linux/drivers/mtd/ubi/wl.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
  19 */
  20
  21/*
  22 * UBI wear-leveling sub-system.
  23 *
  24 * This sub-system is responsible for wear-leveling. It works in terms of
  25 * physical eraseblocks and erase counters and knows nothing about logical
  26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
  27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
  28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
  29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
  30 *
  31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
  32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
  33 *
  34 * When physical eraseblocks are returned to the WL sub-system by means of the
  35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
  36 * done asynchronously in context of the per-UBI device background thread,
  37 * which is also managed by the WL sub-system.
  38 *
  39 * The wear-leveling is ensured by means of moving the contents of used
  40 * physical eraseblocks with low erase counter to free physical eraseblocks
  41 * with high erase counter.
  42 *
  43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
  44 * bad.
  45 *
  46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
  47 * in a physical eraseblock, it has to be moved. Technically this is the same
  48 * as moving it for wear-leveling reasons.
  49 *
  50 * As it was said, for the UBI sub-system all physical eraseblocks are either
  51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
  52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
  53 * RB-trees, as well as (temporarily) in the @wl->pq queue.
  54 *
  55 * When the WL sub-system returns a physical eraseblock, the physical
  56 * eraseblock is protected from being moved for some "time". For this reason,
  57 * the physical eraseblock is not directly moved from the @wl->free tree to the
  58 * @wl->used tree. There is a protection queue in between where this
  59 * physical eraseblock is temporarily stored (@wl->pq).
  60 *
  61 * All this protection stuff is needed because:
  62 *  o we don't want to move physical eraseblocks just after we have given them
  63 *    to the user; instead, we first want to let users fill them up with data;
  64 *
  65 *  o there is a chance that the user will put the physical eraseblock very
  66 *    soon, so it makes sense not to move it for some time, but wait.
  67 *
  68 * Physical eraseblocks stay protected only for limited time. But the "time" is
  69 * measured in erase cycles in this case. This is implemented with help of the
  70 * protection queue. Eraseblocks are put to the tail of this queue when they
  71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
  72 * head of the queue on each erase operation (for any eraseblock). So the
  73 * length of the queue defines how may (global) erase cycles PEBs are protected.
  74 *
  75 * To put it differently, each physical eraseblock has 2 main states: free and
  76 * used. The former state corresponds to the @wl->free tree. The latter state
  77 * is split up on several sub-states:
  78 * o the WL movement is allowed (@wl->used tree);
  79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
  80 *   erroneous - e.g., there was a read error;
  81 * o the WL movement is temporarily prohibited (@wl->pq queue);
  82 * o scrubbing is needed (@wl->scrub tree).
  83 *
  84 * Depending on the sub-state, wear-leveling entries of the used physical
  85 * eraseblocks may be kept in one of those structures.
  86 *
  87 * Note, in this implementation, we keep a small in-RAM object for each physical
  88 * eraseblock. This is surely not a scalable solution. But it appears to be good
  89 * enough for moderately large flashes and it is simple. In future, one may
  90 * re-work this sub-system and make it more scalable.
  91 *
  92 * At the moment this sub-system does not utilize the sequence number, which
  93 * was introduced relatively recently. But it would be wise to do this because
  94 * the sequence number of a logical eraseblock characterizes how old is it. For
  95 * example, when we move a PEB with low erase counter, and we need to pick the
  96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
  97 * pick target PEB with an average EC if our PEB is not very "old". This is a
  98 * room for future re-works of the WL sub-system.
  99 */
 100
 101#include <linux/slab.h>
 102#include <linux/crc32.h>
 103#include <linux/freezer.h>
 104#include <linux/kthread.h>
 105#include "ubi.h"
 106
 107/* Number of physical eraseblocks reserved for wear-leveling purposes */
 108#define WL_RESERVED_PEBS 1
 109
 110/*
 111 * Maximum difference between two erase counters. If this threshold is
 112 * exceeded, the WL sub-system starts moving data from used physical
 113 * eraseblocks with low erase counter to free physical eraseblocks with high
 114 * erase counter.
 115 */
 116#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
 117
 118/*
 119 * When a physical eraseblock is moved, the WL sub-system has to pick the target
 120 * physical eraseblock to move to. The simplest way would be just to pick the
 121 * one with the highest erase counter. But in certain workloads this could lead
 122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
 123 * situation when the picked physical eraseblock is constantly erased after the
 124 * data is written to it. So, we have a constant which limits the highest erase
 125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
 126 * does not pick eraseblocks with erase counter greater than the lowest erase
 127 * counter plus %WL_FREE_MAX_DIFF.
 128 */
 129#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
 130
 131/*
 132 * Maximum number of consecutive background thread failures which is enough to
 133 * switch to read-only mode.
 134 */
 135#define WL_MAX_FAILURES 32
 136
 137static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
 138static int self_check_in_wl_tree(const struct ubi_device *ubi,
 139                                 struct ubi_wl_entry *e, struct rb_root *root);
 140static int self_check_in_pq(const struct ubi_device *ubi,
 141                            struct ubi_wl_entry *e);
 142
 143#ifdef CONFIG_MTD_UBI_FASTMAP
 144/**
 145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue
 146 * @wrk: the work description object
 147 */
 148static void update_fastmap_work_fn(struct work_struct *wrk)
 149{
 150        struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work);
 151        ubi_update_fastmap(ubi);
 152}
 153
 154/**
 155 *  ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap.
 156 *  @ubi: UBI device description object
 157 *  @pnum: the to be checked PEB
 158 */
 159static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
 160{
 161        int i;
 162
 163        if (!ubi->fm)
 164                return 0;
 165
 166        for (i = 0; i < ubi->fm->used_blocks; i++)
 167                if (ubi->fm->e[i]->pnum == pnum)
 168                        return 1;
 169
 170        return 0;
 171}
 172#else
 173static int ubi_is_fm_block(struct ubi_device *ubi, int pnum)
 174{
 175        return 0;
 176}
 177#endif
 178
 179/**
 180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
 181 * @e: the wear-leveling entry to add
 182 * @root: the root of the tree
 183 *
 184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
 185 * the @ubi->used and @ubi->free RB-trees.
 186 */
 187static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
 188{
 189        struct rb_node **p, *parent = NULL;
 190
 191        p = &root->rb_node;
 192        while (*p) {
 193                struct ubi_wl_entry *e1;
 194
 195                parent = *p;
 196                e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
 197
 198                if (e->ec < e1->ec)
 199                        p = &(*p)->rb_left;
 200                else if (e->ec > e1->ec)
 201                        p = &(*p)->rb_right;
 202                else {
 203                        ubi_assert(e->pnum != e1->pnum);
 204                        if (e->pnum < e1->pnum)
 205                                p = &(*p)->rb_left;
 206                        else
 207                                p = &(*p)->rb_right;
 208                }
 209        }
 210
 211        rb_link_node(&e->u.rb, parent, p);
 212        rb_insert_color(&e->u.rb, root);
 213}
 214
 215/**
 216 * do_work - do one pending work.
 217 * @ubi: UBI device description object
 218 *
 219 * This function returns zero in case of success and a negative error code in
 220 * case of failure.
 221 */
 222static int do_work(struct ubi_device *ubi)
 223{
 224        int err;
 225        struct ubi_work *wrk;
 226
 227        cond_resched();
 228
 229        /*
 230         * @ubi->work_sem is used to synchronize with the workers. Workers take
 231         * it in read mode, so many of them may be doing works at a time. But
 232         * the queue flush code has to be sure the whole queue of works is
 233         * done, and it takes the mutex in write mode.
 234         */
 235        down_read(&ubi->work_sem);
 236        spin_lock(&ubi->wl_lock);
 237        if (list_empty(&ubi->works)) {
 238                spin_unlock(&ubi->wl_lock);
 239                up_read(&ubi->work_sem);
 240                return 0;
 241        }
 242
 243        wrk = list_entry(ubi->works.next, struct ubi_work, list);
 244        list_del(&wrk->list);
 245        ubi->works_count -= 1;
 246        ubi_assert(ubi->works_count >= 0);
 247        spin_unlock(&ubi->wl_lock);
 248
 249        /*
 250         * Call the worker function. Do not touch the work structure
 251         * after this call as it will have been freed or reused by that
 252         * time by the worker function.
 253         */
 254        err = wrk->func(ubi, wrk, 0);
 255        if (err)
 256                ubi_err("work failed with error code %d", err);
 257        up_read(&ubi->work_sem);
 258
 259        return err;
 260}
 261
 262/**
 263 * produce_free_peb - produce a free physical eraseblock.
 264 * @ubi: UBI device description object
 265 *
 266 * This function tries to make a free PEB by means of synchronous execution of
 267 * pending works. This may be needed if, for example the background thread is
 268 * disabled. Returns zero in case of success and a negative error code in case
 269 * of failure.
 270 */
 271static int produce_free_peb(struct ubi_device *ubi)
 272{
 273        int err;
 274
 275        while (!ubi->free.rb_node) {
 276                spin_unlock(&ubi->wl_lock);
 277
 278                dbg_wl("do one work synchronously");
 279                err = do_work(ubi);
 280
 281                spin_lock(&ubi->wl_lock);
 282                if (err)
 283                        return err;
 284        }
 285
 286        return 0;
 287}
 288
 289/**
 290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
 291 * @e: the wear-leveling entry to check
 292 * @root: the root of the tree
 293 *
 294 * This function returns non-zero if @e is in the @root RB-tree and zero if it
 295 * is not.
 296 */
 297static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
 298{
 299        struct rb_node *p;
 300
 301        p = root->rb_node;
 302        while (p) {
 303                struct ubi_wl_entry *e1;
 304
 305                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 306
 307                if (e->pnum == e1->pnum) {
 308                        ubi_assert(e == e1);
 309                        return 1;
 310                }
 311
 312                if (e->ec < e1->ec)
 313                        p = p->rb_left;
 314                else if (e->ec > e1->ec)
 315                        p = p->rb_right;
 316                else {
 317                        ubi_assert(e->pnum != e1->pnum);
 318                        if (e->pnum < e1->pnum)
 319                                p = p->rb_left;
 320                        else
 321                                p = p->rb_right;
 322                }
 323        }
 324
 325        return 0;
 326}
 327
 328/**
 329 * prot_queue_add - add physical eraseblock to the protection queue.
 330 * @ubi: UBI device description object
 331 * @e: the physical eraseblock to add
 332 *
 333 * This function adds @e to the tail of the protection queue @ubi->pq, where
 334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
 335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
 336 * be locked.
 337 */
 338static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
 339{
 340        int pq_tail = ubi->pq_head - 1;
 341
 342        if (pq_tail < 0)
 343                pq_tail = UBI_PROT_QUEUE_LEN - 1;
 344        ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
 345        list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
 346        dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
 347}
 348
 349/**
 350 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
 351 * @ubi: UBI device description object
 352 * @root: the RB-tree where to look for
 353 * @diff: maximum possible difference from the smallest erase counter
 354 *
 355 * This function looks for a wear leveling entry with erase counter closest to
 356 * min + @diff, where min is the smallest erase counter.
 357 */
 358static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
 359                                          struct rb_root *root, int diff)
 360{
 361        struct rb_node *p;
 362        struct ubi_wl_entry *e, *prev_e = NULL;
 363        int max;
 364
 365        e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 366        max = e->ec + diff;
 367
 368        p = root->rb_node;
 369        while (p) {
 370                struct ubi_wl_entry *e1;
 371
 372                e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
 373                if (e1->ec >= max)
 374                        p = p->rb_left;
 375                else {
 376                        p = p->rb_right;
 377                        prev_e = e;
 378                        e = e1;
 379                }
 380        }
 381
 382        /* If no fastmap has been written and this WL entry can be used
 383         * as anchor PEB, hold it back and return the second best WL entry
 384         * such that fastmap can use the anchor PEB later. */
 385        if (prev_e && !ubi->fm_disabled &&
 386            !ubi->fm && e->pnum < UBI_FM_MAX_START)
 387                return prev_e;
 388
 389        return e;
 390}
 391
 392/**
 393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
 394 * @ubi: UBI device description object
 395 * @root: the RB-tree where to look for
 396 *
 397 * This function looks for a wear leveling entry with medium erase counter,
 398 * but not greater or equivalent than the lowest erase counter plus
 399 * %WL_FREE_MAX_DIFF/2.
 400 */
 401static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
 402                                               struct rb_root *root)
 403{
 404        struct ubi_wl_entry *e, *first, *last;
 405
 406        first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
 407        last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
 408
 409        if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
 410                e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
 411
 412#ifdef CONFIG_MTD_UBI_FASTMAP
 413                /* If no fastmap has been written and this WL entry can be used
 414                 * as anchor PEB, hold it back and return the second best
 415                 * WL entry such that fastmap can use the anchor PEB later. */
 416                if (e && !ubi->fm_disabled && !ubi->fm &&
 417                    e->pnum < UBI_FM_MAX_START)
 418                        e = rb_entry(rb_next(root->rb_node),
 419                                     struct ubi_wl_entry, u.rb);
 420#endif
 421        } else
 422                e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
 423
 424        return e;
 425}
 426
 427#ifdef CONFIG_MTD_UBI_FASTMAP
 428/**
 429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB.
 430 * @root: the RB-tree where to look for
 431 */
 432static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root)
 433{
 434        struct rb_node *p;
 435        struct ubi_wl_entry *e, *victim = NULL;
 436        int max_ec = UBI_MAX_ERASECOUNTER;
 437
 438        ubi_rb_for_each_entry(p, e, root, u.rb) {
 439                if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) {
 440                        victim = e;
 441                        max_ec = e->ec;
 442                }
 443        }
 444
 445        return victim;
 446}
 447
 448static int anchor_pebs_avalible(struct rb_root *root)
 449{
 450        struct rb_node *p;
 451        struct ubi_wl_entry *e;
 452
 453        ubi_rb_for_each_entry(p, e, root, u.rb)
 454                if (e->pnum < UBI_FM_MAX_START)
 455                        return 1;
 456
 457        return 0;
 458}
 459
 460/**
 461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number.
 462 * @ubi: UBI device description object
 463 * @anchor: This PEB will be used as anchor PEB by fastmap
 464 *
 465 * The function returns a physical erase block with a given maximal number
 466 * and removes it from the wl subsystem.
 467 * Must be called with wl_lock held!
 468 */
 469struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor)
 470{
 471        struct ubi_wl_entry *e = NULL;
 472
 473        if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1))
 474                goto out;
 475
 476        if (anchor)
 477                e = find_anchor_wl_entry(&ubi->free);
 478        else
 479                e = find_mean_wl_entry(ubi, &ubi->free);
 480
 481        if (!e)
 482                goto out;
 483
 484        self_check_in_wl_tree(ubi, e, &ubi->free);
 485
 486        /* remove it from the free list,
 487         * the wl subsystem does no longer know this erase block */
 488        rb_erase(&e->u.rb, &ubi->free);
 489        ubi->free_count--;
 490out:
 491        return e;
 492}
 493#endif
 494
 495/**
 496 * __wl_get_peb - get a physical eraseblock.
 497 * @ubi: UBI device description object
 498 *
 499 * This function returns a physical eraseblock in case of success and a
 500 * negative error code in case of failure.
 501 */
 502static int __wl_get_peb(struct ubi_device *ubi)
 503{
 504        int err;
 505        struct ubi_wl_entry *e;
 506
 507retry:
 508        if (!ubi->free.rb_node) {
 509                if (ubi->works_count == 0) {
 510                        ubi_err("no free eraseblocks");
 511                        ubi_assert(list_empty(&ubi->works));
 512                        return -ENOSPC;
 513                }
 514
 515                err = produce_free_peb(ubi);
 516                if (err < 0)
 517                        return err;
 518                goto retry;
 519        }
 520
 521        e = find_mean_wl_entry(ubi, &ubi->free);
 522        if (!e) {
 523                ubi_err("no free eraseblocks");
 524                return -ENOSPC;
 525        }
 526
 527        self_check_in_wl_tree(ubi, e, &ubi->free);
 528
 529        /*
 530         * Move the physical eraseblock to the protection queue where it will
 531         * be protected from being moved for some time.
 532         */
 533        rb_erase(&e->u.rb, &ubi->free);
 534        ubi->free_count--;
 535        dbg_wl("PEB %d EC %d", e->pnum, e->ec);
 536#ifndef CONFIG_MTD_UBI_FASTMAP
 537        /* We have to enqueue e only if fastmap is disabled,
 538         * is fastmap enabled prot_queue_add() will be called by
 539         * ubi_wl_get_peb() after removing e from the pool. */
 540        prot_queue_add(ubi, e);
 541#endif
 542        return e->pnum;
 543}
 544
 545#ifdef CONFIG_MTD_UBI_FASTMAP
 546/**
 547 * return_unused_pool_pebs - returns unused PEB to the free tree.
 548 * @ubi: UBI device description object
 549 * @pool: fastmap pool description object
 550 */
 551static void return_unused_pool_pebs(struct ubi_device *ubi,
 552                                    struct ubi_fm_pool *pool)
 553{
 554        int i;
 555        struct ubi_wl_entry *e;
 556
 557        for (i = pool->used; i < pool->size; i++) {
 558                e = ubi->lookuptbl[pool->pebs[i]];
 559                wl_tree_add(e, &ubi->free);
 560                ubi->free_count++;
 561        }
 562}
 563
 564/**
 565 * refill_wl_pool - refills all the fastmap pool used by the
 566 * WL sub-system.
 567 * @ubi: UBI device description object
 568 */
 569static void refill_wl_pool(struct ubi_device *ubi)
 570{
 571        struct ubi_wl_entry *e;
 572        struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
 573
 574        return_unused_pool_pebs(ubi, pool);
 575
 576        for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
 577                if (!ubi->free.rb_node ||
 578                   (ubi->free_count - ubi->beb_rsvd_pebs < 5))
 579                        break;
 580
 581                e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
 582                self_check_in_wl_tree(ubi, e, &ubi->free);
 583                rb_erase(&e->u.rb, &ubi->free);
 584                ubi->free_count--;
 585
 586                pool->pebs[pool->size] = e->pnum;
 587        }
 588        pool->used = 0;
 589}
 590
 591/**
 592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb.
 593 * @ubi: UBI device description object
 594 */
 595static void refill_wl_user_pool(struct ubi_device *ubi)
 596{
 597        struct ubi_fm_pool *pool = &ubi->fm_pool;
 598
 599        return_unused_pool_pebs(ubi, pool);
 600
 601        for (pool->size = 0; pool->size < pool->max_size; pool->size++) {
 602                if (!ubi->free.rb_node ||
 603                   (ubi->free_count - ubi->beb_rsvd_pebs < 1))
 604                        break;
 605
 606                pool->pebs[pool->size] = __wl_get_peb(ubi);
 607                if (pool->pebs[pool->size] < 0)
 608                        break;
 609        }
 610        pool->used = 0;
 611}
 612
 613/**
 614 * ubi_refill_pools - refills all fastmap PEB pools.
 615 * @ubi: UBI device description object
 616 */
 617void ubi_refill_pools(struct ubi_device *ubi)
 618{
 619        spin_lock(&ubi->wl_lock);
 620        refill_wl_pool(ubi);
 621        refill_wl_user_pool(ubi);
 622        spin_unlock(&ubi->wl_lock);
 623}
 624
 625/* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of
 626 * the fastmap pool.
 627 */
 628int ubi_wl_get_peb(struct ubi_device *ubi)
 629{
 630        int ret;
 631        struct ubi_fm_pool *pool = &ubi->fm_pool;
 632        struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool;
 633
 634        if (!pool->size || !wl_pool->size || pool->used == pool->size ||
 635            wl_pool->used == wl_pool->size)
 636                ubi_update_fastmap(ubi);
 637
 638        /* we got not a single free PEB */
 639        if (!pool->size)
 640                ret = -ENOSPC;
 641        else {
 642                spin_lock(&ubi->wl_lock);
 643                ret = pool->pebs[pool->used++];
 644                prot_queue_add(ubi, ubi->lookuptbl[ret]);
 645                spin_unlock(&ubi->wl_lock);
 646        }
 647
 648        return ret;
 649}
 650
 651/* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system.
 652 *
 653 * @ubi: UBI device description object
 654 */
 655static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
 656{
 657        struct ubi_fm_pool *pool = &ubi->fm_wl_pool;
 658        int pnum;
 659
 660        if (pool->used == pool->size || !pool->size) {
 661                /* We cannot update the fastmap here because this
 662                 * function is called in atomic context.
 663                 * Let's fail here and refill/update it as soon as possible. */
 664                schedule_work(&ubi->fm_work);
 665                return NULL;
 666        } else {
 667                pnum = pool->pebs[pool->used++];
 668                return ubi->lookuptbl[pnum];
 669        }
 670}
 671#else
 672static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
 673{
 674        struct ubi_wl_entry *e;
 675
 676        e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
 677        self_check_in_wl_tree(ubi, e, &ubi->free);
 678        rb_erase(&e->u.rb, &ubi->free);
 679
 680        return e;
 681}
 682
 683int ubi_wl_get_peb(struct ubi_device *ubi)
 684{
 685        int peb, err;
 686
 687        spin_lock(&ubi->wl_lock);
 688        peb = __wl_get_peb(ubi);
 689        spin_unlock(&ubi->wl_lock);
 690
 691        err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset,
 692                                    ubi->peb_size - ubi->vid_hdr_aloffset);
 693        if (err) {
 694                ubi_err("new PEB %d does not contain all 0xFF bytes", peb);
 695                return err;
 696        }
 697
 698        return peb;
 699}
 700#endif
 701
 702/**
 703 * prot_queue_del - remove a physical eraseblock from the protection queue.
 704 * @ubi: UBI device description object
 705 * @pnum: the physical eraseblock to remove
 706 *
 707 * This function deletes PEB @pnum from the protection queue and returns zero
 708 * in case of success and %-ENODEV if the PEB was not found.
 709 */
 710static int prot_queue_del(struct ubi_device *ubi, int pnum)
 711{
 712        struct ubi_wl_entry *e;
 713
 714        e = ubi->lookuptbl[pnum];
 715        if (!e)
 716                return -ENODEV;
 717
 718        if (self_check_in_pq(ubi, e))
 719                return -ENODEV;
 720
 721        list_del(&e->u.list);
 722        dbg_wl("deleted PEB %d from the protection queue", e->pnum);
 723        return 0;
 724}
 725
 726/**
 727 * sync_erase - synchronously erase a physical eraseblock.
 728 * @ubi: UBI device description object
 729 * @e: the the physical eraseblock to erase
 730 * @torture: if the physical eraseblock has to be tortured
 731 *
 732 * This function returns zero in case of success and a negative error code in
 733 * case of failure.
 734 */
 735static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 736                      int torture)
 737{
 738        int err;
 739        struct ubi_ec_hdr *ec_hdr;
 740        unsigned long long ec = e->ec;
 741
 742        dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
 743
 744        err = self_check_ec(ubi, e->pnum, e->ec);
 745        if (err)
 746                return -EINVAL;
 747
 748        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
 749        if (!ec_hdr)
 750                return -ENOMEM;
 751
 752        err = ubi_io_sync_erase(ubi, e->pnum, torture);
 753        if (err < 0)
 754                goto out_free;
 755
 756        ec += err;
 757        if (ec > UBI_MAX_ERASECOUNTER) {
 758                /*
 759                 * Erase counter overflow. Upgrade UBI and use 64-bit
 760                 * erase counters internally.
 761                 */
 762                ubi_err("erase counter overflow at PEB %d, EC %llu",
 763                        e->pnum, ec);
 764                err = -EINVAL;
 765                goto out_free;
 766        }
 767
 768        dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
 769
 770        ec_hdr->ec = cpu_to_be64(ec);
 771
 772        err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
 773        if (err)
 774                goto out_free;
 775
 776        e->ec = ec;
 777        spin_lock(&ubi->wl_lock);
 778        if (e->ec > ubi->max_ec)
 779                ubi->max_ec = e->ec;
 780        spin_unlock(&ubi->wl_lock);
 781
 782out_free:
 783        kfree(ec_hdr);
 784        return err;
 785}
 786
 787/**
 788 * serve_prot_queue - check if it is time to stop protecting PEBs.
 789 * @ubi: UBI device description object
 790 *
 791 * This function is called after each erase operation and removes PEBs from the
 792 * tail of the protection queue. These PEBs have been protected for long enough
 793 * and should be moved to the used tree.
 794 */
 795static void serve_prot_queue(struct ubi_device *ubi)
 796{
 797        struct ubi_wl_entry *e, *tmp;
 798        int count;
 799
 800        /*
 801         * There may be several protected physical eraseblock to remove,
 802         * process them all.
 803         */
 804repeat:
 805        count = 0;
 806        spin_lock(&ubi->wl_lock);
 807        list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
 808                dbg_wl("PEB %d EC %d protection over, move to used tree",
 809                        e->pnum, e->ec);
 810
 811                list_del(&e->u.list);
 812                wl_tree_add(e, &ubi->used);
 813                if (count++ > 32) {
 814                        /*
 815                         * Let's be nice and avoid holding the spinlock for
 816                         * too long.
 817                         */
 818                        spin_unlock(&ubi->wl_lock);
 819                        cond_resched();
 820                        goto repeat;
 821                }
 822        }
 823
 824        ubi->pq_head += 1;
 825        if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
 826                ubi->pq_head = 0;
 827        ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
 828        spin_unlock(&ubi->wl_lock);
 829}
 830
 831/**
 832 * __schedule_ubi_work - schedule a work.
 833 * @ubi: UBI device description object
 834 * @wrk: the work to schedule
 835 *
 836 * This function adds a work defined by @wrk to the tail of the pending works
 837 * list. Can only be used of ubi->work_sem is already held in read mode!
 838 */
 839static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 840{
 841        spin_lock(&ubi->wl_lock);
 842        list_add_tail(&wrk->list, &ubi->works);
 843        ubi_assert(ubi->works_count >= 0);
 844        ubi->works_count += 1;
 845        if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
 846                wake_up_process(ubi->bgt_thread);
 847        spin_unlock(&ubi->wl_lock);
 848}
 849
 850/**
 851 * schedule_ubi_work - schedule a work.
 852 * @ubi: UBI device description object
 853 * @wrk: the work to schedule
 854 *
 855 * This function adds a work defined by @wrk to the tail of the pending works
 856 * list.
 857 */
 858static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
 859{
 860        down_read(&ubi->work_sem);
 861        __schedule_ubi_work(ubi, wrk);
 862        up_read(&ubi->work_sem);
 863}
 864
 865static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
 866                        int cancel);
 867
 868#ifdef CONFIG_MTD_UBI_FASTMAP
 869/**
 870 * ubi_is_erase_work - checks whether a work is erase work.
 871 * @wrk: The work object to be checked
 872 */
 873int ubi_is_erase_work(struct ubi_work *wrk)
 874{
 875        return wrk->func == erase_worker;
 876}
 877#endif
 878
 879/**
 880 * schedule_erase - schedule an erase work.
 881 * @ubi: UBI device description object
 882 * @e: the WL entry of the physical eraseblock to erase
 883 * @vol_id: the volume ID that last used this PEB
 884 * @lnum: the last used logical eraseblock number for the PEB
 885 * @torture: if the physical eraseblock has to be tortured
 886 *
 887 * This function returns zero in case of success and a %-ENOMEM in case of
 888 * failure.
 889 */
 890static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 891                          int vol_id, int lnum, int torture)
 892{
 893        struct ubi_work *wl_wrk;
 894
 895        ubi_assert(e);
 896        ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
 897
 898        dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
 899               e->pnum, e->ec, torture);
 900
 901        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 902        if (!wl_wrk)
 903                return -ENOMEM;
 904
 905        wl_wrk->func = &erase_worker;
 906        wl_wrk->e = e;
 907        wl_wrk->vol_id = vol_id;
 908        wl_wrk->lnum = lnum;
 909        wl_wrk->torture = torture;
 910
 911        schedule_ubi_work(ubi, wl_wrk);
 912        return 0;
 913}
 914
 915/**
 916 * do_sync_erase - run the erase worker synchronously.
 917 * @ubi: UBI device description object
 918 * @e: the WL entry of the physical eraseblock to erase
 919 * @vol_id: the volume ID that last used this PEB
 920 * @lnum: the last used logical eraseblock number for the PEB
 921 * @torture: if the physical eraseblock has to be tortured
 922 *
 923 */
 924static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
 925                         int vol_id, int lnum, int torture)
 926{
 927        struct ubi_work *wl_wrk;
 928
 929        dbg_wl("sync erase of PEB %i", e->pnum);
 930
 931        wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
 932        if (!wl_wrk)
 933                return -ENOMEM;
 934
 935        wl_wrk->e = e;
 936        wl_wrk->vol_id = vol_id;
 937        wl_wrk->lnum = lnum;
 938        wl_wrk->torture = torture;
 939
 940        return erase_worker(ubi, wl_wrk, 0);
 941}
 942
 943#ifdef CONFIG_MTD_UBI_FASTMAP
 944/**
 945 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling
 946 * sub-system.
 947 * see: ubi_wl_put_peb()
 948 *
 949 * @ubi: UBI device description object
 950 * @fm_e: physical eraseblock to return
 951 * @lnum: the last used logical eraseblock number for the PEB
 952 * @torture: if this physical eraseblock has to be tortured
 953 */
 954int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e,
 955                      int lnum, int torture)
 956{
 957        struct ubi_wl_entry *e;
 958        int vol_id, pnum = fm_e->pnum;
 959
 960        dbg_wl("PEB %d", pnum);
 961
 962        ubi_assert(pnum >= 0);
 963        ubi_assert(pnum < ubi->peb_count);
 964
 965        spin_lock(&ubi->wl_lock);
 966        e = ubi->lookuptbl[pnum];
 967
 968        /* This can happen if we recovered from a fastmap the very
 969         * first time and writing now a new one. In this case the wl system
 970         * has never seen any PEB used by the original fastmap.
 971         */
 972        if (!e) {
 973                e = fm_e;
 974                ubi_assert(e->ec >= 0);
 975                ubi->lookuptbl[pnum] = e;
 976        } else {
 977                e->ec = fm_e->ec;
 978                kfree(fm_e);
 979        }
 980
 981        spin_unlock(&ubi->wl_lock);
 982
 983        vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID;
 984        return schedule_erase(ubi, e, vol_id, lnum, torture);
 985}
 986#endif
 987
 988/**
 989 * wear_leveling_worker - wear-leveling worker function.
 990 * @ubi: UBI device description object
 991 * @wrk: the work object
 992 * @cancel: non-zero if the worker has to free memory and exit
 993 *
 994 * This function copies a more worn out physical eraseblock to a less worn out
 995 * one. Returns zero in case of success and a negative error code in case of
 996 * failure.
 997 */
 998static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
 999                                int cancel)
1000{
1001        int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
1002        int vol_id = -1, uninitialized_var(lnum);
1003#ifdef CONFIG_MTD_UBI_FASTMAP
1004        int anchor = wrk->anchor;
1005#endif
1006        struct ubi_wl_entry *e1, *e2;
1007        struct ubi_vid_hdr *vid_hdr;
1008
1009        kfree(wrk);
1010        if (cancel)
1011                return 0;
1012
1013        vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
1014        if (!vid_hdr)
1015                return -ENOMEM;
1016
1017        mutex_lock(&ubi->move_mutex);
1018        spin_lock(&ubi->wl_lock);
1019        ubi_assert(!ubi->move_from && !ubi->move_to);
1020        ubi_assert(!ubi->move_to_put);
1021
1022        if (!ubi->free.rb_node ||
1023            (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
1024                /*
1025                 * No free physical eraseblocks? Well, they must be waiting in
1026                 * the queue to be erased. Cancel movement - it will be
1027                 * triggered again when a free physical eraseblock appears.
1028                 *
1029                 * No used physical eraseblocks? They must be temporarily
1030                 * protected from being moved. They will be moved to the
1031                 * @ubi->used tree later and the wear-leveling will be
1032                 * triggered again.
1033                 */
1034                dbg_wl("cancel WL, a list is empty: free %d, used %d",
1035                       !ubi->free.rb_node, !ubi->used.rb_node);
1036                goto out_cancel;
1037        }
1038
1039#ifdef CONFIG_MTD_UBI_FASTMAP
1040        /* Check whether we need to produce an anchor PEB */
1041        if (!anchor)
1042                anchor = !anchor_pebs_avalible(&ubi->free);
1043
1044        if (anchor) {
1045                e1 = find_anchor_wl_entry(&ubi->used);
1046                if (!e1)
1047                        goto out_cancel;
1048                e2 = get_peb_for_wl(ubi);
1049                if (!e2)
1050                        goto out_cancel;
1051
1052                self_check_in_wl_tree(ubi, e1, &ubi->used);
1053                rb_erase(&e1->u.rb, &ubi->used);
1054                dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
1055        } else if (!ubi->scrub.rb_node) {
1056#else
1057        if (!ubi->scrub.rb_node) {
1058#endif
1059                /*
1060                 * Now pick the least worn-out used physical eraseblock and a
1061                 * highly worn-out free physical eraseblock. If the erase
1062                 * counters differ much enough, start wear-leveling.
1063                 */
1064                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1065                e2 = get_peb_for_wl(ubi);
1066                if (!e2)
1067                        goto out_cancel;
1068
1069                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
1070                        dbg_wl("no WL needed: min used EC %d, max free EC %d",
1071                               e1->ec, e2->ec);
1072
1073                        /* Give the unused PEB back */
1074                        wl_tree_add(e2, &ubi->free);
1075                        goto out_cancel;
1076                }
1077                self_check_in_wl_tree(ubi, e1, &ubi->used);
1078                rb_erase(&e1->u.rb, &ubi->used);
1079                dbg_wl("move PEB %d EC %d to PEB %d EC %d",
1080                       e1->pnum, e1->ec, e2->pnum, e2->ec);
1081        } else {
1082                /* Perform scrubbing */
1083                scrubbing = 1;
1084                e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
1085                e2 = get_peb_for_wl(ubi);
1086                if (!e2)
1087                        goto out_cancel;
1088
1089                self_check_in_wl_tree(ubi, e1, &ubi->scrub);
1090                rb_erase(&e1->u.rb, &ubi->scrub);
1091                dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
1092        }
1093
1094        ubi->move_from = e1;
1095        ubi->move_to = e2;
1096        spin_unlock(&ubi->wl_lock);
1097
1098        /*
1099         * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
1100         * We so far do not know which logical eraseblock our physical
1101         * eraseblock (@e1) belongs to. We have to read the volume identifier
1102         * header first.
1103         *
1104         * Note, we are protected from this PEB being unmapped and erased. The
1105         * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
1106         * which is being moved was unmapped.
1107         */
1108
1109        err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
1110        if (err && err != UBI_IO_BITFLIPS) {
1111                if (err == UBI_IO_FF) {
1112                        /*
1113                         * We are trying to move PEB without a VID header. UBI
1114                         * always write VID headers shortly after the PEB was
1115                         * given, so we have a situation when it has not yet
1116                         * had a chance to write it, because it was preempted.
1117                         * So add this PEB to the protection queue so far,
1118                         * because presumably more data will be written there
1119                         * (including the missing VID header), and then we'll
1120                         * move it.
1121                         */
1122                        dbg_wl("PEB %d has no VID header", e1->pnum);
1123                        protect = 1;
1124                        goto out_not_moved;
1125                } else if (err == UBI_IO_FF_BITFLIPS) {
1126                        /*
1127                         * The same situation as %UBI_IO_FF, but bit-flips were
1128                         * detected. It is better to schedule this PEB for
1129                         * scrubbing.
1130                         */
1131                        dbg_wl("PEB %d has no VID header but has bit-flips",
1132                               e1->pnum);
1133                        scrubbing = 1;
1134                        goto out_not_moved;
1135                }
1136
1137                ubi_err("error %d while reading VID header from PEB %d",
1138                        err, e1->pnum);
1139                goto out_error;
1140        }
1141
1142        vol_id = be32_to_cpu(vid_hdr->vol_id);
1143        lnum = be32_to_cpu(vid_hdr->lnum);
1144
1145        err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
1146        if (err) {
1147                if (err == MOVE_CANCEL_RACE) {
1148                        /*
1149                         * The LEB has not been moved because the volume is
1150                         * being deleted or the PEB has been put meanwhile. We
1151                         * should prevent this PEB from being selected for
1152                         * wear-leveling movement again, so put it to the
1153                         * protection queue.
1154                         */
1155                        protect = 1;
1156                        goto out_not_moved;
1157                }
1158                if (err == MOVE_RETRY) {
1159                        scrubbing = 1;
1160                        goto out_not_moved;
1161                }
1162                if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
1163                    err == MOVE_TARGET_RD_ERR) {
1164                        /*
1165                         * Target PEB had bit-flips or write error - torture it.
1166                         */
1167                        torture = 1;
1168                        goto out_not_moved;
1169                }
1170
1171                if (err == MOVE_SOURCE_RD_ERR) {
1172                        /*
1173                         * An error happened while reading the source PEB. Do
1174                         * not switch to R/O mode in this case, and give the
1175                         * upper layers a possibility to recover from this,
1176                         * e.g. by unmapping corresponding LEB. Instead, just
1177                         * put this PEB to the @ubi->erroneous list to prevent
1178                         * UBI from trying to move it over and over again.
1179                         */
1180                        if (ubi->erroneous_peb_count > ubi->max_erroneous) {
1181                                ubi_err("too many erroneous eraseblocks (%d)",
1182                                        ubi->erroneous_peb_count);
1183                                goto out_error;
1184                        }
1185                        erroneous = 1;
1186                        goto out_not_moved;
1187                }
1188
1189                if (err < 0)
1190                        goto out_error;
1191
1192                ubi_assert(0);
1193        }
1194
1195        /* The PEB has been successfully moved */
1196        if (scrubbing)
1197                ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
1198                        e1->pnum, vol_id, lnum, e2->pnum);
1199        ubi_free_vid_hdr(ubi, vid_hdr);
1200
1201        spin_lock(&ubi->wl_lock);
1202        if (!ubi->move_to_put) {
1203                wl_tree_add(e2, &ubi->used);
1204                e2 = NULL;
1205        }
1206        ubi->move_from = ubi->move_to = NULL;
1207        ubi->move_to_put = ubi->wl_scheduled = 0;
1208        spin_unlock(&ubi->wl_lock);
1209
1210        err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
1211        if (err) {
1212                kmem_cache_free(ubi_wl_entry_slab, e1);
1213                if (e2)
1214                        kmem_cache_free(ubi_wl_entry_slab, e2);
1215                goto out_ro;
1216        }
1217
1218        if (e2) {
1219                /*
1220                 * Well, the target PEB was put meanwhile, schedule it for
1221                 * erasure.
1222                 */
1223                dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
1224                       e2->pnum, vol_id, lnum);
1225                err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
1226                if (err) {
1227                        kmem_cache_free(ubi_wl_entry_slab, e2);
1228                        goto out_ro;
1229                }
1230        }
1231
1232        dbg_wl("done");
1233        mutex_unlock(&ubi->move_mutex);
1234        return 0;
1235
1236        /*
1237         * For some reasons the LEB was not moved, might be an error, might be
1238         * something else. @e1 was not changed, so return it back. @e2 might
1239         * have been changed, schedule it for erasure.
1240         */
1241out_not_moved:
1242        if (vol_id != -1)
1243                dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
1244                       e1->pnum, vol_id, lnum, e2->pnum, err);
1245        else
1246                dbg_wl("cancel moving PEB %d to PEB %d (%d)",
1247                       e1->pnum, e2->pnum, err);
1248        spin_lock(&ubi->wl_lock);
1249        if (protect)
1250                prot_queue_add(ubi, e1);
1251        else if (erroneous) {
1252                wl_tree_add(e1, &ubi->erroneous);
1253                ubi->erroneous_peb_count += 1;
1254        } else if (scrubbing)
1255                wl_tree_add(e1, &ubi->scrub);
1256        else
1257                wl_tree_add(e1, &ubi->used);
1258        ubi_assert(!ubi->move_to_put);
1259        ubi->move_from = ubi->move_to = NULL;
1260        ubi->wl_scheduled = 0;
1261        spin_unlock(&ubi->wl_lock);
1262
1263        ubi_free_vid_hdr(ubi, vid_hdr);
1264        err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
1265        if (err) {
1266                kmem_cache_free(ubi_wl_entry_slab, e2);
1267                goto out_ro;
1268        }
1269        mutex_unlock(&ubi->move_mutex);
1270        return 0;
1271
1272out_error:
1273        if (vol_id != -1)
1274                ubi_err("error %d while moving PEB %d to PEB %d",
1275                        err, e1->pnum, e2->pnum);
1276        else
1277                ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
1278                        err, e1->pnum, vol_id, lnum, e2->pnum);
1279        spin_lock(&ubi->wl_lock);
1280        ubi->move_from = ubi->move_to = NULL;
1281        ubi->move_to_put = ubi->wl_scheduled = 0;
1282        spin_unlock(&ubi->wl_lock);
1283
1284        ubi_free_vid_hdr(ubi, vid_hdr);
1285        kmem_cache_free(ubi_wl_entry_slab, e1);
1286        kmem_cache_free(ubi_wl_entry_slab, e2);
1287
1288out_ro:
1289        ubi_ro_mode(ubi);
1290        mutex_unlock(&ubi->move_mutex);
1291        ubi_assert(err != 0);
1292        return err < 0 ? err : -EIO;
1293
1294out_cancel:
1295        ubi->wl_scheduled = 0;
1296        spin_unlock(&ubi->wl_lock);
1297        mutex_unlock(&ubi->move_mutex);
1298        ubi_free_vid_hdr(ubi, vid_hdr);
1299        return 0;
1300}
1301
1302/**
1303 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1304 * @ubi: UBI device description object
1305 * @nested: set to non-zero if this function is called from UBI worker
1306 *
1307 * This function checks if it is time to start wear-leveling and schedules it
1308 * if yes. This function returns zero in case of success and a negative error
1309 * code in case of failure.
1310 */
1311static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1312{
1313        int err = 0;
1314        struct ubi_wl_entry *e1;
1315        struct ubi_wl_entry *e2;
1316        struct ubi_work *wrk;
1317
1318        spin_lock(&ubi->wl_lock);
1319        if (ubi->wl_scheduled)
1320                /* Wear-leveling is already in the work queue */
1321                goto out_unlock;
1322
1323        /*
1324         * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1325         * the WL worker has to be scheduled anyway.
1326         */
1327        if (!ubi->scrub.rb_node) {
1328                if (!ubi->used.rb_node || !ubi->free.rb_node)
1329                        /* No physical eraseblocks - no deal */
1330                        goto out_unlock;
1331
1332                /*
1333                 * We schedule wear-leveling only if the difference between the
1334                 * lowest erase counter of used physical eraseblocks and a high
1335                 * erase counter of free physical eraseblocks is greater than
1336                 * %UBI_WL_THRESHOLD.
1337                 */
1338                e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1339                e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1340
1341                if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1342                        goto out_unlock;
1343                dbg_wl("schedule wear-leveling");
1344        } else
1345                dbg_wl("schedule scrubbing");
1346
1347        ubi->wl_scheduled = 1;
1348        spin_unlock(&ubi->wl_lock);
1349
1350        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1351        if (!wrk) {
1352                err = -ENOMEM;
1353                goto out_cancel;
1354        }
1355
1356        wrk->anchor = 0;
1357        wrk->func = &wear_leveling_worker;
1358        if (nested)
1359                __schedule_ubi_work(ubi, wrk);
1360        else
1361                schedule_ubi_work(ubi, wrk);
1362        return err;
1363
1364out_cancel:
1365        spin_lock(&ubi->wl_lock);
1366        ubi->wl_scheduled = 0;
1367out_unlock:
1368        spin_unlock(&ubi->wl_lock);
1369        return err;
1370}
1371
1372#ifdef CONFIG_MTD_UBI_FASTMAP
1373/**
1374 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB.
1375 * @ubi: UBI device description object
1376 */
1377int ubi_ensure_anchor_pebs(struct ubi_device *ubi)
1378{
1379        struct ubi_work *wrk;
1380
1381        spin_lock(&ubi->wl_lock);
1382        if (ubi->wl_scheduled) {
1383                spin_unlock(&ubi->wl_lock);
1384                return 0;
1385        }
1386        ubi->wl_scheduled = 1;
1387        spin_unlock(&ubi->wl_lock);
1388
1389        wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1390        if (!wrk) {
1391                spin_lock(&ubi->wl_lock);
1392                ubi->wl_scheduled = 0;
1393                spin_unlock(&ubi->wl_lock);
1394                return -ENOMEM;
1395        }
1396
1397        wrk->anchor = 1;
1398        wrk->func = &wear_leveling_worker;
1399        schedule_ubi_work(ubi, wrk);
1400        return 0;
1401}
1402#endif
1403
1404/**
1405 * erase_worker - physical eraseblock erase worker function.
1406 * @ubi: UBI device description object
1407 * @wl_wrk: the work object
1408 * @cancel: non-zero if the worker has to free memory and exit
1409 *
1410 * This function erases a physical eraseblock and perform torture testing if
1411 * needed. It also takes care about marking the physical eraseblock bad if
1412 * needed. Returns zero in case of success and a negative error code in case of
1413 * failure.
1414 */
1415static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1416                        int cancel)
1417{
1418        struct ubi_wl_entry *e = wl_wrk->e;
1419        int pnum = e->pnum;
1420        int vol_id = wl_wrk->vol_id;
1421        int lnum = wl_wrk->lnum;
1422        int err, available_consumed = 0;
1423
1424        if (cancel) {
1425                dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1426                kfree(wl_wrk);
1427                kmem_cache_free(ubi_wl_entry_slab, e);
1428                return 0;
1429        }
1430
1431        dbg_wl("erase PEB %d EC %d LEB %d:%d",
1432               pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1433
1434        ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1435
1436        err = sync_erase(ubi, e, wl_wrk->torture);
1437        if (!err) {
1438                /* Fine, we've erased it successfully */
1439                kfree(wl_wrk);
1440
1441                spin_lock(&ubi->wl_lock);
1442                wl_tree_add(e, &ubi->free);
1443                ubi->free_count++;
1444                spin_unlock(&ubi->wl_lock);
1445
1446                /*
1447                 * One more erase operation has happened, take care about
1448                 * protected physical eraseblocks.
1449                 */
1450                serve_prot_queue(ubi);
1451
1452                /* And take care about wear-leveling */
1453                err = ensure_wear_leveling(ubi, 1);
1454                return err;
1455        }
1456
1457        ubi_err("failed to erase PEB %d, error %d", pnum, err);
1458        kfree(wl_wrk);
1459
1460        if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1461            err == -EBUSY) {
1462                int err1;
1463
1464                /* Re-schedule the LEB for erasure */
1465                err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1466                if (err1) {
1467                        err = err1;
1468                        goto out_ro;
1469                }
1470                return err;
1471        }
1472
1473        kmem_cache_free(ubi_wl_entry_slab, e);
1474        if (err != -EIO)
1475                /*
1476                 * If this is not %-EIO, we have no idea what to do. Scheduling
1477                 * this physical eraseblock for erasure again would cause
1478                 * errors again and again. Well, lets switch to R/O mode.
1479                 */
1480                goto out_ro;
1481
1482        /* It is %-EIO, the PEB went bad */
1483
1484        if (!ubi->bad_allowed) {
1485                ubi_err("bad physical eraseblock %d detected", pnum);
1486                goto out_ro;
1487        }
1488
1489        spin_lock(&ubi->volumes_lock);
1490        if (ubi->beb_rsvd_pebs == 0) {
1491                if (ubi->avail_pebs == 0) {
1492                        spin_unlock(&ubi->volumes_lock);
1493                        ubi_err("no reserved/available physical eraseblocks");
1494                        goto out_ro;
1495                }
1496                ubi->avail_pebs -= 1;
1497                available_consumed = 1;
1498        }
1499        spin_unlock(&ubi->volumes_lock);
1500
1501        ubi_msg("mark PEB %d as bad", pnum);
1502        err = ubi_io_mark_bad(ubi, pnum);
1503        if (err)
1504                goto out_ro;
1505
1506        spin_lock(&ubi->volumes_lock);
1507        if (ubi->beb_rsvd_pebs > 0) {
1508                if (available_consumed) {
1509                        /*
1510                         * The amount of reserved PEBs increased since we last
1511                         * checked.
1512                         */
1513                        ubi->avail_pebs += 1;
1514                        available_consumed = 0;
1515                }
1516                ubi->beb_rsvd_pebs -= 1;
1517        }
1518        ubi->bad_peb_count += 1;
1519        ubi->good_peb_count -= 1;
1520        ubi_calculate_reserved(ubi);
1521        if (available_consumed)
1522                ubi_warn("no PEBs in the reserved pool, used an available PEB");
1523        else if (ubi->beb_rsvd_pebs)
1524                ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1525        else
1526                ubi_warn("last PEB from the reserve was used");
1527        spin_unlock(&ubi->volumes_lock);
1528
1529        return err;
1530
1531out_ro:
1532        if (available_consumed) {
1533                spin_lock(&ubi->volumes_lock);
1534                ubi->avail_pebs += 1;
1535                spin_unlock(&ubi->volumes_lock);
1536        }
1537        ubi_ro_mode(ubi);
1538        return err;
1539}
1540
1541/**
1542 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1543 * @ubi: UBI device description object
1544 * @vol_id: the volume ID that last used this PEB
1545 * @lnum: the last used logical eraseblock number for the PEB
1546 * @pnum: physical eraseblock to return
1547 * @torture: if this physical eraseblock has to be tortured
1548 *
1549 * This function is called to return physical eraseblock @pnum to the pool of
1550 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1551 * occurred to this @pnum and it has to be tested. This function returns zero
1552 * in case of success, and a negative error code in case of failure.
1553 */
1554int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1555                   int pnum, int torture)
1556{
1557        int err;
1558        struct ubi_wl_entry *e;
1559
1560        dbg_wl("PEB %d", pnum);
1561        ubi_assert(pnum >= 0);
1562        ubi_assert(pnum < ubi->peb_count);
1563
1564retry:
1565        spin_lock(&ubi->wl_lock);
1566        e = ubi->lookuptbl[pnum];
1567        if (e == ubi->move_from) {
1568                /*
1569                 * User is putting the physical eraseblock which was selected to
1570                 * be moved. It will be scheduled for erasure in the
1571                 * wear-leveling worker.
1572                 */
1573                dbg_wl("PEB %d is being moved, wait", pnum);
1574                spin_unlock(&ubi->wl_lock);
1575
1576                /* Wait for the WL worker by taking the @ubi->move_mutex */
1577                mutex_lock(&ubi->move_mutex);
1578                mutex_unlock(&ubi->move_mutex);
1579                goto retry;
1580        } else if (e == ubi->move_to) {
1581                /*
1582                 * User is putting the physical eraseblock which was selected
1583                 * as the target the data is moved to. It may happen if the EBA
1584                 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1585                 * but the WL sub-system has not put the PEB to the "used" tree
1586                 * yet, but it is about to do this. So we just set a flag which
1587                 * will tell the WL worker that the PEB is not needed anymore
1588                 * and should be scheduled for erasure.
1589                 */
1590                dbg_wl("PEB %d is the target of data moving", pnum);
1591                ubi_assert(!ubi->move_to_put);
1592                ubi->move_to_put = 1;
1593                spin_unlock(&ubi->wl_lock);
1594                return 0;
1595        } else {
1596                if (in_wl_tree(e, &ubi->used)) {
1597                        self_check_in_wl_tree(ubi, e, &ubi->used);
1598                        rb_erase(&e->u.rb, &ubi->used);
1599                } else if (in_wl_tree(e, &ubi->scrub)) {
1600                        self_check_in_wl_tree(ubi, e, &ubi->scrub);
1601                        rb_erase(&e->u.rb, &ubi->scrub);
1602                } else if (in_wl_tree(e, &ubi->erroneous)) {
1603                        self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1604                        rb_erase(&e->u.rb, &ubi->erroneous);
1605                        ubi->erroneous_peb_count -= 1;
1606                        ubi_assert(ubi->erroneous_peb_count >= 0);
1607                        /* Erroneous PEBs should be tortured */
1608                        torture = 1;
1609                } else {
1610                        err = prot_queue_del(ubi, e->pnum);
1611                        if (err) {
1612                                ubi_err("PEB %d not found", pnum);
1613                                ubi_ro_mode(ubi);
1614                                spin_unlock(&ubi->wl_lock);
1615                                return err;
1616                        }
1617                }
1618        }
1619        spin_unlock(&ubi->wl_lock);
1620
1621        err = schedule_erase(ubi, e, vol_id, lnum, torture);
1622        if (err) {
1623                spin_lock(&ubi->wl_lock);
1624                wl_tree_add(e, &ubi->used);
1625                spin_unlock(&ubi->wl_lock);
1626        }
1627
1628        return err;
1629}
1630
1631/**
1632 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1633 * @ubi: UBI device description object
1634 * @pnum: the physical eraseblock to schedule
1635 *
1636 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1637 * needs scrubbing. This function schedules a physical eraseblock for
1638 * scrubbing which is done in background. This function returns zero in case of
1639 * success and a negative error code in case of failure.
1640 */
1641int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1642{
1643        struct ubi_wl_entry *e;
1644
1645        ubi_msg("schedule PEB %d for scrubbing", pnum);
1646
1647retry:
1648        spin_lock(&ubi->wl_lock);
1649        e = ubi->lookuptbl[pnum];
1650        if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1651                                   in_wl_tree(e, &ubi->erroneous)) {
1652                spin_unlock(&ubi->wl_lock);
1653                return 0;
1654        }
1655
1656        if (e == ubi->move_to) {
1657                /*
1658                 * This physical eraseblock was used to move data to. The data
1659                 * was moved but the PEB was not yet inserted to the proper
1660                 * tree. We should just wait a little and let the WL worker
1661                 * proceed.
1662                 */
1663                spin_unlock(&ubi->wl_lock);
1664                dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1665                yield();
1666                goto retry;
1667        }
1668
1669        if (in_wl_tree(e, &ubi->used)) {
1670                self_check_in_wl_tree(ubi, e, &ubi->used);
1671                rb_erase(&e->u.rb, &ubi->used);
1672        } else {
1673                int err;
1674
1675                err = prot_queue_del(ubi, e->pnum);
1676                if (err) {
1677                        ubi_err("PEB %d not found", pnum);
1678                        ubi_ro_mode(ubi);
1679                        spin_unlock(&ubi->wl_lock);
1680                        return err;
1681                }
1682        }
1683
1684        wl_tree_add(e, &ubi->scrub);
1685        spin_unlock(&ubi->wl_lock);
1686
1687        /*
1688         * Technically scrubbing is the same as wear-leveling, so it is done
1689         * by the WL worker.
1690         */
1691        return ensure_wear_leveling(ubi, 0);
1692}
1693
1694/**
1695 * ubi_wl_flush - flush all pending works.
1696 * @ubi: UBI device description object
1697 * @vol_id: the volume id to flush for
1698 * @lnum: the logical eraseblock number to flush for
1699 *
1700 * This function executes all pending works for a particular volume id /
1701 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1702 * acts as a wildcard for all of the corresponding volume numbers or logical
1703 * eraseblock numbers. It returns zero in case of success and a negative error
1704 * code in case of failure.
1705 */
1706int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1707{
1708        int err = 0;
1709        int found = 1;
1710
1711        /*
1712         * Erase while the pending works queue is not empty, but not more than
1713         * the number of currently pending works.
1714         */
1715        dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1716               vol_id, lnum, ubi->works_count);
1717
1718        while (found) {
1719                struct ubi_work *wrk;
1720                found = 0;
1721
1722                down_read(&ubi->work_sem);
1723                spin_lock(&ubi->wl_lock);
1724                list_for_each_entry(wrk, &ubi->works, list) {
1725                        if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1726                            (lnum == UBI_ALL || wrk->lnum == lnum)) {
1727                                list_del(&wrk->list);
1728                                ubi->works_count -= 1;
1729                                ubi_assert(ubi->works_count >= 0);
1730                                spin_unlock(&ubi->wl_lock);
1731
1732                                err = wrk->func(ubi, wrk, 0);
1733                                if (err) {
1734                                        up_read(&ubi->work_sem);
1735                                        return err;
1736                                }
1737
1738                                spin_lock(&ubi->wl_lock);
1739                                found = 1;
1740                                break;
1741                        }
1742                }
1743                spin_unlock(&ubi->wl_lock);
1744                up_read(&ubi->work_sem);
1745        }
1746
1747        /*
1748         * Make sure all the works which have been done in parallel are
1749         * finished.
1750         */
1751        down_write(&ubi->work_sem);
1752        up_write(&ubi->work_sem);
1753
1754        return err;
1755}
1756
1757/**
1758 * tree_destroy - destroy an RB-tree.
1759 * @root: the root of the tree to destroy
1760 */
1761static void tree_destroy(struct rb_root *root)
1762{
1763        struct rb_node *rb;
1764        struct ubi_wl_entry *e;
1765
1766        rb = root->rb_node;
1767        while (rb) {
1768                if (rb->rb_left)
1769                        rb = rb->rb_left;
1770                else if (rb->rb_right)
1771                        rb = rb->rb_right;
1772                else {
1773                        e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1774
1775                        rb = rb_parent(rb);
1776                        if (rb) {
1777                                if (rb->rb_left == &e->u.rb)
1778                                        rb->rb_left = NULL;
1779                                else
1780                                        rb->rb_right = NULL;
1781                        }
1782
1783                        kmem_cache_free(ubi_wl_entry_slab, e);
1784                }
1785        }
1786}
1787
1788/**
1789 * ubi_thread - UBI background thread.
1790 * @u: the UBI device description object pointer
1791 */
1792int ubi_thread(void *u)
1793{
1794        int failures = 0;
1795        struct ubi_device *ubi = u;
1796
1797        ubi_msg("background thread \"%s\" started, PID %d",
1798                ubi->bgt_name, task_pid_nr(current));
1799
1800        set_freezable();
1801        for (;;) {
1802                int err;
1803
1804                if (kthread_should_stop())
1805                        break;
1806
1807                if (try_to_freeze())
1808                        continue;
1809
1810                spin_lock(&ubi->wl_lock);
1811                if (list_empty(&ubi->works) || ubi->ro_mode ||
1812                    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1813                        set_current_state(TASK_INTERRUPTIBLE);
1814                        spin_unlock(&ubi->wl_lock);
1815                        schedule();
1816                        continue;
1817                }
1818                spin_unlock(&ubi->wl_lock);
1819
1820                err = do_work(ubi);
1821                if (err) {
1822                        ubi_err("%s: work failed with error code %d",
1823                                ubi->bgt_name, err);
1824                        if (failures++ > WL_MAX_FAILURES) {
1825                                /*
1826                                 * Too many failures, disable the thread and
1827                                 * switch to read-only mode.
1828                                 */
1829                                ubi_msg("%s: %d consecutive failures",
1830                                        ubi->bgt_name, WL_MAX_FAILURES);
1831                                ubi_ro_mode(ubi);
1832                                ubi->thread_enabled = 0;
1833                                continue;
1834                        }
1835                } else
1836                        failures = 0;
1837
1838                cond_resched();
1839        }
1840
1841        dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1842        return 0;
1843}
1844
1845/**
1846 * cancel_pending - cancel all pending works.
1847 * @ubi: UBI device description object
1848 */
1849static void cancel_pending(struct ubi_device *ubi)
1850{
1851        while (!list_empty(&ubi->works)) {
1852                struct ubi_work *wrk;
1853
1854                wrk = list_entry(ubi->works.next, struct ubi_work, list);
1855                list_del(&wrk->list);
1856                wrk->func(ubi, wrk, 1);
1857                ubi->works_count -= 1;
1858                ubi_assert(ubi->works_count >= 0);
1859        }
1860}
1861
1862/**
1863 * ubi_wl_init - initialize the WL sub-system using attaching information.
1864 * @ubi: UBI device description object
1865 * @ai: attaching information
1866 *
1867 * This function returns zero in case of success, and a negative error code in
1868 * case of failure.
1869 */
1870int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1871{
1872        int err, i, reserved_pebs, found_pebs = 0;
1873        struct rb_node *rb1, *rb2;
1874        struct ubi_ainf_volume *av;
1875        struct ubi_ainf_peb *aeb, *tmp;
1876        struct ubi_wl_entry *e;
1877
1878        ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1879        spin_lock_init(&ubi->wl_lock);
1880        mutex_init(&ubi->move_mutex);
1881        init_rwsem(&ubi->work_sem);
1882        ubi->max_ec = ai->max_ec;
1883        INIT_LIST_HEAD(&ubi->works);
1884#ifdef CONFIG_MTD_UBI_FASTMAP
1885        INIT_WORK(&ubi->fm_work, update_fastmap_work_fn);
1886#endif
1887
1888        sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1889
1890        err = -ENOMEM;
1891        ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1892        if (!ubi->lookuptbl)
1893                return err;
1894
1895        for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1896                INIT_LIST_HEAD(&ubi->pq[i]);
1897        ubi->pq_head = 0;
1898
1899        list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1900                cond_resched();
1901
1902                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1903                if (!e)
1904                        goto out_free;
1905
1906                e->pnum = aeb->pnum;
1907                e->ec = aeb->ec;
1908                ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1909                ubi->lookuptbl[e->pnum] = e;
1910                if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1911                        kmem_cache_free(ubi_wl_entry_slab, e);
1912                        goto out_free;
1913                }
1914
1915                found_pebs++;
1916        }
1917
1918        ubi->free_count = 0;
1919        list_for_each_entry(aeb, &ai->free, u.list) {
1920                cond_resched();
1921
1922                e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1923                if (!e)
1924                        goto out_free;
1925
1926                e->pnum = aeb->pnum;
1927                e->ec = aeb->ec;
1928                ubi_assert(e->ec >= 0);
1929                ubi_assert(!ubi_is_fm_block(ubi, e->pnum));
1930
1931                wl_tree_add(e, &ubi->free);
1932                ubi->free_count++;
1933
1934                ubi->lookuptbl[e->pnum] = e;
1935
1936                found_pebs++;
1937        }
1938
1939        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1940                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1941                        cond_resched();
1942
1943                        e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1944                        if (!e)
1945                                goto out_free;
1946
1947                        e->pnum = aeb->pnum;
1948                        e->ec = aeb->ec;
1949                        ubi->lookuptbl[e->pnum] = e;
1950
1951                        if (!aeb->scrub) {
1952                                dbg_wl("add PEB %d EC %d to the used tree",
1953                                       e->pnum, e->ec);
1954                                wl_tree_add(e, &ubi->used);
1955                        } else {
1956                                dbg_wl("add PEB %d EC %d to the scrub tree",
1957                                       e->pnum, e->ec);
1958                                wl_tree_add(e, &ubi->scrub);
1959                        }
1960
1961                        found_pebs++;
1962                }
1963        }
1964
1965        dbg_wl("found %i PEBs", found_pebs);
1966
1967        if (ubi->fm)
1968                ubi_assert(ubi->good_peb_count == \
1969                           found_pebs + ubi->fm->used_blocks);
1970        else
1971                ubi_assert(ubi->good_peb_count == found_pebs);
1972
1973        reserved_pebs = WL_RESERVED_PEBS;
1974#ifdef CONFIG_MTD_UBI_FASTMAP
1975        /* Reserve enough LEBs to store two fastmaps. */
1976        reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2;
1977#endif
1978
1979        if (ubi->avail_pebs < reserved_pebs) {
1980                ubi_err("no enough physical eraseblocks (%d, need %d)",
1981                        ubi->avail_pebs, reserved_pebs);
1982                if (ubi->corr_peb_count)
1983                        ubi_err("%d PEBs are corrupted and not used",
1984                                ubi->corr_peb_count);
1985                goto out_free;
1986        }
1987        ubi->avail_pebs -= reserved_pebs;
1988        ubi->rsvd_pebs += reserved_pebs;
1989
1990        /* Schedule wear-leveling if needed */
1991        err = ensure_wear_leveling(ubi, 0);
1992        if (err)
1993                goto out_free;
1994
1995        return 0;
1996
1997out_free:
1998        cancel_pending(ubi);
1999        tree_destroy(&ubi->used);
2000        tree_destroy(&ubi->free);
2001        tree_destroy(&ubi->scrub);
2002        kfree(ubi->lookuptbl);
2003        return err;
2004}
2005
2006/**
2007 * protection_queue_destroy - destroy the protection queue.
2008 * @ubi: UBI device description object
2009 */
2010static void protection_queue_destroy(struct ubi_device *ubi)
2011{
2012        int i;
2013        struct ubi_wl_entry *e, *tmp;
2014
2015        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
2016                list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
2017                        list_del(&e->u.list);
2018                        kmem_cache_free(ubi_wl_entry_slab, e);
2019                }
2020        }
2021}
2022
2023/**
2024 * ubi_wl_close - close the wear-leveling sub-system.
2025 * @ubi: UBI device description object
2026 */
2027void ubi_wl_close(struct ubi_device *ubi)
2028{
2029        dbg_wl("close the WL sub-system");
2030        cancel_pending(ubi);
2031        protection_queue_destroy(ubi);
2032        tree_destroy(&ubi->used);
2033        tree_destroy(&ubi->erroneous);
2034        tree_destroy(&ubi->free);
2035        tree_destroy(&ubi->scrub);
2036        kfree(ubi->lookuptbl);
2037}
2038
2039/**
2040 * self_check_ec - make sure that the erase counter of a PEB is correct.
2041 * @ubi: UBI device description object
2042 * @pnum: the physical eraseblock number to check
2043 * @ec: the erase counter to check
2044 *
2045 * This function returns zero if the erase counter of physical eraseblock @pnum
2046 * is equivalent to @ec, and a negative error code if not or if an error
2047 * occurred.
2048 */
2049static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2050{
2051        int err;
2052        long long read_ec;
2053        struct ubi_ec_hdr *ec_hdr;
2054
2055        if (!ubi_dbg_chk_gen(ubi))
2056                return 0;
2057
2058        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2059        if (!ec_hdr)
2060                return -ENOMEM;
2061
2062        err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2063        if (err && err != UBI_IO_BITFLIPS) {
2064                /* The header does not have to exist */
2065                err = 0;
2066                goto out_free;
2067        }
2068
2069        read_ec = be64_to_cpu(ec_hdr->ec);
2070        if (ec != read_ec && read_ec - ec > 1) {
2071                ubi_err("self-check failed for PEB %d", pnum);
2072                ubi_err("read EC is %lld, should be %d", read_ec, ec);
2073                dump_stack();
2074                err = 1;
2075        } else
2076                err = 0;
2077
2078out_free:
2079        kfree(ec_hdr);
2080        return err;
2081}
2082
2083/**
2084 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2085 * @ubi: UBI device description object
2086 * @e: the wear-leveling entry to check
2087 * @root: the root of the tree
2088 *
2089 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2090 * is not.
2091 */
2092static int self_check_in_wl_tree(const struct ubi_device *ubi,
2093                                 struct ubi_wl_entry *e, struct rb_root *root)
2094{
2095        if (!ubi_dbg_chk_gen(ubi))
2096                return 0;
2097
2098        if (in_wl_tree(e, root))
2099                return 0;
2100
2101        ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
2102                e->pnum, e->ec, root);
2103        dump_stack();
2104        return -EINVAL;
2105}
2106
2107/**
2108 * self_check_in_pq - check if wear-leveling entry is in the protection
2109 *                        queue.
2110 * @ubi: UBI device description object
2111 * @e: the wear-leveling entry to check
2112 *
2113 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2114 */
2115static int self_check_in_pq(const struct ubi_device *ubi,
2116                            struct ubi_wl_entry *e)
2117{
2118        struct ubi_wl_entry *p;
2119        int i;
2120
2121        if (!ubi_dbg_chk_gen(ubi))
2122                return 0;
2123
2124        for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
2125                list_for_each_entry(p, &ubi->pq[i], u.list)
2126                        if (p == e)
2127                                return 0;
2128
2129        ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
2130                e->pnum, e->ec);
2131        dump_stack();
2132        return -EINVAL;
2133}
2134