341                }
2342                if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2343                        NS_ERR("invalid bch value %u\n", bch);
2344                        retval = -EINVAL;
2345                        goto error;
2346                }
2347                chip->ecc.mode = NAND_ECC_SOFT_BCH;
2348                chip->ecc.size = 512;
2349                chip->ecc.bytes = eccbytes;
2350                NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2351        }
2352
2353        retval = nand_scan_tail(nsmtd);
2354        if (retval) {
2355                NS_ERR("can't register NAND Simulator\n");
2356                if (retval > 0)
2357                        retval = -ENXIO;
2358                goto error;
2359        }
2360
2361        if (overridesize) {
2362                uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2363                if (new_size >> overridesize != nsmtd->erasesize) {
2364                        NS_ERR("overridesize is too big\n");
2365                        retval = -EINVAL;
2366                        goto err_exit;
2367                }
2368                /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2369                nsmtd->size = new_size;
2370                chip->chipsize = new_size;
2371                chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2372                chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2373        }
2374
2375        if ((retval = setup_wear_reporting(nsmtd)) != 0)
2376                goto err_exit;
2377
2378        if ((retval = nandsim_debugfs_create(nand)) != 0)
2379                goto err_exit;
2380
2381        if ((retval = init_nandsim(nsmtd)) != 0)
2382                goto err_exit;
2383
2384        if ((retval = nand_default_bbt(nsmtd)) != 0)
2385                goto err_exit;
2386
2387        if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2388                goto err_exit;
2389
2390        /* Register NAND partitions */
2391        retval = mtd_device_register(nsmtd, &nand->partitions[0],
2392                                     nand->nbparts);
2393        if (retval != 0)
2394                goto err_exit;
2395
2396        return 0;
2397
2398err_exit:
2399        free_nandsim(nand);
2400        nand_release(nsmtd);
2401        for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2402                kfree(nand->partitions[i].name);
2403error:
2404        kfree(nsmtd);
2405        free_lists();
2406
2407        return retval;
2408}
2409
2410module_init(ns_init_module);
2411
2412/*
2413 * Module clean-up function
2414 */
2415static void __exit ns_cleanup_module(void)
2416{
2417        struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2418        int i;
2419
2420        nandsim_debugfs_remove(ns);
2421        free_nandsim(ns);    /* Free nandsim private resources */
2422        nand_release(nsmtd); /* Unregister driver */
2423        for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2424                kfree(ns->partitions[i].name);
2425        kfree(nsmtd);        /* Free other structures */
2426        free_lists();
2427}
2428
2429module_exit(ns_cleanup_module);
2430
2431MODULE_LICENSE ("GPL");
2432MODULE_AUTHOR ("Artem B. Bityuckiy");
2433MODULE_DESCRIPTION ("The NAND flash simulator");
2434