linux/fs/fs-writeback.c
<<
>>
Prefs
   1/*
   2 * fs/fs-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 *
   6 * Contains all the functions related to writing back and waiting
   7 * upon dirty inodes against superblocks, and writing back dirty
   8 * pages against inodes.  ie: data writeback.  Writeout of the
   9 * inode itself is not handled here.
  10 *
  11 * 10Apr2002    Andrew Morton
  12 *              Split out of fs/inode.c
  13 *              Additions for address_space-based writeback
  14 */
  15
  16#include <linux/kernel.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/slab.h>
  20#include <linux/sched.h>
  21#include <linux/fs.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kthread.h>
  25#include <linux/writeback.h>
  26#include <linux/blkdev.h>
  27#include <linux/backing-dev.h>
  28#include <linux/tracepoint.h>
  29#include <linux/device.h>
  30#include "internal.h"
  31
  32/*
  33 * 4MB minimal write chunk size
  34 */
  35#define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
  36
  37/*
  38 * Passed into wb_writeback(), essentially a subset of writeback_control
  39 */
  40struct wb_writeback_work {
  41        long nr_pages;
  42        struct super_block *sb;
  43        unsigned long *older_than_this;
  44        enum writeback_sync_modes sync_mode;
  45        unsigned int tagged_writepages:1;
  46        unsigned int for_kupdate:1;
  47        unsigned int range_cyclic:1;
  48        unsigned int for_background:1;
  49        unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
  50        enum wb_reason reason;          /* why was writeback initiated? */
  51
  52        struct list_head list;          /* pending work list */
  53        struct completion *done;        /* set if the caller waits */
  54};
  55
  56/**
  57 * writeback_in_progress - determine whether there is writeback in progress
  58 * @bdi: the device's backing_dev_info structure.
  59 *
  60 * Determine whether there is writeback waiting to be handled against a
  61 * backing device.
  62 */
  63int writeback_in_progress(struct backing_dev_info *bdi)
  64{
  65        return test_bit(BDI_writeback_running, &bdi->state);
  66}
  67EXPORT_SYMBOL(writeback_in_progress);
  68
  69static inline struct inode *wb_inode(struct list_head *head)
  70{
  71        return list_entry(head, struct inode, i_wb_list);
  72}
  73
  74/*
  75 * Include the creation of the trace points after defining the
  76 * wb_writeback_work structure and inline functions so that the definition
  77 * remains local to this file.
  78 */
  79#define CREATE_TRACE_POINTS
  80#include <trace/events/writeback.h>
  81
  82EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
  83
  84static void bdi_wakeup_thread(struct backing_dev_info *bdi)
  85{
  86        spin_lock_bh(&bdi->wb_lock);
  87        if (test_bit(BDI_registered, &bdi->state))
  88                mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
  89        spin_unlock_bh(&bdi->wb_lock);
  90}
  91
  92static void bdi_queue_work(struct backing_dev_info *bdi,
  93                           struct wb_writeback_work *work)
  94{
  95        trace_writeback_queue(bdi, work);
  96
  97        spin_lock_bh(&bdi->wb_lock);
  98        if (!test_bit(BDI_registered, &bdi->state)) {
  99                if (work->done)
 100                        complete(work->done);
 101                goto out_unlock;
 102        }
 103        list_add_tail(&work->list, &bdi->work_list);
 104        mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
 105out_unlock:
 106        spin_unlock_bh(&bdi->wb_lock);
 107}
 108
 109static void
 110__bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
 111                      bool range_cyclic, enum wb_reason reason)
 112{
 113        struct wb_writeback_work *work;
 114
 115        /*
 116         * This is WB_SYNC_NONE writeback, so if allocation fails just
 117         * wakeup the thread for old dirty data writeback
 118         */
 119        work = kzalloc(sizeof(*work), GFP_ATOMIC);
 120        if (!work) {
 121                trace_writeback_nowork(bdi);
 122                bdi_wakeup_thread(bdi);
 123                return;
 124        }
 125
 126        work->sync_mode = WB_SYNC_NONE;
 127        work->nr_pages  = nr_pages;
 128        work->range_cyclic = range_cyclic;
 129        work->reason    = reason;
 130
 131        bdi_queue_work(bdi, work);
 132}
 133
 134/**
 135 * bdi_start_writeback - start writeback
 136 * @bdi: the backing device to write from
 137 * @nr_pages: the number of pages to write
 138 * @reason: reason why some writeback work was initiated
 139 *
 140 * Description:
 141 *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
 142 *   started when this function returns, we make no guarantees on
 143 *   completion. Caller need not hold sb s_umount semaphore.
 144 *
 145 */
 146void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
 147                        enum wb_reason reason)
 148{
 149        __bdi_start_writeback(bdi, nr_pages, true, reason);
 150}
 151
 152/**
 153 * bdi_start_background_writeback - start background writeback
 154 * @bdi: the backing device to write from
 155 *
 156 * Description:
 157 *   This makes sure WB_SYNC_NONE background writeback happens. When
 158 *   this function returns, it is only guaranteed that for given BDI
 159 *   some IO is happening if we are over background dirty threshold.
 160 *   Caller need not hold sb s_umount semaphore.
 161 */
 162void bdi_start_background_writeback(struct backing_dev_info *bdi)
 163{
 164        /*
 165         * We just wake up the flusher thread. It will perform background
 166         * writeback as soon as there is no other work to do.
 167         */
 168        trace_writeback_wake_background(bdi);
 169        bdi_wakeup_thread(bdi);
 170}
 171
 172/*
 173 * Remove the inode from the writeback list it is on.
 174 */
 175void inode_wb_list_del(struct inode *inode)
 176{
 177        struct backing_dev_info *bdi = inode_to_bdi(inode);
 178
 179        spin_lock(&bdi->wb.list_lock);
 180        list_del_init(&inode->i_wb_list);
 181        spin_unlock(&bdi->wb.list_lock);
 182}
 183
 184/*
 185 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
 186 * furthest end of its superblock's dirty-inode list.
 187 *
 188 * Before stamping the inode's ->dirtied_when, we check to see whether it is
 189 * already the most-recently-dirtied inode on the b_dirty list.  If that is
 190 * the case then the inode must have been redirtied while it was being written
 191 * out and we don't reset its dirtied_when.
 192 */
 193static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
 194{
 195        assert_spin_locked(&wb->list_lock);
 196        if (!list_empty(&wb->b_dirty)) {
 197                struct inode *tail;
 198
 199                tail = wb_inode(wb->b_dirty.next);
 200                if (time_before(inode->dirtied_when, tail->dirtied_when))
 201                        inode->dirtied_when = jiffies;
 202        }
 203        list_move(&inode->i_wb_list, &wb->b_dirty);
 204}
 205
 206/*
 207 * requeue inode for re-scanning after bdi->b_io list is exhausted.
 208 */
 209static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
 210{
 211        assert_spin_locked(&wb->list_lock);
 212        list_move(&inode->i_wb_list, &wb->b_more_io);
 213}
 214
 215static void inode_sync_complete(struct inode *inode)
 216{
 217        inode->i_state &= ~I_SYNC;
 218        /* If inode is clean an unused, put it into LRU now... */
 219        inode_add_lru(inode);
 220        /* Waiters must see I_SYNC cleared before being woken up */
 221        smp_mb();
 222        wake_up_bit(&inode->i_state, __I_SYNC);
 223}
 224
 225static bool inode_dirtied_after(struct inode *inode, unsigned long t)
 226{
 227        bool ret = time_after(inode->dirtied_when, t);
 228#ifndef CONFIG_64BIT
 229        /*
 230         * For inodes being constantly redirtied, dirtied_when can get stuck.
 231         * It _appears_ to be in the future, but is actually in distant past.
 232         * This test is necessary to prevent such wrapped-around relative times
 233         * from permanently stopping the whole bdi writeback.
 234         */
 235        ret = ret && time_before_eq(inode->dirtied_when, jiffies);
 236#endif
 237        return ret;
 238}
 239
 240/*
 241 * Move expired (dirtied before work->older_than_this) dirty inodes from
 242 * @delaying_queue to @dispatch_queue.
 243 */
 244static int move_expired_inodes(struct list_head *delaying_queue,
 245                               struct list_head *dispatch_queue,
 246                               struct wb_writeback_work *work)
 247{
 248        LIST_HEAD(tmp);
 249        struct list_head *pos, *node;
 250        struct super_block *sb = NULL;
 251        struct inode *inode;
 252        int do_sb_sort = 0;
 253        int moved = 0;
 254
 255        while (!list_empty(delaying_queue)) {
 256                inode = wb_inode(delaying_queue->prev);
 257                if (work->older_than_this &&
 258                    inode_dirtied_after(inode, *work->older_than_this))
 259                        break;
 260                list_move(&inode->i_wb_list, &tmp);
 261                moved++;
 262                if (sb_is_blkdev_sb(inode->i_sb))
 263                        continue;
 264                if (sb && sb != inode->i_sb)
 265                        do_sb_sort = 1;
 266                sb = inode->i_sb;
 267        }
 268
 269        /* just one sb in list, splice to dispatch_queue and we're done */
 270        if (!do_sb_sort) {
 271                list_splice(&tmp, dispatch_queue);
 272                goto out;
 273        }
 274
 275        /* Move inodes from one superblock together */
 276        while (!list_empty(&tmp)) {
 277                sb = wb_inode(tmp.prev)->i_sb;
 278                list_for_each_prev_safe(pos, node, &tmp) {
 279                        inode = wb_inode(pos);
 280                        if (inode->i_sb == sb)
 281                                list_move(&inode->i_wb_list, dispatch_queue);
 282                }
 283        }
 284out:
 285        return moved;
 286}
 287
 288/*
 289 * Queue all expired dirty inodes for io, eldest first.
 290 * Before
 291 *         newly dirtied     b_dirty    b_io    b_more_io
 292 *         =============>    gf         edc     BA
 293 * After
 294 *         newly dirtied     b_dirty    b_io    b_more_io
 295 *         =============>    g          fBAedc
 296 *                                           |
 297 *                                           +--> dequeue for IO
 298 */
 299static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
 300{
 301        int moved;
 302        assert_spin_locked(&wb->list_lock);
 303        list_splice_init(&wb->b_more_io, &wb->b_io);
 304        moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
 305        trace_writeback_queue_io(wb, work, moved);
 306}
 307
 308static int write_inode(struct inode *inode, struct writeback_control *wbc)
 309{
 310        int ret;
 311
 312        if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
 313                trace_writeback_write_inode_start(inode, wbc);
 314                ret = inode->i_sb->s_op->write_inode(inode, wbc);
 315                trace_writeback_write_inode(inode, wbc);
 316                return ret;
 317        }
 318        return 0;
 319}
 320
 321/*
 322 * Wait for writeback on an inode to complete. Called with i_lock held.
 323 * Caller must make sure inode cannot go away when we drop i_lock.
 324 */
 325static void __inode_wait_for_writeback(struct inode *inode)
 326        __releases(inode->i_lock)
 327        __acquires(inode->i_lock)
 328{
 329        DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
 330        wait_queue_head_t *wqh;
 331
 332        wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
 333        while (inode->i_state & I_SYNC) {
 334                spin_unlock(&inode->i_lock);
 335                __wait_on_bit(wqh, &wq, bit_wait,
 336                              TASK_UNINTERRUPTIBLE);
 337                spin_lock(&inode->i_lock);
 338        }
 339}
 340
 341/*
 342 * Wait for writeback on an inode to complete. Caller must have inode pinned.
 343 */
 344void inode_wait_for_writeback(struct inode *inode)
 345{
 346        spin_lock(&inode->i_lock);
 347        __inode_wait_for_writeback(inode);
 348        spin_unlock(&inode->i_lock);
 349}
 350
 351/*
 352 * Sleep until I_SYNC is cleared. This function must be called with i_lock
 353 * held and drops it. It is aimed for callers not holding any inode reference
 354 * so once i_lock is dropped, inode can go away.
 355 */
 356static void inode_sleep_on_writeback(struct inode *inode)
 357        __releases(inode->i_lock)
 358{
 359        DEFINE_WAIT(wait);
 360        wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
 361        int sleep;
 362
 363        prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
 364        sleep = inode->i_state & I_SYNC;
 365        spin_unlock(&inode->i_lock);
 366        if (sleep)
 367                schedule();
 368        finish_wait(wqh, &wait);
 369}
 370
 371/*
 372 * Find proper writeback list for the inode depending on its current state and
 373 * possibly also change of its state while we were doing writeback.  Here we
 374 * handle things such as livelock prevention or fairness of writeback among
 375 * inodes. This function can be called only by flusher thread - noone else
 376 * processes all inodes in writeback lists and requeueing inodes behind flusher
 377 * thread's back can have unexpected consequences.
 378 */
 379static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
 380                          struct writeback_control *wbc)
 381{
 382        if (inode->i_state & I_FREEING)
 383                return;
 384
 385        /*
 386         * Sync livelock prevention. Each inode is tagged and synced in one
 387         * shot. If still dirty, it will be redirty_tail()'ed below.  Update
 388         * the dirty time to prevent enqueue and sync it again.
 389         */
 390        if ((inode->i_state & I_DIRTY) &&
 391            (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
 392                inode->dirtied_when = jiffies;
 393
 394        if (wbc->pages_skipped) {
 395                /*
 396                 * writeback is not making progress due to locked
 397                 * buffers. Skip this inode for now.
 398                 */
 399                redirty_tail(inode, wb);
 400                return;
 401        }
 402
 403        if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
 404                /*
 405                 * We didn't write back all the pages.  nfs_writepages()
 406                 * sometimes bales out without doing anything.
 407                 */
 408                if (wbc->nr_to_write <= 0) {
 409                        /* Slice used up. Queue for next turn. */
 410                        requeue_io(inode, wb);
 411                } else {
 412                        /*
 413                         * Writeback blocked by something other than
 414                         * congestion. Delay the inode for some time to
 415                         * avoid spinning on the CPU (100% iowait)
 416                         * retrying writeback of the dirty page/inode
 417                         * that cannot be performed immediately.
 418                         */
 419                        redirty_tail(inode, wb);
 420                }
 421        } else if (inode->i_state & I_DIRTY) {
 422                /*
 423                 * Filesystems can dirty the inode during writeback operations,
 424                 * such as delayed allocation during submission or metadata
 425                 * updates after data IO completion.
 426                 */
 427                redirty_tail(inode, wb);
 428        } else {
 429                /* The inode is clean. Remove from writeback lists. */
 430                list_del_init(&inode->i_wb_list);
 431        }
 432}
 433
 434/*
 435 * Write out an inode and its dirty pages. Do not update the writeback list
 436 * linkage. That is left to the caller. The caller is also responsible for
 437 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
 438 */
 439static int
 440__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
 441{
 442        struct address_space *mapping = inode->i_mapping;
 443        long nr_to_write = wbc->nr_to_write;
 444        unsigned dirty;
 445        int ret;
 446
 447        WARN_ON(!(inode->i_state & I_SYNC));
 448
 449        trace_writeback_single_inode_start(inode, wbc, nr_to_write);
 450
 451        ret = do_writepages(mapping, wbc);
 452
 453        /*
 454         * Make sure to wait on the data before writing out the metadata.
 455         * This is important for filesystems that modify metadata on data
 456         * I/O completion. We don't do it for sync(2) writeback because it has a
 457         * separate, external IO completion path and ->sync_fs for guaranteeing
 458         * inode metadata is written back correctly.
 459         */
 460        if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
 461                int err = filemap_fdatawait(mapping);
 462                if (ret == 0)
 463                        ret = err;
 464        }
 465
 466        /*
 467         * Some filesystems may redirty the inode during the writeback
 468         * due to delalloc, clear dirty metadata flags right before
 469         * write_inode()
 470         */
 471        spin_lock(&inode->i_lock);
 472        /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
 473        if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
 474                inode->i_state &= ~I_DIRTY_PAGES;
 475        dirty = inode->i_state & I_DIRTY;
 476        inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
 477        spin_unlock(&inode->i_lock);
 478        /* Don't write the inode if only I_DIRTY_PAGES was set */
 479        if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
 480                int err = write_inode(inode, wbc);
 481                if (ret == 0)
 482                        ret = err;
 483        }
 484        trace_writeback_single_inode(inode, wbc, nr_to_write);
 485        return ret;
 486}
 487
 488/*
 489 * Write out an inode's dirty pages. Either the caller has an active reference
 490 * on the inode or the inode has I_WILL_FREE set.
 491 *
 492 * This function is designed to be called for writing back one inode which
 493 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
 494 * and does more profound writeback list handling in writeback_sb_inodes().
 495 */
 496static int
 497writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
 498                       struct writeback_control *wbc)
 499{
 500        int ret = 0;
 501
 502        spin_lock(&inode->i_lock);
 503        if (!atomic_read(&inode->i_count))
 504                WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
 505        else
 506                WARN_ON(inode->i_state & I_WILL_FREE);
 507
 508        if (inode->i_state & I_SYNC) {
 509                if (wbc->sync_mode != WB_SYNC_ALL)
 510                        goto out;
 511                /*
 512                 * It's a data-integrity sync. We must wait. Since callers hold
 513                 * inode reference or inode has I_WILL_FREE set, it cannot go
 514                 * away under us.
 515                 */
 516                __inode_wait_for_writeback(inode);
 517        }
 518        WARN_ON(inode->i_state & I_SYNC);
 519        /*
 520         * Skip inode if it is clean and we have no outstanding writeback in
 521         * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
 522         * function since flusher thread may be doing for example sync in
 523         * parallel and if we move the inode, it could get skipped. So here we
 524         * make sure inode is on some writeback list and leave it there unless
 525         * we have completely cleaned the inode.
 526         */
 527        if (!(inode->i_state & I_DIRTY) &&
 528            (wbc->sync_mode != WB_SYNC_ALL ||
 529             !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
 530                goto out;
 531        inode->i_state |= I_SYNC;
 532        spin_unlock(&inode->i_lock);
 533
 534        ret = __writeback_single_inode(inode, wbc);
 535
 536        spin_lock(&wb->list_lock);
 537        spin_lock(&inode->i_lock);
 538        /*
 539         * If inode is clean, remove it from writeback lists. Otherwise don't
 540         * touch it. See comment above for explanation.
 541         */
 542        if (!(inode->i_state & I_DIRTY))
 543                list_del_init(&inode->i_wb_list);
 544        spin_unlock(&wb->list_lock);
 545        inode_sync_complete(inode);
 546out:
 547        spin_unlock(&inode->i_lock);
 548        return ret;
 549}
 550
 551static long writeback_chunk_size(struct backing_dev_info *bdi,
 552                                 struct wb_writeback_work *work)
 553{
 554        long pages;
 555
 556        /*
 557         * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
 558         * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
 559         * here avoids calling into writeback_inodes_wb() more than once.
 560         *
 561         * The intended call sequence for WB_SYNC_ALL writeback is:
 562         *
 563         *      wb_writeback()
 564         *          writeback_sb_inodes()       <== called only once
 565         *              write_cache_pages()     <== called once for each inode
 566         *                   (quickly) tag currently dirty pages
 567         *                   (maybe slowly) sync all tagged pages
 568         */
 569        if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
 570                pages = LONG_MAX;
 571        else {
 572                pages = min(bdi->avg_write_bandwidth / 2,
 573                            global_dirty_limit / DIRTY_SCOPE);
 574                pages = min(pages, work->nr_pages);
 575                pages = round_down(pages + MIN_WRITEBACK_PAGES,
 576                                   MIN_WRITEBACK_PAGES);
 577        }
 578
 579        return pages;
 580}
 581
 582/*
 583 * Write a portion of b_io inodes which belong to @sb.
 584 *
 585 * Return the number of pages and/or inodes written.
 586 */
 587static long writeback_sb_inodes(struct super_block *sb,
 588                                struct bdi_writeback *wb,
 589                                struct wb_writeback_work *work)
 590{
 591        struct writeback_control wbc = {
 592                .sync_mode              = work->sync_mode,
 593                .tagged_writepages      = work->tagged_writepages,
 594                .for_kupdate            = work->for_kupdate,
 595                .for_background         = work->for_background,
 596                .for_sync               = work->for_sync,
 597                .range_cyclic           = work->range_cyclic,
 598                .range_start            = 0,
 599                .range_end              = LLONG_MAX,
 600        };
 601        unsigned long start_time = jiffies;
 602        long write_chunk;
 603        long wrote = 0;  /* count both pages and inodes */
 604
 605        while (!list_empty(&wb->b_io)) {
 606                struct inode *inode = wb_inode(wb->b_io.prev);
 607
 608                if (inode->i_sb != sb) {
 609                        if (work->sb) {
 610                                /*
 611                                 * We only want to write back data for this
 612                                 * superblock, move all inodes not belonging
 613                                 * to it back onto the dirty list.
 614                                 */
 615                                redirty_tail(inode, wb);
 616                                continue;
 617                        }
 618
 619                        /*
 620                         * The inode belongs to a different superblock.
 621                         * Bounce back to the caller to unpin this and
 622                         * pin the next superblock.
 623                         */
 624                        break;
 625                }
 626
 627                /*
 628                 * Don't bother with new inodes or inodes being freed, first
 629                 * kind does not need periodic writeout yet, and for the latter
 630                 * kind writeout is handled by the freer.
 631                 */
 632                spin_lock(&inode->i_lock);
 633                if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
 634                        spin_unlock(&inode->i_lock);
 635                        redirty_tail(inode, wb);
 636                        continue;
 637                }
 638                if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
 639                        /*
 640                         * If this inode is locked for writeback and we are not
 641                         * doing writeback-for-data-integrity, move it to
 642                         * b_more_io so that writeback can proceed with the
 643                         * other inodes on s_io.
 644                         *
 645                         * We'll have another go at writing back this inode
 646                         * when we completed a full scan of b_io.
 647                         */
 648                        spin_unlock(&inode->i_lock);
 649                        requeue_io(inode, wb);
 650                        trace_writeback_sb_inodes_requeue(inode);
 651                        continue;
 652                }
 653                spin_unlock(&wb->list_lock);
 654
 655                /*
 656                 * We already requeued the inode if it had I_SYNC set and we
 657                 * are doing WB_SYNC_NONE writeback. So this catches only the
 658                 * WB_SYNC_ALL case.
 659                 */
 660                if (inode->i_state & I_SYNC) {
 661                        /* Wait for I_SYNC. This function drops i_lock... */
 662                        inode_sleep_on_writeback(inode);
 663                        /* Inode may be gone, start again */
 664                        spin_lock(&wb->list_lock);
 665                        continue;
 666                }
 667                inode->i_state |= I_SYNC;
 668                spin_unlock(&inode->i_lock);
 669
 670                write_chunk = writeback_chunk_size(wb->bdi, work);
 671                wbc.nr_to_write = write_chunk;
 672                wbc.pages_skipped = 0;
 673
 674                /*
 675                 * We use I_SYNC to pin the inode in memory. While it is set
 676                 * evict_inode() will wait so the inode cannot be freed.
 677                 */
 678                __writeback_single_inode(inode, &wbc);
 679
 680                work->nr_pages -= write_chunk - wbc.nr_to_write;
 681                wrote += write_chunk - wbc.nr_to_write;
 682                spin_lock(&wb->list_lock);
 683                spin_lock(&inode->i_lock);
 684                if (!(inode->i_state & I_DIRTY))
 685                        wrote++;
 686                requeue_inode(inode, wb, &wbc);
 687                inode_sync_complete(inode);
 688                spin_unlock(&inode->i_lock);
 689                cond_resched_lock(&wb->list_lock);
 690                /*
 691                 * bail out to wb_writeback() often enough to check
 692                 * background threshold and other termination conditions.
 693                 */
 694                if (wrote) {
 695                        if (time_is_before_jiffies(start_time + HZ / 10UL))
 696                                break;
 697                        if (work->nr_pages <= 0)
 698                                break;
 699                }
 700        }
 701        return wrote;
 702}
 703
 704static long __writeback_inodes_wb(struct bdi_writeback *wb,
 705                                  struct wb_writeback_work *work)
 706{
 707        unsigned long start_time = jiffies;
 708        long wrote = 0;
 709
 710        while (!list_empty(&wb->b_io)) {
 711                struct inode *inode = wb_inode(wb->b_io.prev);
 712                struct super_block *sb = inode->i_sb;
 713
 714                if (!grab_super_passive(sb)) {
 715                        /*
 716                         * grab_super_passive() may fail consistently due to
 717                         * s_umount being grabbed by someone else. Don't use
 718                         * requeue_io() to avoid busy retrying the inode/sb.
 719                         */
 720                        redirty_tail(inode, wb);
 721                        continue;
 722                }
 723                wrote += writeback_sb_inodes(sb, wb, work);
 724                drop_super(sb);
 725
 726                /* refer to the same tests at the end of writeback_sb_inodes */
 727                if (wrote) {
 728                        if (time_is_before_jiffies(start_time + HZ / 10UL))
 729                                break;
 730                        if (work->nr_pages <= 0)
 731                                break;
 732                }
 733        }
 734        /* Leave any unwritten inodes on b_io */
 735        return wrote;
 736}
 737
 738static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
 739                                enum wb_reason reason)
 740{
 741        struct wb_writeback_work work = {
 742                .nr_pages       = nr_pages,
 743                .sync_mode      = WB_SYNC_NONE,
 744                .range_cyclic   = 1,
 745                .reason         = reason,
 746        };
 747
 748        spin_lock(&wb->list_lock);
 749        if (list_empty(&wb->b_io))
 750                queue_io(wb, &work);
 751        __writeback_inodes_wb(wb, &work);
 752        spin_unlock(&wb->list_lock);
 753
 754        return nr_pages - work.nr_pages;
 755}
 756
 757static bool over_bground_thresh(struct backing_dev_info *bdi)
 758{
 759        unsigned long background_thresh, dirty_thresh;
 760
 761        global_dirty_limits(&background_thresh, &dirty_thresh);
 762
 763        if (global_page_state(NR_FILE_DIRTY) +
 764            global_page_state(NR_UNSTABLE_NFS) > background_thresh)
 765                return true;
 766
 767        if (bdi_stat(bdi, BDI_RECLAIMABLE) >
 768                                bdi_dirty_limit(bdi, background_thresh))
 769                return true;
 770
 771        return false;
 772}
 773
 774/*
 775 * Called under wb->list_lock. If there are multiple wb per bdi,
 776 * only the flusher working on the first wb should do it.
 777 */
 778static void wb_update_bandwidth(struct bdi_writeback *wb,
 779                                unsigned long start_time)
 780{
 781        __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
 782}
 783
 784/*
 785 * Explicit flushing or periodic writeback of "old" data.
 786 *
 787 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 788 * dirtying-time in the inode's address_space.  So this periodic writeback code
 789 * just walks the superblock inode list, writing back any inodes which are
 790 * older than a specific point in time.
 791 *
 792 * Try to run once per dirty_writeback_interval.  But if a writeback event
 793 * takes longer than a dirty_writeback_interval interval, then leave a
 794 * one-second gap.
 795 *
 796 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 797 * all dirty pages if they are all attached to "old" mappings.
 798 */
 799static long wb_writeback(struct bdi_writeback *wb,
 800                         struct wb_writeback_work *work)
 801{
 802        unsigned long wb_start = jiffies;
 803        long nr_pages = work->nr_pages;
 804        unsigned long oldest_jif;
 805        struct inode *inode;
 806        long progress;
 807
 808        oldest_jif = jiffies;
 809        work->older_than_this = &oldest_jif;
 810
 811        spin_lock(&wb->list_lock);
 812        for (;;) {
 813                /*
 814                 * Stop writeback when nr_pages has been consumed
 815                 */
 816                if (work->nr_pages <= 0)
 817                        break;
 818
 819                /*
 820                 * Background writeout and kupdate-style writeback may
 821                 * run forever. Stop them if there is other work to do
 822                 * so that e.g. sync can proceed. They'll be restarted
 823                 * after the other works are all done.
 824                 */
 825                if ((work->for_background || work->for_kupdate) &&
 826                    !list_empty(&wb->bdi->work_list))
 827                        break;
 828
 829                /*
 830                 * For background writeout, stop when we are below the
 831                 * background dirty threshold
 832                 */
 833                if (work->for_background && !over_bground_thresh(wb->bdi))
 834                        break;
 835
 836                /*
 837                 * Kupdate and background works are special and we want to
 838                 * include all inodes that need writing. Livelock avoidance is
 839                 * handled by these works yielding to any other work so we are
 840                 * safe.
 841                 */
 842                if (work->for_kupdate) {
 843                        oldest_jif = jiffies -
 844                                msecs_to_jiffies(dirty_expire_interval * 10);
 845                } else if (work->for_background)
 846                        oldest_jif = jiffies;
 847
 848                trace_writeback_start(wb->bdi, work);
 849                if (list_empty(&wb->b_io))
 850                        queue_io(wb, work);
 851                if (work->sb)
 852                        progress = writeback_sb_inodes(work->sb, wb, work);
 853                else
 854                        progress = __writeback_inodes_wb(wb, work);
 855                trace_writeback_written(wb->bdi, work);
 856
 857                wb_update_bandwidth(wb, wb_start);
 858
 859                /*
 860                 * Did we write something? Try for more
 861                 *
 862                 * Dirty inodes are moved to b_io for writeback in batches.
 863                 * The completion of the current batch does not necessarily
 864                 * mean the overall work is done. So we keep looping as long
 865                 * as made some progress on cleaning pages or inodes.
 866                 */
 867                if (progress)
 868                        continue;
 869                /*
 870                 * No more inodes for IO, bail
 871                 */
 872                if (list_empty(&wb->b_more_io))
 873                        break;
 874                /*
 875                 * Nothing written. Wait for some inode to
 876                 * become available for writeback. Otherwise
 877                 * we'll just busyloop.
 878                 */
 879                if (!list_empty(&wb->b_more_io))  {
 880                        trace_writeback_wait(wb->bdi, work);
 881                        inode = wb_inode(wb->b_more_io.prev);
 882                        spin_lock(&inode->i_lock);
 883                        spin_unlock(&wb->list_lock);
 884                        /* This function drops i_lock... */
 885                        inode_sleep_on_writeback(inode);
 886                        spin_lock(&wb->list_lock);
 887                }
 888        }
 889        spin_unlock(&wb->list_lock);
 890
 891        return nr_pages - work->nr_pages;
 892}
 893
 894/*
 895 * Return the next wb_writeback_work struct that hasn't been processed yet.
 896 */
 897static struct wb_writeback_work *
 898get_next_work_item(struct backing_dev_info *bdi)
 899{
 900        struct wb_writeback_work *work = NULL;
 901
 902        spin_lock_bh(&bdi->wb_lock);
 903        if (!list_empty(&bdi->work_list)) {
 904                work = list_entry(bdi->work_list.next,
 905                                  struct wb_writeback_work, list);
 906                list_del_init(&work->list);
 907        }
 908        spin_unlock_bh(&bdi->wb_lock);
 909        return work;
 910}
 911
 912/*
 913 * Add in the number of potentially dirty inodes, because each inode
 914 * write can dirty pagecache in the underlying blockdev.
 915 */
 916static unsigned long get_nr_dirty_pages(void)
 917{
 918        return global_page_state(NR_FILE_DIRTY) +
 919                global_page_state(NR_UNSTABLE_NFS) +
 920                get_nr_dirty_inodes();
 921}
 922
 923static long wb_check_background_flush(struct bdi_writeback *wb)
 924{
 925        if (over_bground_thresh(wb->bdi)) {
 926
 927                struct wb_writeback_work work = {
 928                        .nr_pages       = LONG_MAX,
 929                        .sync_mode      = WB_SYNC_NONE,
 930                        .for_background = 1,
 931                        .range_cyclic   = 1,
 932                        .reason         = WB_REASON_BACKGROUND,
 933                };
 934
 935                return wb_writeback(wb, &work);
 936        }
 937
 938        return 0;
 939}
 940
 941static long wb_check_old_data_flush(struct bdi_writeback *wb)
 942{
 943        unsigned long expired;
 944        long nr_pages;
 945
 946        /*
 947         * When set to zero, disable periodic writeback
 948         */
 949        if (!dirty_writeback_interval)
 950                return 0;
 951
 952        expired = wb->last_old_flush +
 953                        msecs_to_jiffies(dirty_writeback_interval * 10);
 954        if (time_before(jiffies, expired))
 955                return 0;
 956
 957        wb->last_old_flush = jiffies;
 958        nr_pages = get_nr_dirty_pages();
 959
 960        if (nr_pages) {
 961                struct wb_writeback_work work = {
 962                        .nr_pages       = nr_pages,
 963                        .sync_mode      = WB_SYNC_NONE,
 964                        .for_kupdate    = 1,
 965                        .range_cyclic   = 1,
 966                        .reason         = WB_REASON_PERIODIC,
 967                };
 968
 969                return wb_writeback(wb, &work);
 970        }
 971
 972        return 0;
 973}
 974
 975/*
 976 * Retrieve work items and do the writeback they describe
 977 */
 978static long wb_do_writeback(struct bdi_writeback *wb)
 979{
 980        struct backing_dev_info *bdi = wb->bdi;
 981        struct wb_writeback_work *work;
 982        long wrote = 0;
 983
 984        set_bit(BDI_writeback_running, &wb->bdi->state);
 985        while ((work = get_next_work_item(bdi)) != NULL) {
 986
 987                trace_writeback_exec(bdi, work);
 988
 989                wrote += wb_writeback(wb, work);
 990
 991                /*
 992                 * Notify the caller of completion if this is a synchronous
 993                 * work item, otherwise just free it.
 994                 */
 995                if (work->done)
 996                        complete(work->done);
 997                else
 998                        kfree(work);
 999        }
1000
1001        /*
1002         * Check for periodic writeback, kupdated() style
1003         */
1004        wrote += wb_check_old_data_flush(wb);
1005        wrote += wb_check_background_flush(wb);
1006        clear_bit(BDI_writeback_running, &wb->bdi->state);
1007
1008        return wrote;
1009}
1010
1011/*
1012 * Handle writeback of dirty data for the device backed by this bdi. Also
1013 * reschedules periodically and does kupdated style flushing.
1014 */
1015void bdi_writeback_workfn(struct work_struct *work)
1016{
1017        struct bdi_writeback *wb = container_of(to_delayed_work(work),
1018                                                struct bdi_writeback, dwork);
1019        struct backing_dev_info *bdi = wb->bdi;
1020        long pages_written;
1021
1022        set_worker_desc("flush-%s", dev_name(bdi->dev));
1023        current->flags |= PF_SWAPWRITE;
1024
1025        if (likely(!current_is_workqueue_rescuer() ||
1026                   !test_bit(BDI_registered, &bdi->state))) {
1027                /*
1028                 * The normal path.  Keep writing back @bdi until its
1029                 * work_list is empty.  Note that this path is also taken
1030                 * if @bdi is shutting down even when we're running off the
1031                 * rescuer as work_list needs to be drained.
1032                 */
1033                do {
1034                        pages_written = wb_do_writeback(wb);
1035                        trace_writeback_pages_written(pages_written);
1036                } while (!list_empty(&bdi->work_list));
1037        } else {
1038                /*
1039                 * bdi_wq can't get enough workers and we're running off
1040                 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1041                 * enough for efficient IO.
1042                 */
1043                pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1044                                                    WB_REASON_FORKER_THREAD);
1045                trace_writeback_pages_written(pages_written);
1046        }
1047
1048        if (!list_empty(&bdi->work_list))
1049                mod_delayed_work(bdi_wq, &wb->dwork, 0);
1050        else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1051                bdi_wakeup_thread_delayed(bdi);
1052
1053        current->flags &= ~PF_SWAPWRITE;
1054}
1055
1056/*
1057 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1058 * the whole world.
1059 */
1060void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1061{
1062        struct backing_dev_info *bdi;
1063
1064        if (!nr_pages)
1065                nr_pages = get_nr_dirty_pages();
1066
1067        rcu_read_lock();
1068        list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1069                if (!bdi_has_dirty_io(bdi))
1070                        continue;
1071                __bdi_start_writeback(bdi, nr_pages, false, reason);
1072        }
1073        rcu_read_unlock();
1074}
1075
1076static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1077{
1078        if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1079                struct dentry *dentry;
1080                const char *name = "?";
1081
1082                dentry = d_find_alias(inode);
1083                if (dentry) {
1084                        spin_lock(&dentry->d_lock);
1085                        name = (const char *) dentry->d_name.name;
1086                }
1087                printk(KERN_DEBUG
1088                       "%s(%d): dirtied inode %lu (%s) on %s\n",
1089                       current->comm, task_pid_nr(current), inode->i_ino,
1090                       name, inode->i_sb->s_id);
1091                if (dentry) {
1092                        spin_unlock(&dentry->d_lock);
1093                        dput(dentry);
1094                }
1095        }
1096}
1097
1098/**
1099 *      __mark_inode_dirty -    internal function
1100 *      @inode: inode to mark
1101 *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1102 *      Mark an inode as dirty. Callers should use mark_inode_dirty or
1103 *      mark_inode_dirty_sync.
1104 *
1105 * Put the inode on the super block's dirty list.
1106 *
1107 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1108 * dirty list only if it is hashed or if it refers to a blockdev.
1109 * If it was not hashed, it will never be added to the dirty list
1110 * even if it is later hashed, as it will have been marked dirty already.
1111 *
1112 * In short, make sure you hash any inodes _before_ you start marking
1113 * them dirty.
1114 *
1115 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1116 * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1117 * the kernel-internal blockdev inode represents the dirtying time of the
1118 * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1119 * page->mapping->host, so the page-dirtying time is recorded in the internal
1120 * blockdev inode.
1121 */
1122void __mark_inode_dirty(struct inode *inode, int flags)
1123{
1124        struct super_block *sb = inode->i_sb;
1125        struct backing_dev_info *bdi = NULL;
1126
1127        /*
1128         * Don't do this for I_DIRTY_PAGES - that doesn't actually
1129         * dirty the inode itself
1130         */
1131        if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1132                trace_writeback_dirty_inode_start(inode, flags);
1133
1134                if (sb->s_op->dirty_inode)
1135                        sb->s_op->dirty_inode(inode, flags);
1136
1137                trace_writeback_dirty_inode(inode, flags);
1138        }
1139
1140        /*
1141         * make sure that changes are seen by all cpus before we test i_state
1142         * -- mikulas
1143         */
1144        smp_mb();
1145
1146        /* avoid the locking if we can */
1147        if ((inode->i_state & flags) == flags)
1148                return;
1149
1150        if (unlikely(block_dump))
1151                block_dump___mark_inode_dirty(inode);
1152
1153        spin_lock(&inode->i_lock);
1154        if ((inode->i_state & flags) != flags) {
1155                const int was_dirty = inode->i_state & I_DIRTY;
1156
1157                inode->i_state |= flags;
1158
1159                /*
1160                 * If the inode is being synced, just update its dirty state.
1161                 * The unlocker will place the inode on the appropriate
1162                 * superblock list, based upon its state.
1163                 */
1164                if (inode->i_state & I_SYNC)
1165                        goto out_unlock_inode;
1166
1167                /*
1168                 * Only add valid (hashed) inodes to the superblock's
1169                 * dirty list.  Add blockdev inodes as well.
1170                 */
1171                if (!S_ISBLK(inode->i_mode)) {
1172                        if (inode_unhashed(inode))
1173                                goto out_unlock_inode;
1174                }
1175                if (inode->i_state & I_FREEING)
1176                        goto out_unlock_inode;
1177
1178                /*
1179                 * If the inode was already on b_dirty/b_io/b_more_io, don't
1180                 * reposition it (that would break b_dirty time-ordering).
1181                 */
1182                if (!was_dirty) {
1183                        bool wakeup_bdi = false;
1184                        bdi = inode_to_bdi(inode);
1185
1186                        spin_unlock(&inode->i_lock);
1187                        spin_lock(&bdi->wb.list_lock);
1188                        if (bdi_cap_writeback_dirty(bdi)) {
1189                                WARN(!test_bit(BDI_registered, &bdi->state),
1190                                     "bdi-%s not registered\n", bdi->name);
1191
1192                                /*
1193                                 * If this is the first dirty inode for this
1194                                 * bdi, we have to wake-up the corresponding
1195                                 * bdi thread to make sure background
1196                                 * write-back happens later.
1197                                 */
1198                                if (!wb_has_dirty_io(&bdi->wb))
1199                                        wakeup_bdi = true;
1200                        }
1201
1202                        inode->dirtied_when = jiffies;
1203                        list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1204                        spin_unlock(&bdi->wb.list_lock);
1205
1206                        if (wakeup_bdi)
1207                                bdi_wakeup_thread_delayed(bdi);
1208                        return;
1209                }
1210        }
1211out_unlock_inode:
1212        spin_unlock(&inode->i_lock);
1213
1214}
1215EXPORT_SYMBOL(__mark_inode_dirty);
1216
1217static void wait_sb_inodes(struct super_block *sb)
1218{
1219        struct inode *inode, *old_inode = NULL;
1220
1221        /*
1222         * We need to be protected against the filesystem going from
1223         * r/o to r/w or vice versa.
1224         */
1225        WARN_ON(!rwsem_is_locked(&sb->s_umount));
1226
1227        spin_lock(&inode_sb_list_lock);
1228
1229        /*
1230         * Data integrity sync. Must wait for all pages under writeback,
1231         * because there may have been pages dirtied before our sync
1232         * call, but which had writeout started before we write it out.
1233         * In which case, the inode may not be on the dirty list, but
1234         * we still have to wait for that writeout.
1235         */
1236        list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1237                struct address_space *mapping = inode->i_mapping;
1238
1239                spin_lock(&inode->i_lock);
1240                if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1241                    (mapping->nrpages == 0)) {
1242                        spin_unlock(&inode->i_lock);
1243                        continue;
1244                }
1245                __iget(inode);
1246                spin_unlock(&inode->i_lock);
1247                spin_unlock(&inode_sb_list_lock);
1248
1249                /*
1250                 * We hold a reference to 'inode' so it couldn't have been
1251                 * removed from s_inodes list while we dropped the
1252                 * inode_sb_list_lock.  We cannot iput the inode now as we can
1253                 * be holding the last reference and we cannot iput it under
1254                 * inode_sb_list_lock. So we keep the reference and iput it
1255                 * later.
1256                 */
1257                iput(old_inode);
1258                old_inode = inode;
1259
1260                /*
1261                 * We keep the error status of individual mapping so that
1262                 * applications can catch the writeback error using fsync(2).
1263                 * See filemap_fdatawait_keep_errors() for details.
1264                 */
1265                filemap_fdatawait_keep_errors(mapping);
1266
1267                cond_resched();
1268
1269                spin_lock(&inode_sb_list_lock);
1270        }
1271        spin_unlock(&inode_sb_list_lock);
1272        iput(old_inode);
1273}
1274
1275/**
1276 * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
1277 * @sb: the superblock
1278 * @nr: the number of pages to write
1279 * @reason: reason why some writeback work initiated
1280 *
1281 * Start writeback on some inodes on this super_block. No guarantees are made
1282 * on how many (if any) will be written, and this function does not wait
1283 * for IO completion of submitted IO.
1284 */
1285void writeback_inodes_sb_nr(struct super_block *sb,
1286                            unsigned long nr,
1287                            enum wb_reason reason)
1288{
1289        DECLARE_COMPLETION_ONSTACK(done);
1290        struct wb_writeback_work work = {
1291                .sb                     = sb,
1292                .sync_mode              = WB_SYNC_NONE,
1293                .tagged_writepages      = 1,
1294                .done                   = &done,
1295                .nr_pages               = nr,
1296                .reason                 = reason,
1297        };
1298
1299        if (sb->s_bdi == &noop_backing_dev_info)
1300                return;
1301        WARN_ON(!rwsem_is_locked(&sb->s_umount));
1302        bdi_queue_work(sb->s_bdi, &work);
1303        wait_for_completion(&done);
1304}
1305EXPORT_SYMBOL(writeback_inodes_sb_nr);
1306
1307/**
1308 * writeback_inodes_sb  -       writeback dirty inodes from given super_block
1309 * @sb: the superblock
1310 * @reason: reason why some writeback work was initiated
1311 *
1312 * Start writeback on some inodes on this super_block. No guarantees are made
1313 * on how many (if any) will be written, and this function does not wait
1314 * for IO completion of submitted IO.
1315 */
1316void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1317{
1318        return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1319}
1320EXPORT_SYMBOL(writeback_inodes_sb);
1321
1322/**
1323 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1324 * @sb: the superblock
1325 * @nr: the number of pages to write
1326 * @reason: the reason of writeback
1327 *
1328 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1329 * Returns 1 if writeback was started, 0 if not.
1330 */
1331int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1332                                  unsigned long nr,
1333                                  enum wb_reason reason)
1334{
1335        if (writeback_in_progress(sb->s_bdi))
1336                return 1;
1337
1338        if (!down_read_trylock(&sb->s_umount))
1339                return 0;
1340
1341        writeback_inodes_sb_nr(sb, nr, reason);
1342        up_read(&sb->s_umount);
1343        return 1;
1344}
1345EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1346
1347/**
1348 * try_to_writeback_inodes_sb - try to start writeback if none underway
1349 * @sb: the superblock
1350 * @reason: reason why some writeback work was initiated
1351 *
1352 * Implement by try_to_writeback_inodes_sb_nr()
1353 * Returns 1 if writeback was started, 0 if not.
1354 */
1355int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1356{
1357        return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1358}
1359EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1360
1361/**
1362 * sync_inodes_sb       -       sync sb inode pages
1363 * @sb: the superblock
1364 *
1365 * This function writes and waits on any dirty inode belonging to this
1366 * super_block.
1367 */
1368void sync_inodes_sb(struct super_block *sb)
1369{
1370        DECLARE_COMPLETION_ONSTACK(done);
1371        struct wb_writeback_work work = {
1372                .sb             = sb,
1373                .sync_mode      = WB_SYNC_ALL,
1374                .nr_pages       = LONG_MAX,
1375                .range_cyclic   = 0,
1376                .done           = &done,
1377                .reason         = WB_REASON_SYNC,
1378                .for_sync       = 1,
1379        };
1380
1381        /* Nothing to do? */
1382        if (sb->s_bdi == &noop_backing_dev_info)
1383                return;
1384        WARN_ON(!rwsem_is_locked(&sb->s_umount));
1385
1386        bdi_queue_work(sb->s_bdi, &work);
1387        wait_for_completion(&done);
1388
1389        wait_sb_inodes(sb);
1390}
1391EXPORT_SYMBOL(sync_inodes_sb);
1392
1393/**
1394 * write_inode_now      -       write an inode to disk
1395 * @inode: inode to write to disk
1396 * @sync: whether the write should be synchronous or not
1397 *
1398 * This function commits an inode to disk immediately if it is dirty. This is
1399 * primarily needed by knfsd.
1400 *
1401 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1402 */
1403int write_inode_now(struct inode *inode, int sync)
1404{
1405        struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1406        struct writeback_control wbc = {
1407                .nr_to_write = LONG_MAX,
1408                .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1409                .range_start = 0,
1410                .range_end = LLONG_MAX,
1411        };
1412
1413        if (!mapping_cap_writeback_dirty(inode->i_mapping))
1414                wbc.nr_to_write = 0;
1415
1416        might_sleep();
1417        return writeback_single_inode(inode, wb, &wbc);
1418}
1419EXPORT_SYMBOL(write_inode_now);
1420
1421/**
1422 * sync_inode - write an inode and its pages to disk.
1423 * @inode: the inode to sync
1424 * @wbc: controls the writeback mode
1425 *
1426 * sync_inode() will write an inode and its pages to disk.  It will also
1427 * correctly update the inode on its superblock's dirty inode lists and will
1428 * update inode->i_state.
1429 *
1430 * The caller must have a ref on the inode.
1431 */
1432int sync_inode(struct inode *inode, struct writeback_control *wbc)
1433{
1434        return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1435}
1436EXPORT_SYMBOL(sync_inode);
1437
1438/**
1439 * sync_inode_metadata - write an inode to disk
1440 * @inode: the inode to sync
1441 * @wait: wait for I/O to complete.
1442 *
1443 * Write an inode to disk and adjust its dirty state after completion.
1444 *
1445 * Note: only writes the actual inode, no associated data or other metadata.
1446 */
1447int sync_inode_metadata(struct inode *inode, int wait)
1448{
1449        struct writeback_control wbc = {
1450                .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1451                .nr_to_write = 0, /* metadata-only */
1452        };
1453
1454        return sync_inode(inode, &wbc);
1455}
1456EXPORT_SYMBOL(sync_inode_metadata);
1457