linux/drivers/usb/core/message.c
<<
>>
Prefs
   1/*
   2 * message.c - synchronous message handling
   3 *
   4 * Released under the GPLv2 only.
   5 * SPDX-License-Identifier: GPL-2.0
   6 */
   7
   8#include <linux/pci.h>  /* for scatterlist macros */
   9#include <linux/usb.h>
  10#include <linux/module.h>
  11#include <linux/slab.h>
  12#include <linux/mm.h>
  13#include <linux/timer.h>
  14#include <linux/ctype.h>
  15#include <linux/nls.h>
  16#include <linux/device.h>
  17#include <linux/scatterlist.h>
  18#include <linux/usb/cdc.h>
  19#include <linux/usb/quirks.h>
  20#include <linux/usb/hcd.h>      /* for usbcore internals */
  21#include <asm/byteorder.h>
  22
  23#include "usb.h"
  24
  25static void cancel_async_set_config(struct usb_device *udev);
  26
  27struct api_context {
  28        struct completion       done;
  29        int                     status;
  30};
  31
  32static void usb_api_blocking_completion(struct urb *urb)
  33{
  34        struct api_context *ctx = urb->context;
  35
  36        ctx->status = urb->status;
  37        complete(&ctx->done);
  38}
  39
  40
  41/*
  42 * Starts urb and waits for completion or timeout. Note that this call
  43 * is NOT interruptible. Many device driver i/o requests should be
  44 * interruptible and therefore these drivers should implement their
  45 * own interruptible routines.
  46 */
  47static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  48{
  49        struct api_context ctx;
  50        unsigned long expire;
  51        int retval;
  52
  53        init_completion(&ctx.done);
  54        urb->context = &ctx;
  55        urb->actual_length = 0;
  56        retval = usb_submit_urb(urb, GFP_NOIO);
  57        if (unlikely(retval))
  58                goto out;
  59
  60        expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  61        if (!wait_for_completion_timeout(&ctx.done, expire)) {
  62                usb_kill_urb(urb);
  63                retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  64
  65                dev_dbg(&urb->dev->dev,
  66                        "%s timed out on ep%d%s len=%u/%u\n",
  67                        current->comm,
  68                        usb_endpoint_num(&urb->ep->desc),
  69                        usb_urb_dir_in(urb) ? "in" : "out",
  70                        urb->actual_length,
  71                        urb->transfer_buffer_length);
  72        } else
  73                retval = ctx.status;
  74out:
  75        if (actual_length)
  76                *actual_length = urb->actual_length;
  77
  78        usb_free_urb(urb);
  79        return retval;
  80}
  81
  82/*-------------------------------------------------------------------*/
  83/* returns status (negative) or length (positive) */
  84static int usb_internal_control_msg(struct usb_device *usb_dev,
  85                                    unsigned int pipe,
  86                                    struct usb_ctrlrequest *cmd,
  87                                    void *data, int len, int timeout)
  88{
  89        struct urb *urb;
  90        int retv;
  91        int length;
  92
  93        urb = usb_alloc_urb(0, GFP_NOIO);
  94        if (!urb)
  95                return -ENOMEM;
  96
  97        usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  98                             len, usb_api_blocking_completion, NULL);
  99
 100        retv = usb_start_wait_urb(urb, timeout, &length);
 101        if (retv < 0)
 102                return retv;
 103        else
 104                return length;
 105}
 106
 107/**
 108 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 109 * @dev: pointer to the usb device to send the message to
 110 * @pipe: endpoint "pipe" to send the message to
 111 * @request: USB message request value
 112 * @requesttype: USB message request type value
 113 * @value: USB message value
 114 * @index: USB message index value
 115 * @data: pointer to the data to send
 116 * @size: length in bytes of the data to send
 117 * @timeout: time in msecs to wait for the message to complete before timing
 118 *      out (if 0 the wait is forever)
 119 *
 120 * Context: !in_interrupt ()
 121 *
 122 * This function sends a simple control message to a specified endpoint and
 123 * waits for the message to complete, or timeout.
 124 *
 125 * Don't use this function from within an interrupt context, like a bottom half
 126 * handler.  If you need an asynchronous message, or need to send a message
 127 * from within interrupt context, use usb_submit_urb().
 128 * If a thread in your driver uses this call, make sure your disconnect()
 129 * method can wait for it to complete.  Since you don't have a handle on the
 130 * URB used, you can't cancel the request.
 131 *
 132 * Return: If successful, the number of bytes transferred. Otherwise, a negative
 133 * error number.
 134 */
 135int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 136                    __u8 requesttype, __u16 value, __u16 index, void *data,
 137                    __u16 size, int timeout)
 138{
 139        struct usb_ctrlrequest *dr;
 140        int ret;
 141
 142        dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 143        if (!dr)
 144                return -ENOMEM;
 145
 146        dr->bRequestType = requesttype;
 147        dr->bRequest = request;
 148        dr->wValue = cpu_to_le16(value);
 149        dr->wIndex = cpu_to_le16(index);
 150        dr->wLength = cpu_to_le16(size);
 151
 152        ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 153
 154        kfree(dr);
 155
 156        return ret;
 157}
 158EXPORT_SYMBOL_GPL(usb_control_msg);
 159
 160/**
 161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 162 * @usb_dev: pointer to the usb device to send the message to
 163 * @pipe: endpoint "pipe" to send the message to
 164 * @data: pointer to the data to send
 165 * @len: length in bytes of the data to send
 166 * @actual_length: pointer to a location to put the actual length transferred
 167 *      in bytes
 168 * @timeout: time in msecs to wait for the message to complete before
 169 *      timing out (if 0 the wait is forever)
 170 *
 171 * Context: !in_interrupt ()
 172 *
 173 * This function sends a simple interrupt message to a specified endpoint and
 174 * waits for the message to complete, or timeout.
 175 *
 176 * Don't use this function from within an interrupt context, like a bottom half
 177 * handler.  If you need an asynchronous message, or need to send a message
 178 * from within interrupt context, use usb_submit_urb() If a thread in your
 179 * driver uses this call, make sure your disconnect() method can wait for it to
 180 * complete.  Since you don't have a handle on the URB used, you can't cancel
 181 * the request.
 182 *
 183 * Return:
 184 * If successful, 0. Otherwise a negative error number. The number of actual
 185 * bytes transferred will be stored in the @actual_length parameter.
 186 */
 187int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 188                      void *data, int len, int *actual_length, int timeout)
 189{
 190        return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 191}
 192EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 193
 194/**
 195 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 196 * @usb_dev: pointer to the usb device to send the message to
 197 * @pipe: endpoint "pipe" to send the message to
 198 * @data: pointer to the data to send
 199 * @len: length in bytes of the data to send
 200 * @actual_length: pointer to a location to put the actual length transferred
 201 *      in bytes
 202 * @timeout: time in msecs to wait for the message to complete before
 203 *      timing out (if 0 the wait is forever)
 204 *
 205 * Context: !in_interrupt ()
 206 *
 207 * This function sends a simple bulk message to a specified endpoint
 208 * and waits for the message to complete, or timeout.
 209 *
 210 * Don't use this function from within an interrupt context, like a bottom half
 211 * handler.  If you need an asynchronous message, or need to send a message
 212 * from within interrupt context, use usb_submit_urb() If a thread in your
 213 * driver uses this call, make sure your disconnect() method can wait for it to
 214 * complete.  Since you don't have a handle on the URB used, you can't cancel
 215 * the request.
 216 *
 217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 218 * users are forced to abuse this routine by using it to submit URBs for
 219 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 220 * (with the default interval) if the target is an interrupt endpoint.
 221 *
 222 * Return:
 223 * If successful, 0. Otherwise a negative error number. The number of actual
 224 * bytes transferred will be stored in the @actual_length parameter.
 225 *
 226 */
 227int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 228                 void *data, int len, int *actual_length, int timeout)
 229{
 230        struct urb *urb;
 231        struct usb_host_endpoint *ep;
 232
 233        ep = usb_pipe_endpoint(usb_dev, pipe);
 234        if (!ep || len < 0)
 235                return -EINVAL;
 236
 237        urb = usb_alloc_urb(0, GFP_KERNEL);
 238        if (!urb)
 239                return -ENOMEM;
 240
 241        if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 242                        USB_ENDPOINT_XFER_INT) {
 243                pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 244                usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 245                                usb_api_blocking_completion, NULL,
 246                                ep->desc.bInterval);
 247        } else
 248                usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 249                                usb_api_blocking_completion, NULL);
 250
 251        return usb_start_wait_urb(urb, timeout, actual_length);
 252}
 253EXPORT_SYMBOL_GPL(usb_bulk_msg);
 254
 255/*-------------------------------------------------------------------*/
 256
 257static void sg_clean(struct usb_sg_request *io)
 258{
 259        if (io->urbs) {
 260                while (io->entries--)
 261                        usb_free_urb(io->urbs[io->entries]);
 262                kfree(io->urbs);
 263                io->urbs = NULL;
 264        }
 265        io->dev = NULL;
 266}
 267
 268static void sg_complete(struct urb *urb)
 269{
 270        struct usb_sg_request *io = urb->context;
 271        int status = urb->status;
 272
 273        spin_lock(&io->lock);
 274
 275        /* In 2.5 we require hcds' endpoint queues not to progress after fault
 276         * reports, until the completion callback (this!) returns.  That lets
 277         * device driver code (like this routine) unlink queued urbs first,
 278         * if it needs to, since the HC won't work on them at all.  So it's
 279         * not possible for page N+1 to overwrite page N, and so on.
 280         *
 281         * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 282         * complete before the HCD can get requests away from hardware,
 283         * though never during cleanup after a hard fault.
 284         */
 285        if (io->status
 286                        && (io->status != -ECONNRESET
 287                                || status != -ECONNRESET)
 288                        && urb->actual_length) {
 289                dev_err(io->dev->bus->controller,
 290                        "dev %s ep%d%s scatterlist error %d/%d\n",
 291                        io->dev->devpath,
 292                        usb_endpoint_num(&urb->ep->desc),
 293                        usb_urb_dir_in(urb) ? "in" : "out",
 294                        status, io->status);
 295                /* BUG (); */
 296        }
 297
 298        if (io->status == 0 && status && status != -ECONNRESET) {
 299                int i, found, retval;
 300
 301                io->status = status;
 302
 303                /* the previous urbs, and this one, completed already.
 304                 * unlink pending urbs so they won't rx/tx bad data.
 305                 * careful: unlink can sometimes be synchronous...
 306                 */
 307                spin_unlock(&io->lock);
 308                for (i = 0, found = 0; i < io->entries; i++) {
 309                        if (!io->urbs[i])
 310                                continue;
 311                        if (found) {
 312                                usb_block_urb(io->urbs[i]);
 313                                retval = usb_unlink_urb(io->urbs[i]);
 314                                if (retval != -EINPROGRESS &&
 315                                    retval != -ENODEV &&
 316                                    retval != -EBUSY &&
 317                                    retval != -EIDRM)
 318                                        dev_err(&io->dev->dev,
 319                                                "%s, unlink --> %d\n",
 320                                                __func__, retval);
 321                        } else if (urb == io->urbs[i])
 322                                found = 1;
 323                }
 324                spin_lock(&io->lock);
 325        }
 326
 327        /* on the last completion, signal usb_sg_wait() */
 328        io->bytes += urb->actual_length;
 329        io->count--;
 330        if (!io->count)
 331                complete(&io->complete);
 332
 333        spin_unlock(&io->lock);
 334}
 335
 336
 337/**
 338 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 339 * @io: request block being initialized.  until usb_sg_wait() returns,
 340 *      treat this as a pointer to an opaque block of memory,
 341 * @dev: the usb device that will send or receive the data
 342 * @pipe: endpoint "pipe" used to transfer the data
 343 * @period: polling rate for interrupt endpoints, in frames or
 344 *      (for high speed endpoints) microframes; ignored for bulk
 345 * @sg: scatterlist entries
 346 * @nents: how many entries in the scatterlist
 347 * @length: how many bytes to send from the scatterlist, or zero to
 348 *      send every byte identified in the list.
 349 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 350 *
 351 * This initializes a scatter/gather request, allocating resources such as
 352 * I/O mappings and urb memory (except maybe memory used by USB controller
 353 * drivers).
 354 *
 355 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 356 * complete (or to be canceled) and then cleans up all resources allocated by
 357 * usb_sg_init().
 358 *
 359 * The request may be canceled with usb_sg_cancel(), either before or after
 360 * usb_sg_wait() is called.
 361 *
 362 * Return: Zero for success, else a negative errno value.
 363 */
 364int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 365                unsigned pipe, unsigned period, struct scatterlist *sg,
 366                int nents, size_t length, gfp_t mem_flags)
 367{
 368        int i;
 369        int urb_flags;
 370        int use_sg;
 371
 372        if (!io || !dev || !sg
 373                        || usb_pipecontrol(pipe)
 374                        || usb_pipeisoc(pipe)
 375                        || nents <= 0)
 376                return -EINVAL;
 377
 378        spin_lock_init(&io->lock);
 379        io->dev = dev;
 380        io->pipe = pipe;
 381
 382        if (dev->bus->sg_tablesize > 0) {
 383                use_sg = true;
 384                io->entries = 1;
 385        } else {
 386                use_sg = false;
 387                io->entries = nents;
 388        }
 389
 390        /* initialize all the urbs we'll use */
 391        io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
 392        if (!io->urbs)
 393                goto nomem;
 394
 395        urb_flags = URB_NO_INTERRUPT;
 396        if (usb_pipein(pipe))
 397                urb_flags |= URB_SHORT_NOT_OK;
 398
 399        for_each_sg(sg, sg, io->entries, i) {
 400                struct urb *urb;
 401                unsigned len;
 402
 403                urb = usb_alloc_urb(0, mem_flags);
 404                if (!urb) {
 405                        io->entries = i;
 406                        goto nomem;
 407                }
 408                io->urbs[i] = urb;
 409
 410                urb->dev = NULL;
 411                urb->pipe = pipe;
 412                urb->interval = period;
 413                urb->transfer_flags = urb_flags;
 414                urb->complete = sg_complete;
 415                urb->context = io;
 416                urb->sg = sg;
 417
 418                if (use_sg) {
 419                        /* There is no single transfer buffer */
 420                        urb->transfer_buffer = NULL;
 421                        urb->num_sgs = nents;
 422
 423                        /* A length of zero means transfer the whole sg list */
 424                        len = length;
 425                        if (len == 0) {
 426                                struct scatterlist      *sg2;
 427                                int                     j;
 428
 429                                for_each_sg(sg, sg2, nents, j)
 430                                        len += sg2->length;
 431                        }
 432                } else {
 433                        /*
 434                         * Some systems can't use DMA; they use PIO instead.
 435                         * For their sakes, transfer_buffer is set whenever
 436                         * possible.
 437                         */
 438                        if (!PageHighMem(sg_page(sg)))
 439                                urb->transfer_buffer = sg_virt(sg);
 440                        else
 441                                urb->transfer_buffer = NULL;
 442
 443                        len = sg->length;
 444                        if (length) {
 445                                len = min_t(size_t, len, length);
 446                                length -= len;
 447                                if (length == 0)
 448                                        io->entries = i + 1;
 449                        }
 450                }
 451                urb->transfer_buffer_length = len;
 452        }
 453        io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 454
 455        /* transaction state */
 456        io->count = io->entries;
 457        io->status = 0;
 458        io->bytes = 0;
 459        init_completion(&io->complete);
 460        return 0;
 461
 462nomem:
 463        sg_clean(io);
 464        return -ENOMEM;
 465}
 466EXPORT_SYMBOL_GPL(usb_sg_init);
 467
 468/**
 469 * usb_sg_wait - synchronously execute scatter/gather request
 470 * @io: request block handle, as initialized with usb_sg_init().
 471 *      some fields become accessible when this call returns.
 472 * Context: !in_interrupt ()
 473 *
 474 * This function blocks until the specified I/O operation completes.  It
 475 * leverages the grouping of the related I/O requests to get good transfer
 476 * rates, by queueing the requests.  At higher speeds, such queuing can
 477 * significantly improve USB throughput.
 478 *
 479 * There are three kinds of completion for this function.
 480 * (1) success, where io->status is zero.  The number of io->bytes
 481 *     transferred is as requested.
 482 * (2) error, where io->status is a negative errno value.  The number
 483 *     of io->bytes transferred before the error is usually less
 484 *     than requested, and can be nonzero.
 485 * (3) cancellation, a type of error with status -ECONNRESET that
 486 *     is initiated by usb_sg_cancel().
 487 *
 488 * When this function returns, all memory allocated through usb_sg_init() or
 489 * this call will have been freed.  The request block parameter may still be
 490 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 491 * reinitialized and then reused.
 492 *
 493 * Data Transfer Rates:
 494 *
 495 * Bulk transfers are valid for full or high speed endpoints.
 496 * The best full speed data rate is 19 packets of 64 bytes each
 497 * per frame, or 1216 bytes per millisecond.
 498 * The best high speed data rate is 13 packets of 512 bytes each
 499 * per microframe, or 52 KBytes per millisecond.
 500 *
 501 * The reason to use interrupt transfers through this API would most likely
 502 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 503 * could be transferred.  That capability is less useful for low or full
 504 * speed interrupt endpoints, which allow at most one packet per millisecond,
 505 * of at most 8 or 64 bytes (respectively).
 506 *
 507 * It is not necessary to call this function to reserve bandwidth for devices
 508 * under an xHCI host controller, as the bandwidth is reserved when the
 509 * configuration or interface alt setting is selected.
 510 */
 511void usb_sg_wait(struct usb_sg_request *io)
 512{
 513        int i;
 514        int entries = io->entries;
 515
 516        /* queue the urbs.  */
 517        spin_lock_irq(&io->lock);
 518        i = 0;
 519        while (i < entries && !io->status) {
 520                int retval;
 521
 522                io->urbs[i]->dev = io->dev;
 523                spin_unlock_irq(&io->lock);
 524
 525                retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
 526
 527                switch (retval) {
 528                        /* maybe we retrying will recover */
 529                case -ENXIO:    /* hc didn't queue this one */
 530                case -EAGAIN:
 531                case -ENOMEM:
 532                        retval = 0;
 533                        yield();
 534                        break;
 535
 536                        /* no error? continue immediately.
 537                         *
 538                         * NOTE: to work better with UHCI (4K I/O buffer may
 539                         * need 3K of TDs) it may be good to limit how many
 540                         * URBs are queued at once; N milliseconds?
 541                         */
 542                case 0:
 543                        ++i;
 544                        cpu_relax();
 545                        break;
 546
 547                        /* fail any uncompleted urbs */
 548                default:
 549                        io->urbs[i]->status = retval;
 550                        dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 551                                __func__, retval);
 552                        usb_sg_cancel(io);
 553                }
 554                spin_lock_irq(&io->lock);
 555                if (retval && (io->status == 0 || io->status == -ECONNRESET))
 556                        io->status = retval;
 557        }
 558        io->count -= entries - i;
 559        if (io->count == 0)
 560                complete(&io->complete);
 561        spin_unlock_irq(&io->lock);
 562
 563        /* OK, yes, this could be packaged as non-blocking.
 564         * So could the submit loop above ... but it's easier to
 565         * solve neither problem than to solve both!
 566         */
 567        wait_for_completion(&io->complete);
 568
 569        sg_clean(io);
 570}
 571EXPORT_SYMBOL_GPL(usb_sg_wait);
 572
 573/**
 574 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 575 * @io: request block, initialized with usb_sg_init()
 576 *
 577 * This stops a request after it has been started by usb_sg_wait().
 578 * It can also prevents one initialized by usb_sg_init() from starting,
 579 * so that call just frees resources allocated to the request.
 580 */
 581void usb_sg_cancel(struct usb_sg_request *io)
 582{
 583        unsigned long flags;
 584        int i, retval;
 585
 586        spin_lock_irqsave(&io->lock, flags);
 587        if (io->status) {
 588                spin_unlock_irqrestore(&io->lock, flags);
 589                return;
 590        }
 591        /* shut everything down */
 592        io->status = -ECONNRESET;
 593        spin_unlock_irqrestore(&io->lock, flags);
 594
 595        for (i = io->entries - 1; i >= 0; --i) {
 596                usb_block_urb(io->urbs[i]);
 597
 598                retval = usb_unlink_urb(io->urbs[i]);
 599                if (retval != -EINPROGRESS
 600                    && retval != -ENODEV
 601                    && retval != -EBUSY
 602                    && retval != -EIDRM)
 603                        dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 604                                 __func__, retval);
 605        }
 606}
 607EXPORT_SYMBOL_GPL(usb_sg_cancel);
 608
 609/*-------------------------------------------------------------------*/
 610
 611/**
 612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 613 * @dev: the device whose descriptor is being retrieved
 614 * @type: the descriptor type (USB_DT_*)
 615 * @index: the number of the descriptor
 616 * @buf: where to put the descriptor
 617 * @size: how big is "buf"?
 618 * Context: !in_interrupt ()
 619 *
 620 * Gets a USB descriptor.  Convenience functions exist to simplify
 621 * getting some types of descriptors.  Use
 622 * usb_get_string() or usb_string() for USB_DT_STRING.
 623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 624 * are part of the device structure.
 625 * In addition to a number of USB-standard descriptors, some
 626 * devices also use class-specific or vendor-specific descriptors.
 627 *
 628 * This call is synchronous, and may not be used in an interrupt context.
 629 *
 630 * Return: The number of bytes received on success, or else the status code
 631 * returned by the underlying usb_control_msg() call.
 632 */
 633int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 634                       unsigned char index, void *buf, int size)
 635{
 636        int i;
 637        int result;
 638
 639        memset(buf, 0, size);   /* Make sure we parse really received data */
 640
 641        for (i = 0; i < 3; ++i) {
 642                /* retry on length 0 or error; some devices are flakey */
 643                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 644                                USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 645                                (type << 8) + index, 0, buf, size,
 646                                USB_CTRL_GET_TIMEOUT);
 647                if (result <= 0 && result != -ETIMEDOUT)
 648                        continue;
 649                if (result > 1 && ((u8 *)buf)[1] != type) {
 650                        result = -ENODATA;
 651                        continue;
 652                }
 653                break;
 654        }
 655        return result;
 656}
 657EXPORT_SYMBOL_GPL(usb_get_descriptor);
 658
 659/**
 660 * usb_get_string - gets a string descriptor
 661 * @dev: the device whose string descriptor is being retrieved
 662 * @langid: code for language chosen (from string descriptor zero)
 663 * @index: the number of the descriptor
 664 * @buf: where to put the string
 665 * @size: how big is "buf"?
 666 * Context: !in_interrupt ()
 667 *
 668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 669 * in little-endian byte order).
 670 * The usb_string() function will often be a convenient way to turn
 671 * these strings into kernel-printable form.
 672 *
 673 * Strings may be referenced in device, configuration, interface, or other
 674 * descriptors, and could also be used in vendor-specific ways.
 675 *
 676 * This call is synchronous, and may not be used in an interrupt context.
 677 *
 678 * Return: The number of bytes received on success, or else the status code
 679 * returned by the underlying usb_control_msg() call.
 680 */
 681static int usb_get_string(struct usb_device *dev, unsigned short langid,
 682                          unsigned char index, void *buf, int size)
 683{
 684        int i;
 685        int result;
 686
 687        for (i = 0; i < 3; ++i) {
 688                /* retry on length 0 or stall; some devices are flakey */
 689                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 690                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 691                        (USB_DT_STRING << 8) + index, langid, buf, size,
 692                        USB_CTRL_GET_TIMEOUT);
 693                if (result == 0 || result == -EPIPE)
 694                        continue;
 695                if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 696                        result = -ENODATA;
 697                        continue;
 698                }
 699                break;
 700        }
 701        return result;
 702}
 703
 704static void usb_try_string_workarounds(unsigned char *buf, int *length)
 705{
 706        int newlength, oldlength = *length;
 707
 708        for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 709                if (!isprint(buf[newlength]) || buf[newlength + 1])
 710                        break;
 711
 712        if (newlength > 2) {
 713                buf[0] = newlength;
 714                *length = newlength;
 715        }
 716}
 717
 718static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 719                          unsigned int index, unsigned char *buf)
 720{
 721        int rc;
 722
 723        /* Try to read the string descriptor by asking for the maximum
 724         * possible number of bytes */
 725        if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 726                rc = -EIO;
 727        else
 728                rc = usb_get_string(dev, langid, index, buf, 255);
 729
 730        /* If that failed try to read the descriptor length, then
 731         * ask for just that many bytes */
 732        if (rc < 2) {
 733                rc = usb_get_string(dev, langid, index, buf, 2);
 734                if (rc == 2)
 735                        rc = usb_get_string(dev, langid, index, buf, buf[0]);
 736        }
 737
 738        if (rc >= 2) {
 739                if (!buf[0] && !buf[1])
 740                        usb_try_string_workarounds(buf, &rc);
 741
 742                /* There might be extra junk at the end of the descriptor */
 743                if (buf[0] < rc)
 744                        rc = buf[0];
 745
 746                rc = rc - (rc & 1); /* force a multiple of two */
 747        }
 748
 749        if (rc < 2)
 750                rc = (rc < 0 ? rc : -EINVAL);
 751
 752        return rc;
 753}
 754
 755static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 756{
 757        int err;
 758
 759        if (dev->have_langid)
 760                return 0;
 761
 762        if (dev->string_langid < 0)
 763                return -EPIPE;
 764
 765        err = usb_string_sub(dev, 0, 0, tbuf);
 766
 767        /* If the string was reported but is malformed, default to english
 768         * (0x0409) */
 769        if (err == -ENODATA || (err > 0 && err < 4)) {
 770                dev->string_langid = 0x0409;
 771                dev->have_langid = 1;
 772                dev_err(&dev->dev,
 773                        "language id specifier not provided by device, defaulting to English\n");
 774                return 0;
 775        }
 776
 777        /* In case of all other errors, we assume the device is not able to
 778         * deal with strings at all. Set string_langid to -1 in order to
 779         * prevent any string to be retrieved from the device */
 780        if (err < 0) {
 781                dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 782                                        err);
 783                dev->string_langid = -1;
 784                return -EPIPE;
 785        }
 786
 787        /* always use the first langid listed */
 788        dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 789        dev->have_langid = 1;
 790        dev_dbg(&dev->dev, "default language 0x%04x\n",
 791                                dev->string_langid);
 792        return 0;
 793}
 794
 795/**
 796 * usb_string - returns UTF-8 version of a string descriptor
 797 * @dev: the device whose string descriptor is being retrieved
 798 * @index: the number of the descriptor
 799 * @buf: where to put the string
 800 * @size: how big is "buf"?
 801 * Context: !in_interrupt ()
 802 *
 803 * This converts the UTF-16LE encoded strings returned by devices, from
 804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 805 * that are more usable in most kernel contexts.  Note that this function
 806 * chooses strings in the first language supported by the device.
 807 *
 808 * This call is synchronous, and may not be used in an interrupt context.
 809 *
 810 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 811 */
 812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 813{
 814        unsigned char *tbuf;
 815        int err;
 816
 817        if (dev->state == USB_STATE_SUSPENDED)
 818                return -EHOSTUNREACH;
 819        if (size <= 0 || !buf || !index)
 820                return -EINVAL;
 821        buf[0] = 0;
 822        tbuf = kmalloc(256, GFP_NOIO);
 823        if (!tbuf)
 824                return -ENOMEM;
 825
 826        err = usb_get_langid(dev, tbuf);
 827        if (err < 0)
 828                goto errout;
 829
 830        err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 831        if (err < 0)
 832                goto errout;
 833
 834        size--;         /* leave room for trailing NULL char in output buffer */
 835        err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 836                        UTF16_LITTLE_ENDIAN, buf, size);
 837        buf[err] = 0;
 838
 839        if (tbuf[1] != USB_DT_STRING)
 840                dev_dbg(&dev->dev,
 841                        "wrong descriptor type %02x for string %d (\"%s\")\n",
 842                        tbuf[1], index, buf);
 843
 844 errout:
 845        kfree(tbuf);
 846        return err;
 847}
 848EXPORT_SYMBOL_GPL(usb_string);
 849
 850/* one UTF-8-encoded 16-bit character has at most three bytes */
 851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 852
 853/**
 854 * usb_cache_string - read a string descriptor and cache it for later use
 855 * @udev: the device whose string descriptor is being read
 856 * @index: the descriptor index
 857 *
 858 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
 859 * or %NULL if the index is 0 or the string could not be read.
 860 */
 861char *usb_cache_string(struct usb_device *udev, int index)
 862{
 863        char *buf;
 864        char *smallbuf = NULL;
 865        int len;
 866
 867        if (index <= 0)
 868                return NULL;
 869
 870        buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 871        if (buf) {
 872                len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 873                if (len > 0) {
 874                        smallbuf = kmalloc(++len, GFP_NOIO);
 875                        if (!smallbuf)
 876                                return buf;
 877                        memcpy(smallbuf, buf, len);
 878                }
 879                kfree(buf);
 880        }
 881        return smallbuf;
 882}
 883
 884/*
 885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 886 * @dev: the device whose device descriptor is being updated
 887 * @size: how much of the descriptor to read
 888 * Context: !in_interrupt ()
 889 *
 890 * Updates the copy of the device descriptor stored in the device structure,
 891 * which dedicates space for this purpose.
 892 *
 893 * Not exported, only for use by the core.  If drivers really want to read
 894 * the device descriptor directly, they can call usb_get_descriptor() with
 895 * type = USB_DT_DEVICE and index = 0.
 896 *
 897 * This call is synchronous, and may not be used in an interrupt context.
 898 *
 899 * Return: The number of bytes received on success, or else the status code
 900 * returned by the underlying usb_control_msg() call.
 901 */
 902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 903{
 904        struct usb_device_descriptor *desc;
 905        int ret;
 906
 907        if (size > sizeof(*desc))
 908                return -EINVAL;
 909        desc = kmalloc(sizeof(*desc), GFP_NOIO);
 910        if (!desc)
 911                return -ENOMEM;
 912
 913        ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 914        if (ret >= 0)
 915                memcpy(&dev->descriptor, desc, size);
 916        kfree(desc);
 917        return ret;
 918}
 919
 920/**
 921 * usb_get_status - issues a GET_STATUS call
 922 * @dev: the device whose status is being checked
 923 * @type: USB_RECIP_*; for device, interface, or endpoint
 924 * @target: zero (for device), else interface or endpoint number
 925 * @data: pointer to two bytes of bitmap data
 926 * Context: !in_interrupt ()
 927 *
 928 * Returns device, interface, or endpoint status.  Normally only of
 929 * interest to see if the device is self powered, or has enabled the
 930 * remote wakeup facility; or whether a bulk or interrupt endpoint
 931 * is halted ("stalled").
 932 *
 933 * Bits in these status bitmaps are set using the SET_FEATURE request,
 934 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 935 * function should be used to clear halt ("stall") status.
 936 *
 937 * This call is synchronous, and may not be used in an interrupt context.
 938 *
 939 * Returns 0 and the status value in *@data (in host byte order) on success,
 940 * or else the status code from the underlying usb_control_msg() call.
 941 */
 942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 943{
 944        int ret;
 945        __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 946
 947        if (!status)
 948                return -ENOMEM;
 949
 950        ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 951                USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 952                sizeof(*status), USB_CTRL_GET_TIMEOUT);
 953
 954        if (ret == 2) {
 955                *(u16 *) data = le16_to_cpu(*status);
 956                ret = 0;
 957        } else if (ret >= 0) {
 958                ret = -EIO;
 959        }
 960        kfree(status);
 961        return ret;
 962}
 963EXPORT_SYMBOL_GPL(usb_get_status);
 964
 965/**
 966 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 967 * @dev: device whose endpoint is halted
 968 * @pipe: endpoint "pipe" being cleared
 969 * Context: !in_interrupt ()
 970 *
 971 * This is used to clear halt conditions for bulk and interrupt endpoints,
 972 * as reported by URB completion status.  Endpoints that are halted are
 973 * sometimes referred to as being "stalled".  Such endpoints are unable
 974 * to transmit or receive data until the halt status is cleared.  Any URBs
 975 * queued for such an endpoint should normally be unlinked by the driver
 976 * before clearing the halt condition, as described in sections 5.7.5
 977 * and 5.8.5 of the USB 2.0 spec.
 978 *
 979 * Note that control and isochronous endpoints don't halt, although control
 980 * endpoints report "protocol stall" (for unsupported requests) using the
 981 * same status code used to report a true stall.
 982 *
 983 * This call is synchronous, and may not be used in an interrupt context.
 984 *
 985 * Return: Zero on success, or else the status code returned by the
 986 * underlying usb_control_msg() call.
 987 */
 988int usb_clear_halt(struct usb_device *dev, int pipe)
 989{
 990        int result;
 991        int endp = usb_pipeendpoint(pipe);
 992
 993        if (usb_pipein(pipe))
 994                endp |= USB_DIR_IN;
 995
 996        /* we don't care if it wasn't halted first. in fact some devices
 997         * (like some ibmcam model 1 units) seem to expect hosts to make
 998         * this request for iso endpoints, which can't halt!
 999         */
1000        result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001                USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002                USB_ENDPOINT_HALT, endp, NULL, 0,
1003                USB_CTRL_SET_TIMEOUT);
1004
1005        /* don't un-halt or force to DATA0 except on success */
1006        if (result < 0)
1007                return result;
1008
1009        /* NOTE:  seems like Microsoft and Apple don't bother verifying
1010         * the clear "took", so some devices could lock up if you check...
1011         * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1012         *
1013         * NOTE:  make sure the logic here doesn't diverge much from
1014         * the copy in usb-storage, for as long as we need two copies.
1015         */
1016
1017        usb_reset_endpoint(dev, endp);
1018
1019        return 0;
1020}
1021EXPORT_SYMBOL_GPL(usb_clear_halt);
1022
1023static int create_intf_ep_devs(struct usb_interface *intf)
1024{
1025        struct usb_device *udev = interface_to_usbdev(intf);
1026        struct usb_host_interface *alt = intf->cur_altsetting;
1027        int i;
1028
1029        if (intf->ep_devs_created || intf->unregistering)
1030                return 0;
1031
1032        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033                (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034        intf->ep_devs_created = 1;
1035        return 0;
1036}
1037
1038static void remove_intf_ep_devs(struct usb_interface *intf)
1039{
1040        struct usb_host_interface *alt = intf->cur_altsetting;
1041        int i;
1042
1043        if (!intf->ep_devs_created)
1044                return;
1045
1046        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047                usb_remove_ep_devs(&alt->endpoint[i]);
1048        intf->ep_devs_created = 0;
1049}
1050
1051/**
1052 * usb_disable_endpoint -- Disable an endpoint by address
1053 * @dev: the device whose endpoint is being disabled
1054 * @epaddr: the endpoint's address.  Endpoint number for output,
1055 *      endpoint number + USB_DIR_IN for input
1056 * @reset_hardware: flag to erase any endpoint state stored in the
1057 *      controller hardware
1058 *
1059 * Disables the endpoint for URB submission and nukes all pending URBs.
1060 * If @reset_hardware is set then also deallocates hcd/hardware state
1061 * for the endpoint.
1062 */
1063void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064                bool reset_hardware)
1065{
1066        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067        struct usb_host_endpoint *ep;
1068
1069        if (!dev)
1070                return;
1071
1072        if (usb_endpoint_out(epaddr)) {
1073                ep = dev->ep_out[epnum];
1074                if (reset_hardware)
1075                        dev->ep_out[epnum] = NULL;
1076        } else {
1077                ep = dev->ep_in[epnum];
1078                if (reset_hardware)
1079                        dev->ep_in[epnum] = NULL;
1080        }
1081        if (ep) {
1082                ep->enabled = 0;
1083                usb_hcd_flush_endpoint(dev, ep);
1084                if (reset_hardware)
1085                        usb_hcd_disable_endpoint(dev, ep);
1086        }
1087}
1088
1089/**
1090 * usb_reset_endpoint - Reset an endpoint's state.
1091 * @dev: the device whose endpoint is to be reset
1092 * @epaddr: the endpoint's address.  Endpoint number for output,
1093 *      endpoint number + USB_DIR_IN for input
1094 *
1095 * Resets any host-side endpoint state such as the toggle bit,
1096 * sequence number or current window.
1097 */
1098void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099{
1100        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101        struct usb_host_endpoint *ep;
1102
1103        if (usb_endpoint_out(epaddr))
1104                ep = dev->ep_out[epnum];
1105        else
1106                ep = dev->ep_in[epnum];
1107        if (ep)
1108                usb_hcd_reset_endpoint(dev, ep);
1109}
1110EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111
1112
1113/**
1114 * usb_disable_interface -- Disable all endpoints for an interface
1115 * @dev: the device whose interface is being disabled
1116 * @intf: pointer to the interface descriptor
1117 * @reset_hardware: flag to erase any endpoint state stored in the
1118 *      controller hardware
1119 *
1120 * Disables all the endpoints for the interface's current altsetting.
1121 */
1122void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123                bool reset_hardware)
1124{
1125        struct usb_host_interface *alt = intf->cur_altsetting;
1126        int i;
1127
1128        for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129                usb_disable_endpoint(dev,
1130                                alt->endpoint[i].desc.bEndpointAddress,
1131                                reset_hardware);
1132        }
1133}
1134
1135/**
1136 * usb_disable_device - Disable all the endpoints for a USB device
1137 * @dev: the device whose endpoints are being disabled
1138 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139 *
1140 * Disables all the device's endpoints, potentially including endpoint 0.
1141 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142 * pending urbs) and usbcore state for the interfaces, so that usbcore
1143 * must usb_set_configuration() before any interfaces could be used.
1144 */
1145void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146{
1147        int i;
1148        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149
1150        /* getting rid of interfaces will disconnect
1151         * any drivers bound to them (a key side effect)
1152         */
1153        if (dev->actconfig) {
1154                /*
1155                 * FIXME: In order to avoid self-deadlock involving the
1156                 * bandwidth_mutex, we have to mark all the interfaces
1157                 * before unregistering any of them.
1158                 */
1159                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160                        dev->actconfig->interface[i]->unregistering = 1;
1161
1162                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163                        struct usb_interface    *interface;
1164
1165                        /* remove this interface if it has been registered */
1166                        interface = dev->actconfig->interface[i];
1167                        if (!device_is_registered(&interface->dev))
1168                                continue;
1169                        dev_dbg(&dev->dev, "unregistering interface %s\n",
1170                                dev_name(&interface->dev));
1171                        remove_intf_ep_devs(interface);
1172                        device_del(&interface->dev);
1173                }
1174
1175                /* Now that the interfaces are unbound, nobody should
1176                 * try to access them.
1177                 */
1178                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179                        put_device(&dev->actconfig->interface[i]->dev);
1180                        dev->actconfig->interface[i] = NULL;
1181                }
1182
1183                if (dev->usb2_hw_lpm_enabled == 1)
1184                        usb_set_usb2_hardware_lpm(dev, 0);
1185                usb_unlocked_disable_lpm(dev);
1186                usb_disable_ltm(dev);
1187
1188                dev->actconfig = NULL;
1189                if (dev->state == USB_STATE_CONFIGURED)
1190                        usb_set_device_state(dev, USB_STATE_ADDRESS);
1191        }
1192
1193        dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194                skip_ep0 ? "non-ep0" : "all");
1195        if (hcd->driver->check_bandwidth) {
1196                /* First pass: Cancel URBs, leave endpoint pointers intact. */
1197                for (i = skip_ep0; i < 16; ++i) {
1198                        usb_disable_endpoint(dev, i, false);
1199                        usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200                }
1201                /* Remove endpoints from the host controller internal state */
1202                mutex_lock(hcd->bandwidth_mutex);
1203                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204                mutex_unlock(hcd->bandwidth_mutex);
1205                /* Second pass: remove endpoint pointers */
1206        }
1207        for (i = skip_ep0; i < 16; ++i) {
1208                usb_disable_endpoint(dev, i, true);
1209                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210        }
1211}
1212
1213/**
1214 * usb_enable_endpoint - Enable an endpoint for USB communications
1215 * @dev: the device whose interface is being enabled
1216 * @ep: the endpoint
1217 * @reset_ep: flag to reset the endpoint state
1218 *
1219 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220 * For control endpoints, both the input and output sides are handled.
1221 */
1222void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223                bool reset_ep)
1224{
1225        int epnum = usb_endpoint_num(&ep->desc);
1226        int is_out = usb_endpoint_dir_out(&ep->desc);
1227        int is_control = usb_endpoint_xfer_control(&ep->desc);
1228
1229        if (reset_ep)
1230                usb_hcd_reset_endpoint(dev, ep);
1231        if (is_out || is_control)
1232                dev->ep_out[epnum] = ep;
1233        if (!is_out || is_control)
1234                dev->ep_in[epnum] = ep;
1235        ep->enabled = 1;
1236}
1237
1238/**
1239 * usb_enable_interface - Enable all the endpoints for an interface
1240 * @dev: the device whose interface is being enabled
1241 * @intf: pointer to the interface descriptor
1242 * @reset_eps: flag to reset the endpoints' state
1243 *
1244 * Enables all the endpoints for the interface's current altsetting.
1245 */
1246void usb_enable_interface(struct usb_device *dev,
1247                struct usb_interface *intf, bool reset_eps)
1248{
1249        struct usb_host_interface *alt = intf->cur_altsetting;
1250        int i;
1251
1252        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253                usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254}
1255
1256/**
1257 * usb_set_interface - Makes a particular alternate setting be current
1258 * @dev: the device whose interface is being updated
1259 * @interface: the interface being updated
1260 * @alternate: the setting being chosen.
1261 * Context: !in_interrupt ()
1262 *
1263 * This is used to enable data transfers on interfaces that may not
1264 * be enabled by default.  Not all devices support such configurability.
1265 * Only the driver bound to an interface may change its setting.
1266 *
1267 * Within any given configuration, each interface may have several
1268 * alternative settings.  These are often used to control levels of
1269 * bandwidth consumption.  For example, the default setting for a high
1270 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271 * while interrupt transfers of up to 3KBytes per microframe are legal.
1272 * Also, isochronous endpoints may never be part of an
1273 * interface's default setting.  To access such bandwidth, alternate
1274 * interface settings must be made current.
1275 *
1276 * Note that in the Linux USB subsystem, bandwidth associated with
1277 * an endpoint in a given alternate setting is not reserved until an URB
1278 * is submitted that needs that bandwidth.  Some other operating systems
1279 * allocate bandwidth early, when a configuration is chosen.
1280 *
1281 * This call is synchronous, and may not be used in an interrupt context.
1282 * Also, drivers must not change altsettings while urbs are scheduled for
1283 * endpoints in that interface; all such urbs must first be completed
1284 * (perhaps forced by unlinking).
1285 *
1286 * Return: Zero on success, or else the status code returned by the
1287 * underlying usb_control_msg() call.
1288 */
1289int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290{
1291        struct usb_interface *iface;
1292        struct usb_host_interface *alt;
1293        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294        int i, ret, manual = 0;
1295        unsigned int epaddr;
1296        unsigned int pipe;
1297
1298        if (dev->state == USB_STATE_SUSPENDED)
1299                return -EHOSTUNREACH;
1300
1301        iface = usb_ifnum_to_if(dev, interface);
1302        if (!iface) {
1303                dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304                        interface);
1305                return -EINVAL;
1306        }
1307        if (iface->unregistering)
1308                return -ENODEV;
1309
1310        alt = usb_altnum_to_altsetting(iface, alternate);
1311        if (!alt) {
1312                dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313                         alternate);
1314                return -EINVAL;
1315        }
1316
1317        /* Make sure we have enough bandwidth for this alternate interface.
1318         * Remove the current alt setting and add the new alt setting.
1319         */
1320        mutex_lock(hcd->bandwidth_mutex);
1321        /* Disable LPM, and re-enable it once the new alt setting is installed,
1322         * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323         */
1324        if (usb_disable_lpm(dev)) {
1325                dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326                mutex_unlock(hcd->bandwidth_mutex);
1327                return -ENOMEM;
1328        }
1329        /* Changing alt-setting also frees any allocated streams */
1330        for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331                iface->cur_altsetting->endpoint[i].streams = 0;
1332
1333        ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334        if (ret < 0) {
1335                dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336                                alternate);
1337                usb_enable_lpm(dev);
1338                mutex_unlock(hcd->bandwidth_mutex);
1339                return ret;
1340        }
1341
1342        if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343                ret = -EPIPE;
1344        else
1345                ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346                                   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347                                   alternate, interface, NULL, 0, 5000);
1348
1349        /* 9.4.10 says devices don't need this and are free to STALL the
1350         * request if the interface only has one alternate setting.
1351         */
1352        if (ret == -EPIPE && iface->num_altsetting == 1) {
1353                dev_dbg(&dev->dev,
1354                        "manual set_interface for iface %d, alt %d\n",
1355                        interface, alternate);
1356                manual = 1;
1357        } else if (ret < 0) {
1358                /* Re-instate the old alt setting */
1359                usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360                usb_enable_lpm(dev);
1361                mutex_unlock(hcd->bandwidth_mutex);
1362                return ret;
1363        }
1364        mutex_unlock(hcd->bandwidth_mutex);
1365
1366        /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367         * when they implement async or easily-killable versions of this or
1368         * other "should-be-internal" functions (like clear_halt).
1369         * should hcd+usbcore postprocess control requests?
1370         */
1371
1372        /* prevent submissions using previous endpoint settings */
1373        if (iface->cur_altsetting != alt) {
1374                remove_intf_ep_devs(iface);
1375                usb_remove_sysfs_intf_files(iface);
1376        }
1377        usb_disable_interface(dev, iface, true);
1378
1379        iface->cur_altsetting = alt;
1380
1381        /* Now that the interface is installed, re-enable LPM. */
1382        usb_unlocked_enable_lpm(dev);
1383
1384        /* If the interface only has one altsetting and the device didn't
1385         * accept the request, we attempt to carry out the equivalent action
1386         * by manually clearing the HALT feature for each endpoint in the
1387         * new altsetting.
1388         */
1389        if (manual) {
1390                for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1391                        epaddr = alt->endpoint[i].desc.bEndpointAddress;
1392                        pipe = __create_pipe(dev,
1393                                        USB_ENDPOINT_NUMBER_MASK & epaddr) |
1394                                        (usb_endpoint_out(epaddr) ?
1395                                        USB_DIR_OUT : USB_DIR_IN);
1396
1397                        usb_clear_halt(dev, pipe);
1398                }
1399        }
1400
1401        /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1402         *
1403         * Note:
1404         * Despite EP0 is always present in all interfaces/AS, the list of
1405         * endpoints from the descriptor does not contain EP0. Due to its
1406         * omnipresence one might expect EP0 being considered "affected" by
1407         * any SetInterface request and hence assume toggles need to be reset.
1408         * However, EP0 toggles are re-synced for every individual transfer
1409         * during the SETUP stage - hence EP0 toggles are "don't care" here.
1410         * (Likewise, EP0 never "halts" on well designed devices.)
1411         */
1412        usb_enable_interface(dev, iface, true);
1413        if (device_is_registered(&iface->dev)) {
1414                usb_create_sysfs_intf_files(iface);
1415                create_intf_ep_devs(iface);
1416        }
1417        return 0;
1418}
1419EXPORT_SYMBOL_GPL(usb_set_interface);
1420
1421/**
1422 * usb_reset_configuration - lightweight device reset
1423 * @dev: the device whose configuration is being reset
1424 *
1425 * This issues a standard SET_CONFIGURATION request to the device using
1426 * the current configuration.  The effect is to reset most USB-related
1427 * state in the device, including interface altsettings (reset to zero),
1428 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1429 * endpoints).  Other usbcore state is unchanged, including bindings of
1430 * usb device drivers to interfaces.
1431 *
1432 * Because this affects multiple interfaces, avoid using this with composite
1433 * (multi-interface) devices.  Instead, the driver for each interface may
1434 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1435 * some devices don't support the SET_INTERFACE request, and others won't
1436 * reset all the interface state (notably endpoint state).  Resetting the whole
1437 * configuration would affect other drivers' interfaces.
1438 *
1439 * The caller must own the device lock.
1440 *
1441 * Return: Zero on success, else a negative error code.
1442 */
1443int usb_reset_configuration(struct usb_device *dev)
1444{
1445        int                     i, retval;
1446        struct usb_host_config  *config;
1447        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1448
1449        if (dev->state == USB_STATE_SUSPENDED)
1450                return -EHOSTUNREACH;
1451
1452        /* caller must have locked the device and must own
1453         * the usb bus readlock (so driver bindings are stable);
1454         * calls during probe() are fine
1455         */
1456
1457        for (i = 1; i < 16; ++i) {
1458                usb_disable_endpoint(dev, i, true);
1459                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1460        }
1461
1462        config = dev->actconfig;
1463        retval = 0;
1464        mutex_lock(hcd->bandwidth_mutex);
1465        /* Disable LPM, and re-enable it once the configuration is reset, so
1466         * that the xHCI driver can recalculate the U1/U2 timeouts.
1467         */
1468        if (usb_disable_lpm(dev)) {
1469                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1470                mutex_unlock(hcd->bandwidth_mutex);
1471                return -ENOMEM;
1472        }
1473        /* Make sure we have enough bandwidth for each alternate setting 0 */
1474        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1475                struct usb_interface *intf = config->interface[i];
1476                struct usb_host_interface *alt;
1477
1478                alt = usb_altnum_to_altsetting(intf, 0);
1479                if (!alt)
1480                        alt = &intf->altsetting[0];
1481                if (alt != intf->cur_altsetting)
1482                        retval = usb_hcd_alloc_bandwidth(dev, NULL,
1483                                        intf->cur_altsetting, alt);
1484                if (retval < 0)
1485                        break;
1486        }
1487        /* If not, reinstate the old alternate settings */
1488        if (retval < 0) {
1489reset_old_alts:
1490                for (i--; i >= 0; i--) {
1491                        struct usb_interface *intf = config->interface[i];
1492                        struct usb_host_interface *alt;
1493
1494                        alt = usb_altnum_to_altsetting(intf, 0);
1495                        if (!alt)
1496                                alt = &intf->altsetting[0];
1497                        if (alt != intf->cur_altsetting)
1498                                usb_hcd_alloc_bandwidth(dev, NULL,
1499                                                alt, intf->cur_altsetting);
1500                }
1501                usb_enable_lpm(dev);
1502                mutex_unlock(hcd->bandwidth_mutex);
1503                return retval;
1504        }
1505        retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1506                        USB_REQ_SET_CONFIGURATION, 0,
1507                        config->desc.bConfigurationValue, 0,
1508                        NULL, 0, USB_CTRL_SET_TIMEOUT);
1509        if (retval < 0)
1510                goto reset_old_alts;
1511        mutex_unlock(hcd->bandwidth_mutex);
1512
1513        /* re-init hc/hcd interface/endpoint state */
1514        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1515                struct usb_interface *intf = config->interface[i];
1516                struct usb_host_interface *alt;
1517
1518                alt = usb_altnum_to_altsetting(intf, 0);
1519
1520                /* No altsetting 0?  We'll assume the first altsetting.
1521                 * We could use a GetInterface call, but if a device is
1522                 * so non-compliant that it doesn't have altsetting 0
1523                 * then I wouldn't trust its reply anyway.
1524                 */
1525                if (!alt)
1526                        alt = &intf->altsetting[0];
1527
1528                if (alt != intf->cur_altsetting) {
1529                        remove_intf_ep_devs(intf);
1530                        usb_remove_sysfs_intf_files(intf);
1531                }
1532                intf->cur_altsetting = alt;
1533                usb_enable_interface(dev, intf, true);
1534                if (device_is_registered(&intf->dev)) {
1535                        usb_create_sysfs_intf_files(intf);
1536                        create_intf_ep_devs(intf);
1537                }
1538        }
1539        /* Now that the interfaces are installed, re-enable LPM. */
1540        usb_unlocked_enable_lpm(dev);
1541        return 0;
1542}
1543EXPORT_SYMBOL_GPL(usb_reset_configuration);
1544
1545static void usb_release_interface(struct device *dev)
1546{
1547        struct usb_interface *intf = to_usb_interface(dev);
1548        struct usb_interface_cache *intfc =
1549                        altsetting_to_usb_interface_cache(intf->altsetting);
1550
1551        kref_put(&intfc->ref, usb_release_interface_cache);
1552        usb_put_dev(interface_to_usbdev(intf));
1553        kfree(intf);
1554}
1555
1556/*
1557 * usb_deauthorize_interface - deauthorize an USB interface
1558 *
1559 * @intf: USB interface structure
1560 */
1561void usb_deauthorize_interface(struct usb_interface *intf)
1562{
1563        struct device *dev = &intf->dev;
1564
1565        device_lock(dev->parent);
1566
1567        if (intf->authorized) {
1568                device_lock(dev);
1569                intf->authorized = 0;
1570                device_unlock(dev);
1571
1572                usb_forced_unbind_intf(intf);
1573        }
1574
1575        device_unlock(dev->parent);
1576}
1577
1578/*
1579 * usb_authorize_interface - authorize an USB interface
1580 *
1581 * @intf: USB interface structure
1582 */
1583void usb_authorize_interface(struct usb_interface *intf)
1584{
1585        struct device *dev = &intf->dev;
1586
1587        if (!intf->authorized) {
1588                device_lock(dev);
1589                intf->authorized = 1; /* authorize interface */
1590                device_unlock(dev);
1591        }
1592}
1593
1594static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1595{
1596        struct usb_device *usb_dev;
1597        struct usb_interface *intf;
1598        struct usb_host_interface *alt;
1599
1600        intf = to_usb_interface(dev);
1601        usb_dev = interface_to_usbdev(intf);
1602        alt = intf->cur_altsetting;
1603
1604        if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1605                   alt->desc.bInterfaceClass,
1606                   alt->desc.bInterfaceSubClass,
1607                   alt->desc.bInterfaceProtocol))
1608                return -ENOMEM;
1609
1610        if (add_uevent_var(env,
1611                   "MODALIAS=usb:"
1612                   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1613                   le16_to_cpu(usb_dev->descriptor.idVendor),
1614                   le16_to_cpu(usb_dev->descriptor.idProduct),
1615                   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1616                   usb_dev->descriptor.bDeviceClass,
1617                   usb_dev->descriptor.bDeviceSubClass,
1618                   usb_dev->descriptor.bDeviceProtocol,
1619                   alt->desc.bInterfaceClass,
1620                   alt->desc.bInterfaceSubClass,
1621                   alt->desc.bInterfaceProtocol,
1622                   alt->desc.bInterfaceNumber))
1623                return -ENOMEM;
1624
1625        return 0;
1626}
1627
1628struct device_type usb_if_device_type = {
1629        .name =         "usb_interface",
1630        .release =      usb_release_interface,
1631        .uevent =       usb_if_uevent,
1632};
1633
1634static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1635                                                struct usb_host_config *config,
1636                                                u8 inum)
1637{
1638        struct usb_interface_assoc_descriptor *retval = NULL;
1639        struct usb_interface_assoc_descriptor *intf_assoc;
1640        int first_intf;
1641        int last_intf;
1642        int i;
1643
1644        for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1645                intf_assoc = config->intf_assoc[i];
1646                if (intf_assoc->bInterfaceCount == 0)
1647                        continue;
1648
1649                first_intf = intf_assoc->bFirstInterface;
1650                last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1651                if (inum >= first_intf && inum <= last_intf) {
1652                        if (!retval)
1653                                retval = intf_assoc;
1654                        else
1655                                dev_err(&dev->dev, "Interface #%d referenced"
1656                                        " by multiple IADs\n", inum);
1657                }
1658        }
1659
1660        return retval;
1661}
1662
1663
1664/*
1665 * Internal function to queue a device reset
1666 * See usb_queue_reset_device() for more details
1667 */
1668static void __usb_queue_reset_device(struct work_struct *ws)
1669{
1670        int rc;
1671        struct usb_interface *iface =
1672                container_of(ws, struct usb_interface, reset_ws);
1673        struct usb_device *udev = interface_to_usbdev(iface);
1674
1675        rc = usb_lock_device_for_reset(udev, iface);
1676        if (rc >= 0) {
1677                usb_reset_device(udev);
1678                usb_unlock_device(udev);
1679        }
1680        usb_put_intf(iface);    /* Undo _get_ in usb_queue_reset_device() */
1681}
1682
1683
1684/*
1685 * usb_set_configuration - Makes a particular device setting be current
1686 * @dev: the device whose configuration is being updated
1687 * @configuration: the configuration being chosen.
1688 * Context: !in_interrupt(), caller owns the device lock
1689 *
1690 * This is used to enable non-default device modes.  Not all devices
1691 * use this kind of configurability; many devices only have one
1692 * configuration.
1693 *
1694 * @configuration is the value of the configuration to be installed.
1695 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1696 * must be non-zero; a value of zero indicates that the device in
1697 * unconfigured.  However some devices erroneously use 0 as one of their
1698 * configuration values.  To help manage such devices, this routine will
1699 * accept @configuration = -1 as indicating the device should be put in
1700 * an unconfigured state.
1701 *
1702 * USB device configurations may affect Linux interoperability,
1703 * power consumption and the functionality available.  For example,
1704 * the default configuration is limited to using 100mA of bus power,
1705 * so that when certain device functionality requires more power,
1706 * and the device is bus powered, that functionality should be in some
1707 * non-default device configuration.  Other device modes may also be
1708 * reflected as configuration options, such as whether two ISDN
1709 * channels are available independently; and choosing between open
1710 * standard device protocols (like CDC) or proprietary ones.
1711 *
1712 * Note that a non-authorized device (dev->authorized == 0) will only
1713 * be put in unconfigured mode.
1714 *
1715 * Note that USB has an additional level of device configurability,
1716 * associated with interfaces.  That configurability is accessed using
1717 * usb_set_interface().
1718 *
1719 * This call is synchronous. The calling context must be able to sleep,
1720 * must own the device lock, and must not hold the driver model's USB
1721 * bus mutex; usb interface driver probe() methods cannot use this routine.
1722 *
1723 * Returns zero on success, or else the status code returned by the
1724 * underlying call that failed.  On successful completion, each interface
1725 * in the original device configuration has been destroyed, and each one
1726 * in the new configuration has been probed by all relevant usb device
1727 * drivers currently known to the kernel.
1728 */
1729int usb_set_configuration(struct usb_device *dev, int configuration)
1730{
1731        int i, ret;
1732        struct usb_host_config *cp = NULL;
1733        struct usb_interface **new_interfaces = NULL;
1734        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1735        int n, nintf;
1736
1737        if (dev->authorized == 0 || configuration == -1)
1738                configuration = 0;
1739        else {
1740                for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1741                        if (dev->config[i].desc.bConfigurationValue ==
1742                                        configuration) {
1743                                cp = &dev->config[i];
1744                                break;
1745                        }
1746                }
1747        }
1748        if ((!cp && configuration != 0))
1749                return -EINVAL;
1750
1751        /* The USB spec says configuration 0 means unconfigured.
1752         * But if a device includes a configuration numbered 0,
1753         * we will accept it as a correctly configured state.
1754         * Use -1 if you really want to unconfigure the device.
1755         */
1756        if (cp && configuration == 0)
1757                dev_warn(&dev->dev, "config 0 descriptor??\n");
1758
1759        /* Allocate memory for new interfaces before doing anything else,
1760         * so that if we run out then nothing will have changed. */
1761        n = nintf = 0;
1762        if (cp) {
1763                nintf = cp->desc.bNumInterfaces;
1764                new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1765                                GFP_NOIO);
1766                if (!new_interfaces)
1767                        return -ENOMEM;
1768
1769                for (; n < nintf; ++n) {
1770                        new_interfaces[n] = kzalloc(
1771                                        sizeof(struct usb_interface),
1772                                        GFP_NOIO);
1773                        if (!new_interfaces[n]) {
1774                                ret = -ENOMEM;
1775free_interfaces:
1776                                while (--n >= 0)
1777                                        kfree(new_interfaces[n]);
1778                                kfree(new_interfaces);
1779                                return ret;
1780                        }
1781                }
1782
1783                i = dev->bus_mA - usb_get_max_power(dev, cp);
1784                if (i < 0)
1785                        dev_warn(&dev->dev, "new config #%d exceeds power "
1786                                        "limit by %dmA\n",
1787                                        configuration, -i);
1788        }
1789
1790        /* Wake up the device so we can send it the Set-Config request */
1791        ret = usb_autoresume_device(dev);
1792        if (ret)
1793                goto free_interfaces;
1794
1795        /* if it's already configured, clear out old state first.
1796         * getting rid of old interfaces means unbinding their drivers.
1797         */
1798        if (dev->state != USB_STATE_ADDRESS)
1799                usb_disable_device(dev, 1);     /* Skip ep0 */
1800
1801        /* Get rid of pending async Set-Config requests for this device */
1802        cancel_async_set_config(dev);
1803
1804        /* Make sure we have bandwidth (and available HCD resources) for this
1805         * configuration.  Remove endpoints from the schedule if we're dropping
1806         * this configuration to set configuration 0.  After this point, the
1807         * host controller will not allow submissions to dropped endpoints.  If
1808         * this call fails, the device state is unchanged.
1809         */
1810        mutex_lock(hcd->bandwidth_mutex);
1811        /* Disable LPM, and re-enable it once the new configuration is
1812         * installed, so that the xHCI driver can recalculate the U1/U2
1813         * timeouts.
1814         */
1815        if (dev->actconfig && usb_disable_lpm(dev)) {
1816                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1817                mutex_unlock(hcd->bandwidth_mutex);
1818                ret = -ENOMEM;
1819                goto free_interfaces;
1820        }
1821        ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1822        if (ret < 0) {
1823                if (dev->actconfig)
1824                        usb_enable_lpm(dev);
1825                mutex_unlock(hcd->bandwidth_mutex);
1826                usb_autosuspend_device(dev);
1827                goto free_interfaces;
1828        }
1829
1830        /*
1831         * Initialize the new interface structures and the
1832         * hc/hcd/usbcore interface/endpoint state.
1833         */
1834        for (i = 0; i < nintf; ++i) {
1835                struct usb_interface_cache *intfc;
1836                struct usb_interface *intf;
1837                struct usb_host_interface *alt;
1838
1839                cp->interface[i] = intf = new_interfaces[i];
1840                intfc = cp->intf_cache[i];
1841                intf->altsetting = intfc->altsetting;
1842                intf->num_altsetting = intfc->num_altsetting;
1843                intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1844                kref_get(&intfc->ref);
1845
1846                alt = usb_altnum_to_altsetting(intf, 0);
1847
1848                /* No altsetting 0?  We'll assume the first altsetting.
1849                 * We could use a GetInterface call, but if a device is
1850                 * so non-compliant that it doesn't have altsetting 0
1851                 * then I wouldn't trust its reply anyway.
1852                 */
1853                if (!alt)
1854                        alt = &intf->altsetting[0];
1855
1856                intf->intf_assoc =
1857                        find_iad(dev, cp, alt->desc.bInterfaceNumber);
1858                intf->cur_altsetting = alt;
1859                usb_enable_interface(dev, intf, true);
1860                intf->dev.parent = &dev->dev;
1861                intf->dev.driver = NULL;
1862                intf->dev.bus = &usb_bus_type;
1863                intf->dev.type = &usb_if_device_type;
1864                intf->dev.groups = usb_interface_groups;
1865                intf->dev.dma_mask = dev->dev.dma_mask;
1866                INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1867                intf->minor = -1;
1868                device_initialize(&intf->dev);
1869                pm_runtime_no_callbacks(&intf->dev);
1870                dev_set_name(&intf->dev, "%d-%s:%d.%d",
1871                        dev->bus->busnum, dev->devpath,
1872                        configuration, alt->desc.bInterfaceNumber);
1873                usb_get_dev(dev);
1874        }
1875        kfree(new_interfaces);
1876
1877        ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1878                              USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1879                              NULL, 0, USB_CTRL_SET_TIMEOUT);
1880        if (ret < 0 && cp) {
1881                /*
1882                 * All the old state is gone, so what else can we do?
1883                 * The device is probably useless now anyway.
1884                 */
1885                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1886                for (i = 0; i < nintf; ++i) {
1887                        usb_disable_interface(dev, cp->interface[i], true);
1888                        put_device(&cp->interface[i]->dev);
1889                        cp->interface[i] = NULL;
1890                }
1891                cp = NULL;
1892        }
1893
1894        dev->actconfig = cp;
1895        mutex_unlock(hcd->bandwidth_mutex);
1896
1897        if (!cp) {
1898                usb_set_device_state(dev, USB_STATE_ADDRESS);
1899
1900                /* Leave LPM disabled while the device is unconfigured. */
1901                usb_autosuspend_device(dev);
1902                return ret;
1903        }
1904        usb_set_device_state(dev, USB_STATE_CONFIGURED);
1905
1906        if (cp->string == NULL &&
1907                        !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1908                cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1909
1910        /* Now that the interfaces are installed, re-enable LPM. */
1911        usb_unlocked_enable_lpm(dev);
1912        /* Enable LTM if it was turned off by usb_disable_device. */
1913        usb_enable_ltm(dev);
1914
1915        /* Now that all the interfaces are set up, register them
1916         * to trigger binding of drivers to interfaces.  probe()
1917         * routines may install different altsettings and may
1918         * claim() any interfaces not yet bound.  Many class drivers
1919         * need that: CDC, audio, video, etc.
1920         */
1921        for (i = 0; i < nintf; ++i) {
1922                struct usb_interface *intf = cp->interface[i];
1923
1924                dev_dbg(&dev->dev,
1925                        "adding %s (config #%d, interface %d)\n",
1926                        dev_name(&intf->dev), configuration,
1927                        intf->cur_altsetting->desc.bInterfaceNumber);
1928                device_enable_async_suspend(&intf->dev);
1929                ret = device_add(&intf->dev);
1930                if (ret != 0) {
1931                        dev_err(&dev->dev, "device_add(%s) --> %d\n",
1932                                dev_name(&intf->dev), ret);
1933                        continue;
1934                }
1935                create_intf_ep_devs(intf);
1936        }
1937
1938        usb_autosuspend_device(dev);
1939        return 0;
1940}
1941EXPORT_SYMBOL_GPL(usb_set_configuration);
1942
1943static LIST_HEAD(set_config_list);
1944static DEFINE_SPINLOCK(set_config_lock);
1945
1946struct set_config_request {
1947        struct usb_device       *udev;
1948        int                     config;
1949        struct work_struct      work;
1950        struct list_head        node;
1951};
1952
1953/* Worker routine for usb_driver_set_configuration() */
1954static void driver_set_config_work(struct work_struct *work)
1955{
1956        struct set_config_request *req =
1957                container_of(work, struct set_config_request, work);
1958        struct usb_device *udev = req->udev;
1959
1960        usb_lock_device(udev);
1961        spin_lock(&set_config_lock);
1962        list_del(&req->node);
1963        spin_unlock(&set_config_lock);
1964
1965        if (req->config >= -1)          /* Is req still valid? */
1966                usb_set_configuration(udev, req->config);
1967        usb_unlock_device(udev);
1968        usb_put_dev(udev);
1969        kfree(req);
1970}
1971
1972/* Cancel pending Set-Config requests for a device whose configuration
1973 * was just changed
1974 */
1975static void cancel_async_set_config(struct usb_device *udev)
1976{
1977        struct set_config_request *req;
1978
1979        spin_lock(&set_config_lock);
1980        list_for_each_entry(req, &set_config_list, node) {
1981                if (req->udev == udev)
1982                        req->config = -999;     /* Mark as cancelled */
1983        }
1984        spin_unlock(&set_config_lock);
1985}
1986
1987/**
1988 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1989 * @udev: the device whose configuration is being updated
1990 * @config: the configuration being chosen.
1991 * Context: In process context, must be able to sleep
1992 *
1993 * Device interface drivers are not allowed to change device configurations.
1994 * This is because changing configurations will destroy the interface the
1995 * driver is bound to and create new ones; it would be like a floppy-disk
1996 * driver telling the computer to replace the floppy-disk drive with a
1997 * tape drive!
1998 *
1999 * Still, in certain specialized circumstances the need may arise.  This
2000 * routine gets around the normal restrictions by using a work thread to
2001 * submit the change-config request.
2002 *
2003 * Return: 0 if the request was successfully queued, error code otherwise.
2004 * The caller has no way to know whether the queued request will eventually
2005 * succeed.
2006 */
2007int usb_driver_set_configuration(struct usb_device *udev, int config)
2008{
2009        struct set_config_request *req;
2010
2011        req = kmalloc(sizeof(*req), GFP_KERNEL);
2012        if (!req)
2013                return -ENOMEM;
2014        req->udev = udev;
2015        req->config = config;
2016        INIT_WORK(&req->work, driver_set_config_work);
2017
2018        spin_lock(&set_config_lock);
2019        list_add(&req->node, &set_config_list);
2020        spin_unlock(&set_config_lock);
2021
2022        usb_get_dev(udev);
2023        schedule_work(&req->work);
2024        return 0;
2025}
2026EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2027
2028/**
2029 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2030 * @hdr: the place to put the results of the parsing
2031 * @intf: the interface for which parsing is requested
2032 * @buffer: pointer to the extra headers to be parsed
2033 * @buflen: length of the extra headers
2034 *
2035 * This evaluates the extra headers present in CDC devices which
2036 * bind the interfaces for data and control and provide details
2037 * about the capabilities of the device.
2038 *
2039 * Return: number of descriptors parsed or -EINVAL
2040 * if the header is contradictory beyond salvage
2041 */
2042
2043int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2044                                struct usb_interface *intf,
2045                                u8 *buffer,
2046                                int buflen)
2047{
2048        /* duplicates are ignored */
2049        struct usb_cdc_union_desc *union_header = NULL;
2050
2051        /* duplicates are not tolerated */
2052        struct usb_cdc_header_desc *header = NULL;
2053        struct usb_cdc_ether_desc *ether = NULL;
2054        struct usb_cdc_mdlm_detail_desc *detail = NULL;
2055        struct usb_cdc_mdlm_desc *desc = NULL;
2056
2057        unsigned int elength;
2058        int cnt = 0;
2059
2060        memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2061        hdr->phonet_magic_present = false;
2062        while (buflen > 0) {
2063                elength = buffer[0];
2064                if (!elength) {
2065                        dev_err(&intf->dev, "skipping garbage byte\n");
2066                        elength = 1;
2067                        goto next_desc;
2068                }
2069                if (buffer[1] != USB_DT_CS_INTERFACE) {
2070                        dev_err(&intf->dev, "skipping garbage\n");
2071                        goto next_desc;
2072                }
2073
2074                switch (buffer[2]) {
2075                case USB_CDC_UNION_TYPE: /* we've found it */
2076                        if (elength < sizeof(struct usb_cdc_union_desc))
2077                                goto next_desc;
2078                        if (union_header) {
2079                                dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2080                                goto next_desc;
2081                        }
2082                        union_header = (struct usb_cdc_union_desc *)buffer;
2083                        break;
2084                case USB_CDC_COUNTRY_TYPE:
2085                        if (elength < sizeof(struct usb_cdc_country_functional_desc))
2086                                goto next_desc;
2087                        hdr->usb_cdc_country_functional_desc =
2088                                (struct usb_cdc_country_functional_desc *)buffer;
2089                        break;
2090                case USB_CDC_HEADER_TYPE:
2091                        if (elength != sizeof(struct usb_cdc_header_desc))
2092                                goto next_desc;
2093                        if (header)
2094                                return -EINVAL;
2095                        header = (struct usb_cdc_header_desc *)buffer;
2096                        break;
2097                case USB_CDC_ACM_TYPE:
2098                        if (elength < sizeof(struct usb_cdc_acm_descriptor))
2099                                goto next_desc;
2100                        hdr->usb_cdc_acm_descriptor =
2101                                (struct usb_cdc_acm_descriptor *)buffer;
2102                        break;
2103                case USB_CDC_ETHERNET_TYPE:
2104                        if (elength != sizeof(struct usb_cdc_ether_desc))
2105                                goto next_desc;
2106                        if (ether)
2107                                return -EINVAL;
2108                        ether = (struct usb_cdc_ether_desc *)buffer;
2109                        break;
2110                case USB_CDC_CALL_MANAGEMENT_TYPE:
2111                        if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2112                                goto next_desc;
2113                        hdr->usb_cdc_call_mgmt_descriptor =
2114                                (struct usb_cdc_call_mgmt_descriptor *)buffer;
2115                        break;
2116                case USB_CDC_DMM_TYPE:
2117                        if (elength < sizeof(struct usb_cdc_dmm_desc))
2118                                goto next_desc;
2119                        hdr->usb_cdc_dmm_desc =
2120                                (struct usb_cdc_dmm_desc *)buffer;
2121                        break;
2122                case USB_CDC_MDLM_TYPE:
2123                        if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2124                                goto next_desc;
2125                        if (desc)
2126                                return -EINVAL;
2127                        desc = (struct usb_cdc_mdlm_desc *)buffer;
2128                        break;
2129                case USB_CDC_MDLM_DETAIL_TYPE:
2130                        if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2131                                goto next_desc;
2132                        if (detail)
2133                                return -EINVAL;
2134                        detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2135                        break;
2136                case USB_CDC_NCM_TYPE:
2137                        if (elength < sizeof(struct usb_cdc_ncm_desc))
2138                                goto next_desc;
2139                        hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2140                        break;
2141                case USB_CDC_MBIM_TYPE:
2142                        if (elength < sizeof(struct usb_cdc_mbim_desc))
2143                                goto next_desc;
2144
2145                        hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2146                        break;
2147                case USB_CDC_MBIM_EXTENDED_TYPE:
2148                        if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2149                                break;
2150                        hdr->usb_cdc_mbim_extended_desc =
2151                                (struct usb_cdc_mbim_extended_desc *)buffer;
2152                        break;
2153                case CDC_PHONET_MAGIC_NUMBER:
2154                        hdr->phonet_magic_present = true;
2155                        break;
2156                default:
2157                        /*
2158                         * there are LOTS more CDC descriptors that
2159                         * could legitimately be found here.
2160                         */
2161                        dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2162                                        buffer[2], elength);
2163                        goto next_desc;
2164                }
2165                cnt++;
2166next_desc:
2167                buflen -= elength;
2168                buffer += elength;
2169        }
2170        hdr->usb_cdc_union_desc = union_header;
2171        hdr->usb_cdc_header_desc = header;
2172        hdr->usb_cdc_mdlm_detail_desc = detail;
2173        hdr->usb_cdc_mdlm_desc = desc;
2174        hdr->usb_cdc_ether_desc = ether;
2175        return cnt;
2176}
2177
2178EXPORT_SYMBOL(cdc_parse_cdc_header);
2179