linux/drivers/net/ethernet/davicom/dm9000.c
<<
>>
Prefs
   1/*
   2 *      Davicom DM9000 Fast Ethernet driver for Linux.
   3 *      Copyright (C) 1997  Sten Wang
   4 *
   5 *      This program is free software; you can redistribute it and/or
   6 *      modify it under the terms of the GNU General Public License
   7 *      as published by the Free Software Foundation; either version 2
   8 *      of the License, or (at your option) any later version.
   9 *
  10 *      This program is distributed in the hope that it will be useful,
  11 *      but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *      GNU General Public License for more details.
  14 *
  15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16 *
  17 * Additional updates, Copyright:
  18 *      Ben Dooks <ben@simtec.co.uk>
  19 *      Sascha Hauer <s.hauer@pengutronix.de>
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/netdevice.h>
  25#include <linux/etherdevice.h>
  26#include <linux/init.h>
  27#include <linux/interrupt.h>
  28#include <linux/skbuff.h>
  29#include <linux/spinlock.h>
  30#include <linux/crc32.h>
  31#include <linux/mii.h>
  32#include <linux/ethtool.h>
  33#include <linux/dm9000.h>
  34#include <linux/delay.h>
  35#include <linux/platform_device.h>
  36#include <linux/irq.h>
  37#include <linux/slab.h>
  38
  39#include <asm/delay.h>
  40#include <asm/irq.h>
  41#include <asm/io.h>
  42
  43#include "dm9000.h"
  44
  45/* Board/System/Debug information/definition ---------------- */
  46
  47#define DM9000_PHY              0x40    /* PHY address 0x01 */
  48
  49#define CARDNAME        "dm9000"
  50#define DRV_VERSION     "1.31"
  51
  52/*
  53 * Transmit timeout, default 5 seconds.
  54 */
  55static int watchdog = 5000;
  56module_param(watchdog, int, 0400);
  57MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  58
  59/*
  60 * Debug messages level
  61 */
  62static int debug;
  63module_param(debug, int, 0644);
  64MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  65
  66/* DM9000 register address locking.
  67 *
  68 * The DM9000 uses an address register to control where data written
  69 * to the data register goes. This means that the address register
  70 * must be preserved over interrupts or similar calls.
  71 *
  72 * During interrupt and other critical calls, a spinlock is used to
  73 * protect the system, but the calls themselves save the address
  74 * in the address register in case they are interrupting another
  75 * access to the device.
  76 *
  77 * For general accesses a lock is provided so that calls which are
  78 * allowed to sleep are serialised so that the address register does
  79 * not need to be saved. This lock also serves to serialise access
  80 * to the EEPROM and PHY access registers which are shared between
  81 * these two devices.
  82 */
  83
  84/* The driver supports the original DM9000E, and now the two newer
  85 * devices, DM9000A and DM9000B.
  86 */
  87
  88enum dm9000_type {
  89        TYPE_DM9000E,   /* original DM9000 */
  90        TYPE_DM9000A,
  91        TYPE_DM9000B
  92};
  93
  94/* Structure/enum declaration ------------------------------- */
  95typedef struct board_info {
  96
  97        void __iomem    *io_addr;       /* Register I/O base address */
  98        void __iomem    *io_data;       /* Data I/O address */
  99        u16              irq;           /* IRQ */
 100
 101        u16             tx_pkt_cnt;
 102        u16             queue_pkt_len;
 103        u16             queue_start_addr;
 104        u16             queue_ip_summed;
 105        u16             dbug_cnt;
 106        u8              io_mode;                /* 0:word, 2:byte */
 107        u8              phy_addr;
 108        u8              imr_all;
 109
 110        unsigned int    flags;
 111        unsigned int    in_suspend :1;
 112        unsigned int    wake_supported :1;
 113
 114        enum dm9000_type type;
 115
 116        void (*inblk)(void __iomem *port, void *data, int length);
 117        void (*outblk)(void __iomem *port, void *data, int length);
 118        void (*dumpblk)(void __iomem *port, int length);
 119
 120        struct device   *dev;        /* parent device */
 121
 122        struct resource *addr_res;   /* resources found */
 123        struct resource *data_res;
 124        struct resource *addr_req;   /* resources requested */
 125        struct resource *data_req;
 126        struct resource *irq_res;
 127
 128        int              irq_wake;
 129
 130        struct mutex     addr_lock;     /* phy and eeprom access lock */
 131
 132        struct delayed_work phy_poll;
 133        struct net_device  *ndev;
 134
 135        spinlock_t      lock;
 136
 137        struct mii_if_info mii;
 138        u32             msg_enable;
 139        u32             wake_state;
 140
 141        int             ip_summed;
 142} board_info_t;
 143
 144/* debug code */
 145
 146#define dm9000_dbg(db, lev, msg...) do {                \
 147        if ((lev) < debug) {                            \
 148                dev_dbg(db->dev, msg);                  \
 149        }                                               \
 150} while (0)
 151
 152static inline board_info_t *to_dm9000_board(struct net_device *dev)
 153{
 154        return netdev_priv(dev);
 155}
 156
 157/* DM9000 network board routine ---------------------------- */
 158
 159static void
 160dm9000_reset(board_info_t * db)
 161{
 162        dev_dbg(db->dev, "resetting device\n");
 163
 164        /* RESET device */
 165        writeb(DM9000_NCR, db->io_addr);
 166        udelay(200);
 167        writeb(NCR_RST, db->io_data);
 168        udelay(200);
 169}
 170
 171/*
 172 *   Read a byte from I/O port
 173 */
 174static u8
 175ior(board_info_t * db, int reg)
 176{
 177        writeb(reg, db->io_addr);
 178        return readb(db->io_data);
 179}
 180
 181/*
 182 *   Write a byte to I/O port
 183 */
 184
 185static void
 186iow(board_info_t * db, int reg, int value)
 187{
 188        writeb(reg, db->io_addr);
 189        writeb(value, db->io_data);
 190}
 191
 192/* routines for sending block to chip */
 193
 194static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
 195{
 196        iowrite8_rep(reg, data, count);
 197}
 198
 199static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
 200{
 201        iowrite16_rep(reg, data, (count+1) >> 1);
 202}
 203
 204static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
 205{
 206        iowrite32_rep(reg, data, (count+3) >> 2);
 207}
 208
 209/* input block from chip to memory */
 210
 211static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
 212{
 213        ioread8_rep(reg, data, count);
 214}
 215
 216
 217static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
 218{
 219        ioread16_rep(reg, data, (count+1) >> 1);
 220}
 221
 222static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
 223{
 224        ioread32_rep(reg, data, (count+3) >> 2);
 225}
 226
 227/* dump block from chip to null */
 228
 229static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
 230{
 231        int i;
 232        int tmp;
 233
 234        for (i = 0; i < count; i++)
 235                tmp = readb(reg);
 236}
 237
 238static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
 239{
 240        int i;
 241        int tmp;
 242
 243        count = (count + 1) >> 1;
 244
 245        for (i = 0; i < count; i++)
 246                tmp = readw(reg);
 247}
 248
 249static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
 250{
 251        int i;
 252        int tmp;
 253
 254        count = (count + 3) >> 2;
 255
 256        for (i = 0; i < count; i++)
 257                tmp = readl(reg);
 258}
 259
 260/*
 261 * Sleep, either by using msleep() or if we are suspending, then
 262 * use mdelay() to sleep.
 263 */
 264static void dm9000_msleep(board_info_t *db, unsigned int ms)
 265{
 266        if (db->in_suspend)
 267                mdelay(ms);
 268        else
 269                msleep(ms);
 270}
 271
 272/* Read a word from phyxcer */
 273static int
 274dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
 275{
 276        board_info_t *db = netdev_priv(dev);
 277        unsigned long flags;
 278        unsigned int reg_save;
 279        int ret;
 280
 281        mutex_lock(&db->addr_lock);
 282
 283        spin_lock_irqsave(&db->lock, flags);
 284
 285        /* Save previous register address */
 286        reg_save = readb(db->io_addr);
 287
 288        /* Fill the phyxcer register into REG_0C */
 289        iow(db, DM9000_EPAR, DM9000_PHY | reg);
 290
 291        /* Issue phyxcer read command */
 292        iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
 293
 294        writeb(reg_save, db->io_addr);
 295        spin_unlock_irqrestore(&db->lock, flags);
 296
 297        dm9000_msleep(db, 1);           /* Wait read complete */
 298
 299        spin_lock_irqsave(&db->lock, flags);
 300        reg_save = readb(db->io_addr);
 301
 302        iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer read command */
 303
 304        /* The read data keeps on REG_0D & REG_0E */
 305        ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
 306
 307        /* restore the previous address */
 308        writeb(reg_save, db->io_addr);
 309        spin_unlock_irqrestore(&db->lock, flags);
 310
 311        mutex_unlock(&db->addr_lock);
 312
 313        dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
 314        return ret;
 315}
 316
 317/* Write a word to phyxcer */
 318static void
 319dm9000_phy_write(struct net_device *dev,
 320                 int phyaddr_unused, int reg, int value)
 321{
 322        board_info_t *db = netdev_priv(dev);
 323        unsigned long flags;
 324        unsigned long reg_save;
 325
 326        dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
 327        mutex_lock(&db->addr_lock);
 328
 329        spin_lock_irqsave(&db->lock, flags);
 330
 331        /* Save previous register address */
 332        reg_save = readb(db->io_addr);
 333
 334        /* Fill the phyxcer register into REG_0C */
 335        iow(db, DM9000_EPAR, DM9000_PHY | reg);
 336
 337        /* Fill the written data into REG_0D & REG_0E */
 338        iow(db, DM9000_EPDRL, value);
 339        iow(db, DM9000_EPDRH, value >> 8);
 340
 341        /* Issue phyxcer write command */
 342        iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
 343
 344        writeb(reg_save, db->io_addr);
 345        spin_unlock_irqrestore(&db->lock, flags);
 346
 347        dm9000_msleep(db, 1);           /* Wait write complete */
 348
 349        spin_lock_irqsave(&db->lock, flags);
 350        reg_save = readb(db->io_addr);
 351
 352        iow(db, DM9000_EPCR, 0x0);      /* Clear phyxcer write command */
 353
 354        /* restore the previous address */
 355        writeb(reg_save, db->io_addr);
 356
 357        spin_unlock_irqrestore(&db->lock, flags);
 358        mutex_unlock(&db->addr_lock);
 359}
 360
 361/* dm9000_set_io
 362 *
 363 * select the specified set of io routines to use with the
 364 * device
 365 */
 366
 367static void dm9000_set_io(struct board_info *db, int byte_width)
 368{
 369        /* use the size of the data resource to work out what IO
 370         * routines we want to use
 371         */
 372
 373        switch (byte_width) {
 374        case 1:
 375                db->dumpblk = dm9000_dumpblk_8bit;
 376                db->outblk  = dm9000_outblk_8bit;
 377                db->inblk   = dm9000_inblk_8bit;
 378                break;
 379
 380
 381        case 3:
 382                dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
 383        case 2:
 384                db->dumpblk = dm9000_dumpblk_16bit;
 385                db->outblk  = dm9000_outblk_16bit;
 386                db->inblk   = dm9000_inblk_16bit;
 387                break;
 388
 389        case 4:
 390        default:
 391                db->dumpblk = dm9000_dumpblk_32bit;
 392                db->outblk  = dm9000_outblk_32bit;
 393                db->inblk   = dm9000_inblk_32bit;
 394                break;
 395        }
 396}
 397
 398static void dm9000_schedule_poll(board_info_t *db)
 399{
 400        if (db->type == TYPE_DM9000E)
 401                schedule_delayed_work(&db->phy_poll, HZ * 2);
 402}
 403
 404static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
 405{
 406        board_info_t *dm = to_dm9000_board(dev);
 407
 408        if (!netif_running(dev))
 409                return -EINVAL;
 410
 411        return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
 412}
 413
 414static unsigned int
 415dm9000_read_locked(board_info_t *db, int reg)
 416{
 417        unsigned long flags;
 418        unsigned int ret;
 419
 420        spin_lock_irqsave(&db->lock, flags);
 421        ret = ior(db, reg);
 422        spin_unlock_irqrestore(&db->lock, flags);
 423
 424        return ret;
 425}
 426
 427static int dm9000_wait_eeprom(board_info_t *db)
 428{
 429        unsigned int status;
 430        int timeout = 8;        /* wait max 8msec */
 431
 432        /* The DM9000 data sheets say we should be able to
 433         * poll the ERRE bit in EPCR to wait for the EEPROM
 434         * operation. From testing several chips, this bit
 435         * does not seem to work.
 436         *
 437         * We attempt to use the bit, but fall back to the
 438         * timeout (which is why we do not return an error
 439         * on expiry) to say that the EEPROM operation has
 440         * completed.
 441         */
 442
 443        while (1) {
 444                status = dm9000_read_locked(db, DM9000_EPCR);
 445
 446                if ((status & EPCR_ERRE) == 0)
 447                        break;
 448
 449                msleep(1);
 450
 451                if (timeout-- < 0) {
 452                        dev_dbg(db->dev, "timeout waiting EEPROM\n");
 453                        break;
 454                }
 455        }
 456
 457        return 0;
 458}
 459
 460/*
 461 *  Read a word data from EEPROM
 462 */
 463static void
 464dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
 465{
 466        unsigned long flags;
 467
 468        if (db->flags & DM9000_PLATF_NO_EEPROM) {
 469                to[0] = 0xff;
 470                to[1] = 0xff;
 471                return;
 472        }
 473
 474        mutex_lock(&db->addr_lock);
 475
 476        spin_lock_irqsave(&db->lock, flags);
 477
 478        iow(db, DM9000_EPAR, offset);
 479        iow(db, DM9000_EPCR, EPCR_ERPRR);
 480
 481        spin_unlock_irqrestore(&db->lock, flags);
 482
 483        dm9000_wait_eeprom(db);
 484
 485        /* delay for at-least 150uS */
 486        msleep(1);
 487
 488        spin_lock_irqsave(&db->lock, flags);
 489
 490        iow(db, DM9000_EPCR, 0x0);
 491
 492        to[0] = ior(db, DM9000_EPDRL);
 493        to[1] = ior(db, DM9000_EPDRH);
 494
 495        spin_unlock_irqrestore(&db->lock, flags);
 496
 497        mutex_unlock(&db->addr_lock);
 498}
 499
 500/*
 501 * Write a word data to SROM
 502 */
 503static void
 504dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
 505{
 506        unsigned long flags;
 507
 508        if (db->flags & DM9000_PLATF_NO_EEPROM)
 509                return;
 510
 511        mutex_lock(&db->addr_lock);
 512
 513        spin_lock_irqsave(&db->lock, flags);
 514        iow(db, DM9000_EPAR, offset);
 515        iow(db, DM9000_EPDRH, data[1]);
 516        iow(db, DM9000_EPDRL, data[0]);
 517        iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
 518        spin_unlock_irqrestore(&db->lock, flags);
 519
 520        dm9000_wait_eeprom(db);
 521
 522        mdelay(1);      /* wait at least 150uS to clear */
 523
 524        spin_lock_irqsave(&db->lock, flags);
 525        iow(db, DM9000_EPCR, 0);
 526        spin_unlock_irqrestore(&db->lock, flags);
 527
 528        mutex_unlock(&db->addr_lock);
 529}
 530
 531/* ethtool ops */
 532
 533static void dm9000_get_drvinfo(struct net_device *dev,
 534                               struct ethtool_drvinfo *info)
 535{
 536        board_info_t *dm = to_dm9000_board(dev);
 537
 538        strlcpy(info->driver, CARDNAME, sizeof(info->driver));
 539        strlcpy(info->version, DRV_VERSION, sizeof(info->version));
 540        strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
 541                sizeof(info->bus_info));
 542}
 543
 544static u32 dm9000_get_msglevel(struct net_device *dev)
 545{
 546        board_info_t *dm = to_dm9000_board(dev);
 547
 548        return dm->msg_enable;
 549}
 550
 551static void dm9000_set_msglevel(struct net_device *dev, u32 value)
 552{
 553        board_info_t *dm = to_dm9000_board(dev);
 554
 555        dm->msg_enable = value;
 556}
 557
 558static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 559{
 560        board_info_t *dm = to_dm9000_board(dev);
 561
 562        mii_ethtool_gset(&dm->mii, cmd);
 563        return 0;
 564}
 565
 566static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
 567{
 568        board_info_t *dm = to_dm9000_board(dev);
 569
 570        return mii_ethtool_sset(&dm->mii, cmd);
 571}
 572
 573static int dm9000_nway_reset(struct net_device *dev)
 574{
 575        board_info_t *dm = to_dm9000_board(dev);
 576        return mii_nway_restart(&dm->mii);
 577}
 578
 579static int dm9000_set_features(struct net_device *dev,
 580        netdev_features_t features)
 581{
 582        board_info_t *dm = to_dm9000_board(dev);
 583        netdev_features_t changed = dev->features ^ features;
 584        unsigned long flags;
 585
 586        if (!(changed & NETIF_F_RXCSUM))
 587                return 0;
 588
 589        spin_lock_irqsave(&dm->lock, flags);
 590        iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 591        spin_unlock_irqrestore(&dm->lock, flags);
 592
 593        return 0;
 594}
 595
 596static u32 dm9000_get_link(struct net_device *dev)
 597{
 598        board_info_t *dm = to_dm9000_board(dev);
 599        u32 ret;
 600
 601        if (dm->flags & DM9000_PLATF_EXT_PHY)
 602                ret = mii_link_ok(&dm->mii);
 603        else
 604                ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
 605
 606        return ret;
 607}
 608
 609#define DM_EEPROM_MAGIC         (0x444D394B)
 610
 611static int dm9000_get_eeprom_len(struct net_device *dev)
 612{
 613        return 128;
 614}
 615
 616static int dm9000_get_eeprom(struct net_device *dev,
 617                             struct ethtool_eeprom *ee, u8 *data)
 618{
 619        board_info_t *dm = to_dm9000_board(dev);
 620        int offset = ee->offset;
 621        int len = ee->len;
 622        int i;
 623
 624        /* EEPROM access is aligned to two bytes */
 625
 626        if ((len & 1) != 0 || (offset & 1) != 0)
 627                return -EINVAL;
 628
 629        if (dm->flags & DM9000_PLATF_NO_EEPROM)
 630                return -ENOENT;
 631
 632        ee->magic = DM_EEPROM_MAGIC;
 633
 634        for (i = 0; i < len; i += 2)
 635                dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
 636
 637        return 0;
 638}
 639
 640static int dm9000_set_eeprom(struct net_device *dev,
 641                             struct ethtool_eeprom *ee, u8 *data)
 642{
 643        board_info_t *dm = to_dm9000_board(dev);
 644        int offset = ee->offset;
 645        int len = ee->len;
 646        int done;
 647
 648        /* EEPROM access is aligned to two bytes */
 649
 650        if (dm->flags & DM9000_PLATF_NO_EEPROM)
 651                return -ENOENT;
 652
 653        if (ee->magic != DM_EEPROM_MAGIC)
 654                return -EINVAL;
 655
 656        while (len > 0) {
 657                if (len & 1 || offset & 1) {
 658                        int which = offset & 1;
 659                        u8 tmp[2];
 660
 661                        dm9000_read_eeprom(dm, offset / 2, tmp);
 662                        tmp[which] = *data;
 663                        dm9000_write_eeprom(dm, offset / 2, tmp);
 664
 665                        done = 1;
 666                } else {
 667                        dm9000_write_eeprom(dm, offset / 2, data);
 668                        done = 2;
 669                }
 670
 671                data += done;
 672                offset += done;
 673                len -= done;
 674        }
 675
 676        return 0;
 677}
 678
 679static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 680{
 681        board_info_t *dm = to_dm9000_board(dev);
 682
 683        memset(w, 0, sizeof(struct ethtool_wolinfo));
 684
 685        /* note, we could probably support wake-phy too */
 686        w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
 687        w->wolopts = dm->wake_state;
 688}
 689
 690static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
 691{
 692        board_info_t *dm = to_dm9000_board(dev);
 693        unsigned long flags;
 694        u32 opts = w->wolopts;
 695        u32 wcr = 0;
 696
 697        if (!dm->wake_supported)
 698                return -EOPNOTSUPP;
 699
 700        if (opts & ~WAKE_MAGIC)
 701                return -EINVAL;
 702
 703        if (opts & WAKE_MAGIC)
 704                wcr |= WCR_MAGICEN;
 705
 706        mutex_lock(&dm->addr_lock);
 707
 708        spin_lock_irqsave(&dm->lock, flags);
 709        iow(dm, DM9000_WCR, wcr);
 710        spin_unlock_irqrestore(&dm->lock, flags);
 711
 712        mutex_unlock(&dm->addr_lock);
 713
 714        if (dm->wake_state != opts) {
 715                /* change in wol state, update IRQ state */
 716
 717                if (!dm->wake_state)
 718                        irq_set_irq_wake(dm->irq_wake, 1);
 719                else if (dm->wake_state && !opts)
 720                        irq_set_irq_wake(dm->irq_wake, 0);
 721        }
 722
 723        dm->wake_state = opts;
 724        return 0;
 725}
 726
 727static const struct ethtool_ops dm9000_ethtool_ops = {
 728        .get_drvinfo            = dm9000_get_drvinfo,
 729        .get_settings           = dm9000_get_settings,
 730        .set_settings           = dm9000_set_settings,
 731        .get_msglevel           = dm9000_get_msglevel,
 732        .set_msglevel           = dm9000_set_msglevel,
 733        .nway_reset             = dm9000_nway_reset,
 734        .get_link               = dm9000_get_link,
 735        .get_wol                = dm9000_get_wol,
 736        .set_wol                = dm9000_set_wol,
 737        .get_eeprom_len         = dm9000_get_eeprom_len,
 738        .get_eeprom             = dm9000_get_eeprom,
 739        .set_eeprom             = dm9000_set_eeprom,
 740};
 741
 742static void dm9000_show_carrier(board_info_t *db,
 743                                unsigned carrier, unsigned nsr)
 744{
 745        struct net_device *ndev = db->ndev;
 746        unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
 747
 748        if (carrier)
 749                dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
 750                         ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
 751                         (ncr & NCR_FDX) ? "full" : "half");
 752        else
 753                dev_info(db->dev, "%s: link down\n", ndev->name);
 754}
 755
 756static void
 757dm9000_poll_work(struct work_struct *w)
 758{
 759        struct delayed_work *dw = to_delayed_work(w);
 760        board_info_t *db = container_of(dw, board_info_t, phy_poll);
 761        struct net_device *ndev = db->ndev;
 762
 763        if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
 764            !(db->flags & DM9000_PLATF_EXT_PHY)) {
 765                unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
 766                unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
 767                unsigned new_carrier;
 768
 769                new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
 770
 771                if (old_carrier != new_carrier) {
 772                        if (netif_msg_link(db))
 773                                dm9000_show_carrier(db, new_carrier, nsr);
 774
 775                        if (!new_carrier)
 776                                netif_carrier_off(ndev);
 777                        else
 778                                netif_carrier_on(ndev);
 779                }
 780        } else
 781                mii_check_media(&db->mii, netif_msg_link(db), 0);
 782        
 783        if (netif_running(ndev))
 784                dm9000_schedule_poll(db);
 785}
 786
 787/* dm9000_release_board
 788 *
 789 * release a board, and any mapped resources
 790 */
 791
 792static void
 793dm9000_release_board(struct platform_device *pdev, struct board_info *db)
 794{
 795        /* unmap our resources */
 796
 797        iounmap(db->io_addr);
 798        iounmap(db->io_data);
 799
 800        /* release the resources */
 801
 802        release_resource(db->data_req);
 803        kfree(db->data_req);
 804
 805        release_resource(db->addr_req);
 806        kfree(db->addr_req);
 807}
 808
 809static unsigned char dm9000_type_to_char(enum dm9000_type type)
 810{
 811        switch (type) {
 812        case TYPE_DM9000E: return 'e';
 813        case TYPE_DM9000A: return 'a';
 814        case TYPE_DM9000B: return 'b';
 815        }
 816
 817        return '?';
 818}
 819
 820/*
 821 *  Set DM9000 multicast address
 822 */
 823static void
 824dm9000_hash_table_unlocked(struct net_device *dev)
 825{
 826        board_info_t *db = netdev_priv(dev);
 827        struct netdev_hw_addr *ha;
 828        int i, oft;
 829        u32 hash_val;
 830        u16 hash_table[4];
 831        u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
 832
 833        dm9000_dbg(db, 1, "entering %s\n", __func__);
 834
 835        for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
 836                iow(db, oft, dev->dev_addr[i]);
 837
 838        /* Clear Hash Table */
 839        for (i = 0; i < 4; i++)
 840                hash_table[i] = 0x0;
 841
 842        /* broadcast address */
 843        hash_table[3] = 0x8000;
 844
 845        if (dev->flags & IFF_PROMISC)
 846                rcr |= RCR_PRMSC;
 847
 848        if (dev->flags & IFF_ALLMULTI)
 849                rcr |= RCR_ALL;
 850
 851        /* the multicast address in Hash Table : 64 bits */
 852        netdev_for_each_mc_addr(ha, dev) {
 853                hash_val = ether_crc_le(6, ha->addr) & 0x3f;
 854                hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
 855        }
 856
 857        /* Write the hash table to MAC MD table */
 858        for (i = 0, oft = DM9000_MAR; i < 4; i++) {
 859                iow(db, oft++, hash_table[i]);
 860                iow(db, oft++, hash_table[i] >> 8);
 861        }
 862
 863        iow(db, DM9000_RCR, rcr);
 864}
 865
 866static void
 867dm9000_hash_table(struct net_device *dev)
 868{
 869        board_info_t *db = netdev_priv(dev);
 870        unsigned long flags;
 871
 872        spin_lock_irqsave(&db->lock, flags);
 873        dm9000_hash_table_unlocked(dev);
 874        spin_unlock_irqrestore(&db->lock, flags);
 875}
 876
 877/*
 878 * Initialize dm9000 board
 879 */
 880static void
 881dm9000_init_dm9000(struct net_device *dev)
 882{
 883        board_info_t *db = netdev_priv(dev);
 884        unsigned int imr;
 885        unsigned int ncr;
 886
 887        dm9000_dbg(db, 1, "entering %s\n", __func__);
 888
 889        /* I/O mode */
 890        db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
 891
 892        /* Checksum mode */
 893        if (dev->hw_features & NETIF_F_RXCSUM)
 894                iow(db, DM9000_RCSR,
 895                        (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
 896
 897        iow(db, DM9000_GPCR, GPCR_GEP_CNTL);    /* Let GPIO0 output */
 898
 899        dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
 900        dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); /* Init */
 901
 902        ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
 903
 904        /* if wol is needed, then always set NCR_WAKEEN otherwise we end
 905         * up dumping the wake events if we disable this. There is already
 906         * a wake-mask in DM9000_WCR */
 907        if (db->wake_supported)
 908                ncr |= NCR_WAKEEN;
 909
 910        iow(db, DM9000_NCR, ncr);
 911
 912        /* Program operating register */
 913        iow(db, DM9000_TCR, 0);         /* TX Polling clear */
 914        iow(db, DM9000_BPTR, 0x3f);     /* Less 3Kb, 200us */
 915        iow(db, DM9000_FCR, 0xff);      /* Flow Control */
 916        iow(db, DM9000_SMCR, 0);        /* Special Mode */
 917        /* clear TX status */
 918        iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
 919        iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
 920
 921        /* Set address filter table */
 922        dm9000_hash_table_unlocked(dev);
 923
 924        imr = IMR_PAR | IMR_PTM | IMR_PRM;
 925        if (db->type != TYPE_DM9000E)
 926                imr |= IMR_LNKCHNG;
 927
 928        db->imr_all = imr;
 929
 930        /* Enable TX/RX interrupt mask */
 931        iow(db, DM9000_IMR, imr);
 932
 933        /* Init Driver variable */
 934        db->tx_pkt_cnt = 0;
 935        db->queue_pkt_len = 0;
 936        netif_trans_update(dev);
 937}
 938
 939/* Our watchdog timed out. Called by the networking layer */
 940static void dm9000_timeout(struct net_device *dev)
 941{
 942        board_info_t *db = netdev_priv(dev);
 943        u8 reg_save;
 944        unsigned long flags;
 945
 946        /* Save previous register address */
 947        spin_lock_irqsave(&db->lock, flags);
 948        reg_save = readb(db->io_addr);
 949
 950        netif_stop_queue(dev);
 951        dm9000_reset(db);
 952        dm9000_init_dm9000(dev);
 953        /* We can accept TX packets again */
 954        netif_trans_update(dev); /* prevent tx timeout */
 955        netif_wake_queue(dev);
 956
 957        /* Restore previous register address */
 958        writeb(reg_save, db->io_addr);
 959        spin_unlock_irqrestore(&db->lock, flags);
 960}
 961
 962static void dm9000_send_packet(struct net_device *dev,
 963                               int ip_summed,
 964                               u16 pkt_len)
 965{
 966        board_info_t *dm = to_dm9000_board(dev);
 967
 968        /* The DM9000 is not smart enough to leave fragmented packets alone. */
 969        if (dm->ip_summed != ip_summed) {
 970                if (ip_summed == CHECKSUM_NONE)
 971                        iow(dm, DM9000_TCCR, 0);
 972                else
 973                        iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
 974                dm->ip_summed = ip_summed;
 975        }
 976
 977        /* Set TX length to DM9000 */
 978        iow(dm, DM9000_TXPLL, pkt_len);
 979        iow(dm, DM9000_TXPLH, pkt_len >> 8);
 980
 981        /* Issue TX polling command */
 982        iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
 983}
 984
 985/*
 986 *  Hardware start transmission.
 987 *  Send a packet to media from the upper layer.
 988 */
 989static int
 990dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
 991{
 992        unsigned long flags;
 993        board_info_t *db = netdev_priv(dev);
 994
 995        dm9000_dbg(db, 3, "%s:\n", __func__);
 996
 997        if (db->tx_pkt_cnt > 1)
 998                return NETDEV_TX_BUSY;
 999
1000        spin_lock_irqsave(&db->lock, flags);
1001
1002        /* Move data to DM9000 TX RAM */
1003        writeb(DM9000_MWCMD, db->io_addr);
1004
1005        (db->outblk)(db->io_data, skb->data, skb->len);
1006        dev->stats.tx_bytes += skb->len;
1007
1008        db->tx_pkt_cnt++;
1009        /* TX control: First packet immediately send, second packet queue */
1010        if (db->tx_pkt_cnt == 1) {
1011                dm9000_send_packet(dev, skb->ip_summed, skb->len);
1012        } else {
1013                /* Second packet */
1014                db->queue_pkt_len = skb->len;
1015                db->queue_ip_summed = skb->ip_summed;
1016                netif_stop_queue(dev);
1017        }
1018
1019        spin_unlock_irqrestore(&db->lock, flags);
1020
1021        /* free this SKB */
1022        dev_kfree_skb(skb);
1023
1024        return NETDEV_TX_OK;
1025}
1026
1027/*
1028 * DM9000 interrupt handler
1029 * receive the packet to upper layer, free the transmitted packet
1030 */
1031
1032static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1033{
1034        int tx_status = ior(db, DM9000_NSR);    /* Got TX status */
1035
1036        if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1037                /* One packet sent complete */
1038                db->tx_pkt_cnt--;
1039                dev->stats.tx_packets++;
1040
1041                if (netif_msg_tx_done(db))
1042                        dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1043
1044                /* Queue packet check & send */
1045                if (db->tx_pkt_cnt > 0)
1046                        dm9000_send_packet(dev, db->queue_ip_summed,
1047                                           db->queue_pkt_len);
1048                netif_wake_queue(dev);
1049        }
1050}
1051
1052struct dm9000_rxhdr {
1053        u8      RxPktReady;
1054        u8      RxStatus;
1055        __le16  RxLen;
1056} __packed;
1057
1058/*
1059 *  Received a packet and pass to upper layer
1060 */
1061static void
1062dm9000_rx(struct net_device *dev)
1063{
1064        board_info_t *db = netdev_priv(dev);
1065        struct dm9000_rxhdr rxhdr;
1066        struct sk_buff *skb;
1067        u8 rxbyte, *rdptr;
1068        bool GoodPacket;
1069        int RxLen;
1070
1071        /* Check packet ready or not */
1072        do {
1073                ior(db, DM9000_MRCMDX); /* Dummy read */
1074
1075                /* Get most updated data */
1076                rxbyte = readb(db->io_data);
1077
1078                /* Status check: this byte must be 0 or 1 */
1079                if (rxbyte & DM9000_PKT_ERR) {
1080                        dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1081                        iow(db, DM9000_RCR, 0x00);      /* Stop Device */
1082                        iow(db, DM9000_ISR, IMR_PAR);   /* Stop INT request */
1083                        return;
1084                }
1085
1086                if (!(rxbyte & DM9000_PKT_RDY))
1087                        return;
1088
1089                /* A packet ready now  & Get status/length */
1090                GoodPacket = true;
1091                writeb(DM9000_MRCMD, db->io_addr);
1092
1093                (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1094
1095                RxLen = le16_to_cpu(rxhdr.RxLen);
1096
1097                if (netif_msg_rx_status(db))
1098                        dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1099                                rxhdr.RxStatus, RxLen);
1100
1101                /* Packet Status check */
1102                if (RxLen < 0x40) {
1103                        GoodPacket = false;
1104                        if (netif_msg_rx_err(db))
1105                                dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1106                }
1107
1108                if (RxLen > DM9000_PKT_MAX) {
1109                        dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1110                }
1111
1112                /* rxhdr.RxStatus is identical to RSR register. */
1113                if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1114                                      RSR_PLE | RSR_RWTO |
1115                                      RSR_LCS | RSR_RF)) {
1116                        GoodPacket = false;
1117                        if (rxhdr.RxStatus & RSR_FOE) {
1118                                if (netif_msg_rx_err(db))
1119                                        dev_dbg(db->dev, "fifo error\n");
1120                                dev->stats.rx_fifo_errors++;
1121                        }
1122                        if (rxhdr.RxStatus & RSR_CE) {
1123                                if (netif_msg_rx_err(db))
1124                                        dev_dbg(db->dev, "crc error\n");
1125                                dev->stats.rx_crc_errors++;
1126                        }
1127                        if (rxhdr.RxStatus & RSR_RF) {
1128                                if (netif_msg_rx_err(db))
1129                                        dev_dbg(db->dev, "length error\n");
1130                                dev->stats.rx_length_errors++;
1131                        }
1132                }
1133
1134                /* Move data from DM9000 */
1135                if (GoodPacket &&
1136                    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1137                        skb_reserve(skb, 2);
1138                        rdptr = (u8 *) skb_put(skb, RxLen - 4);
1139
1140                        /* Read received packet from RX SRAM */
1141
1142                        (db->inblk)(db->io_data, rdptr, RxLen);
1143                        dev->stats.rx_bytes += RxLen;
1144
1145                        /* Pass to upper layer */
1146                        skb->protocol = eth_type_trans(skb, dev);
1147                        if (dev->features & NETIF_F_RXCSUM) {
1148                                if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1149                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
1150                                else
1151                                        skb_checksum_none_assert(skb);
1152                        }
1153                        netif_rx(skb);
1154                        dev->stats.rx_packets++;
1155
1156                } else {
1157                        /* need to dump the packet's data */
1158
1159                        (db->dumpblk)(db->io_data, RxLen);
1160                }
1161        } while (rxbyte & DM9000_PKT_RDY);
1162}
1163
1164static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1165{
1166        struct net_device *dev = dev_id;
1167        board_info_t *db = netdev_priv(dev);
1168        int int_status;
1169        unsigned long flags;
1170        u8 reg_save;
1171
1172        dm9000_dbg(db, 3, "entering %s\n", __func__);
1173
1174        /* A real interrupt coming */
1175
1176        /* holders of db->lock must always block IRQs */
1177        spin_lock_irqsave(&db->lock, flags);
1178
1179        /* Save previous register address */
1180        reg_save = readb(db->io_addr);
1181
1182        /* Disable all interrupts */
1183        iow(db, DM9000_IMR, IMR_PAR);
1184
1185        /* Got DM9000 interrupt status */
1186        int_status = ior(db, DM9000_ISR);       /* Got ISR */
1187        iow(db, DM9000_ISR, int_status);        /* Clear ISR status */
1188
1189        if (netif_msg_intr(db))
1190                dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1191
1192        /* Received the coming packet */
1193        if (int_status & ISR_PRS)
1194                dm9000_rx(dev);
1195
1196        /* Trnasmit Interrupt check */
1197        if (int_status & ISR_PTS)
1198                dm9000_tx_done(dev, db);
1199
1200        if (db->type != TYPE_DM9000E) {
1201                if (int_status & ISR_LNKCHNG) {
1202                        /* fire a link-change request */
1203                        schedule_delayed_work(&db->phy_poll, 1);
1204                }
1205        }
1206
1207        /* Re-enable interrupt mask */
1208        iow(db, DM9000_IMR, db->imr_all);
1209
1210        /* Restore previous register address */
1211        writeb(reg_save, db->io_addr);
1212
1213        spin_unlock_irqrestore(&db->lock, flags);
1214
1215        return IRQ_HANDLED;
1216}
1217
1218static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1219{
1220        struct net_device *dev = dev_id;
1221        board_info_t *db = netdev_priv(dev);
1222        unsigned long flags;
1223        unsigned nsr, wcr;
1224
1225        spin_lock_irqsave(&db->lock, flags);
1226
1227        nsr = ior(db, DM9000_NSR);
1228        wcr = ior(db, DM9000_WCR);
1229
1230        dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1231
1232        if (nsr & NSR_WAKEST) {
1233                /* clear, so we can avoid */
1234                iow(db, DM9000_NSR, NSR_WAKEST);
1235
1236                if (wcr & WCR_LINKST)
1237                        dev_info(db->dev, "wake by link status change\n");
1238                if (wcr & WCR_SAMPLEST)
1239                        dev_info(db->dev, "wake by sample packet\n");
1240                if (wcr & WCR_MAGICST )
1241                        dev_info(db->dev, "wake by magic packet\n");
1242                if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1243                        dev_err(db->dev, "wake signalled with no reason? "
1244                                "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1245
1246        }
1247
1248        spin_unlock_irqrestore(&db->lock, flags);
1249
1250        return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1251}
1252
1253#ifdef CONFIG_NET_POLL_CONTROLLER
1254/*
1255 *Used by netconsole
1256 */
1257static void dm9000_poll_controller(struct net_device *dev)
1258{
1259        disable_irq(dev->irq);
1260        dm9000_interrupt(dev->irq, dev);
1261        enable_irq(dev->irq);
1262}
1263#endif
1264
1265/*
1266 *  Open the interface.
1267 *  The interface is opened whenever "ifconfig" actives it.
1268 */
1269static int
1270dm9000_open(struct net_device *dev)
1271{
1272        board_info_t *db = netdev_priv(dev);
1273        unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1274
1275        if (netif_msg_ifup(db))
1276                dev_dbg(db->dev, "enabling %s\n", dev->name);
1277
1278        /* If there is no IRQ type specified, default to something that
1279         * may work, and tell the user that this is a problem */
1280
1281        if (irqflags == IRQF_TRIGGER_NONE)
1282                dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1283
1284        irqflags |= IRQF_SHARED;
1285
1286        /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1287        iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1288        mdelay(1); /* delay needs by DM9000B */
1289
1290        /* Initialize DM9000 board */
1291        dm9000_reset(db);
1292        dm9000_init_dm9000(dev);
1293
1294        if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1295                return -EAGAIN;
1296
1297        /* Init driver variable */
1298        db->dbug_cnt = 0;
1299
1300        mii_check_media(&db->mii, netif_msg_link(db), 1);
1301        netif_start_queue(dev);
1302        
1303        dm9000_schedule_poll(db);
1304
1305        return 0;
1306}
1307
1308static void
1309dm9000_shutdown(struct net_device *dev)
1310{
1311        board_info_t *db = netdev_priv(dev);
1312
1313        /* RESET device */
1314        dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1315        iow(db, DM9000_GPR, 0x01);      /* Power-Down PHY */
1316        iow(db, DM9000_IMR, IMR_PAR);   /* Disable all interrupt */
1317        iow(db, DM9000_RCR, 0x00);      /* Disable RX */
1318}
1319
1320/*
1321 * Stop the interface.
1322 * The interface is stopped when it is brought.
1323 */
1324static int
1325dm9000_stop(struct net_device *ndev)
1326{
1327        board_info_t *db = netdev_priv(ndev);
1328
1329        if (netif_msg_ifdown(db))
1330                dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1331
1332        cancel_delayed_work_sync(&db->phy_poll);
1333
1334        netif_stop_queue(ndev);
1335        netif_carrier_off(ndev);
1336
1337        /* free interrupt */
1338        free_irq(ndev->irq, ndev);
1339
1340        dm9000_shutdown(ndev);
1341
1342        return 0;
1343}
1344
1345static const struct net_device_ops dm9000_netdev_ops = {
1346        .ndo_open               = dm9000_open,
1347        .ndo_stop               = dm9000_stop,
1348        .ndo_start_xmit         = dm9000_start_xmit,
1349        .ndo_tx_timeout         = dm9000_timeout,
1350        .ndo_set_rx_mode        = dm9000_hash_table,
1351        .ndo_do_ioctl           = dm9000_ioctl,
1352        .ndo_change_mtu         = eth_change_mtu,
1353        .ndo_set_features       = dm9000_set_features,
1354        .ndo_validate_addr      = eth_validate_addr,
1355        .ndo_set_mac_address    = eth_mac_addr,
1356#ifdef CONFIG_NET_POLL_CONTROLLER
1357        .ndo_poll_controller    = dm9000_poll_controller,
1358#endif
1359};
1360
1361/*
1362 * Search DM9000 board, allocate space and register it
1363 */
1364static int
1365dm9000_probe(struct platform_device *pdev)
1366{
1367        struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1368        struct board_info *db;  /* Point a board information structure */
1369        struct net_device *ndev;
1370        const unsigned char *mac_src;
1371        int ret = 0;
1372        int iosize;
1373        int i;
1374        u32 id_val;
1375
1376        /* Init network device */
1377        ndev = alloc_etherdev(sizeof(struct board_info));
1378        if (!ndev)
1379                return -ENOMEM;
1380
1381        SET_NETDEV_DEV(ndev, &pdev->dev);
1382
1383        dev_dbg(&pdev->dev, "dm9000_probe()\n");
1384
1385        /* setup board info structure */
1386        db = netdev_priv(ndev);
1387
1388        db->dev = &pdev->dev;
1389        db->ndev = ndev;
1390
1391        spin_lock_init(&db->lock);
1392        mutex_init(&db->addr_lock);
1393
1394        INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1395
1396        db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397        db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1398        db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1399
1400        if (db->addr_res == NULL || db->data_res == NULL ||
1401            db->irq_res == NULL) {
1402                dev_err(db->dev, "insufficient resources\n");
1403                ret = -ENOENT;
1404                goto out;
1405        }
1406
1407        db->irq_wake = platform_get_irq(pdev, 1);
1408        if (db->irq_wake >= 0) {
1409                dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1410
1411                ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1412                                  IRQF_SHARED, dev_name(db->dev), ndev);
1413                if (ret) {
1414                        dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1415                } else {
1416
1417                        /* test to see if irq is really wakeup capable */
1418                        ret = irq_set_irq_wake(db->irq_wake, 1);
1419                        if (ret) {
1420                                dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1421                                        db->irq_wake, ret);
1422                                ret = 0;
1423                        } else {
1424                                irq_set_irq_wake(db->irq_wake, 0);
1425                                db->wake_supported = 1;
1426                        }
1427                }
1428        }
1429
1430        iosize = resource_size(db->addr_res);
1431        db->addr_req = request_mem_region(db->addr_res->start, iosize,
1432                                          pdev->name);
1433
1434        if (db->addr_req == NULL) {
1435                dev_err(db->dev, "cannot claim address reg area\n");
1436                ret = -EIO;
1437                goto out;
1438        }
1439
1440        db->io_addr = ioremap(db->addr_res->start, iosize);
1441
1442        if (db->io_addr == NULL) {
1443                dev_err(db->dev, "failed to ioremap address reg\n");
1444                ret = -EINVAL;
1445                goto out;
1446        }
1447
1448        iosize = resource_size(db->data_res);
1449        db->data_req = request_mem_region(db->data_res->start, iosize,
1450                                          pdev->name);
1451
1452        if (db->data_req == NULL) {
1453                dev_err(db->dev, "cannot claim data reg area\n");
1454                ret = -EIO;
1455                goto out;
1456        }
1457
1458        db->io_data = ioremap(db->data_res->start, iosize);
1459
1460        if (db->io_data == NULL) {
1461                dev_err(db->dev, "failed to ioremap data reg\n");
1462                ret = -EINVAL;
1463                goto out;
1464        }
1465
1466        /* fill in parameters for net-dev structure */
1467        ndev->base_addr = (unsigned long)db->io_addr;
1468        ndev->irq       = db->irq_res->start;
1469
1470        /* ensure at least we have a default set of IO routines */
1471        dm9000_set_io(db, iosize);
1472
1473        /* check to see if anything is being over-ridden */
1474        if (pdata != NULL) {
1475                /* check to see if the driver wants to over-ride the
1476                 * default IO width */
1477
1478                if (pdata->flags & DM9000_PLATF_8BITONLY)
1479                        dm9000_set_io(db, 1);
1480
1481                if (pdata->flags & DM9000_PLATF_16BITONLY)
1482                        dm9000_set_io(db, 2);
1483
1484                if (pdata->flags & DM9000_PLATF_32BITONLY)
1485                        dm9000_set_io(db, 4);
1486
1487                /* check to see if there are any IO routine
1488                 * over-rides */
1489
1490                if (pdata->inblk != NULL)
1491                        db->inblk = pdata->inblk;
1492
1493                if (pdata->outblk != NULL)
1494                        db->outblk = pdata->outblk;
1495
1496                if (pdata->dumpblk != NULL)
1497                        db->dumpblk = pdata->dumpblk;
1498
1499                db->flags = pdata->flags;
1500        }
1501
1502#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1503        db->flags |= DM9000_PLATF_SIMPLE_PHY;
1504#endif
1505
1506        /* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1507         * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1508         * while probe stage.
1509         */
1510
1511        iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1512
1513        /* try multiple times, DM9000 sometimes gets the read wrong */
1514        for (i = 0; i < 8; i++) {
1515                id_val  = ior(db, DM9000_VIDL);
1516                id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1517                id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1518                id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1519
1520                if (id_val == DM9000_ID)
1521                        break;
1522                dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1523        }
1524
1525        if (id_val != DM9000_ID) {
1526                dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1527                ret = -ENODEV;
1528                goto out;
1529        }
1530
1531        /* Identify what type of DM9000 we are working on */
1532
1533        id_val = ior(db, DM9000_CHIPR);
1534        dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1535
1536        switch (id_val) {
1537        case CHIPR_DM9000A:
1538                db->type = TYPE_DM9000A;
1539                break;
1540        case CHIPR_DM9000B:
1541                db->type = TYPE_DM9000B;
1542                break;
1543        default:
1544                dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1545                db->type = TYPE_DM9000E;
1546        }
1547
1548        /* dm9000a/b are capable of hardware checksum offload */
1549        if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1550                ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1551                ndev->features |= ndev->hw_features;
1552        }
1553
1554        /* from this point we assume that we have found a DM9000 */
1555
1556        /* driver system function */
1557        ether_setup(ndev);
1558
1559        ndev->netdev_ops        = &dm9000_netdev_ops;
1560        ndev->watchdog_timeo    = msecs_to_jiffies(watchdog);
1561        ndev->ethtool_ops       = &dm9000_ethtool_ops;
1562
1563        db->msg_enable       = NETIF_MSG_LINK;
1564        db->mii.phy_id_mask  = 0x1f;
1565        db->mii.reg_num_mask = 0x1f;
1566        db->mii.force_media  = 0;
1567        db->mii.full_duplex  = 0;
1568        db->mii.dev          = ndev;
1569        db->mii.mdio_read    = dm9000_phy_read;
1570        db->mii.mdio_write   = dm9000_phy_write;
1571
1572        mac_src = "eeprom";
1573
1574        /* try reading the node address from the attached EEPROM */
1575        for (i = 0; i < 6; i += 2)
1576                dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1577
1578        if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1579                mac_src = "platform data";
1580                memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1581        }
1582
1583        if (!is_valid_ether_addr(ndev->dev_addr)) {
1584                /* try reading from mac */
1585                
1586                mac_src = "chip";
1587                for (i = 0; i < 6; i++)
1588                        ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1589        }
1590
1591        if (!is_valid_ether_addr(ndev->dev_addr)) {
1592                dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1593                         "set using ifconfig\n", ndev->name);
1594
1595                eth_hw_addr_random(ndev);
1596                mac_src = "random";
1597        }
1598
1599
1600        platform_set_drvdata(pdev, ndev);
1601        ret = register_netdev(ndev);
1602
1603        if (ret == 0)
1604                printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1605                       ndev->name, dm9000_type_to_char(db->type),
1606                       db->io_addr, db->io_data, ndev->irq,
1607                       ndev->dev_addr, mac_src);
1608        return 0;
1609
1610out:
1611        dev_err(db->dev, "not found (%d).\n", ret);
1612
1613        dm9000_release_board(pdev, db);
1614        free_netdev(ndev);
1615
1616        return ret;
1617}
1618
1619static int
1620dm9000_drv_suspend(struct device *dev)
1621{
1622        struct platform_device *pdev = to_platform_device(dev);
1623        struct net_device *ndev = platform_get_drvdata(pdev);
1624        board_info_t *db;
1625
1626        if (ndev) {
1627                db = netdev_priv(ndev);
1628                db->in_suspend = 1;
1629
1630                if (!netif_running(ndev))
1631                        return 0;
1632
1633                netif_device_detach(ndev);
1634
1635                /* only shutdown if not using WoL */
1636                if (!db->wake_state)
1637                        dm9000_shutdown(ndev);
1638        }
1639        return 0;
1640}
1641
1642static int
1643dm9000_drv_resume(struct device *dev)
1644{
1645        struct platform_device *pdev = to_platform_device(dev);
1646        struct net_device *ndev = platform_get_drvdata(pdev);
1647        board_info_t *db = netdev_priv(ndev);
1648
1649        if (ndev) {
1650                if (netif_running(ndev)) {
1651                        /* reset if we were not in wake mode to ensure if
1652                         * the device was powered off it is in a known state */
1653                        if (!db->wake_state) {
1654                                dm9000_reset(db);
1655                                dm9000_init_dm9000(ndev);
1656                        }
1657
1658                        netif_device_attach(ndev);
1659                }
1660
1661                db->in_suspend = 0;
1662        }
1663        return 0;
1664}
1665
1666static const struct dev_pm_ops dm9000_drv_pm_ops = {
1667        .suspend        = dm9000_drv_suspend,
1668        .resume         = dm9000_drv_resume,
1669};
1670
1671static int
1672dm9000_drv_remove(struct platform_device *pdev)
1673{
1674        struct net_device *ndev = platform_get_drvdata(pdev);
1675
1676        platform_set_drvdata(pdev, NULL);
1677
1678        unregister_netdev(ndev);
1679        dm9000_release_board(pdev, netdev_priv(ndev));
1680        free_netdev(ndev);              /* free device structure */
1681
1682        dev_dbg(&pdev->dev, "released and freed device\n");
1683        return 0;
1684}
1685
1686static struct platform_driver dm9000_driver = {
1687        .driver = {
1688                .name    = "dm9000",
1689                .owner   = THIS_MODULE,
1690                .pm      = &dm9000_drv_pm_ops,
1691        },
1692        .probe   = dm9000_probe,
1693        .remove  = dm9000_drv_remove,
1694};
1695
1696module_platform_driver(dm9000_driver);
1697
1698MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1699MODULE_DESCRIPTION("Davicom DM9000 network driver");
1700MODULE_LICENSE("GPL");
1701MODULE_ALIAS("platform:dm9000");
1702