linux/drivers/net/ethernet/intel/igb/igb_ptp.c
<<
>>
Prefs
   1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
   2 *
   3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/pci.h>
  21#include <linux/ptp_classify.h>
  22
  23#include "igb.h"
  24
  25#define INCVALUE_MASK           0x7fffffff
  26#define ISGN                    0x80000000
  27
  28/* The 82580 timesync updates the system timer every 8ns by 8ns,
  29 * and this update value cannot be reprogrammed.
  30 *
  31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
  32 * nanoseconds time values for very long. For the 82580, SYSTIM always
  33 * counts nanoseconds, but the upper 24 bits are not available. The
  34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
  35 * register, TIMINCA.
  36 *
  37 * For the 82576, the SYSTIM register time unit is affect by the
  38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
  39 * field are needed to provide the nominal 16 nanosecond period,
  40 * leaving 19 bits for fractional nanoseconds.
  41 *
  42 * We scale the NIC clock cycle by a large factor so that relatively
  43 * small clock corrections can be added or subtracted at each clock
  44 * tick. The drawbacks of a large factor are a) that the clock
  45 * register overflows more quickly (not such a big deal) and b) that
  46 * the increment per tick has to fit into 24 bits.  As a result we
  47 * need to use a shift of 19 so we can fit a value of 16 into the
  48 * TIMINCA register.
  49 *
  50 *
  51 *             SYSTIMH            SYSTIML
  52 *        +--------------+   +---+---+------+
  53 *  82576 |      32      |   | 8 | 5 |  19  |
  54 *        +--------------+   +---+---+------+
  55 *         \________ 45 bits _______/  fract
  56 *
  57 *        +----------+---+   +--------------+
  58 *  82580 |    24    | 8 |   |      32      |
  59 *        +----------+---+   +--------------+
  60 *          reserved  \______ 40 bits _____/
  61 *
  62 *
  63 * The 45 bit 82576 SYSTIM overflows every
  64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
  65 *
  66 * The 40 bit 82580 SYSTIM overflows every
  67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
  68 */
  69
  70#define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
  71#define IGB_PTP_TX_TIMEOUT              (HZ * 15)
  72#define INCPERIOD_82576                 BIT(E1000_TIMINCA_16NS_SHIFT)
  73#define INCVALUE_82576_MASK             GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
  74#define INCVALUE_82576                  (16u << IGB_82576_TSYNC_SHIFT)
  75#define IGB_NBITS_82580                 40
  76
  77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
  78
  79/* SYSTIM read access for the 82576 */
  80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
  81{
  82        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
  83        struct e1000_hw *hw = &igb->hw;
  84        u64 val;
  85        u32 lo, hi;
  86
  87        lo = rd32(E1000_SYSTIML);
  88        hi = rd32(E1000_SYSTIMH);
  89
  90        val = ((u64) hi) << 32;
  91        val |= lo;
  92
  93        return val;
  94}
  95
  96/* SYSTIM read access for the 82580 */
  97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
  98{
  99        struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
 100        struct e1000_hw *hw = &igb->hw;
 101        u32 lo, hi;
 102        u64 val;
 103
 104        /* The timestamp latches on lowest register read. For the 82580
 105         * the lowest register is SYSTIMR instead of SYSTIML.  However we only
 106         * need to provide nanosecond resolution, so we just ignore it.
 107         */
 108        rd32(E1000_SYSTIMR);
 109        lo = rd32(E1000_SYSTIML);
 110        hi = rd32(E1000_SYSTIMH);
 111
 112        val = ((u64) hi) << 32;
 113        val |= lo;
 114
 115        return val;
 116}
 117
 118/* SYSTIM read access for I210/I211 */
 119static void igb_ptp_read_i210(struct igb_adapter *adapter,
 120                              struct timespec64 *ts)
 121{
 122        struct e1000_hw *hw = &adapter->hw;
 123        u32 sec, nsec;
 124
 125        /* The timestamp latches on lowest register read. For I210/I211, the
 126         * lowest register is SYSTIMR. Since we only need to provide nanosecond
 127         * resolution, we can ignore it.
 128         */
 129        rd32(E1000_SYSTIMR);
 130        nsec = rd32(E1000_SYSTIML);
 131        sec = rd32(E1000_SYSTIMH);
 132
 133        ts->tv_sec = sec;
 134        ts->tv_nsec = nsec;
 135}
 136
 137static void igb_ptp_write_i210(struct igb_adapter *adapter,
 138                               const struct timespec64 *ts)
 139{
 140        struct e1000_hw *hw = &adapter->hw;
 141
 142        /* Writing the SYSTIMR register is not necessary as it only provides
 143         * sub-nanosecond resolution.
 144         */
 145        wr32(E1000_SYSTIML, ts->tv_nsec);
 146        wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
 147}
 148
 149/**
 150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
 151 * @adapter: board private structure
 152 * @hwtstamps: timestamp structure to update
 153 * @systim: unsigned 64bit system time value.
 154 *
 155 * We need to convert the system time value stored in the RX/TXSTMP registers
 156 * into a hwtstamp which can be used by the upper level timestamping functions.
 157 *
 158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
 159 * system time value. This is needed because reading the 64 bit time
 160 * value involves reading two (or three) 32 bit registers. The first
 161 * read latches the value. Ditto for writing.
 162 *
 163 * In addition, here have extended the system time with an overflow
 164 * counter in software.
 165 **/
 166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
 167                                       struct skb_shared_hwtstamps *hwtstamps,
 168                                       u64 systim)
 169{
 170        unsigned long flags;
 171        u64 ns;
 172
 173        switch (adapter->hw.mac.type) {
 174        case e1000_82576:
 175        case e1000_82580:
 176        case e1000_i354:
 177        case e1000_i350:
 178                spin_lock_irqsave(&adapter->tmreg_lock, flags);
 179
 180                ns = timecounter_cyc2time(&adapter->tc, systim);
 181
 182                spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 183
 184                memset(hwtstamps, 0, sizeof(*hwtstamps));
 185                hwtstamps->hwtstamp = ns_to_ktime(ns);
 186                break;
 187        case e1000_i210:
 188        case e1000_i211:
 189                memset(hwtstamps, 0, sizeof(*hwtstamps));
 190                /* Upper 32 bits contain s, lower 32 bits contain ns. */
 191                hwtstamps->hwtstamp = ktime_set(systim >> 32,
 192                                                systim & 0xFFFFFFFF);
 193                break;
 194        default:
 195                break;
 196        }
 197}
 198
 199/* PTP clock operations */
 200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
 201{
 202        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 203                                               ptp_caps);
 204        struct e1000_hw *hw = &igb->hw;
 205        int neg_adj = 0;
 206        u64 rate;
 207        u32 incvalue;
 208
 209        if (ppb < 0) {
 210                neg_adj = 1;
 211                ppb = -ppb;
 212        }
 213        rate = ppb;
 214        rate <<= 14;
 215        rate = div_u64(rate, 1953125);
 216
 217        incvalue = 16 << IGB_82576_TSYNC_SHIFT;
 218
 219        if (neg_adj)
 220                incvalue -= rate;
 221        else
 222                incvalue += rate;
 223
 224        wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
 225
 226        return 0;
 227}
 228
 229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
 230{
 231        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 232                                               ptp_caps);
 233        struct e1000_hw *hw = &igb->hw;
 234        int neg_adj = 0;
 235        u64 rate;
 236        u32 inca;
 237
 238        if (ppb < 0) {
 239                neg_adj = 1;
 240                ppb = -ppb;
 241        }
 242        rate = ppb;
 243        rate <<= 26;
 244        rate = div_u64(rate, 1953125);
 245
 246        inca = rate & INCVALUE_MASK;
 247        if (neg_adj)
 248                inca |= ISGN;
 249
 250        wr32(E1000_TIMINCA, inca);
 251
 252        return 0;
 253}
 254
 255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
 256{
 257        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 258                                               ptp_caps);
 259        unsigned long flags;
 260
 261        spin_lock_irqsave(&igb->tmreg_lock, flags);
 262        timecounter_adjtime(&igb->tc, delta);
 263        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 264
 265        return 0;
 266}
 267
 268static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
 269{
 270        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 271                                               ptp_caps);
 272        unsigned long flags;
 273        struct timespec64 now, then = ns_to_timespec64(delta);
 274
 275        spin_lock_irqsave(&igb->tmreg_lock, flags);
 276
 277        igb_ptp_read_i210(igb, &now);
 278        now = timespec64_add(now, then);
 279        igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
 280
 281        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 282
 283        return 0;
 284}
 285
 286static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
 287                                 struct timespec64 *ts)
 288{
 289        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 290                                               ptp_caps);
 291        unsigned long flags;
 292        u64 ns;
 293
 294        spin_lock_irqsave(&igb->tmreg_lock, flags);
 295
 296        ns = timecounter_read(&igb->tc);
 297
 298        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 299
 300        *ts = ns_to_timespec64(ns);
 301
 302        return 0;
 303}
 304
 305static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
 306                                struct timespec64 *ts)
 307{
 308        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 309                                               ptp_caps);
 310        unsigned long flags;
 311
 312        spin_lock_irqsave(&igb->tmreg_lock, flags);
 313
 314        igb_ptp_read_i210(igb, ts);
 315
 316        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 317
 318        return 0;
 319}
 320
 321static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
 322                                 const struct timespec64 *ts)
 323{
 324        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 325                                               ptp_caps);
 326        unsigned long flags;
 327        u64 ns;
 328
 329        ns = timespec64_to_ns(ts);
 330
 331        spin_lock_irqsave(&igb->tmreg_lock, flags);
 332
 333        timecounter_init(&igb->tc, &igb->cc, ns);
 334
 335        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 336
 337        return 0;
 338}
 339
 340static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
 341                                const struct timespec64 *ts)
 342{
 343        struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
 344                                               ptp_caps);
 345        unsigned long flags;
 346
 347        spin_lock_irqsave(&igb->tmreg_lock, flags);
 348
 349        igb_ptp_write_i210(igb, ts);
 350
 351        spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 352
 353        return 0;
 354}
 355
 356static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
 357{
 358        u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
 359        static const u32 mask[IGB_N_SDP] = {
 360                E1000_CTRL_SDP0_DIR,
 361                E1000_CTRL_SDP1_DIR,
 362                E1000_CTRL_EXT_SDP2_DIR,
 363                E1000_CTRL_EXT_SDP3_DIR,
 364        };
 365
 366        if (input)
 367                *ptr &= ~mask[pin];
 368        else
 369                *ptr |= mask[pin];
 370}
 371
 372static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
 373{
 374        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 375                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 376        };
 377        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 378                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 379        };
 380        static const u32 ts_sdp_en[IGB_N_SDP] = {
 381                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 382        };
 383        struct e1000_hw *hw = &igb->hw;
 384        u32 ctrl, ctrl_ext, tssdp = 0;
 385
 386        ctrl = rd32(E1000_CTRL);
 387        ctrl_ext = rd32(E1000_CTRL_EXT);
 388        tssdp = rd32(E1000_TSSDP);
 389
 390        igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
 391
 392        /* Make sure this pin is not enabled as an output. */
 393        tssdp &= ~ts_sdp_en[pin];
 394
 395        if (chan == 1) {
 396                tssdp &= ~AUX1_SEL_SDP3;
 397                tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
 398        } else {
 399                tssdp &= ~AUX0_SEL_SDP3;
 400                tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
 401        }
 402
 403        wr32(E1000_TSSDP, tssdp);
 404        wr32(E1000_CTRL, ctrl);
 405        wr32(E1000_CTRL_EXT, ctrl_ext);
 406}
 407
 408static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
 409{
 410        static const u32 aux0_sel_sdp[IGB_N_SDP] = {
 411                AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
 412        };
 413        static const u32 aux1_sel_sdp[IGB_N_SDP] = {
 414                AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
 415        };
 416        static const u32 ts_sdp_en[IGB_N_SDP] = {
 417                TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
 418        };
 419        static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
 420                TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
 421                TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
 422        };
 423        static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
 424                TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
 425                TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
 426        };
 427        static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
 428                TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
 429                TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
 430        };
 431        static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
 432                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 433                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 434        };
 435        static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
 436                TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
 437                TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
 438        };
 439        struct e1000_hw *hw = &igb->hw;
 440        u32 ctrl, ctrl_ext, tssdp = 0;
 441
 442        ctrl = rd32(E1000_CTRL);
 443        ctrl_ext = rd32(E1000_CTRL_EXT);
 444        tssdp = rd32(E1000_TSSDP);
 445
 446        igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
 447
 448        /* Make sure this pin is not enabled as an input. */
 449        if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
 450                tssdp &= ~AUX0_TS_SDP_EN;
 451
 452        if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
 453                tssdp &= ~AUX1_TS_SDP_EN;
 454
 455        tssdp &= ~ts_sdp_sel_clr[pin];
 456        if (freq) {
 457                if (chan == 1)
 458                        tssdp |= ts_sdp_sel_fc1[pin];
 459                else
 460                        tssdp |= ts_sdp_sel_fc0[pin];
 461        } else {
 462                if (chan == 1)
 463                        tssdp |= ts_sdp_sel_tt1[pin];
 464                else
 465                        tssdp |= ts_sdp_sel_tt0[pin];
 466        }
 467        tssdp |= ts_sdp_en[pin];
 468
 469        wr32(E1000_TSSDP, tssdp);
 470        wr32(E1000_CTRL, ctrl);
 471        wr32(E1000_CTRL_EXT, ctrl_ext);
 472}
 473
 474static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
 475                                       struct ptp_clock_request *rq, int on)
 476{
 477        struct igb_adapter *igb =
 478                container_of(ptp, struct igb_adapter, ptp_caps);
 479        struct e1000_hw *hw = &igb->hw;
 480        u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
 481        unsigned long flags;
 482        struct timespec64 ts;
 483        int use_freq = 0, pin = -1;
 484        s64 ns;
 485
 486        switch (rq->type) {
 487        case PTP_CLK_REQ_EXTTS:
 488                if (on) {
 489                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
 490                                           rq->extts.index);
 491                        if (pin < 0)
 492                                return -EBUSY;
 493                }
 494                if (rq->extts.index == 1) {
 495                        tsauxc_mask = TSAUXC_EN_TS1;
 496                        tsim_mask = TSINTR_AUTT1;
 497                } else {
 498                        tsauxc_mask = TSAUXC_EN_TS0;
 499                        tsim_mask = TSINTR_AUTT0;
 500                }
 501                spin_lock_irqsave(&igb->tmreg_lock, flags);
 502                tsauxc = rd32(E1000_TSAUXC);
 503                tsim = rd32(E1000_TSIM);
 504                if (on) {
 505                        igb_pin_extts(igb, rq->extts.index, pin);
 506                        tsauxc |= tsauxc_mask;
 507                        tsim |= tsim_mask;
 508                } else {
 509                        tsauxc &= ~tsauxc_mask;
 510                        tsim &= ~tsim_mask;
 511                }
 512                wr32(E1000_TSAUXC, tsauxc);
 513                wr32(E1000_TSIM, tsim);
 514                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 515                return 0;
 516
 517        case PTP_CLK_REQ_PEROUT:
 518                if (on) {
 519                        pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
 520                                           rq->perout.index);
 521                        if (pin < 0)
 522                                return -EBUSY;
 523                }
 524                ts.tv_sec = rq->perout.period.sec;
 525                ts.tv_nsec = rq->perout.period.nsec;
 526                ns = timespec64_to_ns(&ts);
 527                ns = ns >> 1;
 528                if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
 529                           (ns == 250000000LL) || (ns == 500000000LL))) {
 530                        if (ns < 8LL)
 531                                return -EINVAL;
 532                        use_freq = 1;
 533                }
 534                ts = ns_to_timespec64(ns);
 535                if (rq->perout.index == 1) {
 536                        if (use_freq) {
 537                                tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
 538                                tsim_mask = 0;
 539                        } else {
 540                                tsauxc_mask = TSAUXC_EN_TT1;
 541                                tsim_mask = TSINTR_TT1;
 542                        }
 543                        trgttiml = E1000_TRGTTIML1;
 544                        trgttimh = E1000_TRGTTIMH1;
 545                        freqout = E1000_FREQOUT1;
 546                } else {
 547                        if (use_freq) {
 548                                tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
 549                                tsim_mask = 0;
 550                        } else {
 551                                tsauxc_mask = TSAUXC_EN_TT0;
 552                                tsim_mask = TSINTR_TT0;
 553                        }
 554                        trgttiml = E1000_TRGTTIML0;
 555                        trgttimh = E1000_TRGTTIMH0;
 556                        freqout = E1000_FREQOUT0;
 557                }
 558                spin_lock_irqsave(&igb->tmreg_lock, flags);
 559                tsauxc = rd32(E1000_TSAUXC);
 560                tsim = rd32(E1000_TSIM);
 561                if (rq->perout.index == 1) {
 562                        tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
 563                        tsim &= ~TSINTR_TT1;
 564                } else {
 565                        tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
 566                        tsim &= ~TSINTR_TT0;
 567                }
 568                if (on) {
 569                        int i = rq->perout.index;
 570                        igb_pin_perout(igb, i, pin, use_freq);
 571                        igb->perout[i].start.tv_sec = rq->perout.start.sec;
 572                        igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
 573                        igb->perout[i].period.tv_sec = ts.tv_sec;
 574                        igb->perout[i].period.tv_nsec = ts.tv_nsec;
 575                        wr32(trgttimh, rq->perout.start.sec);
 576                        wr32(trgttiml, rq->perout.start.nsec);
 577                        if (use_freq)
 578                                wr32(freqout, ns);
 579                        tsauxc |= tsauxc_mask;
 580                        tsim |= tsim_mask;
 581                }
 582                wr32(E1000_TSAUXC, tsauxc);
 583                wr32(E1000_TSIM, tsim);
 584                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 585                return 0;
 586
 587        case PTP_CLK_REQ_PPS:
 588                spin_lock_irqsave(&igb->tmreg_lock, flags);
 589                tsim = rd32(E1000_TSIM);
 590                if (on)
 591                        tsim |= TSINTR_SYS_WRAP;
 592                else
 593                        tsim &= ~TSINTR_SYS_WRAP;
 594                igb->pps_sys_wrap_on = !!on;
 595                wr32(E1000_TSIM, tsim);
 596                spin_unlock_irqrestore(&igb->tmreg_lock, flags);
 597                return 0;
 598        }
 599
 600        return -EOPNOTSUPP;
 601}
 602
 603static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
 604                                  struct ptp_clock_request *rq, int on)
 605{
 606        return -EOPNOTSUPP;
 607}
 608
 609static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
 610                              enum ptp_pin_function func, unsigned int chan)
 611{
 612        switch (func) {
 613        case PTP_PF_NONE:
 614        case PTP_PF_EXTTS:
 615        case PTP_PF_PEROUT:
 616                break;
 617        case PTP_PF_PHYSYNC:
 618                return -1;
 619        }
 620        return 0;
 621}
 622
 623/**
 624 * igb_ptp_tx_work
 625 * @work: pointer to work struct
 626 *
 627 * This work function polls the TSYNCTXCTL valid bit to determine when a
 628 * timestamp has been taken for the current stored skb.
 629 **/
 630static void igb_ptp_tx_work(struct work_struct *work)
 631{
 632        struct igb_adapter *adapter = container_of(work, struct igb_adapter,
 633                                                   ptp_tx_work);
 634        struct e1000_hw *hw = &adapter->hw;
 635        u32 tsynctxctl;
 636
 637        if (!adapter->ptp_tx_skb)
 638                return;
 639
 640        if (time_is_before_jiffies(adapter->ptp_tx_start +
 641                                   IGB_PTP_TX_TIMEOUT)) {
 642                dev_kfree_skb_any(adapter->ptp_tx_skb);
 643                adapter->ptp_tx_skb = NULL;
 644                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 645                adapter->tx_hwtstamp_timeouts++;
 646                dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
 647                return;
 648        }
 649
 650        tsynctxctl = rd32(E1000_TSYNCTXCTL);
 651        if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
 652                igb_ptp_tx_hwtstamp(adapter);
 653        else
 654                /* reschedule to check later */
 655                schedule_work(&adapter->ptp_tx_work);
 656}
 657
 658static void igb_ptp_overflow_check(struct work_struct *work)
 659{
 660        struct igb_adapter *igb =
 661                container_of(work, struct igb_adapter, ptp_overflow_work.work);
 662        struct timespec64 ts;
 663
 664        igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
 665
 666        pr_debug("igb overflow check at %lld.%09lu\n",
 667                 (long long) ts.tv_sec, ts.tv_nsec);
 668
 669        schedule_delayed_work(&igb->ptp_overflow_work,
 670                              IGB_SYSTIM_OVERFLOW_PERIOD);
 671}
 672
 673/**
 674 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
 675 * @adapter: private network adapter structure
 676 *
 677 * This watchdog task is scheduled to detect error case where hardware has
 678 * dropped an Rx packet that was timestamped when the ring is full. The
 679 * particular error is rare but leaves the device in a state unable to timestamp
 680 * any future packets.
 681 **/
 682void igb_ptp_rx_hang(struct igb_adapter *adapter)
 683{
 684        struct e1000_hw *hw = &adapter->hw;
 685        u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
 686        unsigned long rx_event;
 687
 688        /* Other hardware uses per-packet timestamps */
 689        if (hw->mac.type != e1000_82576)
 690                return;
 691
 692        /* If we don't have a valid timestamp in the registers, just update the
 693         * timeout counter and exit
 694         */
 695        if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
 696                adapter->last_rx_ptp_check = jiffies;
 697                return;
 698        }
 699
 700        /* Determine the most recent watchdog or rx_timestamp event */
 701        rx_event = adapter->last_rx_ptp_check;
 702        if (time_after(adapter->last_rx_timestamp, rx_event))
 703                rx_event = adapter->last_rx_timestamp;
 704
 705        /* Only need to read the high RXSTMP register to clear the lock */
 706        if (time_is_before_jiffies(rx_event + 5 * HZ)) {
 707                rd32(E1000_RXSTMPH);
 708                adapter->last_rx_ptp_check = jiffies;
 709                adapter->rx_hwtstamp_cleared++;
 710                dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
 711        }
 712}
 713
 714/**
 715 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
 716 * @adapter: Board private structure.
 717 *
 718 * If we were asked to do hardware stamping and such a time stamp is
 719 * available, then it must have been for this skb here because we only
 720 * allow only one such packet into the queue.
 721 **/
 722static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
 723{
 724        struct e1000_hw *hw = &adapter->hw;
 725        struct skb_shared_hwtstamps shhwtstamps;
 726        u64 regval;
 727        int adjust = 0;
 728
 729        regval = rd32(E1000_TXSTMPL);
 730        regval |= (u64)rd32(E1000_TXSTMPH) << 32;
 731
 732        igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
 733        /* adjust timestamp for the TX latency based on link speed */
 734        if (adapter->hw.mac.type == e1000_i210) {
 735                switch (adapter->link_speed) {
 736                case SPEED_10:
 737                        adjust = IGB_I210_TX_LATENCY_10;
 738                        break;
 739                case SPEED_100:
 740                        adjust = IGB_I210_TX_LATENCY_100;
 741                        break;
 742                case SPEED_1000:
 743                        adjust = IGB_I210_TX_LATENCY_1000;
 744                        break;
 745                }
 746        }
 747
 748        shhwtstamps.hwtstamp =
 749                ktime_add_ns(shhwtstamps.hwtstamp, adjust);
 750
 751        skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
 752        dev_kfree_skb_any(adapter->ptp_tx_skb);
 753        adapter->ptp_tx_skb = NULL;
 754        clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 755}
 756
 757/**
 758 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
 759 * @q_vector: Pointer to interrupt specific structure
 760 * @va: Pointer to address containing Rx buffer
 761 * @skb: Buffer containing timestamp and packet
 762 *
 763 * This function is meant to retrieve a timestamp from the first buffer of an
 764 * incoming frame.  The value is stored in little endian format starting on
 765 * byte 8.
 766 **/
 767void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
 768                         unsigned char *va,
 769                         struct sk_buff *skb)
 770{
 771        __le64 *regval = (__le64 *)va;
 772        struct igb_adapter *adapter = q_vector->adapter;
 773        int adjust = 0;
 774
 775        /* The timestamp is recorded in little endian format.
 776         * DWORD: 0        1        2        3
 777         * Field: Reserved Reserved SYSTIML  SYSTIMH
 778         */
 779        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 780                                   le64_to_cpu(regval[1]));
 781
 782        /* adjust timestamp for the RX latency based on link speed */
 783        if (adapter->hw.mac.type == e1000_i210) {
 784                switch (adapter->link_speed) {
 785                case SPEED_10:
 786                        adjust = IGB_I210_RX_LATENCY_10;
 787                        break;
 788                case SPEED_100:
 789                        adjust = IGB_I210_RX_LATENCY_100;
 790                        break;
 791                case SPEED_1000:
 792                        adjust = IGB_I210_RX_LATENCY_1000;
 793                        break;
 794                }
 795        }
 796        skb_hwtstamps(skb)->hwtstamp =
 797                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 798}
 799
 800/**
 801 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
 802 * @q_vector: Pointer to interrupt specific structure
 803 * @skb: Buffer containing timestamp and packet
 804 *
 805 * This function is meant to retrieve a timestamp from the internal registers
 806 * of the adapter and store it in the skb.
 807 **/
 808void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
 809                         struct sk_buff *skb)
 810{
 811        struct igb_adapter *adapter = q_vector->adapter;
 812        struct e1000_hw *hw = &adapter->hw;
 813        u64 regval;
 814        int adjust = 0;
 815
 816        /* If this bit is set, then the RX registers contain the time stamp. No
 817         * other packet will be time stamped until we read these registers, so
 818         * read the registers to make them available again. Because only one
 819         * packet can be time stamped at a time, we know that the register
 820         * values must belong to this one here and therefore we don't need to
 821         * compare any of the additional attributes stored for it.
 822         *
 823         * If nothing went wrong, then it should have a shared tx_flags that we
 824         * can turn into a skb_shared_hwtstamps.
 825         */
 826        if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 827                return;
 828
 829        regval = rd32(E1000_RXSTMPL);
 830        regval |= (u64)rd32(E1000_RXSTMPH) << 32;
 831
 832        igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
 833
 834        /* adjust timestamp for the RX latency based on link speed */
 835        if (adapter->hw.mac.type == e1000_i210) {
 836                switch (adapter->link_speed) {
 837                case SPEED_10:
 838                        adjust = IGB_I210_RX_LATENCY_10;
 839                        break;
 840                case SPEED_100:
 841                        adjust = IGB_I210_RX_LATENCY_100;
 842                        break;
 843                case SPEED_1000:
 844                        adjust = IGB_I210_RX_LATENCY_1000;
 845                        break;
 846                }
 847        }
 848        skb_hwtstamps(skb)->hwtstamp =
 849                ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
 850
 851        /* Update the last_rx_timestamp timer in order to enable watchdog check
 852         * for error case of latched timestamp on a dropped packet.
 853         */
 854        adapter->last_rx_timestamp = jiffies;
 855}
 856
 857/**
 858 * igb_ptp_get_ts_config - get hardware time stamping config
 859 * @netdev:
 860 * @ifreq:
 861 *
 862 * Get the hwtstamp_config settings to return to the user. Rather than attempt
 863 * to deconstruct the settings from the registers, just return a shadow copy
 864 * of the last known settings.
 865 **/
 866int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
 867{
 868        struct igb_adapter *adapter = netdev_priv(netdev);
 869        struct hwtstamp_config *config = &adapter->tstamp_config;
 870
 871        return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 872                -EFAULT : 0;
 873}
 874
 875/**
 876 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
 877 * @adapter: networking device structure
 878 * @config: hwtstamp configuration
 879 *
 880 * Outgoing time stamping can be enabled and disabled. Play nice and
 881 * disable it when requested, although it shouldn't case any overhead
 882 * when no packet needs it. At most one packet in the queue may be
 883 * marked for time stamping, otherwise it would be impossible to tell
 884 * for sure to which packet the hardware time stamp belongs.
 885 *
 886 * Incoming time stamping has to be configured via the hardware
 887 * filters. Not all combinations are supported, in particular event
 888 * type has to be specified. Matching the kind of event packet is
 889 * not supported, with the exception of "all V2 events regardless of
 890 * level 2 or 4".
 891 */
 892static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
 893                                      struct hwtstamp_config *config)
 894{
 895        struct e1000_hw *hw = &adapter->hw;
 896        u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
 897        u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 898        u32 tsync_rx_cfg = 0;
 899        bool is_l4 = false;
 900        bool is_l2 = false;
 901        u32 regval;
 902
 903        /* reserved for future extensions */
 904        if (config->flags)
 905                return -EINVAL;
 906
 907        switch (config->tx_type) {
 908        case HWTSTAMP_TX_OFF:
 909                tsync_tx_ctl = 0;
 910        case HWTSTAMP_TX_ON:
 911                break;
 912        default:
 913                return -ERANGE;
 914        }
 915
 916        switch (config->rx_filter) {
 917        case HWTSTAMP_FILTER_NONE:
 918                tsync_rx_ctl = 0;
 919                break;
 920        case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 921                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 922                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
 923                is_l4 = true;
 924                break;
 925        case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 926                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
 927                tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
 928                is_l4 = true;
 929                break;
 930        case HWTSTAMP_FILTER_PTP_V2_EVENT:
 931        case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
 932        case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 933        case HWTSTAMP_FILTER_PTP_V2_SYNC:
 934        case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
 935        case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 936        case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 937        case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
 938        case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 939                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
 940                config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 941                is_l2 = true;
 942                is_l4 = true;
 943                break;
 944        case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 945        case HWTSTAMP_FILTER_ALL:
 946                /* 82576 cannot timestamp all packets, which it needs to do to
 947                 * support both V1 Sync and Delay_Req messages
 948                 */
 949                if (hw->mac.type != e1000_82576) {
 950                        tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 951                        config->rx_filter = HWTSTAMP_FILTER_ALL;
 952                        break;
 953                }
 954                /* fall through */
 955        default:
 956                config->rx_filter = HWTSTAMP_FILTER_NONE;
 957                return -ERANGE;
 958        }
 959
 960        if (hw->mac.type == e1000_82575) {
 961                if (tsync_rx_ctl | tsync_tx_ctl)
 962                        return -EINVAL;
 963                return 0;
 964        }
 965
 966        /* Per-packet timestamping only works if all packets are
 967         * timestamped, so enable timestamping in all packets as
 968         * long as one Rx filter was configured.
 969         */
 970        if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
 971                tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
 972                tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
 973                config->rx_filter = HWTSTAMP_FILTER_ALL;
 974                is_l2 = true;
 975                is_l4 = true;
 976
 977                if ((hw->mac.type == e1000_i210) ||
 978                    (hw->mac.type == e1000_i211)) {
 979                        regval = rd32(E1000_RXPBS);
 980                        regval |= E1000_RXPBS_CFG_TS_EN;
 981                        wr32(E1000_RXPBS, regval);
 982                }
 983        }
 984
 985        /* enable/disable TX */
 986        regval = rd32(E1000_TSYNCTXCTL);
 987        regval &= ~E1000_TSYNCTXCTL_ENABLED;
 988        regval |= tsync_tx_ctl;
 989        wr32(E1000_TSYNCTXCTL, regval);
 990
 991        /* enable/disable RX */
 992        regval = rd32(E1000_TSYNCRXCTL);
 993        regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
 994        regval |= tsync_rx_ctl;
 995        wr32(E1000_TSYNCRXCTL, regval);
 996
 997        /* define which PTP packets are time stamped */
 998        wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
 999
1000        /* define ethertype filter for timestamped packets */
1001        if (is_l2)
1002                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1003                     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1004                      E1000_ETQF_1588 | /* enable timestamping */
1005                      ETH_P_1588));     /* 1588 eth protocol type */
1006        else
1007                wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1008
1009        /* L4 Queue Filter[3]: filter by destination port and protocol */
1010        if (is_l4) {
1011                u32 ftqf = (IPPROTO_UDP /* UDP */
1012                        | E1000_FTQF_VF_BP /* VF not compared */
1013                        | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1014                        | E1000_FTQF_MASK); /* mask all inputs */
1015                ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1016
1017                wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
1018                wr32(E1000_IMIREXT(3),
1019                     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1020                if (hw->mac.type == e1000_82576) {
1021                        /* enable source port check */
1022                        wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1023                        ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1024                }
1025                wr32(E1000_FTQF(3), ftqf);
1026        } else {
1027                wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1028        }
1029        wrfl();
1030
1031        /* clear TX/RX time stamp registers, just to be sure */
1032        regval = rd32(E1000_TXSTMPL);
1033        regval = rd32(E1000_TXSTMPH);
1034        regval = rd32(E1000_RXSTMPL);
1035        regval = rd32(E1000_RXSTMPH);
1036
1037        return 0;
1038}
1039
1040/**
1041 * igb_ptp_set_ts_config - set hardware time stamping config
1042 * @netdev:
1043 * @ifreq:
1044 *
1045 **/
1046int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1047{
1048        struct igb_adapter *adapter = netdev_priv(netdev);
1049        struct hwtstamp_config config;
1050        int err;
1051
1052        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1053                return -EFAULT;
1054
1055        err = igb_ptp_set_timestamp_mode(adapter, &config);
1056        if (err)
1057                return err;
1058
1059        /* save these settings for future reference */
1060        memcpy(&adapter->tstamp_config, &config,
1061               sizeof(adapter->tstamp_config));
1062
1063        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1064                -EFAULT : 0;
1065}
1066
1067/**
1068 * igb_ptp_init - Initialize PTP functionality
1069 * @adapter: Board private structure
1070 *
1071 * This function is called at device probe to initialize the PTP
1072 * functionality.
1073 */
1074void igb_ptp_init(struct igb_adapter *adapter)
1075{
1076        struct e1000_hw *hw = &adapter->hw;
1077        struct net_device *netdev = adapter->netdev;
1078        int i;
1079
1080        switch (hw->mac.type) {
1081        case e1000_82576:
1082                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1083                adapter->ptp_caps.owner = THIS_MODULE;
1084                adapter->ptp_caps.max_adj = 999999881;
1085                adapter->ptp_caps.n_ext_ts = 0;
1086                adapter->ptp_caps.pps = 0;
1087                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1088                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1089                adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1090                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1091                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1092                adapter->cc.read = igb_ptp_read_82576;
1093                adapter->cc.mask = CYCLECOUNTER_MASK(64);
1094                adapter->cc.mult = 1;
1095                adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1096                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1097                break;
1098        case e1000_82580:
1099        case e1000_i354:
1100        case e1000_i350:
1101                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1102                adapter->ptp_caps.owner = THIS_MODULE;
1103                adapter->ptp_caps.max_adj = 62499999;
1104                adapter->ptp_caps.n_ext_ts = 0;
1105                adapter->ptp_caps.pps = 0;
1106                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1107                adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1108                adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1109                adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1110                adapter->ptp_caps.enable = igb_ptp_feature_enable;
1111                adapter->cc.read = igb_ptp_read_82580;
1112                adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1113                adapter->cc.mult = 1;
1114                adapter->cc.shift = 0;
1115                adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1116                break;
1117        case e1000_i210:
1118        case e1000_i211:
1119                for (i = 0; i < IGB_N_SDP; i++) {
1120                        struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1121
1122                        snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1123                        ppd->index = i;
1124                        ppd->func = PTP_PF_NONE;
1125                }
1126                snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1127                adapter->ptp_caps.owner = THIS_MODULE;
1128                adapter->ptp_caps.max_adj = 62499999;
1129                adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1130                adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1131                adapter->ptp_caps.n_pins = IGB_N_SDP;
1132                adapter->ptp_caps.pps = 1;
1133                adapter->ptp_caps.pin_config = adapter->sdp_config;
1134                adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1135                adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1136                adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1137                adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1138                adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1139                adapter->ptp_caps.verify = igb_ptp_verify_pin;
1140                break;
1141        default:
1142                adapter->ptp_clock = NULL;
1143                return;
1144        }
1145
1146        spin_lock_init(&adapter->tmreg_lock);
1147        INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1148
1149        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1150                INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1151                                  igb_ptp_overflow_check);
1152
1153        adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1154        adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1155
1156        igb_ptp_reset(adapter);
1157
1158        adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1159                                                &adapter->pdev->dev);
1160        if (IS_ERR(adapter->ptp_clock)) {
1161                adapter->ptp_clock = NULL;
1162                dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1163        } else if (adapter->ptp_clock) {
1164                dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1165                         adapter->netdev->name);
1166                adapter->ptp_flags |= IGB_PTP_ENABLED;
1167        }
1168}
1169
1170/**
1171 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1172 * @adapter: Board private structure
1173 *
1174 * This function stops the overflow check work and PTP Tx timestamp work, and
1175 * will prepare the device for OS suspend.
1176 */
1177void igb_ptp_suspend(struct igb_adapter *adapter)
1178{
1179        if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1180                return;
1181
1182        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1183                cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1184
1185        cancel_work_sync(&adapter->ptp_tx_work);
1186        if (adapter->ptp_tx_skb) {
1187                dev_kfree_skb_any(adapter->ptp_tx_skb);
1188                adapter->ptp_tx_skb = NULL;
1189                clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1190        }
1191}
1192
1193/**
1194 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1195 * @adapter: Board private structure.
1196 *
1197 * This function stops the PTP support and cancels the delayed work.
1198 **/
1199void igb_ptp_stop(struct igb_adapter *adapter)
1200{
1201        igb_ptp_suspend(adapter);
1202
1203        if (adapter->ptp_clock) {
1204                ptp_clock_unregister(adapter->ptp_clock);
1205                dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1206                         adapter->netdev->name);
1207                adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1208        }
1209}
1210
1211/**
1212 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1213 * @adapter: Board private structure.
1214 *
1215 * This function handles the reset work required to re-enable the PTP device.
1216 **/
1217void igb_ptp_reset(struct igb_adapter *adapter)
1218{
1219        struct e1000_hw *hw = &adapter->hw;
1220        unsigned long flags;
1221
1222        /* reset the tstamp_config */
1223        igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1224
1225        spin_lock_irqsave(&adapter->tmreg_lock, flags);
1226
1227        switch (adapter->hw.mac.type) {
1228        case e1000_82576:
1229                /* Dial the nominal frequency. */
1230                wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1231                break;
1232        case e1000_82580:
1233        case e1000_i354:
1234        case e1000_i350:
1235        case e1000_i210:
1236        case e1000_i211:
1237                wr32(E1000_TSAUXC, 0x0);
1238                wr32(E1000_TSSDP, 0x0);
1239                wr32(E1000_TSIM,
1240                     TSYNC_INTERRUPTS |
1241                     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1242                wr32(E1000_IMS, E1000_IMS_TS);
1243                break;
1244        default:
1245                /* No work to do. */
1246                goto out;
1247        }
1248
1249        /* Re-initialize the timer. */
1250        if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1251                struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1252
1253                igb_ptp_write_i210(adapter, &ts);
1254        } else {
1255                timecounter_init(&adapter->tc, &adapter->cc,
1256                                 ktime_to_ns(ktime_get_real()));
1257        }
1258out:
1259        spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1260
1261        wrfl();
1262
1263        if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1264                schedule_delayed_work(&adapter->ptp_overflow_work,
1265                                      IGB_SYSTIM_OVERFLOW_PERIOD);
1266}
1267