linux/drivers/net/ethernet/intel/i40e/i40e_txrx.h
<<
>>
Prefs
   1/*******************************************************************************
   2 *
   3 * Intel Ethernet Controller XL710 Family Linux Driver
   4 * Copyright(c) 2013 - 2016 Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along
  16 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * The full GNU General Public License is included in this distribution in
  19 * the file called "COPYING".
  20 *
  21 * Contact Information:
  22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  24 *
  25 ******************************************************************************/
  26
  27#ifndef _I40E_TXRX_H_
  28#define _I40E_TXRX_H_
  29
  30/* Interrupt Throttling and Rate Limiting Goodies */
  31
  32#define I40E_MAX_ITR               0x0FF0  /* reg uses 2 usec resolution */
  33#define I40E_MIN_ITR               0x0001  /* reg uses 2 usec resolution */
  34#define I40E_ITR_100K              0x0005
  35#define I40E_ITR_50K               0x000A
  36#define I40E_ITR_20K               0x0019
  37#define I40E_ITR_18K               0x001B
  38#define I40E_ITR_8K                0x003E
  39#define I40E_ITR_4K                0x007A
  40#define I40E_MAX_INTRL             0x3B    /* reg uses 4 usec resolution */
  41#define I40E_ITR_RX_DEF            I40E_ITR_20K
  42#define I40E_ITR_TX_DEF            I40E_ITR_20K
  43#define I40E_ITR_DYNAMIC           0x8000  /* use top bit as a flag */
  44#define I40E_MIN_INT_RATE          250     /* ~= 1000000 / (I40E_MAX_ITR * 2) */
  45#define I40E_MAX_INT_RATE          500000  /* == 1000000 / (I40E_MIN_ITR * 2) */
  46#define I40E_DEFAULT_IRQ_WORK      256
  47#define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
  48#define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
  49#define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
  50/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  51 * the value of the rate limit is non-zero
  52 */
  53#define INTRL_ENA                  BIT(6)
  54#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  55/**
  56 * i40e_intrl_usec_to_reg - convert interrupt rate limit to register
  57 * @intrl: interrupt rate limit to convert
  58 *
  59 * This function converts a decimal interrupt rate limit to the appropriate
  60 * register format expected by the firmware when setting interrupt rate limit.
  61 */
  62static inline u16 i40e_intrl_usec_to_reg(int intrl)
  63{
  64        if (intrl >> 2)
  65                return ((intrl >> 2) | INTRL_ENA);
  66        else
  67                return 0;
  68}
  69#define I40E_INTRL_8K              125     /* 8000 ints/sec */
  70#define I40E_INTRL_62K             16      /* 62500 ints/sec */
  71#define I40E_INTRL_83K             12      /* 83333 ints/sec */
  72
  73#define I40E_QUEUE_END_OF_LIST 0x7FF
  74
  75/* this enum matches hardware bits and is meant to be used by DYN_CTLN
  76 * registers and QINT registers or more generally anywhere in the manual
  77 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  78 * register but instead is a special value meaning "don't update" ITR0/1/2.
  79 */
  80enum i40e_dyn_idx_t {
  81        I40E_IDX_ITR0 = 0,
  82        I40E_IDX_ITR1 = 1,
  83        I40E_IDX_ITR2 = 2,
  84        I40E_ITR_NONE = 3       /* ITR_NONE must not be used as an index */
  85};
  86
  87/* these are indexes into ITRN registers */
  88#define I40E_RX_ITR    I40E_IDX_ITR0
  89#define I40E_TX_ITR    I40E_IDX_ITR1
  90#define I40E_PE_ITR    I40E_IDX_ITR2
  91
  92/* Supported RSS offloads */
  93#define I40E_DEFAULT_RSS_HENA ( \
  94        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  95        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  96        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  97        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  98        BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  99        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
 100        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
 101        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
 102        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
 103        BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
 104        BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
 105
 106#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
 107        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
 108        BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
 109        BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
 110        BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
 111        BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
 112        BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
 113
 114#define i40e_pf_get_default_rss_hena(pf) \
 115        (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
 116          I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
 117
 118/* Supported Rx Buffer Sizes (a multiple of 128) */
 119#define I40E_RXBUFFER_256   256
 120#define I40E_RXBUFFER_2048  2048
 121#define I40E_RXBUFFER_3072  3072   /* For FCoE MTU of 2158 */
 122#define I40E_RXBUFFER_4096  4096
 123#define I40E_RXBUFFER_8192  8192
 124#define I40E_MAX_RXBUFFER   9728  /* largest size for single descriptor */
 125
 126/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
 127 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
 128 * this adds up to 512 bytes of extra data meaning the smallest allocation
 129 * we could have is 1K.
 130 * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
 131 * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
 132 */
 133#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
 134#define i40e_rx_desc i40e_32byte_rx_desc
 135
 136/**
 137 * i40e_test_staterr - tests bits in Rx descriptor status and error fields
 138 * @rx_desc: pointer to receive descriptor (in le64 format)
 139 * @stat_err_bits: value to mask
 140 *
 141 * This function does some fast chicanery in order to return the
 142 * value of the mask which is really only used for boolean tests.
 143 * The status_error_len doesn't need to be shifted because it begins
 144 * at offset zero.
 145 */
 146static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
 147                                     const u64 stat_err_bits)
 148{
 149        return !!(rx_desc->wb.qword1.status_error_len &
 150                  cpu_to_le64(stat_err_bits));
 151}
 152
 153/* How many Rx Buffers do we bundle into one write to the hardware ? */
 154#define I40E_RX_BUFFER_WRITE    16      /* Must be power of 2 */
 155#define I40E_RX_INCREMENT(r, i) \
 156        do {                                    \
 157                (i)++;                          \
 158                if ((i) == (r)->count)          \
 159                        i = 0;                  \
 160                r->next_to_clean = i;           \
 161        } while (0)
 162
 163#define I40E_RX_NEXT_DESC(r, i, n)              \
 164        do {                                    \
 165                (i)++;                          \
 166                if ((i) == (r)->count)          \
 167                        i = 0;                  \
 168                (n) = I40E_RX_DESC((r), (i));   \
 169        } while (0)
 170
 171#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n)             \
 172        do {                                            \
 173                I40E_RX_NEXT_DESC((r), (i), (n));       \
 174                prefetch((n));                          \
 175        } while (0)
 176
 177#define I40E_MAX_BUFFER_TXD     8
 178#define I40E_MIN_TX_LEN         17
 179
 180/* The size limit for a transmit buffer in a descriptor is (16K - 1).
 181 * In order to align with the read requests we will align the value to
 182 * the nearest 4K which represents our maximum read request size.
 183 */
 184#define I40E_MAX_READ_REQ_SIZE          4096
 185#define I40E_MAX_DATA_PER_TXD           (16 * 1024 - 1)
 186#define I40E_MAX_DATA_PER_TXD_ALIGNED \
 187        (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
 188
 189/**
 190 * i40e_txd_use_count  - estimate the number of descriptors needed for Tx
 191 * @size: transmit request size in bytes
 192 *
 193 * Due to hardware alignment restrictions (4K alignment), we need to
 194 * assume that we can have no more than 12K of data per descriptor, even
 195 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
 196 * Thus, we need to divide by 12K. But division is slow! Instead,
 197 * we decompose the operation into shifts and one relatively cheap
 198 * multiply operation.
 199 *
 200 * To divide by 12K, we first divide by 4K, then divide by 3:
 201 *     To divide by 4K, shift right by 12 bits
 202 *     To divide by 3, multiply by 85, then divide by 256
 203 *     (Divide by 256 is done by shifting right by 8 bits)
 204 * Finally, we add one to round up. Because 256 isn't an exact multiple of
 205 * 3, we'll underestimate near each multiple of 12K. This is actually more
 206 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
 207 * segment.  For our purposes this is accurate out to 1M which is orders of
 208 * magnitude greater than our largest possible GSO size.
 209 *
 210 * This would then be implemented as:
 211 *     return (((size >> 12) * 85) >> 8) + 1;
 212 *
 213 * Since multiplication and division are commutative, we can reorder
 214 * operations into:
 215 *     return ((size * 85) >> 20) + 1;
 216 */
 217static inline unsigned int i40e_txd_use_count(unsigned int size)
 218{
 219        return ((size * 85) >> 20) + 1;
 220}
 221
 222/* Tx Descriptors needed, worst case */
 223#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
 224#define I40E_MIN_DESC_PENDING   4
 225
 226#define I40E_TX_FLAGS_HW_VLAN           BIT(1)
 227#define I40E_TX_FLAGS_SW_VLAN           BIT(2)
 228#define I40E_TX_FLAGS_TSO               BIT(3)
 229#define I40E_TX_FLAGS_IPV4              BIT(4)
 230#define I40E_TX_FLAGS_IPV6              BIT(5)
 231#define I40E_TX_FLAGS_FCCRC             BIT(6)
 232#define I40E_TX_FLAGS_FSO               BIT(7)
 233#define I40E_TX_FLAGS_TSYN              BIT(8)
 234#define I40E_TX_FLAGS_FD_SB             BIT(9)
 235#define I40E_TX_FLAGS_UDP_TUNNEL        BIT(10)
 236#define I40E_TX_FLAGS_VLAN_MASK         0xffff0000
 237#define I40E_TX_FLAGS_VLAN_PRIO_MASK    0xe0000000
 238#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT   29
 239#define I40E_TX_FLAGS_VLAN_SHIFT        16
 240
 241struct i40e_tx_buffer {
 242        struct i40e_tx_desc *next_to_watch;
 243        union {
 244                struct sk_buff *skb;
 245                void *raw_buf;
 246        };
 247        unsigned int bytecount;
 248        unsigned short gso_segs;
 249
 250        DEFINE_DMA_UNMAP_ADDR(dma);
 251        DEFINE_DMA_UNMAP_LEN(len);
 252        u32 tx_flags;
 253};
 254
 255struct i40e_rx_buffer {
 256        dma_addr_t dma;
 257        struct page *page;
 258        unsigned int page_offset;
 259};
 260
 261struct i40e_queue_stats {
 262        u64 packets;
 263        u64 bytes;
 264};
 265
 266struct i40e_tx_queue_stats {
 267        u64 restart_queue;
 268        u64 tx_busy;
 269        u64 tx_done_old;
 270        u64 tx_linearize;
 271        u64 tx_force_wb;
 272        u64 tx_lost_interrupt;
 273};
 274
 275struct i40e_rx_queue_stats {
 276        u64 non_eop_descs;
 277        u64 alloc_page_failed;
 278        u64 alloc_buff_failed;
 279        u64 page_reuse_count;
 280        u64 realloc_count;
 281};
 282
 283enum i40e_ring_state_t {
 284        __I40E_TX_FDIR_INIT_DONE,
 285        __I40E_TX_XPS_INIT_DONE,
 286};
 287
 288/* some useful defines for virtchannel interface, which
 289 * is the only remaining user of header split
 290 */
 291#define I40E_RX_DTYPE_NO_SPLIT      0
 292#define I40E_RX_DTYPE_HEADER_SPLIT  1
 293#define I40E_RX_DTYPE_SPLIT_ALWAYS  2
 294#define I40E_RX_SPLIT_L2      0x1
 295#define I40E_RX_SPLIT_IP      0x2
 296#define I40E_RX_SPLIT_TCP_UDP 0x4
 297#define I40E_RX_SPLIT_SCTP    0x8
 298
 299/* struct that defines a descriptor ring, associated with a VSI */
 300struct i40e_ring {
 301        struct i40e_ring *next;         /* pointer to next ring in q_vector */
 302        void *desc;                     /* Descriptor ring memory */
 303        struct device *dev;             /* Used for DMA mapping */
 304        struct net_device *netdev;      /* netdev ring maps to */
 305        union {
 306                struct i40e_tx_buffer *tx_bi;
 307                struct i40e_rx_buffer *rx_bi;
 308        };
 309        unsigned long state;
 310        u16 queue_index;                /* Queue number of ring */
 311        u8 dcb_tc;                      /* Traffic class of ring */
 312        u8 __iomem *tail;
 313
 314        /* high bit set means dynamic, use accessor routines to read/write.
 315         * hardware only supports 2us resolution for the ITR registers.
 316         * these values always store the USER setting, and must be converted
 317         * before programming to a register.
 318         */
 319        u16 rx_itr_setting;
 320        u16 tx_itr_setting;
 321
 322        u16 count;                      /* Number of descriptors */
 323        u16 reg_idx;                    /* HW register index of the ring */
 324        u16 rx_buf_len;
 325
 326        /* used in interrupt processing */
 327        u16 next_to_use;
 328        u16 next_to_clean;
 329
 330        u8 atr_sample_rate;
 331        u8 atr_count;
 332
 333        bool ring_active;               /* is ring online or not */
 334        bool arm_wb;            /* do something to arm write back */
 335        u8 packet_stride;
 336
 337        u16 flags;
 338#define I40E_TXR_FLAGS_WB_ON_ITR        BIT(0)
 339
 340        /* stats structs */
 341        struct i40e_queue_stats stats;
 342        struct u64_stats_sync syncp;
 343        union {
 344                struct i40e_tx_queue_stats tx_stats;
 345                struct i40e_rx_queue_stats rx_stats;
 346        };
 347
 348        unsigned int size;              /* length of descriptor ring in bytes */
 349        dma_addr_t dma;                 /* physical address of ring */
 350
 351        struct i40e_vsi *vsi;           /* Backreference to associated VSI */
 352        struct i40e_q_vector *q_vector; /* Backreference to associated vector */
 353
 354        struct rcu_head rcu;            /* to avoid race on free */
 355        u16 next_to_alloc;
 356        struct sk_buff *skb;            /* When i40e_clean_rx_ring_irq() must
 357                                         * return before it sees the EOP for
 358                                         * the current packet, we save that skb
 359                                         * here and resume receiving this
 360                                         * packet the next time
 361                                         * i40e_clean_rx_ring_irq() is called
 362                                         * for this ring.
 363                                         */
 364} ____cacheline_internodealigned_in_smp;
 365
 366enum i40e_latency_range {
 367        I40E_LOWEST_LATENCY = 0,
 368        I40E_LOW_LATENCY = 1,
 369        I40E_BULK_LATENCY = 2,
 370        I40E_ULTRA_LATENCY = 3,
 371};
 372
 373struct i40e_ring_container {
 374        /* array of pointers to rings */
 375        struct i40e_ring *ring;
 376        unsigned int total_bytes;       /* total bytes processed this int */
 377        unsigned int total_packets;     /* total packets processed this int */
 378        u16 count;
 379        enum i40e_latency_range latency_range;
 380        u16 itr;
 381};
 382
 383/* iterator for handling rings in ring container */
 384#define i40e_for_each_ring(pos, head) \
 385        for (pos = (head).ring; pos != NULL; pos = pos->next)
 386
 387bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
 388netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
 389void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
 390void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
 391int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
 392int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
 393void i40e_free_tx_resources(struct i40e_ring *tx_ring);
 394void i40e_free_rx_resources(struct i40e_ring *rx_ring);
 395int i40e_napi_poll(struct napi_struct *napi, int budget);
 396#ifdef I40E_FCOE
 397void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
 398                 struct i40e_tx_buffer *first, u32 tx_flags,
 399                 const u8 hdr_len, u32 td_cmd, u32 td_offset);
 400int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
 401                               struct i40e_ring *tx_ring, u32 *flags);
 402#endif
 403void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
 404u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw);
 405int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
 406bool __i40e_chk_linearize(struct sk_buff *skb);
 407
 408/**
 409 * i40e_get_head - Retrieve head from head writeback
 410 * @tx_ring:  tx ring to fetch head of
 411 *
 412 * Returns value of Tx ring head based on value stored
 413 * in head write-back location
 414 **/
 415static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
 416{
 417        void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
 418
 419        return le32_to_cpu(*(volatile __le32 *)head);
 420}
 421
 422/**
 423 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
 424 * @skb:     send buffer
 425 * @tx_ring: ring to send buffer on
 426 *
 427 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
 428 * there is not enough descriptors available in this ring since we need at least
 429 * one descriptor.
 430 **/
 431static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
 432{
 433        const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 434        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
 435        int count = 0, size = skb_headlen(skb);
 436
 437        for (;;) {
 438                count += i40e_txd_use_count(size);
 439
 440                if (!nr_frags--)
 441                        break;
 442
 443                size = skb_frag_size(frag++);
 444        }
 445
 446        return count;
 447}
 448
 449/**
 450 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
 451 * @tx_ring: the ring to be checked
 452 * @size:    the size buffer we want to assure is available
 453 *
 454 * Returns 0 if stop is not needed
 455 **/
 456static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
 457{
 458        if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
 459                return 0;
 460        return __i40e_maybe_stop_tx(tx_ring, size);
 461}
 462
 463/**
 464 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
 465 * @skb:      send buffer
 466 * @count:    number of buffers used
 467 *
 468 * Note: Our HW can't scatter-gather more than 8 fragments to build
 469 * a packet on the wire and so we need to figure out the cases where we
 470 * need to linearize the skb.
 471 **/
 472static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
 473{
 474        /* Both TSO and single send will work if count is less than 8 */
 475        if (likely(count < I40E_MAX_BUFFER_TXD))
 476                return false;
 477
 478        if (skb_is_gso(skb))
 479                return __i40e_chk_linearize(skb);
 480
 481        /* we can support up to 8 data buffers for a single send */
 482        return count != I40E_MAX_BUFFER_TXD;
 483}
 484
 485/**
 486 * i40e_rx_is_fcoe - returns true if the Rx packet type is FCoE
 487 * @ptype: the packet type field from Rx descriptor write-back
 488 **/
 489static inline bool i40e_rx_is_fcoe(u16 ptype)
 490{
 491        return (ptype >= I40E_RX_PTYPE_L2_FCOE_PAY3) &&
 492               (ptype <= I40E_RX_PTYPE_L2_FCOE_VFT_FCOTHER);
 493}
 494
 495/**
 496 * txring_txq - Find the netdev Tx ring based on the i40e Tx ring
 497 * @ring: Tx ring to find the netdev equivalent of
 498 **/
 499static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
 500{
 501        return netdev_get_tx_queue(ring->netdev, ring->queue_index);
 502}
 503#endif /* _I40E_TXRX_H_ */
 504