linux/kernel/debug/kdb/kdb_main.c
<<
>>
Prefs
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
  24#include <linux/atomic.h>
  25#include <linux/module.h>
  26#include <linux/mm.h>
  27#include <linux/init.h>
  28#include <linux/kallsyms.h>
  29#include <linux/kgdb.h>
  30#include <linux/kdb.h>
  31#include <linux/notifier.h>
  32#include <linux/interrupt.h>
  33#include <linux/delay.h>
  34#include <linux/nmi.h>
  35#include <linux/time.h>
  36#include <linux/ptrace.h>
  37#include <linux/sysctl.h>
  38#include <linux/cpu.h>
  39#include <linux/kdebug.h>
  40#include <linux/proc_fs.h>
  41#include <linux/uaccess.h>
  42#include <linux/slab.h>
  43#include "kdb_private.h"
  44
  45#define GREP_LEN 256
  46char kdb_grep_string[GREP_LEN];
  47int kdb_grepping_flag;
  48EXPORT_SYMBOL(kdb_grepping_flag);
  49int kdb_grep_leading;
  50int kdb_grep_trailing;
  51
  52/*
  53 * Kernel debugger state flags
  54 */
  55int kdb_flags;
  56atomic_t kdb_event;
  57
  58/*
  59 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  60 * single thread processors through the kernel debugger.
  61 */
  62int kdb_initial_cpu = -1;       /* cpu number that owns kdb */
  63int kdb_nextline = 1;
  64int kdb_state;                  /* General KDB state */
  65
  66struct task_struct *kdb_current_task;
  67EXPORT_SYMBOL(kdb_current_task);
  68struct pt_regs *kdb_current_regs;
  69
  70const char *kdb_diemsg;
  71static int kdb_go_count;
  72#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  73static unsigned int kdb_continue_catastrophic =
  74        CONFIG_KDB_CONTINUE_CATASTROPHIC;
  75#else
  76static unsigned int kdb_continue_catastrophic;
  77#endif
  78
  79/* kdb_commands describes the available commands. */
  80static kdbtab_t *kdb_commands;
  81#define KDB_BASE_CMD_MAX 50
  82static int kdb_max_commands = KDB_BASE_CMD_MAX;
  83static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  84#define for_each_kdbcmd(cmd, num)                                       \
  85        for ((cmd) = kdb_base_commands, (num) = 0;                      \
  86             num < kdb_max_commands;                                    \
  87             num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  88
  89typedef struct _kdbmsg {
  90        int     km_diag;        /* kdb diagnostic */
  91        char    *km_msg;        /* Corresponding message text */
  92} kdbmsg_t;
  93
  94#define KDBMSG(msgnum, text) \
  95        { KDB_##msgnum, text }
  96
  97static kdbmsg_t kdbmsgs[] = {
  98        KDBMSG(NOTFOUND, "Command Not Found"),
  99        KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 100        KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 101               "8 is only allowed on 64 bit systems"),
 102        KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 103        KDBMSG(NOTENV, "Cannot find environment variable"),
 104        KDBMSG(NOENVVALUE, "Environment variable should have value"),
 105        KDBMSG(NOTIMP, "Command not implemented"),
 106        KDBMSG(ENVFULL, "Environment full"),
 107        KDBMSG(ENVBUFFULL, "Environment buffer full"),
 108        KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 109#ifdef CONFIG_CPU_XSCALE
 110        KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 111#else
 112        KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 113#endif
 114        KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 115        KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 116        KDBMSG(BADMODE, "Invalid IDMODE"),
 117        KDBMSG(BADINT, "Illegal numeric value"),
 118        KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 119        KDBMSG(BADREG, "Invalid register name"),
 120        KDBMSG(BADCPUNUM, "Invalid cpu number"),
 121        KDBMSG(BADLENGTH, "Invalid length field"),
 122        KDBMSG(NOBP, "No Breakpoint exists"),
 123        KDBMSG(BADADDR, "Invalid address"),
 124};
 125#undef KDBMSG
 126
 127static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 128
 129
 130/*
 131 * Initial environment.   This is all kept static and local to
 132 * this file.   We don't want to rely on the memory allocation
 133 * mechanisms in the kernel, so we use a very limited allocate-only
 134 * heap for new and altered environment variables.  The entire
 135 * environment is limited to a fixed number of entries (add more
 136 * to __env[] if required) and a fixed amount of heap (add more to
 137 * KDB_ENVBUFSIZE if required).
 138 */
 139
 140static char *__env[] = {
 141#if defined(CONFIG_SMP)
 142 "PROMPT=[%d]kdb> ",
 143#else
 144 "PROMPT=kdb> ",
 145#endif
 146 "MOREPROMPT=more> ",
 147 "RADIX=16",
 148 "MDCOUNT=8",                   /* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = ARRAY_SIZE(__env);
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182        struct task_struct *p = curr_task(cpu);
 183#ifdef  _TIF_MCA_INIT
 184        if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185                p = krp->p;
 186#endif
 187        return p;
 188}
 189
 190/*
 191 * kdbgetenv - This function will return the character string value of
 192 *      an environment variable.
 193 * Parameters:
 194 *      match   A character string representing an environment variable.
 195 * Returns:
 196 *      NULL    No environment variable matches 'match'
 197 *      char*   Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201        char **ep = __env;
 202        int matchlen = strlen(match);
 203        int i;
 204
 205        for (i = 0; i < __nenv; i++) {
 206                char *e = *ep++;
 207
 208                if (!e)
 209                        continue;
 210
 211                if ((strncmp(match, e, matchlen) == 0)
 212                 && ((e[matchlen] == '\0')
 213                   || (e[matchlen] == '='))) {
 214                        char *cp = strchr(e, '=');
 215                        return cp ? ++cp : "";
 216                }
 217        }
 218        return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *      environment entries.
 224 * Parameters:
 225 *      match   A character string representing a numeric value
 226 * Outputs:
 227 *      *value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *      Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *      We use a static environment buffer (envbuffer) to hold the values
 232 *      of dynamically generated environment variables (see kdb_set).  Buffer
 233 *      space once allocated is never free'd, so over time, the amount of space
 234 *      (currently 512 bytes) will be exhausted if env variables are changed
 235 *      frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define KDB_ENVBUFSIZE  512
 240        static char envbuffer[KDB_ENVBUFSIZE];
 241        static int envbufsize;
 242        char *ep = NULL;
 243
 244        if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245                ep = &envbuffer[envbufsize];
 246                envbufsize += bytes;
 247        }
 248        return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *      long-valued environment variable.
 254 * Parameters:
 255 *      match   A character string representing a numeric value
 256 * Outputs:
 257 *      *value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *      Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263        char *ep;
 264
 265        ep = kdbgetenv(match);
 266        if (!ep)
 267                return KDB_NOTENV;
 268        if (strlen(ep) == 0)
 269                return KDB_NOENVVALUE;
 270
 271        *value = simple_strtoul(ep, NULL, 0);
 272
 273        return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *      integer-valued environment variable.
 279 * Parameters:
 280 *      match   A character string representing an integer-valued env variable
 281 * Outputs:
 282 *      *value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *      Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288        unsigned long val;
 289        int diag;
 290
 291        diag = kdbgetulenv(match, &val);
 292        if (!diag)
 293                *value = (int) val;
 294        return diag;
 295}
 296
 297/*
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *      unsigned long value.
 300 * Parameters:
 301 *      arg     A character string representing a numeric value
 302 * Outputs:
 303 *      *value  the unsigned long represntation of arg.
 304 * Returns:
 305 *      Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309        char *endp;
 310        unsigned long val;
 311
 312        val = simple_strtoul(arg, &endp, 0);
 313
 314        if (endp == arg) {
 315                /*
 316                 * Also try base 16, for us folks too lazy to type the
 317                 * leading 0x...
 318                 */
 319                val = simple_strtoul(arg, &endp, 16);
 320                if (endp == arg)
 321                        return KDB_BADINT;
 322        }
 323
 324        *value = val;
 325
 326        return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331        char *endp;
 332        u64 val;
 333
 334        val = simple_strtoull(arg, &endp, 0);
 335
 336        if (endp == arg) {
 337
 338                val = simple_strtoull(arg, &endp, 16);
 339                if (endp == arg)
 340                        return KDB_BADINT;
 341        }
 342
 343        *value = val;
 344
 345        return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *      existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354        int i;
 355        char *ep;
 356        size_t varlen, vallen;
 357
 358        /*
 359         * we can be invoked two ways:
 360         *   set var=value    argv[1]="var", argv[2]="value"
 361         *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362         * - if the latter, shift 'em down.
 363         */
 364        if (argc == 3) {
 365                argv[2] = argv[3];
 366                argc--;
 367        }
 368
 369        if (argc != 2)
 370                return KDB_ARGCOUNT;
 371
 372        /*
 373         * Check for internal variables
 374         */
 375        if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376                unsigned int debugflags;
 377                char *cp;
 378
 379                debugflags = simple_strtoul(argv[2], &cp, 0);
 380                if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381                        kdb_printf("kdb: illegal debug flags '%s'\n",
 382                                    argv[2]);
 383                        return 0;
 384                }
 385                kdb_flags = (kdb_flags &
 386                             ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387                        | (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389                return 0;
 390        }
 391
 392        /*
 393         * Tokenizer squashed the '=' sign.  argv[1] is variable
 394         * name, argv[2] = value.
 395         */
 396        varlen = strlen(argv[1]);
 397        vallen = strlen(argv[2]);
 398        ep = kdballocenv(varlen + vallen + 2);
 399        if (ep == (char *)0)
 400                return KDB_ENVBUFFULL;
 401
 402        sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404        ep[varlen+vallen+1] = '\0';
 405
 406        for (i = 0; i < __nenv; i++) {
 407                if (__env[i]
 408                 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409                   && ((__env[i][varlen] == '\0')
 410                    || (__env[i][varlen] == '=')))) {
 411                        __env[i] = ep;
 412                        return 0;
 413                }
 414        }
 415
 416        /*
 417         * Wasn't existing variable.  Fit into slot.
 418         */
 419        for (i = 0; i < __nenv-1; i++) {
 420                if (__env[i] == (char *)0) {
 421                        __env[i] = ep;
 422                        return 0;
 423                }
 424        }
 425
 426        return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431        if (!kdb_current_regs) {
 432                kdb_printf("No current kdb registers."
 433                           "  You may need to select another task\n");
 434                return KDB_BADREG;
 435        }
 436        return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *      address-expression and returning the value of the expression,
 442 *      symbol name, and offset to the caller.
 443 *
 444 *      The argument may consist of a numeric value (decimal or
 445 *      hexidecimal), a symbol name, a register name (preceded by the
 446 *      percent sign), an environment variable with a numeric value
 447 *      (preceded by a dollar sign) or a simple arithmetic expression
 448 *      consisting of a symbol name, +/-, and a numeric constant value
 449 *      (offset).
 450 * Parameters:
 451 *      argc    - count of arguments in argv
 452 *      argv    - argument vector
 453 *      *nextarg - index to next unparsed argument in argv[]
 454 *      regs    - Register state at time of KDB entry
 455 * Outputs:
 456 *      *value  - receives the value of the address-expression
 457 *      *offset - receives the offset specified, if any
 458 *      *name   - receives the symbol name, if any
 459 *      *nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *      zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465                  unsigned long *value,  long *offset,
 466                  char **name)
 467{
 468        unsigned long addr;
 469        unsigned long off = 0;
 470        int positive;
 471        int diag;
 472        int found = 0;
 473        char *symname;
 474        char symbol = '\0';
 475        char *cp;
 476        kdb_symtab_t symtab;
 477
 478        /*
 479         * Process arguments which follow the following syntax:
 480         *
 481         *  symbol | numeric-address [+/- numeric-offset]
 482         *  %register
 483         *  $environment-variable
 484         */
 485
 486        if (*nextarg > argc)
 487                return KDB_ARGCOUNT;
 488
 489        symname = (char *)argv[*nextarg];
 490
 491        /*
 492         * If there is no whitespace between the symbol
 493         * or address and the '+' or '-' symbols, we
 494         * remember the character and replace it with a
 495         * null so the symbol/value can be properly parsed
 496         */
 497        cp = strpbrk(symname, "+-");
 498        if (cp != NULL) {
 499                symbol = *cp;
 500                *cp++ = '\0';
 501        }
 502
 503        if (symname[0] == '$') {
 504                diag = kdbgetulenv(&symname[1], &addr);
 505                if (diag)
 506                        return diag;
 507        } else if (symname[0] == '%') {
 508                diag = kdb_check_regs();
 509                if (diag)
 510                        return diag;
 511                /* Implement register values with % at a later time as it is
 512                 * arch optional.
 513                 */
 514                return KDB_NOTIMP;
 515        } else {
 516                found = kdbgetsymval(symname, &symtab);
 517                if (found) {
 518                        addr = symtab.sym_start;
 519                } else {
 520                        diag = kdbgetularg(argv[*nextarg], &addr);
 521                        if (diag)
 522                                return diag;
 523                }
 524        }
 525
 526        if (!found)
 527                found = kdbnearsym(addr, &symtab);
 528
 529        (*nextarg)++;
 530
 531        if (name)
 532                *name = symname;
 533        if (value)
 534                *value = addr;
 535        if (offset && name && *name)
 536                *offset = addr - symtab.sym_start;
 537
 538        if ((*nextarg > argc)
 539         && (symbol == '\0'))
 540                return 0;
 541
 542        /*
 543         * check for +/- and offset
 544         */
 545
 546        if (symbol == '\0') {
 547                if ((argv[*nextarg][0] != '+')
 548                 && (argv[*nextarg][0] != '-')) {
 549                        /*
 550                         * Not our argument.  Return.
 551                         */
 552                        return 0;
 553                } else {
 554                        positive = (argv[*nextarg][0] == '+');
 555                        (*nextarg)++;
 556                }
 557        } else
 558                positive = (symbol == '+');
 559
 560        /*
 561         * Now there must be an offset!
 562         */
 563        if ((*nextarg > argc)
 564         && (symbol == '\0')) {
 565                return KDB_INVADDRFMT;
 566        }
 567
 568        if (!symbol) {
 569                cp = (char *)argv[*nextarg];
 570                (*nextarg)++;
 571        }
 572
 573        diag = kdbgetularg(cp, &off);
 574        if (diag)
 575                return diag;
 576
 577        if (!positive)
 578                off = -off;
 579
 580        if (offset)
 581                *offset += off;
 582
 583        if (value)
 584                *value += off;
 585
 586        return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591        int i;
 592
 593        if (diag >= 0) {
 594                kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595                return;
 596        }
 597
 598        for (i = 0; i < __nkdb_err; i++) {
 599                if (kdbmsgs[i].km_diag == diag) {
 600                        kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601                        return;
 602                }
 603        }
 604
 605        kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *      command which defines one command as a set of other commands,
 611 *      terminated by endefcmd.  kdb_defcmd processes the initial
 612 *      'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *      the following commands until 'endefcmd'.
 614 * Inputs:
 615 *      argc    argument count
 616 *      argv    argument vector
 617 * Returns:
 618 *      zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621        int count;
 622        int usable;
 623        char *name;
 624        char *usage;
 625        char *help;
 626        char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637        struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638        char **save_command = s->command;
 639        if (strcmp(argv0, "endefcmd") == 0) {
 640                defcmd_in_progress = 0;
 641                if (!s->count)
 642                        s->usable = 0;
 643                if (s->usable)
 644                        kdb_register(s->name, kdb_exec_defcmd,
 645                                     s->usage, s->help, 0);
 646                return 0;
 647        }
 648        if (!s->usable)
 649                return KDB_NOTIMP;
 650        s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651        if (!s->command) {
 652                kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653                           cmdstr);
 654                s->usable = 0;
 655                return KDB_NOTIMP;
 656        }
 657        memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658        s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659        kfree(save_command);
 660        return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665        struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666        if (defcmd_in_progress) {
 667                kdb_printf("kdb: nested defcmd detected, assuming missing "
 668                           "endefcmd\n");
 669                kdb_defcmd2("endefcmd", "endefcmd");
 670        }
 671        if (argc == 0) {
 672                int i;
 673                for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674                        kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675                                   s->usage, s->help);
 676                        for (i = 0; i < s->count; ++i)
 677                                kdb_printf("%s", s->command[i]);
 678                        kdb_printf("endefcmd\n");
 679                }
 680                return 0;
 681        }
 682        if (argc != 3)
 683                return KDB_ARGCOUNT;
 684        if (in_dbg_master()) {
 685                kdb_printf("Command only available during kdb_init()\n");
 686                return KDB_NOTIMP;
 687        }
 688        defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 689                             GFP_KDB);
 690        if (!defcmd_set)
 691                goto fail_defcmd;
 692        memcpy(defcmd_set, save_defcmd_set,
 693               defcmd_set_count * sizeof(*defcmd_set));
 694        s = defcmd_set + defcmd_set_count;
 695        memset(s, 0, sizeof(*s));
 696        s->usable = 1;
 697        s->name = kdb_strdup(argv[1], GFP_KDB);
 698        if (!s->name)
 699                goto fail_name;
 700        s->usage = kdb_strdup(argv[2], GFP_KDB);
 701        if (!s->usage)
 702                goto fail_usage;
 703        s->help = kdb_strdup(argv[3], GFP_KDB);
 704        if (!s->help)
 705                goto fail_help;
 706        if (s->usage[0] == '"') {
 707                strcpy(s->usage, argv[2]+1);
 708                s->usage[strlen(s->usage)-1] = '\0';
 709        }
 710        if (s->help[0] == '"') {
 711                strcpy(s->help, argv[3]+1);
 712                s->help[strlen(s->help)-1] = '\0';
 713        }
 714        ++defcmd_set_count;
 715        defcmd_in_progress = 1;
 716        kfree(save_defcmd_set);
 717        return 0;
 718fail_help:
 719        kfree(s->usage);
 720fail_usage:
 721        kfree(s->name);
 722fail_name:
 723        kfree(defcmd_set);
 724fail_defcmd:
 725        kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 726        defcmd_set = save_defcmd_set;
 727        return KDB_NOTIMP;
 728}
 729
 730/*
 731 * kdb_exec_defcmd - Execute the set of commands associated with this
 732 *      defcmd name.
 733 * Inputs:
 734 *      argc    argument count
 735 *      argv    argument vector
 736 * Returns:
 737 *      zero for success, a kdb diagnostic if error
 738 */
 739static int kdb_exec_defcmd(int argc, const char **argv)
 740{
 741        int i, ret;
 742        struct defcmd_set *s;
 743        if (argc != 0)
 744                return KDB_ARGCOUNT;
 745        for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 746                if (strcmp(s->name, argv[0]) == 0)
 747                        break;
 748        }
 749        if (i == defcmd_set_count) {
 750                kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 751                           argv[0]);
 752                return KDB_NOTIMP;
 753        }
 754        for (i = 0; i < s->count; ++i) {
 755                /* Recursive use of kdb_parse, do not use argv after
 756                 * this point */
 757                argv = NULL;
 758                kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 759                ret = kdb_parse(s->command[i]);
 760                if (ret)
 761                        return ret;
 762        }
 763        return 0;
 764}
 765
 766/* Command history */
 767#define KDB_CMD_HISTORY_COUNT   32
 768#define CMD_BUFLEN              200     /* kdb_printf: max printline
 769                                         * size == 256 */
 770static unsigned int cmd_head, cmd_tail;
 771static unsigned int cmdptr;
 772static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 773static char cmd_cur[CMD_BUFLEN];
 774
 775/*
 776 * The "str" argument may point to something like  | grep xyz
 777 */
 778static void parse_grep(const char *str)
 779{
 780        int     len;
 781        char    *cp = (char *)str, *cp2;
 782
 783        /* sanity check: we should have been called with the \ first */
 784        if (*cp != '|')
 785                return;
 786        cp++;
 787        while (isspace(*cp))
 788                cp++;
 789        if (strncmp(cp, "grep ", 5)) {
 790                kdb_printf("invalid 'pipe', see grephelp\n");
 791                return;
 792        }
 793        cp += 5;
 794        while (isspace(*cp))
 795                cp++;
 796        cp2 = strchr(cp, '\n');
 797        if (cp2)
 798                *cp2 = '\0'; /* remove the trailing newline */
 799        len = strlen(cp);
 800        if (len == 0) {
 801                kdb_printf("invalid 'pipe', see grephelp\n");
 802                return;
 803        }
 804        /* now cp points to a nonzero length search string */
 805        if (*cp == '"') {
 806                /* allow it be "x y z" by removing the "'s - there must
 807                   be two of them */
 808                cp++;
 809                cp2 = strchr(cp, '"');
 810                if (!cp2) {
 811                        kdb_printf("invalid quoted string, see grephelp\n");
 812                        return;
 813                }
 814                *cp2 = '\0'; /* end the string where the 2nd " was */
 815        }
 816        kdb_grep_leading = 0;
 817        if (*cp == '^') {
 818                kdb_grep_leading = 1;
 819                cp++;
 820        }
 821        len = strlen(cp);
 822        kdb_grep_trailing = 0;
 823        if (*(cp+len-1) == '$') {
 824                kdb_grep_trailing = 1;
 825                *(cp+len-1) = '\0';
 826        }
 827        len = strlen(cp);
 828        if (!len)
 829                return;
 830        if (len >= GREP_LEN) {
 831                kdb_printf("search string too long\n");
 832                return;
 833        }
 834        strcpy(kdb_grep_string, cp);
 835        kdb_grepping_flag++;
 836        return;
 837}
 838
 839/*
 840 * kdb_parse - Parse the command line, search the command table for a
 841 *      matching command and invoke the command function.  This
 842 *      function may be called recursively, if it is, the second call
 843 *      will overwrite argv and cbuf.  It is the caller's
 844 *      responsibility to save their argv if they recursively call
 845 *      kdb_parse().
 846 * Parameters:
 847 *      cmdstr  The input command line to be parsed.
 848 *      regs    The registers at the time kdb was entered.
 849 * Returns:
 850 *      Zero for success, a kdb diagnostic if failure.
 851 * Remarks:
 852 *      Limited to 20 tokens.
 853 *
 854 *      Real rudimentary tokenization. Basically only whitespace
 855 *      is considered a token delimeter (but special consideration
 856 *      is taken of the '=' sign as used by the 'set' command).
 857 *
 858 *      The algorithm used to tokenize the input string relies on
 859 *      there being at least one whitespace (or otherwise useless)
 860 *      character between tokens as the character immediately following
 861 *      the token is altered in-place to a null-byte to terminate the
 862 *      token string.
 863 */
 864
 865#define MAXARGC 20
 866
 867int kdb_parse(const char *cmdstr)
 868{
 869        static char *argv[MAXARGC];
 870        static int argc;
 871        static char cbuf[CMD_BUFLEN+2];
 872        char *cp;
 873        char *cpp, quoted;
 874        kdbtab_t *tp;
 875        int i, escaped, ignore_errors = 0, check_grep;
 876
 877        /*
 878         * First tokenize the command string.
 879         */
 880        cp = (char *)cmdstr;
 881        kdb_grepping_flag = check_grep = 0;
 882
 883        if (KDB_FLAG(CMD_INTERRUPT)) {
 884                /* Previous command was interrupted, newline must not
 885                 * repeat the command */
 886                KDB_FLAG_CLEAR(CMD_INTERRUPT);
 887                KDB_STATE_SET(PAGER);
 888                argc = 0;       /* no repeat */
 889        }
 890
 891        if (*cp != '\n' && *cp != '\0') {
 892                argc = 0;
 893                cpp = cbuf;
 894                while (*cp) {
 895                        /* skip whitespace */
 896                        while (isspace(*cp))
 897                                cp++;
 898                        if ((*cp == '\0') || (*cp == '\n') ||
 899                            (*cp == '#' && !defcmd_in_progress))
 900                                break;
 901                        /* special case: check for | grep pattern */
 902                        if (*cp == '|') {
 903                                check_grep++;
 904                                break;
 905                        }
 906                        if (cpp >= cbuf + CMD_BUFLEN) {
 907                                kdb_printf("kdb_parse: command buffer "
 908                                           "overflow, command ignored\n%s\n",
 909                                           cmdstr);
 910                                return KDB_NOTFOUND;
 911                        }
 912                        if (argc >= MAXARGC - 1) {
 913                                kdb_printf("kdb_parse: too many arguments, "
 914                                           "command ignored\n%s\n", cmdstr);
 915                                return KDB_NOTFOUND;
 916                        }
 917                        argv[argc++] = cpp;
 918                        escaped = 0;
 919                        quoted = '\0';
 920                        /* Copy to next unquoted and unescaped
 921                         * whitespace or '=' */
 922                        while (*cp && *cp != '\n' &&
 923                               (escaped || quoted || !isspace(*cp))) {
 924                                if (cpp >= cbuf + CMD_BUFLEN)
 925                                        break;
 926                                if (escaped) {
 927                                        escaped = 0;
 928                                        *cpp++ = *cp++;
 929                                        continue;
 930                                }
 931                                if (*cp == '\\') {
 932                                        escaped = 1;
 933                                        ++cp;
 934                                        continue;
 935                                }
 936                                if (*cp == quoted)
 937                                        quoted = '\0';
 938                                else if (*cp == '\'' || *cp == '"')
 939                                        quoted = *cp;
 940                                *cpp = *cp++;
 941                                if (*cpp == '=' && !quoted)
 942                                        break;
 943                                ++cpp;
 944                        }
 945                        *cpp++ = '\0';  /* Squash a ws or '=' character */
 946                }
 947        }
 948        if (!argc)
 949                return 0;
 950        if (check_grep)
 951                parse_grep(cp);
 952        if (defcmd_in_progress) {
 953                int result = kdb_defcmd2(cmdstr, argv[0]);
 954                if (!defcmd_in_progress) {
 955                        argc = 0;       /* avoid repeat on endefcmd */
 956                        *(argv[0]) = '\0';
 957                }
 958                return result;
 959        }
 960        if (argv[0][0] == '-' && argv[0][1] &&
 961            (argv[0][1] < '0' || argv[0][1] > '9')) {
 962                ignore_errors = 1;
 963                ++argv[0];
 964        }
 965
 966        for_each_kdbcmd(tp, i) {
 967                if (tp->cmd_name) {
 968                        /*
 969                         * If this command is allowed to be abbreviated,
 970                         * check to see if this is it.
 971                         */
 972
 973                        if (tp->cmd_minlen
 974                         && (strlen(argv[0]) <= tp->cmd_minlen)) {
 975                                if (strncmp(argv[0],
 976                                            tp->cmd_name,
 977                                            tp->cmd_minlen) == 0) {
 978                                        break;
 979                                }
 980                        }
 981
 982                        if (strcmp(argv[0], tp->cmd_name) == 0)
 983                                break;
 984                }
 985        }
 986
 987        /*
 988         * If we don't find a command by this name, see if the first
 989         * few characters of this match any of the known commands.
 990         * e.g., md1c20 should match md.
 991         */
 992        if (i == kdb_max_commands) {
 993                for_each_kdbcmd(tp, i) {
 994                        if (tp->cmd_name) {
 995                                if (strncmp(argv[0],
 996                                            tp->cmd_name,
 997                                            strlen(tp->cmd_name)) == 0) {
 998                                        break;
 999                                }
1000                        }
1001                }
1002        }
1003
1004        if (i < kdb_max_commands) {
1005                int result;
1006                KDB_STATE_SET(CMD);
1007                result = (*tp->cmd_func)(argc-1, (const char **)argv);
1008                if (result && ignore_errors && result > KDB_CMD_GO)
1009                        result = 0;
1010                KDB_STATE_CLEAR(CMD);
1011                switch (tp->cmd_repeat) {
1012                case KDB_REPEAT_NONE:
1013                        argc = 0;
1014                        if (argv[0])
1015                                *(argv[0]) = '\0';
1016                        break;
1017                case KDB_REPEAT_NO_ARGS:
1018                        argc = 1;
1019                        if (argv[1])
1020                                *(argv[1]) = '\0';
1021                        break;
1022                case KDB_REPEAT_WITH_ARGS:
1023                        break;
1024                }
1025                return result;
1026        }
1027
1028        /*
1029         * If the input with which we were presented does not
1030         * map to an existing command, attempt to parse it as an
1031         * address argument and display the result.   Useful for
1032         * obtaining the address of a variable, or the nearest symbol
1033         * to an address contained in a register.
1034         */
1035        {
1036                unsigned long value;
1037                char *name = NULL;
1038                long offset;
1039                int nextarg = 0;
1040
1041                if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1042                                  &value, &offset, &name)) {
1043                        return KDB_NOTFOUND;
1044                }
1045
1046                kdb_printf("%s = ", argv[0]);
1047                kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1048                kdb_printf("\n");
1049                return 0;
1050        }
1051}
1052
1053
1054static int handle_ctrl_cmd(char *cmd)
1055{
1056#define CTRL_P  16
1057#define CTRL_N  14
1058
1059        /* initial situation */
1060        if (cmd_head == cmd_tail)
1061                return 0;
1062        switch (*cmd) {
1063        case CTRL_P:
1064                if (cmdptr != cmd_tail)
1065                        cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1066                strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1067                return 1;
1068        case CTRL_N:
1069                if (cmdptr != cmd_head)
1070                        cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1071                strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1072                return 1;
1073        }
1074        return 0;
1075}
1076
1077/*
1078 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1079 *      the system immediately, or loop for ever on failure.
1080 */
1081static int kdb_reboot(int argc, const char **argv)
1082{
1083        emergency_restart();
1084        kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1085        while (1)
1086                cpu_relax();
1087        /* NOTREACHED */
1088        return 0;
1089}
1090
1091static void kdb_dumpregs(struct pt_regs *regs)
1092{
1093        int old_lvl = console_loglevel;
1094        console_loglevel = 15;
1095        kdb_trap_printk++;
1096        show_regs(regs);
1097        kdb_trap_printk--;
1098        kdb_printf("\n");
1099        console_loglevel = old_lvl;
1100}
1101
1102void kdb_set_current_task(struct task_struct *p)
1103{
1104        kdb_current_task = p;
1105
1106        if (kdb_task_has_cpu(p)) {
1107                kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1108                return;
1109        }
1110        kdb_current_regs = NULL;
1111}
1112
1113/*
1114 * kdb_local - The main code for kdb.  This routine is invoked on a
1115 *      specific processor, it is not global.  The main kdb() routine
1116 *      ensures that only one processor at a time is in this routine.
1117 *      This code is called with the real reason code on the first
1118 *      entry to a kdb session, thereafter it is called with reason
1119 *      SWITCH, even if the user goes back to the original cpu.
1120 * Inputs:
1121 *      reason          The reason KDB was invoked
1122 *      error           The hardware-defined error code
1123 *      regs            The exception frame at time of fault/breakpoint.
1124 *      db_result       Result code from the break or debug point.
1125 * Returns:
1126 *      0       KDB was invoked for an event which it wasn't responsible
1127 *      1       KDB handled the event for which it was invoked.
1128 *      KDB_CMD_GO      User typed 'go'.
1129 *      KDB_CMD_CPU     User switched to another cpu.
1130 *      KDB_CMD_SS      Single step.
1131 */
1132static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1133                     kdb_dbtrap_t db_result)
1134{
1135        char *cmdbuf;
1136        int diag;
1137        struct task_struct *kdb_current =
1138                kdb_curr_task(raw_smp_processor_id());
1139
1140        KDB_DEBUG_STATE("kdb_local 1", reason);
1141        kdb_go_count = 0;
1142        if (reason == KDB_REASON_DEBUG) {
1143                /* special case below */
1144        } else {
1145                kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1146                           kdb_current, kdb_current ? kdb_current->pid : 0);
1147#if defined(CONFIG_SMP)
1148                kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150        }
1151
1152        switch (reason) {
1153        case KDB_REASON_DEBUG:
1154        {
1155                /*
1156                 * If re-entering kdb after a single step
1157                 * command, don't print the message.
1158                 */
1159                switch (db_result) {
1160                case KDB_DB_BPT:
1161                        kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1162                                   kdb_current, kdb_current->pid);
1163#if defined(CONFIG_SMP)
1164                        kdb_printf("on processor %d ", raw_smp_processor_id());
1165#endif
1166                        kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1167                                   instruction_pointer(regs));
1168                        break;
1169                case KDB_DB_SS:
1170                        break;
1171                case KDB_DB_SSBPT:
1172                        KDB_DEBUG_STATE("kdb_local 4", reason);
1173                        return 1;       /* kdba_db_trap did the work */
1174                default:
1175                        kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1176                                   db_result);
1177                        break;
1178                }
1179
1180        }
1181                break;
1182        case KDB_REASON_ENTER:
1183                if (KDB_STATE(KEYBOARD))
1184                        kdb_printf("due to Keyboard Entry\n");
1185                else
1186                        kdb_printf("due to KDB_ENTER()\n");
1187                break;
1188        case KDB_REASON_KEYBOARD:
1189                KDB_STATE_SET(KEYBOARD);
1190                kdb_printf("due to Keyboard Entry\n");
1191                break;
1192        case KDB_REASON_ENTER_SLAVE:
1193                /* drop through, slaves only get released via cpu switch */
1194        case KDB_REASON_SWITCH:
1195                kdb_printf("due to cpu switch\n");
1196                break;
1197        case KDB_REASON_OOPS:
1198                kdb_printf("Oops: %s\n", kdb_diemsg);
1199                kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1200                           instruction_pointer(regs));
1201                kdb_dumpregs(regs);
1202                break;
1203        case KDB_REASON_SYSTEM_NMI:
1204                kdb_printf("due to System NonMaskable Interrupt\n");
1205                break;
1206        case KDB_REASON_NMI:
1207                kdb_printf("due to NonMaskable Interrupt @ "
1208                           kdb_machreg_fmt "\n",
1209                           instruction_pointer(regs));
1210                kdb_dumpregs(regs);
1211                break;
1212        case KDB_REASON_SSTEP:
1213        case KDB_REASON_BREAK:
1214                kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1215                           reason == KDB_REASON_BREAK ?
1216                           "Breakpoint" : "SS trap", instruction_pointer(regs));
1217                /*
1218                 * Determine if this breakpoint is one that we
1219                 * are interested in.
1220                 */
1221                if (db_result != KDB_DB_BPT) {
1222                        kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1223                                   db_result);
1224                        KDB_DEBUG_STATE("kdb_local 6", reason);
1225                        return 0;       /* Not for us, dismiss it */
1226                }
1227                break;
1228        case KDB_REASON_RECURSE:
1229                kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1230                           instruction_pointer(regs));
1231                break;
1232        default:
1233                kdb_printf("kdb: unexpected reason code: %d\n", reason);
1234                KDB_DEBUG_STATE("kdb_local 8", reason);
1235                return 0;       /* Not for us, dismiss it */
1236        }
1237
1238        while (1) {
1239                /*
1240                 * Initialize pager context.
1241                 */
1242                kdb_nextline = 1;
1243                KDB_STATE_CLEAR(SUPPRESS);
1244
1245                cmdbuf = cmd_cur;
1246                *cmdbuf = '\0';
1247                *(cmd_hist[cmd_head]) = '\0';
1248
1249do_full_getstr:
1250#if defined(CONFIG_SMP)
1251                snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1252                         raw_smp_processor_id());
1253#else
1254                snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1255#endif
1256                if (defcmd_in_progress)
1257                        strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1258
1259                /*
1260                 * Fetch command from keyboard
1261                 */
1262                cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1263                if (*cmdbuf != '\n') {
1264                        if (*cmdbuf < 32) {
1265                                if (cmdptr == cmd_head) {
1266                                        strncpy(cmd_hist[cmd_head], cmd_cur,
1267                                                CMD_BUFLEN);
1268                                        *(cmd_hist[cmd_head] +
1269                                          strlen(cmd_hist[cmd_head])-1) = '\0';
1270                                }
1271                                if (!handle_ctrl_cmd(cmdbuf))
1272                                        *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1273                                cmdbuf = cmd_cur;
1274                                goto do_full_getstr;
1275                        } else {
1276                                strncpy(cmd_hist[cmd_head], cmd_cur,
1277                                        CMD_BUFLEN);
1278                        }
1279
1280                        cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1281                        if (cmd_head == cmd_tail)
1282                                cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1283                }
1284
1285                cmdptr = cmd_head;
1286                diag = kdb_parse(cmdbuf);
1287                if (diag == KDB_NOTFOUND) {
1288                        kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1289                        diag = 0;
1290                }
1291                if (diag == KDB_CMD_GO
1292                 || diag == KDB_CMD_CPU
1293                 || diag == KDB_CMD_SS
1294                 || diag == KDB_CMD_KGDB)
1295                        break;
1296
1297                if (diag)
1298                        kdb_cmderror(diag);
1299        }
1300        KDB_DEBUG_STATE("kdb_local 9", diag);
1301        return diag;
1302}
1303
1304
1305/*
1306 * kdb_print_state - Print the state data for the current processor
1307 *      for debugging.
1308 * Inputs:
1309 *      text            Identifies the debug point
1310 *      value           Any integer value to be printed, e.g. reason code.
1311 */
1312void kdb_print_state(const char *text, int value)
1313{
1314        kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1315                   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1316                   kdb_state);
1317}
1318
1319/*
1320 * kdb_main_loop - After initial setup and assignment of the
1321 *      controlling cpu, all cpus are in this loop.  One cpu is in
1322 *      control and will issue the kdb prompt, the others will spin
1323 *      until 'go' or cpu switch.
1324 *
1325 *      To get a consistent view of the kernel stacks for all
1326 *      processes, this routine is invoked from the main kdb code via
1327 *      an architecture specific routine.  kdba_main_loop is
1328 *      responsible for making the kernel stacks consistent for all
1329 *      processes, there should be no difference between a blocked
1330 *      process and a running process as far as kdb is concerned.
1331 * Inputs:
1332 *      reason          The reason KDB was invoked
1333 *      error           The hardware-defined error code
1334 *      reason2         kdb's current reason code.
1335 *                      Initially error but can change
1336 *                      according to kdb state.
1337 *      db_result       Result code from break or debug point.
1338 *      regs            The exception frame at time of fault/breakpoint.
1339 *                      should always be valid.
1340 * Returns:
1341 *      0       KDB was invoked for an event which it wasn't responsible
1342 *      1       KDB handled the event for which it was invoked.
1343 */
1344int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1345              kdb_dbtrap_t db_result, struct pt_regs *regs)
1346{
1347        int result = 1;
1348        /* Stay in kdb() until 'go', 'ss[b]' or an error */
1349        while (1) {
1350                /*
1351                 * All processors except the one that is in control
1352                 * will spin here.
1353                 */
1354                KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1355                while (KDB_STATE(HOLD_CPU)) {
1356                        /* state KDB is turned off by kdb_cpu to see if the
1357                         * other cpus are still live, each cpu in this loop
1358                         * turns it back on.
1359                         */
1360                        if (!KDB_STATE(KDB))
1361                                KDB_STATE_SET(KDB);
1362                }
1363
1364                KDB_STATE_CLEAR(SUPPRESS);
1365                KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1366                if (KDB_STATE(LEAVING))
1367                        break;  /* Another cpu said 'go' */
1368                /* Still using kdb, this processor is in control */
1369                result = kdb_local(reason2, error, regs, db_result);
1370                KDB_DEBUG_STATE("kdb_main_loop 3", result);
1371
1372                if (result == KDB_CMD_CPU)
1373                        break;
1374
1375                if (result == KDB_CMD_SS) {
1376                        KDB_STATE_SET(DOING_SS);
1377                        break;
1378                }
1379
1380                if (result == KDB_CMD_KGDB) {
1381                        if (!KDB_STATE(DOING_KGDB))
1382                                kdb_printf("Entering please attach debugger "
1383                                           "or use $D#44+ or $3#33\n");
1384                        break;
1385                }
1386                if (result && result != 1 && result != KDB_CMD_GO)
1387                        kdb_printf("\nUnexpected kdb_local return code %d\n",
1388                                   result);
1389                KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1390                break;
1391        }
1392        if (KDB_STATE(DOING_SS))
1393                KDB_STATE_CLEAR(SSBPT);
1394
1395        /* Clean up any keyboard devices before leaving */
1396        kdb_kbd_cleanup_state();
1397
1398        return result;
1399}
1400
1401/*
1402 * kdb_mdr - This function implements the guts of the 'mdr', memory
1403 * read command.
1404 *      mdr  <addr arg>,<byte count>
1405 * Inputs:
1406 *      addr    Start address
1407 *      count   Number of bytes
1408 * Returns:
1409 *      Always 0.  Any errors are detected and printed by kdb_getarea.
1410 */
1411static int kdb_mdr(unsigned long addr, unsigned int count)
1412{
1413        unsigned char c;
1414        while (count--) {
1415                if (kdb_getarea(c, addr))
1416                        return 0;
1417                kdb_printf("%02x", c);
1418                addr++;
1419        }
1420        kdb_printf("\n");
1421        return 0;
1422}
1423
1424/*
1425 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1426 *      'md8' 'mdr' and 'mds' commands.
1427 *
1428 *      md|mds  [<addr arg> [<line count> [<radix>]]]
1429 *      mdWcN   [<addr arg> [<line count> [<radix>]]]
1430 *              where W = is the width (1, 2, 4 or 8) and N is the count.
1431 *              for eg., md1c20 reads 20 bytes, 1 at a time.
1432 *      mdr  <addr arg>,<byte count>
1433 */
1434static void kdb_md_line(const char *fmtstr, unsigned long addr,
1435                        int symbolic, int nosect, int bytesperword,
1436                        int num, int repeat, int phys)
1437{
1438        /* print just one line of data */
1439        kdb_symtab_t symtab;
1440        char cbuf[32];
1441        char *c = cbuf;
1442        int i;
1443        unsigned long word;
1444
1445        memset(cbuf, '\0', sizeof(cbuf));
1446        if (phys)
1447                kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1448        else
1449                kdb_printf(kdb_machreg_fmt0 " ", addr);
1450
1451        for (i = 0; i < num && repeat--; i++) {
1452                if (phys) {
1453                        if (kdb_getphysword(&word, addr, bytesperword))
1454                                break;
1455                } else if (kdb_getword(&word, addr, bytesperword))
1456                        break;
1457                kdb_printf(fmtstr, word);
1458                if (symbolic)
1459                        kdbnearsym(word, &symtab);
1460                else
1461                        memset(&symtab, 0, sizeof(symtab));
1462                if (symtab.sym_name) {
1463                        kdb_symbol_print(word, &symtab, 0);
1464                        if (!nosect) {
1465                                kdb_printf("\n");
1466                                kdb_printf("                       %s %s "
1467                                           kdb_machreg_fmt " "
1468                                           kdb_machreg_fmt " "
1469                                           kdb_machreg_fmt, symtab.mod_name,
1470                                           symtab.sec_name, symtab.sec_start,
1471                                           symtab.sym_start, symtab.sym_end);
1472                        }
1473                        addr += bytesperword;
1474                } else {
1475                        union {
1476                                u64 word;
1477                                unsigned char c[8];
1478                        } wc;
1479                        unsigned char *cp;
1480#ifdef  __BIG_ENDIAN
1481                        cp = wc.c + 8 - bytesperword;
1482#else
1483                        cp = wc.c;
1484#endif
1485                        wc.word = word;
1486#define printable_char(c) \
1487        ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1488                        switch (bytesperword) {
1489                        case 8:
1490                                *c++ = printable_char(*cp++);
1491                                *c++ = printable_char(*cp++);
1492                                *c++ = printable_char(*cp++);
1493                                *c++ = printable_char(*cp++);
1494                                addr += 4;
1495                        case 4:
1496                                *c++ = printable_char(*cp++);
1497                                *c++ = printable_char(*cp++);
1498                                addr += 2;
1499                        case 2:
1500                                *c++ = printable_char(*cp++);
1501                                addr++;
1502                        case 1:
1503                                *c++ = printable_char(*cp++);
1504                                addr++;
1505                                break;
1506                        }
1507#undef printable_char
1508                }
1509        }
1510        kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1511                   " ", cbuf);
1512}
1513
1514static int kdb_md(int argc, const char **argv)
1515{
1516        static unsigned long last_addr;
1517        static int last_radix, last_bytesperword, last_repeat;
1518        int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1519        int nosect = 0;
1520        char fmtchar, fmtstr[64];
1521        unsigned long addr;
1522        unsigned long word;
1523        long offset = 0;
1524        int symbolic = 0;
1525        int valid = 0;
1526        int phys = 0;
1527
1528        kdbgetintenv("MDCOUNT", &mdcount);
1529        kdbgetintenv("RADIX", &radix);
1530        kdbgetintenv("BYTESPERWORD", &bytesperword);
1531
1532        /* Assume 'md <addr>' and start with environment values */
1533        repeat = mdcount * 16 / bytesperword;
1534
1535        if (strcmp(argv[0], "mdr") == 0) {
1536                if (argc != 2)
1537                        return KDB_ARGCOUNT;
1538                valid = 1;
1539        } else if (isdigit(argv[0][2])) {
1540                bytesperword = (int)(argv[0][2] - '0');
1541                if (bytesperword == 0) {
1542                        bytesperword = last_bytesperword;
1543                        if (bytesperword == 0)
1544                                bytesperword = 4;
1545                }
1546                last_bytesperword = bytesperword;
1547                repeat = mdcount * 16 / bytesperword;
1548                if (!argv[0][3])
1549                        valid = 1;
1550                else if (argv[0][3] == 'c' && argv[0][4]) {
1551                        char *p;
1552                        repeat = simple_strtoul(argv[0] + 4, &p, 10);
1553                        mdcount = ((repeat * bytesperword) + 15) / 16;
1554                        valid = !*p;
1555                }
1556                last_repeat = repeat;
1557        } else if (strcmp(argv[0], "md") == 0)
1558                valid = 1;
1559        else if (strcmp(argv[0], "mds") == 0)
1560                valid = 1;
1561        else if (strcmp(argv[0], "mdp") == 0) {
1562                phys = valid = 1;
1563        }
1564        if (!valid)
1565                return KDB_NOTFOUND;
1566
1567        if (argc == 0) {
1568                if (last_addr == 0)
1569                        return KDB_ARGCOUNT;
1570                addr = last_addr;
1571                radix = last_radix;
1572                bytesperword = last_bytesperword;
1573                repeat = last_repeat;
1574                mdcount = ((repeat * bytesperword) + 15) / 16;
1575        }
1576
1577        if (argc) {
1578                unsigned long val;
1579                int diag, nextarg = 1;
1580                diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1581                                     &offset, NULL);
1582                if (diag)
1583                        return diag;
1584                if (argc > nextarg+2)
1585                        return KDB_ARGCOUNT;
1586
1587                if (argc >= nextarg) {
1588                        diag = kdbgetularg(argv[nextarg], &val);
1589                        if (!diag) {
1590                                mdcount = (int) val;
1591                                repeat = mdcount * 16 / bytesperword;
1592                        }
1593                }
1594                if (argc >= nextarg+1) {
1595                        diag = kdbgetularg(argv[nextarg+1], &val);
1596                        if (!diag)
1597                                radix = (int) val;
1598                }
1599        }
1600
1601        if (strcmp(argv[0], "mdr") == 0)
1602                return kdb_mdr(addr, mdcount);
1603
1604        switch (radix) {
1605        case 10:
1606                fmtchar = 'd';
1607                break;
1608        case 16:
1609                fmtchar = 'x';
1610                break;
1611        case 8:
1612                fmtchar = 'o';
1613                break;
1614        default:
1615                return KDB_BADRADIX;
1616        }
1617
1618        last_radix = radix;
1619
1620        if (bytesperword > KDB_WORD_SIZE)
1621                return KDB_BADWIDTH;
1622
1623        switch (bytesperword) {
1624        case 8:
1625                sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1626                break;
1627        case 4:
1628                sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1629                break;
1630        case 2:
1631                sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1632                break;
1633        case 1:
1634                sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1635                break;
1636        default:
1637                return KDB_BADWIDTH;
1638        }
1639
1640        last_repeat = repeat;
1641        last_bytesperword = bytesperword;
1642
1643        if (strcmp(argv[0], "mds") == 0) {
1644                symbolic = 1;
1645                /* Do not save these changes as last_*, they are temporary mds
1646                 * overrides.
1647                 */
1648                bytesperword = KDB_WORD_SIZE;
1649                repeat = mdcount;
1650                kdbgetintenv("NOSECT", &nosect);
1651        }
1652
1653        /* Round address down modulo BYTESPERWORD */
1654
1655        addr &= ~(bytesperword-1);
1656
1657        while (repeat > 0) {
1658                unsigned long a;
1659                int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1660
1661                if (KDB_FLAG(CMD_INTERRUPT))
1662                        return 0;
1663                for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1664                        if (phys) {
1665                                if (kdb_getphysword(&word, a, bytesperword)
1666                                                || word)
1667                                        break;
1668                        } else if (kdb_getword(&word, a, bytesperword) || word)
1669                                break;
1670                }
1671                n = min(num, repeat);
1672                kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1673                            num, repeat, phys);
1674                addr += bytesperword * n;
1675                repeat -= n;
1676                z = (z + num - 1) / num;
1677                if (z > 2) {
1678                        int s = num * (z-2);
1679                        kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1680                                   " zero suppressed\n",
1681                                addr, addr + bytesperword * s - 1);
1682                        addr += bytesperword * s;
1683                        repeat -= s;
1684                }
1685        }
1686        last_addr = addr;
1687
1688        return 0;
1689}
1690
1691/*
1692 * kdb_mm - This function implements the 'mm' command.
1693 *      mm address-expression new-value
1694 * Remarks:
1695 *      mm works on machine words, mmW works on bytes.
1696 */
1697static int kdb_mm(int argc, const char **argv)
1698{
1699        int diag;
1700        unsigned long addr;
1701        long offset = 0;
1702        unsigned long contents;
1703        int nextarg;
1704        int width;
1705
1706        if (argv[0][2] && !isdigit(argv[0][2]))
1707                return KDB_NOTFOUND;
1708
1709        if (argc < 2)
1710                return KDB_ARGCOUNT;
1711
1712        nextarg = 1;
1713        diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1714        if (diag)
1715                return diag;
1716
1717        if (nextarg > argc)
1718                return KDB_ARGCOUNT;
1719        diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1720        if (diag)
1721                return diag;
1722
1723        if (nextarg != argc + 1)
1724                return KDB_ARGCOUNT;
1725
1726        width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1727        diag = kdb_putword(addr, contents, width);
1728        if (diag)
1729                return diag;
1730
1731        kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1732
1733        return 0;
1734}
1735
1736/*
1737 * kdb_go - This function implements the 'go' command.
1738 *      go [address-expression]
1739 */
1740static int kdb_go(int argc, const char **argv)
1741{
1742        unsigned long addr;
1743        int diag;
1744        int nextarg;
1745        long offset;
1746
1747        if (raw_smp_processor_id() != kdb_initial_cpu) {
1748                kdb_printf("go must execute on the entry cpu, "
1749                           "please use \"cpu %d\" and then execute go\n",
1750                           kdb_initial_cpu);
1751                return KDB_BADCPUNUM;
1752        }
1753        if (argc == 1) {
1754                nextarg = 1;
1755                diag = kdbgetaddrarg(argc, argv, &nextarg,
1756                                     &addr, &offset, NULL);
1757                if (diag)
1758                        return diag;
1759        } else if (argc) {
1760                return KDB_ARGCOUNT;
1761        }
1762
1763        diag = KDB_CMD_GO;
1764        if (KDB_FLAG(CATASTROPHIC)) {
1765                kdb_printf("Catastrophic error detected\n");
1766                kdb_printf("kdb_continue_catastrophic=%d, ",
1767                        kdb_continue_catastrophic);
1768                if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1769                        kdb_printf("type go a second time if you really want "
1770                                   "to continue\n");
1771                        return 0;
1772                }
1773                if (kdb_continue_catastrophic == 2) {
1774                        kdb_printf("forcing reboot\n");
1775                        kdb_reboot(0, NULL);
1776                }
1777                kdb_printf("attempting to continue\n");
1778        }
1779        return diag;
1780}
1781
1782/*
1783 * kdb_rd - This function implements the 'rd' command.
1784 */
1785static int kdb_rd(int argc, const char **argv)
1786{
1787        int len = kdb_check_regs();
1788#if DBG_MAX_REG_NUM > 0
1789        int i;
1790        char *rname;
1791        int rsize;
1792        u64 reg64;
1793        u32 reg32;
1794        u16 reg16;
1795        u8 reg8;
1796
1797        if (len)
1798                return len;
1799
1800        for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1801                rsize = dbg_reg_def[i].size * 2;
1802                if (rsize > 16)
1803                        rsize = 2;
1804                if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1805                        len = 0;
1806                        kdb_printf("\n");
1807                }
1808                if (len)
1809                        len += kdb_printf("  ");
1810                switch(dbg_reg_def[i].size * 8) {
1811                case 8:
1812                        rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1813                        if (!rname)
1814                                break;
1815                        len += kdb_printf("%s: %02x", rname, reg8);
1816                        break;
1817                case 16:
1818                        rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1819                        if (!rname)
1820                                break;
1821                        len += kdb_printf("%s: %04x", rname, reg16);
1822                        break;
1823                case 32:
1824                        rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1825                        if (!rname)
1826                                break;
1827                        len += kdb_printf("%s: %08x", rname, reg32);
1828                        break;
1829                case 64:
1830                        rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1831                        if (!rname)
1832                                break;
1833                        len += kdb_printf("%s: %016llx", rname, reg64);
1834                        break;
1835                default:
1836                        len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1837                }
1838        }
1839        kdb_printf("\n");
1840#else
1841        if (len)
1842                return len;
1843
1844        kdb_dumpregs(kdb_current_regs);
1845#endif
1846        return 0;
1847}
1848
1849/*
1850 * kdb_rm - This function implements the 'rm' (register modify)  command.
1851 *      rm register-name new-contents
1852 * Remarks:
1853 *      Allows register modification with the same restrictions as gdb
1854 */
1855static int kdb_rm(int argc, const char **argv)
1856{
1857#if DBG_MAX_REG_NUM > 0
1858        int diag;
1859        const char *rname;
1860        int i;
1861        u64 reg64;
1862        u32 reg32;
1863        u16 reg16;
1864        u8 reg8;
1865
1866        if (argc != 2)
1867                return KDB_ARGCOUNT;
1868        /*
1869         * Allow presence or absence of leading '%' symbol.
1870         */
1871        rname = argv[1];
1872        if (*rname == '%')
1873                rname++;
1874
1875        diag = kdbgetu64arg(argv[2], &reg64);
1876        if (diag)
1877                return diag;
1878
1879        diag = kdb_check_regs();
1880        if (diag)
1881                return diag;
1882
1883        diag = KDB_BADREG;
1884        for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1885                if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1886                        diag = 0;
1887                        break;
1888                }
1889        }
1890        if (!diag) {
1891                switch(dbg_reg_def[i].size * 8) {
1892                case 8:
1893                        reg8 = reg64;
1894                        dbg_set_reg(i, &reg8, kdb_current_regs);
1895                        break;
1896                case 16:
1897                        reg16 = reg64;
1898                        dbg_set_reg(i, &reg16, kdb_current_regs);
1899                        break;
1900                case 32:
1901                        reg32 = reg64;
1902                        dbg_set_reg(i, &reg32, kdb_current_regs);
1903                        break;
1904                case 64:
1905                        dbg_set_reg(i, &reg64, kdb_current_regs);
1906                        break;
1907                }
1908        }
1909        return diag;
1910#else
1911        kdb_printf("ERROR: Register set currently not implemented\n");
1912    return 0;
1913#endif
1914}
1915
1916#if defined(CONFIG_MAGIC_SYSRQ)
1917/*
1918 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1919 *      which interfaces to the soi-disant MAGIC SYSRQ functionality.
1920 *              sr <magic-sysrq-code>
1921 */
1922static int kdb_sr(int argc, const char **argv)
1923{
1924        if (argc != 1)
1925                return KDB_ARGCOUNT;
1926        kdb_trap_printk++;
1927        __handle_sysrq(*argv[1], false);
1928        kdb_trap_printk--;
1929
1930        return 0;
1931}
1932#endif  /* CONFIG_MAGIC_SYSRQ */
1933
1934/*
1935 * kdb_ef - This function implements the 'regs' (display exception
1936 *      frame) command.  This command takes an address and expects to
1937 *      find an exception frame at that address, formats and prints
1938 *      it.
1939 *              regs address-expression
1940 * Remarks:
1941 *      Not done yet.
1942 */
1943static int kdb_ef(int argc, const char **argv)
1944{
1945        int diag;
1946        unsigned long addr;
1947        long offset;
1948        int nextarg;
1949
1950        if (argc != 1)
1951                return KDB_ARGCOUNT;
1952
1953        nextarg = 1;
1954        diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1955        if (diag)
1956                return diag;
1957        show_regs((struct pt_regs *)addr);
1958        return 0;
1959}
1960
1961#if defined(CONFIG_MODULES)
1962/*
1963 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1964 *      currently loaded kernel modules.
1965 *      Mostly taken from userland lsmod.
1966 */
1967static int kdb_lsmod(int argc, const char **argv)
1968{
1969        struct module *mod;
1970
1971        if (argc != 0)
1972                return KDB_ARGCOUNT;
1973
1974        kdb_printf("Module                  Size  modstruct     Used by\n");
1975        list_for_each_entry(mod, kdb_modules, list) {
1976                if (mod->state == MODULE_STATE_UNFORMED)
1977                        continue;
1978
1979                kdb_printf("%-20s%8u  0x%p ", mod->name,
1980                           mod->core_size, (void *)mod);
1981#ifdef CONFIG_MODULE_UNLOAD
1982                kdb_printf("%4ld ", module_refcount(mod));
1983#endif
1984                if (mod->state == MODULE_STATE_GOING)
1985                        kdb_printf(" (Unloading)");
1986                else if (mod->state == MODULE_STATE_COMING)
1987                        kdb_printf(" (Loading)");
1988                else
1989                        kdb_printf(" (Live)");
1990                kdb_printf(" 0x%p", mod->module_core);
1991
1992#ifdef CONFIG_MODULE_UNLOAD
1993                {
1994                        struct module_use *use;
1995                        kdb_printf(" [ ");
1996                        list_for_each_entry(use, &mod->source_list,
1997                                            source_list)
1998                                kdb_printf("%s ", use->target->name);
1999                        kdb_printf("]\n");
2000                }
2001#endif
2002        }
2003
2004        return 0;
2005}
2006
2007#endif  /* CONFIG_MODULES */
2008
2009/*
2010 * kdb_env - This function implements the 'env' command.  Display the
2011 *      current environment variables.
2012 */
2013
2014static int kdb_env(int argc, const char **argv)
2015{
2016        int i;
2017
2018        for (i = 0; i < __nenv; i++) {
2019                if (__env[i])
2020                        kdb_printf("%s\n", __env[i]);
2021        }
2022
2023        if (KDB_DEBUG(MASK))
2024                kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2025
2026        return 0;
2027}
2028
2029#ifdef CONFIG_PRINTK
2030/*
2031 * kdb_dmesg - This function implements the 'dmesg' command to display
2032 *      the contents of the syslog buffer.
2033 *              dmesg [lines] [adjust]
2034 */
2035static int kdb_dmesg(int argc, const char **argv)
2036{
2037        int diag;
2038        int logging;
2039        int lines = 0;
2040        int adjust = 0;
2041        int n = 0;
2042        int skip = 0;
2043        struct kmsg_dumper dumper = { .active = 1 };
2044        size_t len;
2045        char buf[201];
2046
2047        if (argc > 2)
2048                return KDB_ARGCOUNT;
2049        if (argc) {
2050                char *cp;
2051                lines = simple_strtol(argv[1], &cp, 0);
2052                if (*cp)
2053                        lines = 0;
2054                if (argc > 1) {
2055                        adjust = simple_strtoul(argv[2], &cp, 0);
2056                        if (*cp || adjust < 0)
2057                                adjust = 0;
2058                }
2059        }
2060
2061        /* disable LOGGING if set */
2062        diag = kdbgetintenv("LOGGING", &logging);
2063        if (!diag && logging) {
2064                const char *setargs[] = { "set", "LOGGING", "0" };
2065                kdb_set(2, setargs);
2066        }
2067
2068        kmsg_dump_rewind_nolock(&dumper);
2069        while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2070                n++;
2071
2072        if (lines < 0) {
2073                if (adjust >= n)
2074                        kdb_printf("buffer only contains %d lines, nothing "
2075                                   "printed\n", n);
2076                else if (adjust - lines >= n)
2077                        kdb_printf("buffer only contains %d lines, last %d "
2078                                   "lines printed\n", n, n - adjust);
2079                skip = adjust;
2080                lines = abs(lines);
2081        } else if (lines > 0) {
2082                skip = n - lines - adjust;
2083                lines = abs(lines);
2084                if (adjust >= n) {
2085                        kdb_printf("buffer only contains %d lines, "
2086                                   "nothing printed\n", n);
2087                        skip = n;
2088                } else if (skip < 0) {
2089                        lines += skip;
2090                        skip = 0;
2091                        kdb_printf("buffer only contains %d lines, first "
2092                                   "%d lines printed\n", n, lines);
2093                }
2094        } else {
2095                lines = n;
2096        }
2097
2098        if (skip >= n || skip < 0)
2099                return 0;
2100
2101        kmsg_dump_rewind_nolock(&dumper);
2102        while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2103                if (skip) {
2104                        skip--;
2105                        continue;
2106                }
2107                if (!lines--)
2108                        break;
2109                if (KDB_FLAG(CMD_INTERRUPT))
2110                        return 0;
2111
2112                kdb_printf("%.*s\n", (int)len - 1, buf);
2113        }
2114
2115        return 0;
2116}
2117#endif /* CONFIG_PRINTK */
2118
2119/* Make sure we balance enable/disable calls, must disable first. */
2120static atomic_t kdb_nmi_disabled;
2121
2122static int kdb_disable_nmi(int argc, const char *argv[])
2123{
2124        if (atomic_read(&kdb_nmi_disabled))
2125                return 0;
2126        atomic_set(&kdb_nmi_disabled, 1);
2127        arch_kgdb_ops.enable_nmi(0);
2128        return 0;
2129}
2130
2131static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2132{
2133        if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2134                return -EINVAL;
2135        arch_kgdb_ops.enable_nmi(1);
2136        return 0;
2137}
2138
2139static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2140        .set = kdb_param_enable_nmi,
2141};
2142module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2143
2144/*
2145 * kdb_cpu - This function implements the 'cpu' command.
2146 *      cpu     [<cpunum>]
2147 * Returns:
2148 *      KDB_CMD_CPU for success, a kdb diagnostic if error
2149 */
2150static void kdb_cpu_status(void)
2151{
2152        int i, start_cpu, first_print = 1;
2153        char state, prev_state = '?';
2154
2155        kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2156        kdb_printf("Available cpus: ");
2157        for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2158                if (!cpu_online(i)) {
2159                        state = 'F';    /* cpu is offline */
2160                } else {
2161                        state = ' ';    /* cpu is responding to kdb */
2162                        if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2163                                state = 'I';    /* idle task */
2164                }
2165                if (state != prev_state) {
2166                        if (prev_state != '?') {
2167                                if (!first_print)
2168                                        kdb_printf(", ");
2169                                first_print = 0;
2170                                kdb_printf("%d", start_cpu);
2171                                if (start_cpu < i-1)
2172                                        kdb_printf("-%d", i-1);
2173                                if (prev_state != ' ')
2174                                        kdb_printf("(%c)", prev_state);
2175                        }
2176                        prev_state = state;
2177                        start_cpu = i;
2178                }
2179        }
2180        /* print the trailing cpus, ignoring them if they are all offline */
2181        if (prev_state != 'F') {
2182                if (!first_print)
2183                        kdb_printf(", ");
2184                kdb_printf("%d", start_cpu);
2185                if (start_cpu < i-1)
2186                        kdb_printf("-%d", i-1);
2187                if (prev_state != ' ')
2188                        kdb_printf("(%c)", prev_state);
2189        }
2190        kdb_printf("\n");
2191}
2192
2193static int kdb_cpu(int argc, const char **argv)
2194{
2195        unsigned long cpunum;
2196        int diag;
2197
2198        if (argc == 0) {
2199                kdb_cpu_status();
2200                return 0;
2201        }
2202
2203        if (argc != 1)
2204                return KDB_ARGCOUNT;
2205
2206        diag = kdbgetularg(argv[1], &cpunum);
2207        if (diag)
2208                return diag;
2209
2210        /*
2211         * Validate cpunum
2212         */
2213        if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2214                return KDB_BADCPUNUM;
2215
2216        dbg_switch_cpu = cpunum;
2217
2218        /*
2219         * Switch to other cpu
2220         */
2221        return KDB_CMD_CPU;
2222}
2223
2224/* The user may not realize that ps/bta with no parameters does not print idle
2225 * or sleeping system daemon processes, so tell them how many were suppressed.
2226 */
2227void kdb_ps_suppressed(void)
2228{
2229        int idle = 0, daemon = 0;
2230        unsigned long mask_I = kdb_task_state_string("I"),
2231                      mask_M = kdb_task_state_string("M");
2232        unsigned long cpu;
2233        const struct task_struct *p, *g;
2234        for_each_online_cpu(cpu) {
2235                p = kdb_curr_task(cpu);
2236                if (kdb_task_state(p, mask_I))
2237                        ++idle;
2238        }
2239        kdb_do_each_thread(g, p) {
2240                if (kdb_task_state(p, mask_M))
2241                        ++daemon;
2242        } kdb_while_each_thread(g, p);
2243        if (idle || daemon) {
2244                if (idle)
2245                        kdb_printf("%d idle process%s (state I)%s\n",
2246                                   idle, idle == 1 ? "" : "es",
2247                                   daemon ? " and " : "");
2248                if (daemon)
2249                        kdb_printf("%d sleeping system daemon (state M) "
2250                                   "process%s", daemon,
2251                                   daemon == 1 ? "" : "es");
2252                kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2253        }
2254}
2255
2256/*
2257 * kdb_ps - This function implements the 'ps' command which shows a
2258 *      list of the active processes.
2259 *              ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2260 */
2261void kdb_ps1(const struct task_struct *p)
2262{
2263        int cpu;
2264        unsigned long tmp;
2265
2266        if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2267                return;
2268
2269        cpu = kdb_process_cpu(p);
2270        kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2271                   (void *)p, p->pid, p->parent->pid,
2272                   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273                   kdb_task_state_char(p),
2274                   (void *)(&p->thread),
2275                   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276                   p->comm);
2277        if (kdb_task_has_cpu(p)) {
2278                if (!KDB_TSK(cpu)) {
2279                        kdb_printf("  Error: no saved data for this cpu\n");
2280                } else {
2281                        if (KDB_TSK(cpu) != p)
2282                                kdb_printf("  Error: does not match running "
2283                                   "process table (0x%p)\n", KDB_TSK(cpu));
2284                }
2285        }
2286}
2287
2288static int kdb_ps(int argc, const char **argv)
2289{
2290        struct task_struct *g, *p;
2291        unsigned long mask, cpu;
2292
2293        if (argc == 0)
2294                kdb_ps_suppressed();
2295        kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2296                (int)(2*sizeof(void *))+2, "Task Addr",
2297                (int)(2*sizeof(void *))+2, "Thread");
2298        mask = kdb_task_state_string(argc ? argv[1] : NULL);
2299        /* Run the active tasks first */
2300        for_each_online_cpu(cpu) {
2301                if (KDB_FLAG(CMD_INTERRUPT))
2302                        return 0;
2303                p = kdb_curr_task(cpu);
2304                if (kdb_task_state(p, mask))
2305                        kdb_ps1(p);
2306        }
2307        kdb_printf("\n");
2308        /* Now the real tasks */
2309        kdb_do_each_thread(g, p) {
2310                if (KDB_FLAG(CMD_INTERRUPT))
2311                        return 0;
2312                if (kdb_task_state(p, mask))
2313                        kdb_ps1(p);
2314        } kdb_while_each_thread(g, p);
2315
2316        return 0;
2317}
2318
2319/*
2320 * kdb_pid - This function implements the 'pid' command which switches
2321 *      the currently active process.
2322 *              pid [<pid> | R]
2323 */
2324static int kdb_pid(int argc, const char **argv)
2325{
2326        struct task_struct *p;
2327        unsigned long val;
2328        int diag;
2329
2330        if (argc > 1)
2331                return KDB_ARGCOUNT;
2332
2333        if (argc) {
2334                if (strcmp(argv[1], "R") == 0) {
2335                        p = KDB_TSK(kdb_initial_cpu);
2336                } else {
2337                        diag = kdbgetularg(argv[1], &val);
2338                        if (diag)
2339                                return KDB_BADINT;
2340
2341                        p = find_task_by_pid_ns((pid_t)val,     &init_pid_ns);
2342                        if (!p) {
2343                                kdb_printf("No task with pid=%d\n", (pid_t)val);
2344                                return 0;
2345                        }
2346                }
2347                kdb_set_current_task(p);
2348        }
2349        kdb_printf("KDB current process is %s(pid=%d)\n",
2350                   kdb_current_task->comm,
2351                   kdb_current_task->pid);
2352
2353        return 0;
2354}
2355
2356static int kdb_kgdb(int argc, const char **argv)
2357{
2358        return KDB_CMD_KGDB;
2359}
2360
2361/*
2362 * kdb_help - This function implements the 'help' and '?' commands.
2363 */
2364static int kdb_help(int argc, const char **argv)
2365{
2366        kdbtab_t *kt;
2367        int i;
2368
2369        kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2370        kdb_printf("-----------------------------"
2371                   "-----------------------------\n");
2372        for_each_kdbcmd(kt, i) {
2373                char *space = "";
2374                if (KDB_FLAG(CMD_INTERRUPT))
2375                        return 0;
2376                if (!kt->cmd_name)
2377                        continue;
2378                if (strlen(kt->cmd_usage) > 20)
2379                        space = "\n                                    ";
2380                kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2381                           kt->cmd_usage, space, kt->cmd_help);
2382        }
2383        return 0;
2384}
2385
2386/*
2387 * kdb_kill - This function implements the 'kill' commands.
2388 */
2389static int kdb_kill(int argc, const char **argv)
2390{
2391        long sig, pid;
2392        char *endp;
2393        struct task_struct *p;
2394        struct siginfo info;
2395
2396        if (argc != 2)
2397                return KDB_ARGCOUNT;
2398
2399        sig = simple_strtol(argv[1], &endp, 0);
2400        if (*endp)
2401                return KDB_BADINT;
2402        if (sig >= 0) {
2403                kdb_printf("Invalid signal parameter.<-signal>\n");
2404                return 0;
2405        }
2406        sig = -sig;
2407
2408        pid = simple_strtol(argv[2], &endp, 0);
2409        if (*endp)
2410                return KDB_BADINT;
2411        if (pid <= 0) {
2412                kdb_printf("Process ID must be large than 0.\n");
2413                return 0;
2414        }
2415
2416        /* Find the process. */
2417        p = find_task_by_pid_ns(pid, &init_pid_ns);
2418        if (!p) {
2419                kdb_printf("The specified process isn't found.\n");
2420                return 0;
2421        }
2422        p = p->group_leader;
2423        info.si_signo = sig;
2424        info.si_errno = 0;
2425        info.si_code = SI_USER;
2426        info.si_pid = pid;  /* same capabilities as process being signalled */
2427        info.si_uid = 0;    /* kdb has root authority */
2428        kdb_send_sig_info(p, &info);
2429        return 0;
2430}
2431
2432struct kdb_tm {
2433        int tm_sec;     /* seconds */
2434        int tm_min;     /* minutes */
2435        int tm_hour;    /* hours */
2436        int tm_mday;    /* day of the month */
2437        int tm_mon;     /* month */
2438        int tm_year;    /* year */
2439};
2440
2441static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2442{
2443        /* This will work from 1970-2099, 2100 is not a leap year */
2444        static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2445                                 31, 30, 31, 30, 31 };
2446        memset(tm, 0, sizeof(*tm));
2447        tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2448        tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2449                (2 * 365 + 1); /* shift base from 1970 to 1968 */
2450        tm->tm_min =  tm->tm_sec / 60 % 60;
2451        tm->tm_hour = tm->tm_sec / 60 / 60;
2452        tm->tm_sec =  tm->tm_sec % 60;
2453        tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2454        tm->tm_mday %= (4*365+1);
2455        mon_day[1] = 29;
2456        while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2457                tm->tm_mday -= mon_day[tm->tm_mon];
2458                if (++tm->tm_mon == 12) {
2459                        tm->tm_mon = 0;
2460                        ++tm->tm_year;
2461                        mon_day[1] = 28;
2462                }
2463        }
2464        ++tm->tm_mday;
2465}
2466
2467/*
2468 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2469 * I cannot call that code directly from kdb, it has an unconditional
2470 * cli()/sti() and calls routines that take locks which can stop the debugger.
2471 */
2472static void kdb_sysinfo(struct sysinfo *val)
2473{
2474        struct timespec uptime;
2475        do_posix_clock_monotonic_gettime(&uptime);
2476        memset(val, 0, sizeof(*val));
2477        val->uptime = uptime.tv_sec;
2478        val->loads[0] = avenrun[0];
2479        val->loads[1] = avenrun[1];
2480        val->loads[2] = avenrun[2];
2481        val->procs = nr_threads-1;
2482        si_meminfo(val);
2483
2484        return;
2485}
2486
2487/*
2488 * kdb_summary - This function implements the 'summary' command.
2489 */
2490static int kdb_summary(int argc, const char **argv)
2491{
2492        struct timespec now;
2493        struct kdb_tm tm;
2494        struct sysinfo val;
2495
2496        if (argc)
2497                return KDB_ARGCOUNT;
2498
2499        kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2500        kdb_printf("release    %s\n", init_uts_ns.name.release);
2501        kdb_printf("version    %s\n", init_uts_ns.name.version);
2502        kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2503        kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2504        kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2505        kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2506
2507        now = __current_kernel_time();
2508        kdb_gmtime(&now, &tm);
2509        kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2510                   "tz_minuteswest %d\n",
2511                1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2512                tm.tm_hour, tm.tm_min, tm.tm_sec,
2513                sys_tz.tz_minuteswest);
2514
2515        kdb_sysinfo(&val);
2516        kdb_printf("uptime     ");
2517        if (val.uptime > (24*60*60)) {
2518                int days = val.uptime / (24*60*60);
2519                val.uptime %= (24*60*60);
2520                kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2521        }
2522        kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2523
2524        /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2525
2526#define LOAD_INT(x) ((x) >> FSHIFT)
2527#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2528        kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2529                LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2530                LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2531                LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2532#undef LOAD_INT
2533#undef LOAD_FRAC
2534        /* Display in kilobytes */
2535#define K(x) ((x) << (PAGE_SHIFT - 10))
2536        kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2537                   "Buffers:        %8lu kB\n",
2538                   val.totalram, val.freeram, val.bufferram);
2539        return 0;
2540}
2541
2542/*
2543 * kdb_per_cpu - This function implements the 'per_cpu' command.
2544 */
2545static int kdb_per_cpu(int argc, const char **argv)
2546{
2547        char fmtstr[64];
2548        int cpu, diag, nextarg = 1;
2549        unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2550
2551        if (argc < 1 || argc > 3)
2552                return KDB_ARGCOUNT;
2553
2554        diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2555        if (diag)
2556                return diag;
2557
2558        if (argc >= 2) {
2559                diag = kdbgetularg(argv[2], &bytesperword);
2560                if (diag)
2561                        return diag;
2562        }
2563        if (!bytesperword)
2564                bytesperword = KDB_WORD_SIZE;
2565        else if (bytesperword > KDB_WORD_SIZE)
2566                return KDB_BADWIDTH;
2567        sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2568        if (argc >= 3) {
2569                diag = kdbgetularg(argv[3], &whichcpu);
2570                if (diag)
2571                        return diag;
2572                if (!cpu_online(whichcpu)) {
2573                        kdb_printf("cpu %ld is not online\n", whichcpu);
2574                        return KDB_BADCPUNUM;
2575                }
2576        }
2577
2578        /* Most architectures use __per_cpu_offset[cpu], some use
2579         * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2580         */
2581#ifdef  __per_cpu_offset
2582#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2583#else
2584#ifdef  CONFIG_SMP
2585#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2586#else
2587#define KDB_PCU(cpu) 0
2588#endif
2589#endif
2590        for_each_online_cpu(cpu) {
2591                if (KDB_FLAG(CMD_INTERRUPT))
2592                        return 0;
2593
2594                if (whichcpu != ~0UL && whichcpu != cpu)
2595                        continue;
2596                addr = symaddr + KDB_PCU(cpu);
2597                diag = kdb_getword(&val, addr, bytesperword);
2598                if (diag) {
2599                        kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2600                                   "read, diag=%d\n", cpu, addr, diag);
2601                        continue;
2602                }
2603                kdb_printf("%5d ", cpu);
2604                kdb_md_line(fmtstr, addr,
2605                        bytesperword == KDB_WORD_SIZE,
2606                        1, bytesperword, 1, 1, 0);
2607        }
2608#undef KDB_PCU
2609        return 0;
2610}
2611
2612/*
2613 * display help for the use of cmd | grep pattern
2614 */
2615static int kdb_grep_help(int argc, const char **argv)
2616{
2617        kdb_printf("Usage of  cmd args | grep pattern:\n");
2618        kdb_printf("  Any command's output may be filtered through an ");
2619        kdb_printf("emulated 'pipe'.\n");
2620        kdb_printf("  'grep' is just a key word.\n");
2621        kdb_printf("  The pattern may include a very limited set of "
2622                   "metacharacters:\n");
2623        kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2624        kdb_printf("  And if there are spaces in the pattern, you may "
2625                   "quote it:\n");
2626        kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2627                   " or \"^pat tern$\"\n");
2628        return 0;
2629}
2630
2631/*
2632 * kdb_register_repeat - This function is used to register a kernel
2633 *      debugger command.
2634 * Inputs:
2635 *      cmd     Command name
2636 *      func    Function to execute the command
2637 *      usage   A simple usage string showing arguments
2638 *      help    A simple help string describing command
2639 *      repeat  Does the command auto repeat on enter?
2640 * Returns:
2641 *      zero for success, one if a duplicate command.
2642 */
2643#define kdb_command_extend 50   /* arbitrary */
2644int kdb_register_repeat(char *cmd,
2645                        kdb_func_t func,
2646                        char *usage,
2647                        char *help,
2648                        short minlen,
2649                        kdb_repeat_t repeat)
2650{
2651        int i;
2652        kdbtab_t *kp;
2653
2654        /*
2655         *  Brute force method to determine duplicates
2656         */
2657        for_each_kdbcmd(kp, i) {
2658                if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2659                        kdb_printf("Duplicate kdb command registered: "
2660                                "%s, func %p help %s\n", cmd, func, help);
2661                        return 1;
2662                }
2663        }
2664
2665        /*
2666         * Insert command into first available location in table
2667         */
2668        for_each_kdbcmd(kp, i) {
2669                if (kp->cmd_name == NULL)
2670                        break;
2671        }
2672
2673        if (i >= kdb_max_commands) {
2674                kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2675                         kdb_command_extend) * sizeof(*new), GFP_KDB);
2676                if (!new) {
2677                        kdb_printf("Could not allocate new kdb_command "
2678                                   "table\n");
2679                        return 1;
2680                }
2681                if (kdb_commands) {
2682                        memcpy(new, kdb_commands,
2683                          (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2684                        kfree(kdb_commands);
2685                }
2686                memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2687                       kdb_command_extend * sizeof(*new));
2688                kdb_commands = new;
2689                kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2690                kdb_max_commands += kdb_command_extend;
2691        }
2692
2693        kp->cmd_name   = cmd;
2694        kp->cmd_func   = func;
2695        kp->cmd_usage  = usage;
2696        kp->cmd_help   = help;
2697        kp->cmd_flags  = 0;
2698        kp->cmd_minlen = minlen;
2699        kp->cmd_repeat = repeat;
2700
2701        return 0;
2702}
2703EXPORT_SYMBOL_GPL(kdb_register_repeat);
2704
2705
2706/*
2707 * kdb_register - Compatibility register function for commands that do
2708 *      not need to specify a repeat state.  Equivalent to
2709 *      kdb_register_repeat with KDB_REPEAT_NONE.
2710 * Inputs:
2711 *      cmd     Command name
2712 *      func    Function to execute the command
2713 *      usage   A simple usage string showing arguments
2714 *      help    A simple help string describing command
2715 * Returns:
2716 *      zero for success, one if a duplicate command.
2717 */
2718int kdb_register(char *cmd,
2719             kdb_func_t func,
2720             char *usage,
2721             char *help,
2722             short minlen)
2723{
2724        return kdb_register_repeat(cmd, func, usage, help, minlen,
2725                                   KDB_REPEAT_NONE);
2726}
2727EXPORT_SYMBOL_GPL(kdb_register);
2728
2729/*
2730 * kdb_unregister - This function is used to unregister a kernel
2731 *      debugger command.  It is generally called when a module which
2732 *      implements kdb commands is unloaded.
2733 * Inputs:
2734 *      cmd     Command name
2735 * Returns:
2736 *      zero for success, one command not registered.
2737 */
2738int kdb_unregister(char *cmd)
2739{
2740        int i;
2741        kdbtab_t *kp;
2742
2743        /*
2744         *  find the command.
2745         */
2746        for_each_kdbcmd(kp, i) {
2747                if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2748                        kp->cmd_name = NULL;
2749                        return 0;
2750                }
2751        }
2752
2753        /* Couldn't find it.  */
2754        return 1;
2755}
2756EXPORT_SYMBOL_GPL(kdb_unregister);
2757
2758/* Initialize the kdb command table. */
2759static void __init kdb_inittab(void)
2760{
2761        int i;
2762        kdbtab_t *kp;
2763
2764        for_each_kdbcmd(kp, i)
2765                kp->cmd_name = NULL;
2766
2767        kdb_register_repeat("md", kdb_md, "<vaddr>",
2768          "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2769                            KDB_REPEAT_NO_ARGS);
2770        kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2771          "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2772        kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2773          "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2774        kdb_register_repeat("mds", kdb_md, "<vaddr>",
2775          "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2776        kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2777          "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2778        kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2779          "Continue Execution", 1, KDB_REPEAT_NONE);
2780        kdb_register_repeat("rd", kdb_rd, "",
2781          "Display Registers", 0, KDB_REPEAT_NONE);
2782        kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2783          "Modify Registers", 0, KDB_REPEAT_NONE);
2784        kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2785          "Display exception frame", 0, KDB_REPEAT_NONE);
2786        kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2787          "Stack traceback", 1, KDB_REPEAT_NONE);
2788        kdb_register_repeat("btp", kdb_bt, "<pid>",
2789          "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2790        kdb_register_repeat("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2791          "Backtrace all processes matching state flag", 0, KDB_REPEAT_NONE);
2792        kdb_register_repeat("btc", kdb_bt, "",
2793          "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2794        kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2795          "Backtrace process given its struct task address", 0,
2796                            KDB_REPEAT_NONE);
2797        kdb_register_repeat("env", kdb_env, "",
2798          "Show environment variables", 0, KDB_REPEAT_NONE);
2799        kdb_register_repeat("set", kdb_set, "",
2800          "Set environment variables", 0, KDB_REPEAT_NONE);
2801        kdb_register_repeat("help", kdb_help, "",
2802          "Display Help Message", 1, KDB_REPEAT_NONE);
2803        kdb_register_repeat("?", kdb_help, "",
2804          "Display Help Message", 0, KDB_REPEAT_NONE);
2805        kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2806          "Switch to new cpu", 0, KDB_REPEAT_NONE);
2807        kdb_register_repeat("kgdb", kdb_kgdb, "",
2808          "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2809        kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2810          "Display active task list", 0, KDB_REPEAT_NONE);
2811        kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2812          "Switch to another task", 0, KDB_REPEAT_NONE);
2813        kdb_register_repeat("reboot", kdb_reboot, "",
2814          "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2815#if defined(CONFIG_MODULES)
2816        kdb_register_repeat("lsmod", kdb_lsmod, "",
2817          "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2818#endif
2819#if defined(CONFIG_MAGIC_SYSRQ)
2820        kdb_register_repeat("sr", kdb_sr, "<key>",
2821          "Magic SysRq key", 0, KDB_REPEAT_NONE);
2822#endif
2823#if defined(CONFIG_PRINTK)
2824        kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2825          "Display syslog buffer", 0, KDB_REPEAT_NONE);
2826#endif
2827        if (arch_kgdb_ops.enable_nmi) {
2828                kdb_register_repeat("disable_nmi", kdb_disable_nmi, "",
2829                  "Disable NMI entry to KDB", 0, KDB_REPEAT_NONE);
2830        }
2831        kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2832          "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2833        kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2834          "Send a signal to a process", 0, KDB_REPEAT_NONE);
2835        kdb_register_repeat("summary", kdb_summary, "",
2836          "Summarize the system", 4, KDB_REPEAT_NONE);
2837        kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2838          "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2839        kdb_register_repeat("grephelp", kdb_grep_help, "",
2840          "Display help on | grep", 0, KDB_REPEAT_NONE);
2841}
2842
2843/* Execute any commands defined in kdb_cmds.  */
2844static void __init kdb_cmd_init(void)
2845{
2846        int i, diag;
2847        for (i = 0; kdb_cmds[i]; ++i) {
2848                diag = kdb_parse(kdb_cmds[i]);
2849                if (diag)
2850                        kdb_printf("kdb command %s failed, kdb diag %d\n",
2851                                kdb_cmds[i], diag);
2852        }
2853        if (defcmd_in_progress) {
2854                kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2855                kdb_parse("endefcmd");
2856        }
2857}
2858
2859/* Initialize kdb_printf, breakpoint tables and kdb state */
2860void __init kdb_init(int lvl)
2861{
2862        static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2863        int i;
2864
2865        if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2866                return;
2867        for (i = kdb_init_lvl; i < lvl; i++) {
2868                switch (i) {
2869                case KDB_NOT_INITIALIZED:
2870                        kdb_inittab();          /* Initialize Command Table */
2871                        kdb_initbptab();        /* Initialize Breakpoints */
2872                        break;
2873                case KDB_INIT_EARLY:
2874                        kdb_cmd_init();         /* Build kdb_cmds tables */
2875                        break;
2876                }
2877        }
2878        kdb_init_lvl = lvl;
2879}
2880