linux/fs/direct-io.c
<<
>>
Prefs
   1/*
   2 * fs/direct-io.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * O_DIRECT
   7 *
   8 * 04Jul2002    Andrew Morton
   9 *              Initial version
  10 * 11Sep2002    janetinc@us.ibm.com
  11 *              added readv/writev support.
  12 * 29Oct2002    Andrew Morton
  13 *              rewrote bio_add_page() support.
  14 * 30Oct2002    pbadari@us.ibm.com
  15 *              added support for non-aligned IO.
  16 * 06Nov2002    pbadari@us.ibm.com
  17 *              added asynchronous IO support.
  18 * 21Jul2003    nathans@sgi.com
  19 *              added IO completion notifier.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/types.h>
  25#include <linux/fs.h>
  26#include <linux/mm.h>
  27#include <linux/slab.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/task_io_accounting_ops.h>
  31#include <linux/bio.h>
  32#include <linux/wait.h>
  33#include <linux/err.h>
  34#include <linux/blkdev.h>
  35#include <linux/buffer_head.h>
  36#include <linux/rwsem.h>
  37#include <linux/uio.h>
  38#include <linux/atomic.h>
  39#include <linux/prefetch.h>
  40#include <linux/aio.h>
  41
  42/*
  43 * How many user pages to map in one call to get_user_pages().  This determines
  44 * the size of a structure in the slab cache
  45 */
  46#define DIO_PAGES       64
  47
  48/*
  49 * This code generally works in units of "dio_blocks".  A dio_block is
  50 * somewhere between the hard sector size and the filesystem block size.  it
  51 * is determined on a per-invocation basis.   When talking to the filesystem
  52 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
  53 * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
  54 * to bio_block quantities by shifting left by blkfactor.
  55 *
  56 * If blkfactor is zero then the user's request was aligned to the filesystem's
  57 * blocksize.
  58 */
  59
  60/* dio_state only used in the submission path */
  61
  62struct dio_submit {
  63        struct bio *bio;                /* bio under assembly */
  64        unsigned blkbits;               /* doesn't change */
  65        unsigned blkfactor;             /* When we're using an alignment which
  66                                           is finer than the filesystem's soft
  67                                           blocksize, this specifies how much
  68                                           finer.  blkfactor=2 means 1/4-block
  69                                           alignment.  Does not change */
  70        unsigned start_zero_done;       /* flag: sub-blocksize zeroing has
  71                                           been performed at the start of a
  72                                           write */
  73        int pages_in_io;                /* approximate total IO pages */
  74        size_t  size;                   /* total request size (doesn't change)*/
  75        sector_t block_in_file;         /* Current offset into the underlying
  76                                           file in dio_block units. */
  77        unsigned blocks_available;      /* At block_in_file.  changes */
  78        int reap_counter;               /* rate limit reaping */
  79        sector_t final_block_in_request;/* doesn't change */
  80        unsigned first_block_in_page;   /* doesn't change, Used only once */
  81        int boundary;                   /* prev block is at a boundary */
  82        get_block_t *get_block;         /* block mapping function */
  83        dio_submit_t *submit_io;        /* IO submition function */
  84
  85        loff_t logical_offset_in_bio;   /* current first logical block in bio */
  86        sector_t final_block_in_bio;    /* current final block in bio + 1 */
  87        sector_t next_block_for_io;     /* next block to be put under IO,
  88                                           in dio_blocks units */
  89
  90        /*
  91         * Deferred addition of a page to the dio.  These variables are
  92         * private to dio_send_cur_page(), submit_page_section() and
  93         * dio_bio_add_page().
  94         */
  95        struct page *cur_page;          /* The page */
  96        unsigned cur_page_offset;       /* Offset into it, in bytes */
  97        unsigned cur_page_len;          /* Nr of bytes at cur_page_offset */
  98        sector_t cur_page_block;        /* Where it starts */
  99        loff_t cur_page_fs_offset;      /* Offset in file */
 100
 101        /*
 102         * Page fetching state. These variables belong to dio_refill_pages().
 103         */
 104        int curr_page;                  /* changes */
 105        int total_pages;                /* doesn't change */
 106        unsigned long curr_user_address;/* changes */
 107
 108        /*
 109         * Page queue.  These variables belong to dio_refill_pages() and
 110         * dio_get_page().
 111         */
 112        unsigned head;                  /* next page to process */
 113        unsigned tail;                  /* last valid page + 1 */
 114};
 115
 116/* dio_state communicated between submission path and end_io */
 117struct dio {
 118        int flags;                      /* doesn't change */
 119        int rw;
 120        struct inode *inode;
 121        loff_t i_size;                  /* i_size when submitted */
 122        dio_iodone_t *end_io;           /* IO completion function */
 123
 124        void *private;                  /* copy from map_bh.b_private */
 125
 126        /* BIO completion state */
 127        spinlock_t bio_lock;            /* protects BIO fields below */
 128        int page_errors;                /* errno from get_user_pages() */
 129        int is_async;                   /* is IO async ? */
 130        bool defer_completion;          /* defer AIO completion to workqueue? */
 131        int io_error;                   /* IO error in completion path */
 132        unsigned long refcount;         /* direct_io_worker() and bios */
 133        struct bio *bio_list;           /* singly linked via bi_private */
 134        struct task_struct *waiter;     /* waiting task (NULL if none) */
 135
 136        /* AIO related stuff */
 137        struct kiocb *iocb;             /* kiocb */
 138        ssize_t result;                 /* IO result */
 139
 140        /*
 141         * pages[] (and any fields placed after it) are not zeroed out at
 142         * allocation time.  Don't add new fields after pages[] unless you
 143         * wish that they not be zeroed.
 144         */
 145        union {
 146                struct page *pages[DIO_PAGES];  /* page buffer */
 147                struct work_struct complete_work;/* deferred AIO completion */
 148        };
 149} ____cacheline_aligned_in_smp;
 150
 151static struct kmem_cache *dio_cache __read_mostly;
 152
 153/*
 154 * How many pages are in the queue?
 155 */
 156static inline unsigned dio_pages_present(struct dio_submit *sdio)
 157{
 158        return sdio->tail - sdio->head;
 159}
 160
 161/*
 162 * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
 163 */
 164static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
 165{
 166        int ret;
 167        int nr_pages;
 168
 169        nr_pages = min(sdio->total_pages - sdio->curr_page, DIO_PAGES);
 170        ret = get_user_pages_fast(
 171                sdio->curr_user_address,                /* Where from? */
 172                nr_pages,                       /* How many pages? */
 173                dio->rw == READ,                /* Write to memory? */
 174                &dio->pages[0]);                /* Put results here */
 175
 176        if (ret < 0 && sdio->blocks_available && (dio->rw & WRITE)) {
 177                struct page *page = ZERO_PAGE(0);
 178                /*
 179                 * A memory fault, but the filesystem has some outstanding
 180                 * mapped blocks.  We need to use those blocks up to avoid
 181                 * leaking stale data in the file.
 182                 */
 183                if (dio->page_errors == 0)
 184                        dio->page_errors = ret;
 185                page_cache_get(page);
 186                dio->pages[0] = page;
 187                sdio->head = 0;
 188                sdio->tail = 1;
 189                ret = 0;
 190                goto out;
 191        }
 192
 193        if (ret >= 0) {
 194                sdio->curr_user_address += ret * PAGE_SIZE;
 195                sdio->curr_page += ret;
 196                sdio->head = 0;
 197                sdio->tail = ret;
 198                ret = 0;
 199        }
 200out:
 201        return ret;     
 202}
 203
 204/*
 205 * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
 206 * buffered inside the dio so that we can call get_user_pages() against a
 207 * decent number of pages, less frequently.  To provide nicer use of the
 208 * L1 cache.
 209 */
 210static inline struct page *dio_get_page(struct dio *dio,
 211                struct dio_submit *sdio)
 212{
 213        if (dio_pages_present(sdio) == 0) {
 214                int ret;
 215
 216                ret = dio_refill_pages(dio, sdio);
 217                if (ret)
 218                        return ERR_PTR(ret);
 219                BUG_ON(dio_pages_present(sdio) == 0);
 220        }
 221        return dio->pages[sdio->head++];
 222}
 223
 224static void dio_iodone_helper(struct dio *dio, loff_t offset,
 225                              ssize_t transferred, ssize_t ret, bool is_async)
 226{
 227        if (dio->end_io && dio->result) {
 228                dio->end_io(dio->iocb, offset, transferred,
 229                            dio->private, ret, is_async);
 230        } else {
 231                if (!(dio->flags & DIO_SKIP_DIO_COUNT))
 232                        inode_dio_end(dio->inode);
 233                if (is_async)
 234                        aio_complete(dio->iocb, ret, 0);
 235        }
 236}
 237
 238static void dio_iodone2_helper(struct dio *dio, loff_t offset,
 239                               ssize_t transferred, ssize_t ret, bool is_async)
 240{
 241        if (dio->end_io && dio->result)
 242                dio->end_io(dio->iocb, offset,
 243                                transferred, dio->private, ret, is_async);
 244
 245        if (!(dio->flags & DIO_SKIP_DIO_COUNT))
 246                inode_dio_end(dio->inode);
 247
 248        if (is_async) {
 249                if (dio->rw & WRITE) {
 250                        int err;
 251
 252                        err = generic_write_sync(dio->iocb->ki_filp, offset,
 253                                                 transferred);
 254                        if (err < 0 && ret > 0)
 255                                ret = err;
 256                }
 257
 258                aio_complete(dio->iocb, ret, 0);
 259        }
 260}
 261
 262/**
 263 * dio_complete() - called when all DIO BIO I/O has been completed
 264 * @offset: the byte offset in the file of the completed operation
 265 *
 266 * This drops i_dio_count, lets interested parties know that a DIO operation
 267 * has completed, and calculates the resulting return code for the operation.
 268 *
 269 * It lets the filesystem know if it registered an interest earlier via
 270 * get_block.  Pass the private field of the map buffer_head so that
 271 * filesystems can use it to hold additional state between get_block calls and
 272 * dio_complete.
 273 */
 274static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret,
 275                bool is_async)
 276{
 277        ssize_t transferred = 0;
 278
 279        /*
 280         * AIO submission can race with bio completion to get here while
 281         * expecting to have the last io completed by bio completion.
 282         * In that case -EIOCBQUEUED is in fact not an error we want
 283         * to preserve through this call.
 284         */
 285        if (ret == -EIOCBQUEUED)
 286                ret = 0;
 287
 288        if (dio->result) {
 289                transferred = dio->result;
 290
 291                /* Check for short read case */
 292                if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
 293                        transferred = dio->i_size - offset;
 294        }
 295
 296        if (ret == 0)
 297                ret = dio->page_errors;
 298        if (ret == 0)
 299                ret = dio->io_error;
 300        if (ret == 0)
 301                ret = transferred;
 302
 303        /*
 304         * Red Hat only: we have to support two calling conventions for
 305         * dio_iodone_t functions:
 306         * 1) the original, where the routine will call aio_complete and
 307         * 2) the new calling convention, where that is done in the
 308         *    generic code.
 309         * Differentiate between the two cases using an inode flag that
 310         * gets populated for all in-tree file systems.
 311         */
 312        if (dio->inode->i_sb->s_type->fs_flags & FS_HAS_DIO_IODONE2)
 313                dio_iodone2_helper(dio, offset, transferred, ret, is_async);
 314        else
 315                dio_iodone_helper(dio, offset, transferred, ret, is_async);
 316
 317        kmem_cache_free(dio_cache, dio);
 318        return ret;
 319}
 320
 321static void dio_aio_complete_work(struct work_struct *work)
 322{
 323        struct dio *dio = container_of(work, struct dio, complete_work);
 324
 325        dio_complete(dio, dio->iocb->ki_pos, 0, true);
 326}
 327
 328static int dio_bio_complete(struct dio *dio, struct bio *bio);
 329
 330/*
 331 * Asynchronous IO callback. 
 332 */
 333static void dio_bio_end_aio(struct bio *bio, int error)
 334{
 335        struct dio *dio = bio->bi_private;
 336        unsigned long remaining;
 337        unsigned long flags;
 338
 339        /* cleanup the bio */
 340        dio_bio_complete(dio, bio);
 341
 342        spin_lock_irqsave(&dio->bio_lock, flags);
 343        remaining = --dio->refcount;
 344        if (remaining == 1 && dio->waiter)
 345                wake_up_process(dio->waiter);
 346        spin_unlock_irqrestore(&dio->bio_lock, flags);
 347
 348        if (remaining == 0) {
 349                if (dio->result && dio->defer_completion) {
 350                        INIT_WORK(&dio->complete_work, dio_aio_complete_work);
 351                        queue_work(dio->inode->i_sb->s_dio_done_wq,
 352                                   &dio->complete_work);
 353                } else {
 354                        dio_complete(dio, dio->iocb->ki_pos, 0, true);
 355                }
 356        }
 357}
 358
 359/*
 360 * The BIO completion handler simply queues the BIO up for the process-context
 361 * handler.
 362 *
 363 * During I/O bi_private points at the dio.  After I/O, bi_private is used to
 364 * implement a singly-linked list of completed BIOs, at dio->bio_list.
 365 */
 366static void dio_bio_end_io(struct bio *bio, int error)
 367{
 368        struct dio *dio = bio->bi_private;
 369        unsigned long flags;
 370
 371        spin_lock_irqsave(&dio->bio_lock, flags);
 372        bio->bi_private = dio->bio_list;
 373        dio->bio_list = bio;
 374        if (--dio->refcount == 1 && dio->waiter)
 375                wake_up_process(dio->waiter);
 376        spin_unlock_irqrestore(&dio->bio_lock, flags);
 377}
 378
 379/**
 380 * dio_end_io - handle the end io action for the given bio
 381 * @bio: The direct io bio thats being completed
 382 * @error: Error if there was one
 383 *
 384 * This is meant to be called by any filesystem that uses their own dio_submit_t
 385 * so that the DIO specific endio actions are dealt with after the filesystem
 386 * has done it's completion work.
 387 */
 388void dio_end_io(struct bio *bio, int error)
 389{
 390        struct dio *dio = bio->bi_private;
 391
 392        if (dio->is_async)
 393                dio_bio_end_aio(bio, error);
 394        else
 395                dio_bio_end_io(bio, error);
 396}
 397EXPORT_SYMBOL_GPL(dio_end_io);
 398
 399static inline void
 400dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
 401              struct block_device *bdev,
 402              sector_t first_sector, int nr_vecs)
 403{
 404        struct bio *bio;
 405
 406        /*
 407         * bio_alloc() is guaranteed to return a bio when called with
 408         * __GFP_WAIT and we request a valid number of vectors.
 409         */
 410        bio = bio_alloc(GFP_KERNEL, nr_vecs);
 411
 412        bio->bi_bdev = bdev;
 413        bio->bi_sector = first_sector;
 414        if (dio->is_async)
 415                bio->bi_end_io = dio_bio_end_aio;
 416        else
 417                bio->bi_end_io = dio_bio_end_io;
 418
 419        sdio->bio = bio;
 420        sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
 421}
 422
 423/*
 424 * In the AIO read case we speculatively dirty the pages before starting IO.
 425 * During IO completion, any of these pages which happen to have been written
 426 * back will be redirtied by bio_check_pages_dirty().
 427 *
 428 * bios hold a dio reference between submit_bio and ->end_io.
 429 */
 430static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
 431{
 432        struct bio *bio = sdio->bio;
 433        unsigned long flags;
 434
 435        bio->bi_private = dio;
 436
 437        spin_lock_irqsave(&dio->bio_lock, flags);
 438        dio->refcount++;
 439        spin_unlock_irqrestore(&dio->bio_lock, flags);
 440
 441        if (dio->is_async && dio->rw == READ)
 442                bio_set_pages_dirty(bio);
 443
 444        if (sdio->submit_io)
 445                sdio->submit_io(dio->rw, bio, dio->inode,
 446                               sdio->logical_offset_in_bio);
 447        else
 448                submit_bio(dio->rw, bio);
 449
 450        sdio->bio = NULL;
 451        sdio->boundary = 0;
 452        sdio->logical_offset_in_bio = 0;
 453}
 454
 455/*
 456 * Release any resources in case of a failure
 457 */
 458static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
 459{
 460        while (dio_pages_present(sdio))
 461                page_cache_release(dio_get_page(dio, sdio));
 462}
 463
 464/*
 465 * Wait for the next BIO to complete.  Remove it and return it.  NULL is
 466 * returned once all BIOs have been completed.  This must only be called once
 467 * all bios have been issued so that dio->refcount can only decrease.  This
 468 * requires that that the caller hold a reference on the dio.
 469 */
 470static struct bio *dio_await_one(struct dio *dio)
 471{
 472        unsigned long flags;
 473        struct bio *bio = NULL;
 474
 475        spin_lock_irqsave(&dio->bio_lock, flags);
 476
 477        /*
 478         * Wait as long as the list is empty and there are bios in flight.  bio
 479         * completion drops the count, maybe adds to the list, and wakes while
 480         * holding the bio_lock so we don't need set_current_state()'s barrier
 481         * and can call it after testing our condition.
 482         */
 483        while (dio->refcount > 1 && dio->bio_list == NULL) {
 484                __set_current_state(TASK_UNINTERRUPTIBLE);
 485                dio->waiter = current;
 486                spin_unlock_irqrestore(&dio->bio_lock, flags);
 487                io_schedule();
 488                /* wake up sets us TASK_RUNNING */
 489                spin_lock_irqsave(&dio->bio_lock, flags);
 490                dio->waiter = NULL;
 491        }
 492        if (dio->bio_list) {
 493                bio = dio->bio_list;
 494                dio->bio_list = bio->bi_private;
 495        }
 496        spin_unlock_irqrestore(&dio->bio_lock, flags);
 497        return bio;
 498}
 499
 500/*
 501 * Process one completed BIO.  No locks are held.
 502 */
 503static int dio_bio_complete(struct dio *dio, struct bio *bio)
 504{
 505        const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 506        struct bio_vec *bvec;
 507        unsigned i;
 508
 509        if (!uptodate)
 510                dio->io_error = -EIO;
 511
 512        if (dio->is_async && dio->rw == READ) {
 513                bio_check_pages_dirty(bio);     /* transfers ownership */
 514        } else {
 515                bio_for_each_segment_all(bvec, bio, i) {
 516                        struct page *page = bvec->bv_page;
 517
 518                        if (dio->rw == READ && !PageCompound(page))
 519                                set_page_dirty_lock(page);
 520                        page_cache_release(page);
 521                }
 522                bio_put(bio);
 523        }
 524        return uptodate ? 0 : -EIO;
 525}
 526
 527/*
 528 * Wait on and process all in-flight BIOs.  This must only be called once
 529 * all bios have been issued so that the refcount can only decrease.
 530 * This just waits for all bios to make it through dio_bio_complete.  IO
 531 * errors are propagated through dio->io_error and should be propagated via
 532 * dio_complete().
 533 */
 534static void dio_await_completion(struct dio *dio)
 535{
 536        struct bio *bio;
 537        do {
 538                bio = dio_await_one(dio);
 539                if (bio)
 540                        dio_bio_complete(dio, bio);
 541        } while (bio);
 542}
 543
 544/*
 545 * A really large O_DIRECT read or write can generate a lot of BIOs.  So
 546 * to keep the memory consumption sane we periodically reap any completed BIOs
 547 * during the BIO generation phase.
 548 *
 549 * This also helps to limit the peak amount of pinned userspace memory.
 550 */
 551static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
 552{
 553        int ret = 0;
 554
 555        if (sdio->reap_counter++ >= 64) {
 556                while (dio->bio_list) {
 557                        unsigned long flags;
 558                        struct bio *bio;
 559                        int ret2;
 560
 561                        spin_lock_irqsave(&dio->bio_lock, flags);
 562                        bio = dio->bio_list;
 563                        dio->bio_list = bio->bi_private;
 564                        spin_unlock_irqrestore(&dio->bio_lock, flags);
 565                        ret2 = dio_bio_complete(dio, bio);
 566                        if (ret == 0)
 567                                ret = ret2;
 568                }
 569                sdio->reap_counter = 0;
 570        }
 571        return ret;
 572}
 573
 574/*
 575 * Create workqueue for deferred direct IO completions. We allocate the
 576 * workqueue when it's first needed. This avoids creating workqueue for
 577 * filesystems that don't need it and also allows us to create the workqueue
 578 * late enough so the we can include s_id in the name of the workqueue.
 579 */
 580static int sb_init_dio_done_wq(struct super_block *sb)
 581{
 582        struct workqueue_struct *wq = alloc_workqueue("dio/%s",
 583                                                      WQ_MEM_RECLAIM, 0,
 584                                                      sb->s_id);
 585        if (!wq)
 586                return -ENOMEM;
 587        /*
 588         * This has to be atomic as more DIOs can race to create the workqueue
 589         */
 590        cmpxchg(&sb->s_dio_done_wq, NULL, wq);
 591        /* Someone created workqueue before us? Free ours... */
 592        if (wq != sb->s_dio_done_wq)
 593                destroy_workqueue(wq);
 594        return 0;
 595}
 596
 597static int dio_set_defer_completion(struct dio *dio)
 598{
 599        struct super_block *sb = dio->inode->i_sb;
 600
 601        /*
 602         * If we get here, the file system had better understand the
 603         * new iodone calling convention.
 604         */
 605        WARN_ON(!(dio->inode->i_sb->s_type->fs_flags & FS_HAS_DIO_IODONE2));
 606        if (dio->defer_completion)
 607                return 0;
 608        dio->defer_completion = true;
 609        if (!sb->s_dio_done_wq)
 610                return sb_init_dio_done_wq(sb);
 611        return 0;
 612}
 613
 614/*
 615 * Call into the fs to map some more disk blocks.  We record the current number
 616 * of available blocks at sdio->blocks_available.  These are in units of the
 617 * fs blocksize, (1 << inode->i_blkbits).
 618 *
 619 * The fs is allowed to map lots of blocks at once.  If it wants to do that,
 620 * it uses the passed inode-relative block number as the file offset, as usual.
 621 *
 622 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
 623 * has remaining to do.  The fs should not map more than this number of blocks.
 624 *
 625 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
 626 * indicate how much contiguous disk space has been made available at
 627 * bh->b_blocknr.
 628 *
 629 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
 630 * This isn't very efficient...
 631 *
 632 * In the case of filesystem holes: the fs may return an arbitrarily-large
 633 * hole by returning an appropriate value in b_size and by clearing
 634 * buffer_mapped().  However the direct-io code will only process holes one
 635 * block at a time - it will repeatedly call get_block() as it walks the hole.
 636 */
 637static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
 638                           struct buffer_head *map_bh)
 639{
 640        int ret;
 641        sector_t fs_startblk;   /* Into file, in filesystem-sized blocks */
 642        sector_t fs_endblk;     /* Into file, in filesystem-sized blocks */
 643        unsigned long fs_count; /* Number of filesystem-sized blocks */
 644        int create;
 645        unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
 646
 647        /*
 648         * If there was a memory error and we've overwritten all the
 649         * mapped blocks then we can now return that memory error
 650         */
 651        ret = dio->page_errors;
 652        if (ret == 0) {
 653                BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
 654                fs_startblk = sdio->block_in_file >> sdio->blkfactor;
 655                fs_endblk = (sdio->final_block_in_request - 1) >>
 656                                        sdio->blkfactor;
 657                fs_count = fs_endblk - fs_startblk + 1;
 658
 659                map_bh->b_state = 0;
 660                map_bh->b_size = fs_count << i_blkbits;
 661
 662                /*
 663                 * For writes that could fill holes inside i_size on a
 664                 * DIO_SKIP_HOLES filesystem we forbid block creations: only
 665                 * overwrites are permitted. We will return early to the caller
 666                 * once we see an unmapped buffer head returned, and the caller
 667                 * will fall back to buffered I/O.
 668                 *
 669                 * Otherwise the decision is left to the get_blocks method,
 670                 * which may decide to handle it or also return an unmapped
 671                 * buffer head.
 672                 */
 673                create = dio->rw & WRITE;
 674                if (dio->flags & DIO_SKIP_HOLES) {
 675                        if (fs_startblk <= ((i_size_read(dio->inode) - 1) >>
 676                                                        i_blkbits))
 677                                create = 0;
 678                }
 679
 680                ret = (*sdio->get_block)(dio->inode, fs_startblk,
 681                                                map_bh, create);
 682
 683                /* Store for completion */
 684                dio->private = map_bh->b_private;
 685
 686                if (ret == 0 && buffer_defer_completion(map_bh))
 687                        ret = dio_set_defer_completion(dio);
 688        }
 689        return ret;
 690}
 691
 692/*
 693 * There is no bio.  Make one now.
 694 */
 695static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
 696                sector_t start_sector, struct buffer_head *map_bh)
 697{
 698        sector_t sector;
 699        int ret, nr_pages;
 700
 701        ret = dio_bio_reap(dio, sdio);
 702        if (ret)
 703                goto out;
 704        sector = start_sector << (sdio->blkbits - 9);
 705        nr_pages = min(sdio->pages_in_io, bio_get_nr_vecs(map_bh->b_bdev));
 706        nr_pages = min(nr_pages, BIO_MAX_PAGES);
 707        BUG_ON(nr_pages <= 0);
 708        dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
 709        sdio->boundary = 0;
 710out:
 711        return ret;
 712}
 713
 714/*
 715 * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
 716 * that was successful then update final_block_in_bio and take a ref against
 717 * the just-added page.
 718 *
 719 * Return zero on success.  Non-zero means the caller needs to start a new BIO.
 720 */
 721static inline int dio_bio_add_page(struct dio_submit *sdio)
 722{
 723        int ret;
 724
 725        ret = bio_add_page(sdio->bio, sdio->cur_page,
 726                        sdio->cur_page_len, sdio->cur_page_offset);
 727        if (ret == sdio->cur_page_len) {
 728                /*
 729                 * Decrement count only, if we are done with this page
 730                 */
 731                if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
 732                        sdio->pages_in_io--;
 733                page_cache_get(sdio->cur_page);
 734                sdio->final_block_in_bio = sdio->cur_page_block +
 735                        (sdio->cur_page_len >> sdio->blkbits);
 736                ret = 0;
 737        } else {
 738                ret = 1;
 739        }
 740        return ret;
 741}
 742                
 743/*
 744 * Put cur_page under IO.  The section of cur_page which is described by
 745 * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
 746 * starts on-disk at cur_page_block.
 747 *
 748 * We take a ref against the page here (on behalf of its presence in the bio).
 749 *
 750 * The caller of this function is responsible for removing cur_page from the
 751 * dio, and for dropping the refcount which came from that presence.
 752 */
 753static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
 754                struct buffer_head *map_bh)
 755{
 756        int ret = 0;
 757
 758        if (sdio->bio) {
 759                loff_t cur_offset = sdio->cur_page_fs_offset;
 760                loff_t bio_next_offset = sdio->logical_offset_in_bio +
 761                        sdio->bio->bi_size;
 762
 763                /*
 764                 * See whether this new request is contiguous with the old.
 765                 *
 766                 * Btrfs cannot handle having logically non-contiguous requests
 767                 * submitted.  For example if you have
 768                 *
 769                 * Logical:  [0-4095][HOLE][8192-12287]
 770                 * Physical: [0-4095]      [4096-8191]
 771                 *
 772                 * We cannot submit those pages together as one BIO.  So if our
 773                 * current logical offset in the file does not equal what would
 774                 * be the next logical offset in the bio, submit the bio we
 775                 * have.
 776                 */
 777                if (sdio->final_block_in_bio != sdio->cur_page_block ||
 778                    cur_offset != bio_next_offset)
 779                        dio_bio_submit(dio, sdio);
 780        }
 781
 782        if (sdio->bio == NULL) {
 783                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 784                if (ret)
 785                        goto out;
 786        }
 787
 788        if (dio_bio_add_page(sdio) != 0) {
 789                dio_bio_submit(dio, sdio);
 790                ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
 791                if (ret == 0) {
 792                        ret = dio_bio_add_page(sdio);
 793                        BUG_ON(ret != 0);
 794                }
 795        }
 796out:
 797        return ret;
 798}
 799
 800/*
 801 * An autonomous function to put a chunk of a page under deferred IO.
 802 *
 803 * The caller doesn't actually know (or care) whether this piece of page is in
 804 * a BIO, or is under IO or whatever.  We just take care of all possible 
 805 * situations here.  The separation between the logic of do_direct_IO() and
 806 * that of submit_page_section() is important for clarity.  Please don't break.
 807 *
 808 * The chunk of page starts on-disk at blocknr.
 809 *
 810 * We perform deferred IO, by recording the last-submitted page inside our
 811 * private part of the dio structure.  If possible, we just expand the IO
 812 * across that page here.
 813 *
 814 * If that doesn't work out then we put the old page into the bio and add this
 815 * page to the dio instead.
 816 */
 817static inline int
 818submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
 819                    unsigned offset, unsigned len, sector_t blocknr,
 820                    struct buffer_head *map_bh)
 821{
 822        int ret = 0;
 823
 824        if (dio->rw & WRITE) {
 825                /*
 826                 * Read accounting is performed in submit_bio()
 827                 */
 828                task_io_account_write(len);
 829        }
 830
 831        /*
 832         * Can we just grow the current page's presence in the dio?
 833         */
 834        if (sdio->cur_page == page &&
 835            sdio->cur_page_offset + sdio->cur_page_len == offset &&
 836            sdio->cur_page_block +
 837            (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
 838                sdio->cur_page_len += len;
 839                goto out;
 840        }
 841
 842        /*
 843         * If there's a deferred page already there then send it.
 844         */
 845        if (sdio->cur_page) {
 846                ret = dio_send_cur_page(dio, sdio, map_bh);
 847                page_cache_release(sdio->cur_page);
 848                sdio->cur_page = NULL;
 849                if (ret)
 850                        return ret;
 851        }
 852
 853        page_cache_get(page);           /* It is in dio */
 854        sdio->cur_page = page;
 855        sdio->cur_page_offset = offset;
 856        sdio->cur_page_len = len;
 857        sdio->cur_page_block = blocknr;
 858        sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
 859out:
 860        /*
 861         * If sdio->boundary then we want to schedule the IO now to
 862         * avoid metadata seeks.
 863         */
 864        if (sdio->boundary) {
 865                ret = dio_send_cur_page(dio, sdio, map_bh);
 866                dio_bio_submit(dio, sdio);
 867                page_cache_release(sdio->cur_page);
 868                sdio->cur_page = NULL;
 869        }
 870        return ret;
 871}
 872
 873/*
 874 * Clean any dirty buffers in the blockdev mapping which alias newly-created
 875 * file blocks.  Only called for S_ISREG files - blockdevs do not set
 876 * buffer_new
 877 */
 878static void clean_blockdev_aliases(struct dio *dio, struct buffer_head *map_bh)
 879{
 880        unsigned i;
 881        unsigned nblocks;
 882
 883        nblocks = map_bh->b_size >> dio->inode->i_blkbits;
 884
 885        for (i = 0; i < nblocks; i++) {
 886                unmap_underlying_metadata(map_bh->b_bdev,
 887                                          map_bh->b_blocknr + i);
 888        }
 889}
 890
 891/*
 892 * If we are not writing the entire block and get_block() allocated
 893 * the block for us, we need to fill-in the unused portion of the
 894 * block with zeros. This happens only if user-buffer, fileoffset or
 895 * io length is not filesystem block-size multiple.
 896 *
 897 * `end' is zero if we're doing the start of the IO, 1 at the end of the
 898 * IO.
 899 */
 900static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
 901                int end, struct buffer_head *map_bh)
 902{
 903        unsigned dio_blocks_per_fs_block;
 904        unsigned this_chunk_blocks;     /* In dio_blocks */
 905        unsigned this_chunk_bytes;
 906        struct page *page;
 907
 908        sdio->start_zero_done = 1;
 909        if (!sdio->blkfactor || !buffer_new(map_bh))
 910                return;
 911
 912        dio_blocks_per_fs_block = 1 << sdio->blkfactor;
 913        this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
 914
 915        if (!this_chunk_blocks)
 916                return;
 917
 918        /*
 919         * We need to zero out part of an fs block.  It is either at the
 920         * beginning or the end of the fs block.
 921         */
 922        if (end) 
 923                this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
 924
 925        this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
 926
 927        page = ZERO_PAGE(0);
 928        if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
 929                                sdio->next_block_for_io, map_bh))
 930                return;
 931
 932        sdio->next_block_for_io += this_chunk_blocks;
 933}
 934
 935/*
 936 * Walk the user pages, and the file, mapping blocks to disk and generating
 937 * a sequence of (page,offset,len,block) mappings.  These mappings are injected
 938 * into submit_page_section(), which takes care of the next stage of submission
 939 *
 940 * Direct IO against a blockdev is different from a file.  Because we can
 941 * happily perform page-sized but 512-byte aligned IOs.  It is important that
 942 * blockdev IO be able to have fine alignment and large sizes.
 943 *
 944 * So what we do is to permit the ->get_block function to populate bh.b_size
 945 * with the size of IO which is permitted at this offset and this i_blkbits.
 946 *
 947 * For best results, the blockdev should be set up with 512-byte i_blkbits and
 948 * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
 949 * fine alignment but still allows this function to work in PAGE_SIZE units.
 950 */
 951static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
 952                        struct buffer_head *map_bh)
 953{
 954        const unsigned blkbits = sdio->blkbits;
 955        const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
 956        struct page *page;
 957        unsigned block_in_page;
 958        int ret = 0;
 959
 960        /* The I/O can start at any block offset within the first page */
 961        block_in_page = sdio->first_block_in_page;
 962
 963        while (sdio->block_in_file < sdio->final_block_in_request) {
 964                page = dio_get_page(dio, sdio);
 965                if (IS_ERR(page)) {
 966                        ret = PTR_ERR(page);
 967                        goto out;
 968                }
 969
 970                while (block_in_page < blocks_per_page) {
 971                        unsigned offset_in_page = block_in_page << blkbits;
 972                        unsigned this_chunk_bytes;      /* # of bytes mapped */
 973                        unsigned this_chunk_blocks;     /* # of blocks */
 974                        unsigned u;
 975
 976                        if (sdio->blocks_available == 0) {
 977                                /*
 978                                 * Need to go and map some more disk
 979                                 */
 980                                unsigned long blkmask;
 981                                unsigned long dio_remainder;
 982
 983                                ret = get_more_blocks(dio, sdio, map_bh);
 984                                if (ret) {
 985                                        page_cache_release(page);
 986                                        goto out;
 987                                }
 988                                if (!buffer_mapped(map_bh))
 989                                        goto do_holes;
 990
 991                                sdio->blocks_available =
 992                                                map_bh->b_size >> sdio->blkbits;
 993                                sdio->next_block_for_io =
 994                                        map_bh->b_blocknr << sdio->blkfactor;
 995                                if (buffer_new(map_bh))
 996                                        clean_blockdev_aliases(dio, map_bh);
 997
 998                                if (!sdio->blkfactor)
 999                                        goto do_holes;
1000
1001                                blkmask = (1 << sdio->blkfactor) - 1;
1002                                dio_remainder = (sdio->block_in_file & blkmask);
1003
1004                                /*
1005                                 * If we are at the start of IO and that IO
1006                                 * starts partway into a fs-block,
1007                                 * dio_remainder will be non-zero.  If the IO
1008                                 * is a read then we can simply advance the IO
1009                                 * cursor to the first block which is to be
1010                                 * read.  But if the IO is a write and the
1011                                 * block was newly allocated we cannot do that;
1012                                 * the start of the fs block must be zeroed out
1013                                 * on-disk
1014                                 */
1015                                if (!buffer_new(map_bh))
1016                                        sdio->next_block_for_io += dio_remainder;
1017                                sdio->blocks_available -= dio_remainder;
1018                        }
1019do_holes:
1020                        /* Handle holes */
1021                        if (!buffer_mapped(map_bh)) {
1022                                loff_t i_size_aligned;
1023
1024                                /* AKPM: eargh, -ENOTBLK is a hack */
1025                                if (dio->rw & WRITE) {
1026                                        page_cache_release(page);
1027                                        return -ENOTBLK;
1028                                }
1029
1030                                /*
1031                                 * Be sure to account for a partial block as the
1032                                 * last block in the file
1033                                 */
1034                                i_size_aligned = ALIGN(i_size_read(dio->inode),
1035                                                        1 << blkbits);
1036                                if (sdio->block_in_file >=
1037                                                i_size_aligned >> blkbits) {
1038                                        /* We hit eof */
1039                                        page_cache_release(page);
1040                                        goto out;
1041                                }
1042                                zero_user(page, block_in_page << blkbits,
1043                                                1 << blkbits);
1044                                sdio->block_in_file++;
1045                                block_in_page++;
1046                                goto next_block;
1047                        }
1048
1049                        /*
1050                         * If we're performing IO which has an alignment which
1051                         * is finer than the underlying fs, go check to see if
1052                         * we must zero out the start of this block.
1053                         */
1054                        if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1055                                dio_zero_block(dio, sdio, 0, map_bh);
1056
1057                        /*
1058                         * Work out, in this_chunk_blocks, how much disk we
1059                         * can add to this page
1060                         */
1061                        this_chunk_blocks = sdio->blocks_available;
1062                        u = (PAGE_SIZE - offset_in_page) >> blkbits;
1063                        if (this_chunk_blocks > u)
1064                                this_chunk_blocks = u;
1065                        u = sdio->final_block_in_request - sdio->block_in_file;
1066                        if (this_chunk_blocks > u)
1067                                this_chunk_blocks = u;
1068                        this_chunk_bytes = this_chunk_blocks << blkbits;
1069                        BUG_ON(this_chunk_bytes == 0);
1070
1071                        if (this_chunk_blocks == sdio->blocks_available)
1072                                sdio->boundary = buffer_boundary(map_bh);
1073                        ret = submit_page_section(dio, sdio, page,
1074                                                  offset_in_page,
1075                                                  this_chunk_bytes,
1076                                                  sdio->next_block_for_io,
1077                                                  map_bh);
1078                        if (ret) {
1079                                page_cache_release(page);
1080                                goto out;
1081                        }
1082                        sdio->next_block_for_io += this_chunk_blocks;
1083
1084                        sdio->block_in_file += this_chunk_blocks;
1085                        block_in_page += this_chunk_blocks;
1086                        sdio->blocks_available -= this_chunk_blocks;
1087next_block:
1088                        BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1089                        if (sdio->block_in_file == sdio->final_block_in_request)
1090                                break;
1091                }
1092
1093                /* Drop the ref which was taken in get_user_pages() */
1094                page_cache_release(page);
1095                block_in_page = 0;
1096        }
1097out:
1098        return ret;
1099}
1100
1101static inline int drop_refcount(struct dio *dio)
1102{
1103        int ret2;
1104        unsigned long flags;
1105
1106        /*
1107         * Sync will always be dropping the final ref and completing the
1108         * operation.  AIO can if it was a broken operation described above or
1109         * in fact if all the bios race to complete before we get here.  In
1110         * that case dio_complete() translates the EIOCBQUEUED into the proper
1111         * return code that the caller will hand to aio_complete().
1112         *
1113         * This is managed by the bio_lock instead of being an atomic_t so that
1114         * completion paths can drop their ref and use the remaining count to
1115         * decide to wake the submission path atomically.
1116         */
1117        spin_lock_irqsave(&dio->bio_lock, flags);
1118        ret2 = --dio->refcount;
1119        spin_unlock_irqrestore(&dio->bio_lock, flags);
1120        return ret2;
1121}
1122
1123/*
1124 * This is a library function for use by filesystem drivers.
1125 *
1126 * The locking rules are governed by the flags parameter:
1127 *  - if the flags value contains DIO_LOCKING we use a fancy locking
1128 *    scheme for dumb filesystems.
1129 *    For writes this function is called under i_mutex and returns with
1130 *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1131 *    taken and dropped again before returning.
1132 *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1133 *    internal locking but rather rely on the filesystem to synchronize
1134 *    direct I/O reads/writes versus each other and truncate.
1135 *
1136 * To help with locking against truncate we incremented the i_dio_count
1137 * counter before starting direct I/O, and decrement it once we are done.
1138 * Truncate can wait for it to reach zero to provide exclusion.  It is
1139 * expected that filesystem provide exclusion between new direct I/O
1140 * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1141 * but other filesystems need to take care of this on their own.
1142 *
1143 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1144 * is always inlined. Otherwise gcc is unable to split the structure into
1145 * individual fields and will generate much worse code. This is important
1146 * for the whole file.
1147 */
1148static inline ssize_t
1149do_blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1150        struct block_device *bdev, const struct iovec *iov, loff_t offset, 
1151        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1152        dio_submit_t submit_io, int flags)
1153{
1154        int seg;
1155        size_t size;
1156        unsigned long addr;
1157        unsigned i_blkbits = ACCESS_ONCE(inode->i_blkbits);
1158        unsigned blkbits = i_blkbits;
1159        unsigned blocksize_mask = (1 << blkbits) - 1;
1160        ssize_t retval = -EINVAL;
1161        loff_t end = offset;
1162        struct dio *dio;
1163        struct dio_submit sdio = { 0, };
1164        unsigned long user_addr;
1165        size_t bytes;
1166        struct buffer_head map_bh = { 0, };
1167        struct blk_plug plug;
1168
1169        if (rw & WRITE)
1170                rw = WRITE_ODIRECT;
1171
1172        /*
1173         * Avoid references to bdev if not absolutely needed to give
1174         * the early prefetch in the caller enough time.
1175         */
1176
1177        if (offset & blocksize_mask) {
1178                if (bdev)
1179                        blkbits = blksize_bits(bdev_logical_block_size(bdev));
1180                blocksize_mask = (1 << blkbits) - 1;
1181                if (offset & blocksize_mask)
1182                        goto out;
1183        }
1184
1185        /* Check the memory alignment.  Blocks cannot straddle pages */
1186        for (seg = 0; seg < nr_segs; seg++) {
1187                addr = (unsigned long)iov[seg].iov_base;
1188                size = iov[seg].iov_len;
1189                end += size;
1190                if (unlikely((addr & blocksize_mask) ||
1191                             (size & blocksize_mask))) {
1192                        if (bdev)
1193                                blkbits = blksize_bits(
1194                                         bdev_logical_block_size(bdev));
1195                        blocksize_mask = (1 << blkbits) - 1;
1196                        if ((addr & blocksize_mask) || (size & blocksize_mask))
1197                                goto out;
1198                }
1199        }
1200
1201        /* watch out for a 0 len io from a tricksy fs */
1202        if (rw == READ && end == offset)
1203                return 0;
1204
1205        dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1206        retval = -ENOMEM;
1207        if (!dio)
1208                goto out;
1209        /*
1210         * Believe it or not, zeroing out the page array caused a .5%
1211         * performance regression in a database benchmark.  So, we take
1212         * care to only zero out what's needed.
1213         */
1214        memset(dio, 0, offsetof(struct dio, pages));
1215
1216        dio->flags = flags;
1217        if (dio->flags & DIO_LOCKING) {
1218                if (rw == READ) {
1219                        struct address_space *mapping =
1220                                        iocb->ki_filp->f_mapping;
1221
1222                        /* will be released by direct_io_worker */
1223                        mutex_lock(&inode->i_mutex);
1224
1225                        retval = filemap_write_and_wait_range(mapping, offset,
1226                                                              end - 1);
1227                        if (retval) {
1228                                mutex_unlock(&inode->i_mutex);
1229                                kmem_cache_free(dio_cache, dio);
1230                                goto out;
1231                        }
1232                }
1233        }
1234
1235        /*
1236         * For file extending writes updating i_size before data writeouts
1237         * complete can expose uninitialized blocks in dumb filesystems.
1238         * In that case we need to wait for I/O completion even if asked
1239         * for an asynchronous write.
1240         */
1241        if (is_sync_kiocb(iocb))
1242                dio->is_async = false;
1243        else if (!(dio->flags & DIO_ASYNC_EXTEND) &&
1244            (rw & WRITE) && end > i_size_read(inode))
1245                dio->is_async = false;
1246        else
1247                dio->is_async = true;
1248
1249        dio->inode = inode;
1250        dio->rw = rw;
1251
1252        /*
1253         * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1254         * so that we can call ->fsync.
1255         */
1256        if ((dio->inode->i_sb->s_type->fs_flags & FS_HAS_DIO_IODONE2) &&
1257            dio->is_async && (rw & WRITE) &&
1258            ((iocb->ki_filp->f_flags & O_DSYNC) ||
1259             IS_SYNC(iocb->ki_filp->f_mapping->host))) {
1260                retval = dio_set_defer_completion(dio);
1261                if (retval) {
1262                        /*
1263                         * We grab i_mutex only for reads so we don't have
1264                         * to release it here
1265                         */
1266                        kmem_cache_free(dio_cache, dio);
1267                        goto out;
1268                }
1269        }
1270
1271        /*
1272         * Will be decremented at I/O completion time.
1273         */
1274        if (!(dio->flags & DIO_SKIP_DIO_COUNT))
1275                inode_dio_begin(inode);
1276
1277        retval = 0;
1278        sdio.blkbits = blkbits;
1279        sdio.blkfactor = i_blkbits - blkbits;
1280        sdio.block_in_file = offset >> blkbits;
1281
1282        sdio.get_block = get_block;
1283        dio->end_io = end_io;
1284        sdio.submit_io = submit_io;
1285        sdio.final_block_in_bio = -1;
1286        sdio.next_block_for_io = -1;
1287
1288        dio->iocb = iocb;
1289        dio->i_size = i_size_read(inode);
1290
1291        spin_lock_init(&dio->bio_lock);
1292        dio->refcount = 1;
1293
1294        /*
1295         * In case of non-aligned buffers, we may need 2 more
1296         * pages since we need to zero out first and last block.
1297         */
1298        if (unlikely(sdio.blkfactor))
1299                sdio.pages_in_io = 2;
1300
1301        for (seg = 0; seg < nr_segs; seg++) {
1302                user_addr = (unsigned long)iov[seg].iov_base;
1303                sdio.pages_in_io +=
1304                        ((user_addr + iov[seg].iov_len + PAGE_SIZE-1) /
1305                                PAGE_SIZE - user_addr / PAGE_SIZE);
1306        }
1307
1308        blk_start_plug(&plug);
1309
1310        for (seg = 0; seg < nr_segs; seg++) {
1311                user_addr = (unsigned long)iov[seg].iov_base;
1312                sdio.size += bytes = iov[seg].iov_len;
1313
1314                /* Index into the first page of the first block */
1315                sdio.first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1316                sdio.final_block_in_request = sdio.block_in_file +
1317                                                (bytes >> blkbits);
1318                /* Page fetching state */
1319                sdio.head = 0;
1320                sdio.tail = 0;
1321                sdio.curr_page = 0;
1322
1323                sdio.total_pages = 0;
1324                if (user_addr & (PAGE_SIZE-1)) {
1325                        sdio.total_pages++;
1326                        bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1327                }
1328                sdio.total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1329                sdio.curr_user_address = user_addr;
1330
1331                retval = do_direct_IO(dio, &sdio, &map_bh);
1332
1333                dio->result += iov[seg].iov_len -
1334                        ((sdio.final_block_in_request - sdio.block_in_file) <<
1335                                        blkbits);
1336
1337                if (retval) {
1338                        dio_cleanup(dio, &sdio);
1339                        break;
1340                }
1341        } /* end iovec loop */
1342
1343        if (retval == -ENOTBLK) {
1344                /*
1345                 * The remaining part of the request will be
1346                 * be handled by buffered I/O when we return
1347                 */
1348                retval = 0;
1349        }
1350        /*
1351         * There may be some unwritten disk at the end of a part-written
1352         * fs-block-sized block.  Go zero that now.
1353         */
1354        dio_zero_block(dio, &sdio, 1, &map_bh);
1355
1356        if (sdio.cur_page) {
1357                ssize_t ret2;
1358
1359                ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1360                if (retval == 0)
1361                        retval = ret2;
1362                page_cache_release(sdio.cur_page);
1363                sdio.cur_page = NULL;
1364        }
1365        if (sdio.bio)
1366                dio_bio_submit(dio, &sdio);
1367
1368        blk_finish_plug(&plug);
1369
1370        /*
1371         * It is possible that, we return short IO due to end of file.
1372         * In that case, we need to release all the pages we got hold on.
1373         */
1374        dio_cleanup(dio, &sdio);
1375
1376        /*
1377         * All block lookups have been performed. For READ requests
1378         * we can let i_mutex go now that its achieved its purpose
1379         * of protecting us from looking up uninitialized blocks.
1380         */
1381        if (rw == READ && (dio->flags & DIO_LOCKING))
1382                mutex_unlock(&dio->inode->i_mutex);
1383
1384        /*
1385         * The only time we want to leave bios in flight is when a successful
1386         * partial aio read or full aio write have been setup.  In that case
1387         * bio completion will call aio_complete.  The only time it's safe to
1388         * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1389         * This had *better* be the only place that raises -EIOCBQUEUED.
1390         */
1391        BUG_ON(retval == -EIOCBQUEUED);
1392        if (dio->is_async && retval == 0 && dio->result &&
1393            ((rw == READ) || (dio->result == sdio.size)))
1394                retval = -EIOCBQUEUED;
1395
1396        if (retval != -EIOCBQUEUED)
1397                dio_await_completion(dio);
1398
1399        if (drop_refcount(dio) == 0) {
1400                retval = dio_complete(dio, offset, retval, false);
1401        } else
1402                BUG_ON(retval != -EIOCBQUEUED);
1403
1404out:
1405        return retval;
1406}
1407
1408ssize_t
1409__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1410        struct block_device *bdev, const struct iovec *iov, loff_t offset,
1411        unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1412        dio_submit_t submit_io, int flags)
1413{
1414        /*
1415         * The block device state is needed in the end to finally
1416         * submit everything.  Since it's likely to be cache cold
1417         * prefetch it here as first thing to hide some of the
1418         * latency.
1419         *
1420         * Attempt to prefetch the pieces we likely need later.
1421         */
1422        prefetch(&bdev->bd_disk->part_tbl);
1423        prefetch(bdev->bd_queue);
1424        prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1425
1426        return do_blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset,
1427                                     nr_segs, get_block, end_io,
1428                                     submit_io, flags);
1429}
1430
1431EXPORT_SYMBOL(__blockdev_direct_IO);
1432
1433static __init int dio_init(void)
1434{
1435        dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1436        return 0;
1437}
1438module_init(dio_init)
1439