1#ifndef _LINUX_JIFFIES_H 2#define _LINUX_JIFFIES_H 3 4#include <linux/math64.h> 5#include <linux/kernel.h> 6#include <linux/types.h> 7#include <linux/time.h> 8#include <linux/timex.h> 9#include <asm/param.h> /* for HZ */ 10 11/* 12 * The following defines establish the engineering parameters of the PLL 13 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 14 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 15 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 16 * nearest power of two in order to avoid hardware multiply operations. 17 */ 18#if HZ >= 12 && HZ < 24 19# define SHIFT_HZ 4 20#elif HZ >= 24 && HZ < 48 21# define SHIFT_HZ 5 22#elif HZ >= 48 && HZ < 96 23# define SHIFT_HZ 6 24#elif HZ >= 96 && HZ < 192 25# define SHIFT_HZ 7 26#elif HZ >= 192 && HZ < 384 27# define SHIFT_HZ 8 28#elif HZ >= 384 && HZ < 768 29# define SHIFT_HZ 9 30#elif HZ >= 768 && HZ < 1536 31# define SHIFT_HZ 10 32#elif HZ >= 1536 && HZ < 3072 33# define SHIFT_HZ 11 34#elif HZ >= 3072 && HZ < 6144 35# define SHIFT_HZ 12 36#elif HZ >= 6144 && HZ < 12288 37# define SHIFT_HZ 13 38#else 39# error Invalid value of HZ. 40#endif 41 42/* Suppose we want to divide two numbers NOM and DEN: NOM/DEN, then we can 43 * improve accuracy by shifting LSH bits, hence calculating: 44 * (NOM << LSH) / DEN 45 * This however means trouble for large NOM, because (NOM << LSH) may no 46 * longer fit in 32 bits. The following way of calculating this gives us 47 * some slack, under the following conditions: 48 * - (NOM / DEN) fits in (32 - LSH) bits. 49 * - (NOM % DEN) fits in (32 - LSH) bits. 50 */ 51#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \ 52 + ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN)) 53 54/* LATCH is used in the interval timer and ftape setup. */ 55#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 56 57extern int register_refined_jiffies(long clock_tick_rate); 58 59/* TICK_NSEC is the time between ticks in nsec assuming SHIFTED_HZ */ 60#define TICK_NSEC ((NSEC_PER_SEC+HZ/2)/HZ) 61 62/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 63#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 64 65/* some arch's have a small-data section that can be accessed register-relative 66 * but that can only take up to, say, 4-byte variables. jiffies being part of 67 * an 8-byte variable may not be correctly accessed unless we force the issue 68 */ 69#define __jiffy_data __attribute__((section(".data"))) 70 71/* 72 * The 64-bit value is not atomic - you MUST NOT read it 73 * without sampling the sequence number in jiffies_lock. 74 * get_jiffies_64() will do this for you as appropriate. 75 */ 76extern u64 __jiffy_data jiffies_64; 77extern unsigned long volatile __jiffy_data jiffies; 78 79#if (BITS_PER_LONG < 64) 80u64 get_jiffies_64(void); 81#else 82static inline u64 get_jiffies_64(void) 83{ 84 return (u64)jiffies; 85} 86#endif 87 88/* 89 * These inlines deal with timer wrapping correctly. You are 90 * strongly encouraged to use them 91 * 1. Because people otherwise forget 92 * 2. Because if the timer wrap changes in future you won't have to 93 * alter your driver code. 94 * 95 * time_after(a,b) returns true if the time a is after time b. 96 * 97 * Do this with "<0" and ">=0" to only test the sign of the result. A 98 * good compiler would generate better code (and a really good compiler 99 * wouldn't care). Gcc is currently neither. 100 */ 101#define time_after(a,b) \ 102 (typecheck(unsigned long, a) && \ 103 typecheck(unsigned long, b) && \ 104 ((long)((b) - (a)) < 0)) 105#define time_before(a,b) time_after(b,a) 106 107#define time_after_eq(a,b) \ 108 (typecheck(unsigned long, a) && \ 109 typecheck(unsigned long, b) && \ 110 ((long)((a) - (b)) >= 0)) 111#define time_before_eq(a,b) time_after_eq(b,a) 112 113/* 114 * Calculate whether a is in the range of [b, c]. 115 */ 116#define time_in_range(a,b,c) \ 117 (time_after_eq(a,b) && \ 118 time_before_eq(a,c)) 119 120/* 121 * Calculate whether a is in the range of [b, c). 122 */ 123#define time_in_range_open(a,b,c) \ 124 (time_after_eq(a,b) && \ 125 time_before(a,c)) 126 127/* Same as above, but does so with platform independent 64bit types. 128 * These must be used when utilizing jiffies_64 (i.e. return value of 129 * get_jiffies_64() */ 130#define time_after64(a,b) \ 131 (typecheck(__u64, a) && \ 132 typecheck(__u64, b) && \ 133 ((__s64)((b) - (a)) < 0)) 134#define time_before64(a,b) time_after64(b,a) 135 136#define time_after_eq64(a,b) \ 137 (typecheck(__u64, a) && \ 138 typecheck(__u64, b) && \ 139 ((__s64)((a) - (b)) >= 0)) 140#define time_before_eq64(a,b) time_after_eq64(b,a) 141 142#define time_in_range64(a, b, c) \ 143 (time_after_eq64(a, b) && \ 144 time_before_eq64(a, c)) 145 146/* 147 * These four macros compare jiffies and 'a' for convenience. 148 */ 149 150/* time_is_before_jiffies(a) return true if a is before jiffies */ 151#define time_is_before_jiffies(a) time_after(jiffies, a) 152 153/* time_is_after_jiffies(a) return true if a is after jiffies */ 154#define time_is_after_jiffies(a) time_before(jiffies, a) 155 156/* time_is_before_eq_jiffies(a) return true if a is before or equal to jiffies*/ 157#define time_is_before_eq_jiffies(a) time_after_eq(jiffies, a) 158 159/* time_is_after_eq_jiffies(a) return true if a is after or equal to jiffies*/ 160#define time_is_after_eq_jiffies(a) time_before_eq(jiffies, a) 161 162/* 163 * Have the 32 bit jiffies value wrap 5 minutes after boot 164 * so jiffies wrap bugs show up earlier. 165 */ 166#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 167 168/* 169 * Change timeval to jiffies, trying to avoid the 170 * most obvious overflows.. 171 * 172 * And some not so obvious. 173 * 174 * Note that we don't want to return LONG_MAX, because 175 * for various timeout reasons we often end up having 176 * to wait "jiffies+1" in order to guarantee that we wait 177 * at _least_ "jiffies" - so "jiffies+1" had better still 178 * be positive. 179 */ 180#define MAX_JIFFY_OFFSET ((LONG_MAX >> 1)-1) 181 182extern unsigned long preset_lpj; 183 184/* 185 * We want to do realistic conversions of time so we need to use the same 186 * values the update wall clock code uses as the jiffies size. This value 187 * is: TICK_NSEC (which is defined in timex.h). This 188 * is a constant and is in nanoseconds. We will use scaled math 189 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 190 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 191 * constants and so are computed at compile time. SHIFT_HZ (computed in 192 * timex.h) adjusts the scaling for different HZ values. 193 194 * Scaled math??? What is that? 195 * 196 * Scaled math is a way to do integer math on values that would, 197 * otherwise, either overflow, underflow, or cause undesired div 198 * instructions to appear in the execution path. In short, we "scale" 199 * up the operands so they take more bits (more precision, less 200 * underflow), do the desired operation and then "scale" the result back 201 * by the same amount. If we do the scaling by shifting we avoid the 202 * costly mpy and the dastardly div instructions. 203 204 * Suppose, for example, we want to convert from seconds to jiffies 205 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 206 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 207 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 208 * might calculate at compile time, however, the result will only have 209 * about 3-4 bits of precision (less for smaller values of HZ). 210 * 211 * So, we scale as follows: 212 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 213 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 214 * Then we make SCALE a power of two so: 215 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 216 * Now we define: 217 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 218 * jiff = (sec * SEC_CONV) >> SCALE; 219 * 220 * Often the math we use will expand beyond 32-bits so we tell C how to 221 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 222 * which should take the result back to 32-bits. We want this expansion 223 * to capture as much precision as possible. At the same time we don't 224 * want to overflow so we pick the SCALE to avoid this. In this file, 225 * that means using a different scale for each range of HZ values (as 226 * defined in timex.h). 227 * 228 * For those who want to know, gcc will give a 64-bit result from a "*" 229 * operator if the result is a long long AND at least one of the 230 * operands is cast to long long (usually just prior to the "*" so as 231 * not to confuse it into thinking it really has a 64-bit operand, 232 * which, buy the way, it can do, but it takes more code and at least 2 233 * mpys). 234 235 * We also need to be aware that one second in nanoseconds is only a 236 * couple of bits away from overflowing a 32-bit word, so we MUST use 237 * 64-bits to get the full range time in nanoseconds. 238 239 */ 240 241/* 242 * Here are the scales we will use. One for seconds, nanoseconds and 243 * microseconds. 244 * 245 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 246 * check if the sign bit is set. If not, we bump the shift count by 1. 247 * (Gets an extra bit of precision where we can use it.) 248 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 249 * Haven't tested others. 250 251 * Limits of cpp (for #if expressions) only long (no long long), but 252 * then we only need the most signicant bit. 253 */ 254 255#define SEC_JIFFIE_SC (31 - SHIFT_HZ) 256#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 257#undef SEC_JIFFIE_SC 258#define SEC_JIFFIE_SC (32 - SHIFT_HZ) 259#endif 260#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 261#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 262 TICK_NSEC -1) / (u64)TICK_NSEC)) 263 264#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 265 TICK_NSEC -1) / (u64)TICK_NSEC)) 266/* 267 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 268 * into seconds. The 64-bit case will overflow if we are not careful, 269 * so use the messy SH_DIV macro to do it. Still all constants. 270 */ 271#if BITS_PER_LONG < 64 272# define MAX_SEC_IN_JIFFIES \ 273 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 274#else /* take care of overflow on 64 bits machines */ 275# define MAX_SEC_IN_JIFFIES \ 276 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 277 278#endif 279 280/* 281 * Convert various time units to each other: 282 */ 283extern unsigned int jiffies_to_msecs(const unsigned long j); 284extern unsigned int jiffies_to_usecs(const unsigned long j); 285extern unsigned long msecs_to_jiffies(const unsigned int m); 286extern unsigned long usecs_to_jiffies(const unsigned int u); 287extern unsigned long timespec_to_jiffies(const struct timespec *value); 288extern void jiffies_to_timespec(const unsigned long jiffies, 289 struct timespec *value); 290extern unsigned long timeval_to_jiffies(const struct timeval *value); 291extern void jiffies_to_timeval(const unsigned long jiffies, 292 struct timeval *value); 293 294extern clock_t jiffies_to_clock_t(unsigned long x); 295static inline clock_t jiffies_delta_to_clock_t(long delta) 296{ 297 return jiffies_to_clock_t(max(0L, delta)); 298} 299 300extern unsigned long clock_t_to_jiffies(unsigned long x); 301extern u64 jiffies_64_to_clock_t(u64 x); 302extern u64 nsec_to_clock_t(u64 x); 303extern u64 nsecs_to_jiffies64(u64 n); 304extern unsigned long nsecs_to_jiffies(u64 n); 305 306#define TIMESTAMP_SIZE 30 307 308#endif 309