linux/kernel/sched/cputime.c
<<
>>
Prefs
   1#include <linux/export.h>
   2#include <linux/sched.h>
   3#include <linux/tsacct_kern.h>
   4#include <linux/kernel_stat.h>
   5#include <linux/static_key.h>
   6#include <linux/context_tracking.h>
   7#include "sched.h"
   8
   9
  10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  11
  12/*
  13 * There are no locks covering percpu hardirq/softirq time.
  14 * They are only modified in vtime_account, on corresponding CPU
  15 * with interrupts disabled. So, writes are safe.
  16 * They are read and saved off onto struct rq in update_rq_clock().
  17 * This may result in other CPU reading this CPU's irq time and can
  18 * race with irq/vtime_account on this CPU. We would either get old
  19 * or new value with a side effect of accounting a slice of irq time to wrong
  20 * task when irq is in progress while we read rq->clock. That is a worthy
  21 * compromise in place of having locks on each irq in account_system_time.
  22 */
  23DEFINE_PER_CPU(u64, cpu_hardirq_time);
  24DEFINE_PER_CPU(u64, cpu_softirq_time);
  25
  26static DEFINE_PER_CPU(u64, irq_start_time);
  27static int sched_clock_irqtime;
  28
  29void enable_sched_clock_irqtime(void)
  30{
  31        sched_clock_irqtime = 1;
  32}
  33
  34void disable_sched_clock_irqtime(void)
  35{
  36        sched_clock_irqtime = 0;
  37}
  38
  39#ifndef CONFIG_64BIT
  40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
  41#endif /* CONFIG_64BIT */
  42
  43/*
  44 * Called before incrementing preempt_count on {soft,}irq_enter
  45 * and before decrementing preempt_count on {soft,}irq_exit.
  46 */
  47void irqtime_account_irq(struct task_struct *curr)
  48{
  49        unsigned long flags;
  50        s64 delta;
  51        int cpu;
  52
  53        if (!sched_clock_irqtime)
  54                return;
  55
  56        local_irq_save(flags);
  57
  58        cpu = smp_processor_id();
  59        delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
  60        __this_cpu_add(irq_start_time, delta);
  61
  62        irq_time_write_begin();
  63        /*
  64         * We do not account for softirq time from ksoftirqd here.
  65         * We want to continue accounting softirq time to ksoftirqd thread
  66         * in that case, so as not to confuse scheduler with a special task
  67         * that do not consume any time, but still wants to run.
  68         */
  69        if (hardirq_count())
  70                __this_cpu_add(cpu_hardirq_time, delta);
  71        else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
  72                __this_cpu_add(cpu_softirq_time, delta);
  73
  74        irq_time_write_end();
  75        local_irq_restore(flags);
  76}
  77EXPORT_SYMBOL_GPL(irqtime_account_irq);
  78
  79static int irqtime_account_hi_update(void)
  80{
  81        u64 *cpustat = kcpustat_this_cpu->cpustat;
  82        unsigned long flags;
  83        u64 latest_ns;
  84        int ret = 0;
  85
  86        local_irq_save(flags);
  87        latest_ns = this_cpu_read(cpu_hardirq_time);
  88        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
  89                ret = 1;
  90        local_irq_restore(flags);
  91        return ret;
  92}
  93
  94static int irqtime_account_si_update(void)
  95{
  96        u64 *cpustat = kcpustat_this_cpu->cpustat;
  97        unsigned long flags;
  98        u64 latest_ns;
  99        int ret = 0;
 100
 101        local_irq_save(flags);
 102        latest_ns = this_cpu_read(cpu_softirq_time);
 103        if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
 104                ret = 1;
 105        local_irq_restore(flags);
 106        return ret;
 107}
 108
 109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 110
 111#define sched_clock_irqtime     (0)
 112
 113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 114
 115static inline void task_group_account_field(struct task_struct *p, int index,
 116                                            u64 tmp)
 117{
 118        /*
 119         * Since all updates are sure to touch the root cgroup, we
 120         * get ourselves ahead and touch it first. If the root cgroup
 121         * is the only cgroup, then nothing else should be necessary.
 122         *
 123         */
 124        __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
 125
 126        cpuacct_account_field(p, index, tmp);
 127}
 128
 129/*
 130 * Account user cpu time to a process.
 131 * @p: the process that the cpu time gets accounted to
 132 * @cputime: the cpu time spent in user space since the last update
 133 * @cputime_scaled: cputime scaled by cpu frequency
 134 */
 135void account_user_time(struct task_struct *p, cputime_t cputime,
 136                       cputime_t cputime_scaled)
 137{
 138        int index;
 139
 140        /* Add user time to process. */
 141        p->utime += cputime;
 142        p->utimescaled += cputime_scaled;
 143        account_group_user_time(p, cputime);
 144
 145        index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 146
 147        /* Add user time to cpustat. */
 148        task_group_account_field(p, index, (__force u64) cputime);
 149
 150        /* Account for user time used */
 151        acct_account_cputime(p);
 152}
 153
 154/*
 155 * Account guest cpu time to a process.
 156 * @p: the process that the cpu time gets accounted to
 157 * @cputime: the cpu time spent in virtual machine since the last update
 158 * @cputime_scaled: cputime scaled by cpu frequency
 159 */
 160static void account_guest_time(struct task_struct *p, cputime_t cputime,
 161                               cputime_t cputime_scaled)
 162{
 163        u64 *cpustat = kcpustat_this_cpu->cpustat;
 164
 165        /* Add guest time to process. */
 166        p->utime += cputime;
 167        p->utimescaled += cputime_scaled;
 168        account_group_user_time(p, cputime);
 169        p->gtime += cputime;
 170
 171        /* Add guest time to cpustat. */
 172        if (TASK_NICE(p) > 0) {
 173                cpustat[CPUTIME_NICE] += (__force u64) cputime;
 174                cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
 175        } else {
 176                cpustat[CPUTIME_USER] += (__force u64) cputime;
 177                cpustat[CPUTIME_GUEST] += (__force u64) cputime;
 178        }
 179}
 180
 181/*
 182 * Account system cpu time to a process and desired cpustat field
 183 * @p: the process that the cpu time gets accounted to
 184 * @cputime: the cpu time spent in kernel space since the last update
 185 * @cputime_scaled: cputime scaled by cpu frequency
 186 * @target_cputime64: pointer to cpustat field that has to be updated
 187 */
 188static inline
 189void __account_system_time(struct task_struct *p, cputime_t cputime,
 190                        cputime_t cputime_scaled, int index)
 191{
 192        /* Add system time to process. */
 193        p->stime += cputime;
 194        p->stimescaled += cputime_scaled;
 195        account_group_system_time(p, cputime);
 196
 197        /* Add system time to cpustat. */
 198        task_group_account_field(p, index, (__force u64) cputime);
 199
 200        /* Account for system time used */
 201        acct_account_cputime(p);
 202}
 203
 204/*
 205 * Account system cpu time to a process.
 206 * @p: the process that the cpu time gets accounted to
 207 * @hardirq_offset: the offset to subtract from hardirq_count()
 208 * @cputime: the cpu time spent in kernel space since the last update
 209 * @cputime_scaled: cputime scaled by cpu frequency
 210 */
 211void account_system_time(struct task_struct *p, int hardirq_offset,
 212                         cputime_t cputime, cputime_t cputime_scaled)
 213{
 214        int index;
 215
 216        if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 217                account_guest_time(p, cputime, cputime_scaled);
 218                return;
 219        }
 220
 221        if (hardirq_count() - hardirq_offset)
 222                index = CPUTIME_IRQ;
 223        else if (in_serving_softirq())
 224                index = CPUTIME_SOFTIRQ;
 225        else
 226                index = CPUTIME_SYSTEM;
 227
 228        __account_system_time(p, cputime, cputime_scaled, index);
 229}
 230
 231/*
 232 * Account for involuntary wait time.
 233 * @cputime: the cpu time spent in involuntary wait
 234 */
 235void account_steal_time(cputime_t cputime)
 236{
 237        u64 *cpustat = kcpustat_this_cpu->cpustat;
 238
 239        cpustat[CPUTIME_STEAL] += (__force u64) cputime;
 240}
 241
 242/*
 243 * Account for idle time.
 244 * @cputime: the cpu time spent in idle wait
 245 */
 246void account_idle_time(cputime_t cputime)
 247{
 248        u64 *cpustat = kcpustat_this_cpu->cpustat;
 249        struct rq *rq = this_rq();
 250
 251        if (atomic_read(&rq->nr_iowait) > 0)
 252                cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
 253        else
 254                cpustat[CPUTIME_IDLE] += (__force u64) cputime;
 255}
 256
 257static __always_inline bool steal_account_process_tick(void)
 258{
 259#ifdef CONFIG_PARAVIRT
 260        if (static_key_false(&paravirt_steal_enabled)) {
 261                u64 steal;
 262                cputime_t steal_ct;
 263
 264                steal = paravirt_steal_clock(smp_processor_id());
 265                steal -= this_rq()->prev_steal_time;
 266
 267                /*
 268                 * cputime_t may be less precise than nsecs (eg: if it's
 269                 * based on jiffies). Lets cast the result to cputime
 270                 * granularity and account the rest on the next rounds.
 271                 */
 272                steal_ct = nsecs_to_cputime(steal);
 273                this_rq()->prev_steal_time += cputime_to_nsecs(steal_ct);
 274
 275                account_steal_time(steal_ct);
 276                return steal_ct;
 277        }
 278#endif
 279        return false;
 280}
 281
 282/*
 283 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 284 * tasks (sum on group iteration) belonging to @tsk's group.
 285 */
 286void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 287{
 288        struct signal_struct *sig = tsk->signal;
 289        cputime_t utime, stime;
 290        struct task_struct *t;
 291        unsigned int seq, nextseq;
 292        unsigned long flags;
 293
 294        rcu_read_lock();
 295        /* Attempt a lockless read on the first round. */
 296        nextseq = 0;
 297        do {
 298                seq = nextseq;
 299                flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 300                times->utime = sig->utime;
 301                times->stime = sig->stime;
 302                times->sum_exec_runtime = sig->sum_sched_runtime;
 303
 304                for_each_thread(tsk, t) {
 305                        task_cputime(t, &utime, &stime);
 306                        times->utime += utime;
 307                        times->stime += stime;
 308                        times->sum_exec_runtime += task_sched_runtime(t);
 309                }
 310                /* If lockless access failed, take the lock. */
 311                nextseq = 1;
 312        } while (need_seqretry(&sig->stats_lock, seq));
 313        done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 314        rcu_read_unlock();
 315}
 316
 317#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 318/*
 319 * Account a tick to a process and cpustat
 320 * @p: the process that the cpu time gets accounted to
 321 * @user_tick: is the tick from userspace
 322 * @rq: the pointer to rq
 323 *
 324 * Tick demultiplexing follows the order
 325 * - pending hardirq update
 326 * - pending softirq update
 327 * - user_time
 328 * - idle_time
 329 * - system time
 330 *   - check for guest_time
 331 *   - else account as system_time
 332 *
 333 * Check for hardirq is done both for system and user time as there is
 334 * no timer going off while we are on hardirq and hence we may never get an
 335 * opportunity to update it solely in system time.
 336 * p->stime and friends are only updated on system time and not on irq
 337 * softirq as those do not count in task exec_runtime any more.
 338 */
 339static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 340                                                struct rq *rq)
 341{
 342        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 343        u64 *cpustat = kcpustat_this_cpu->cpustat;
 344
 345        if (steal_account_process_tick())
 346                return;
 347
 348        if (irqtime_account_hi_update()) {
 349                cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
 350        } else if (irqtime_account_si_update()) {
 351                cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
 352        } else if (this_cpu_ksoftirqd() == p) {
 353                /*
 354                 * ksoftirqd time do not get accounted in cpu_softirq_time.
 355                 * So, we have to handle it separately here.
 356                 * Also, p->stime needs to be updated for ksoftirqd.
 357                 */
 358                __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 359                                        CPUTIME_SOFTIRQ);
 360        } else if (user_tick) {
 361                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 362        } else if (p == rq->idle) {
 363                account_idle_time(cputime_one_jiffy);
 364        } else if (p->flags & PF_VCPU) { /* System time or guest time */
 365                account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
 366        } else {
 367                __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
 368                                        CPUTIME_SYSTEM);
 369        }
 370}
 371
 372static void irqtime_account_idle_ticks(int ticks)
 373{
 374        int i;
 375        struct rq *rq = this_rq();
 376
 377        for (i = 0; i < ticks; i++)
 378                irqtime_account_process_tick(current, 0, rq);
 379}
 380#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 381static inline void irqtime_account_idle_ticks(int ticks) {}
 382static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 383                                                struct rq *rq) {}
 384#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 385
 386/*
 387 * Use precise platform statistics if available:
 388 */
 389#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 390
 391#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
 392void vtime_common_task_switch(struct task_struct *prev)
 393{
 394        if (is_idle_task(prev))
 395                vtime_account_idle(prev);
 396        else
 397                vtime_account_system(prev);
 398
 399#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 400        vtime_account_user(prev);
 401#endif
 402        arch_vtime_task_switch(prev);
 403}
 404#endif
 405
 406/*
 407 * Archs that account the whole time spent in the idle task
 408 * (outside irq) as idle time can rely on this and just implement
 409 * vtime_account_system() and vtime_account_idle(). Archs that
 410 * have other meaning of the idle time (s390 only includes the
 411 * time spent by the CPU when it's in low power mode) must override
 412 * vtime_account().
 413 */
 414#ifndef __ARCH_HAS_VTIME_ACCOUNT
 415void vtime_common_account_irq_enter(struct task_struct *tsk)
 416{
 417        if (!in_interrupt()) {
 418                /*
 419                 * If we interrupted user, context_tracking_in_user()
 420                 * is 1 because the context tracking don't hook
 421                 * on irq entry/exit. This way we know if
 422                 * we need to flush user time on kernel entry.
 423                 */
 424                if (context_tracking_in_user()) {
 425                        vtime_account_user(tsk);
 426                        return;
 427                }
 428
 429                if (is_idle_task(tsk)) {
 430                        vtime_account_idle(tsk);
 431                        return;
 432                }
 433        }
 434        vtime_account_system(tsk);
 435}
 436EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
 437#endif /* __ARCH_HAS_VTIME_ACCOUNT */
 438#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 439
 440
 441#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 442void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 443{
 444        *ut = p->utime;
 445        *st = p->stime;
 446}
 447
 448void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 449{
 450        struct task_cputime cputime;
 451
 452        thread_group_cputime(p, &cputime);
 453
 454        *ut = cputime.utime;
 455        *st = cputime.stime;
 456}
 457#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 458/*
 459 * Account a single tick of cpu time.
 460 * @p: the process that the cpu time gets accounted to
 461 * @user_tick: indicates if the tick is a user or a system tick
 462 */
 463void account_process_tick(struct task_struct *p, int user_tick)
 464{
 465        cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
 466        struct rq *rq = this_rq();
 467
 468        if (vtime_accounting_enabled())
 469                return;
 470
 471        if (sched_clock_irqtime) {
 472                irqtime_account_process_tick(p, user_tick, rq);
 473                return;
 474        }
 475
 476        if (steal_account_process_tick())
 477                return;
 478
 479        if (user_tick)
 480                account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
 481        else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
 482                account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
 483                                    one_jiffy_scaled);
 484        else
 485                account_idle_time(cputime_one_jiffy);
 486}
 487
 488/*
 489 * Account multiple ticks of steal time.
 490 * @p: the process from which the cpu time has been stolen
 491 * @ticks: number of stolen ticks
 492 */
 493void account_steal_ticks(unsigned long ticks)
 494{
 495        account_steal_time(jiffies_to_cputime(ticks));
 496}
 497
 498/*
 499 * Account multiple ticks of idle time.
 500 * @ticks: number of stolen ticks
 501 */
 502void account_idle_ticks(unsigned long ticks)
 503{
 504
 505        if (sched_clock_irqtime) {
 506                irqtime_account_idle_ticks(ticks);
 507                return;
 508        }
 509
 510        account_idle_time(jiffies_to_cputime(ticks));
 511}
 512
 513/*
 514 * Perform (stime * rtime) / total, but avoid multiplication overflow by
 515 * loosing precision when the numbers are big.
 516 */
 517static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
 518{
 519        u64 scaled;
 520
 521        for (;;) {
 522                /* Make sure "rtime" is the bigger of stime/rtime */
 523                if (stime > rtime)
 524                        swap(rtime, stime);
 525
 526                /* Make sure 'total' fits in 32 bits */
 527                if (total >> 32)
 528                        goto drop_precision;
 529
 530                /* Does rtime (and thus stime) fit in 32 bits? */
 531                if (!(rtime >> 32))
 532                        break;
 533
 534                /* Can we just balance rtime/stime rather than dropping bits? */
 535                if (stime >> 31)
 536                        goto drop_precision;
 537
 538                /* We can grow stime and shrink rtime and try to make them both fit */
 539                stime <<= 1;
 540                rtime >>= 1;
 541                continue;
 542
 543drop_precision:
 544                /* We drop from rtime, it has more bits than stime */
 545                rtime >>= 1;
 546                total >>= 1;
 547        }
 548
 549        /*
 550         * Make sure gcc understands that this is a 32x32->64 multiply,
 551         * followed by a 64/32->64 divide.
 552         */
 553        scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
 554        return (__force cputime_t) scaled;
 555}
 556
 557/*
 558 * Adjust tick based cputime random precision against scheduler runtime
 559 * accounting.
 560 *
 561 * Tick based cputime accounting depend on random scheduling timeslices of a
 562 * task to be interrupted or not by the timer.  Depending on these
 563 * circumstances, the number of these interrupts may be over or
 564 * under-optimistic, matching the real user and system cputime with a variable
 565 * precision.
 566 *
 567 * Fix this by scaling these tick based values against the total runtime
 568 * accounted by the CFS scheduler.
 569 *
 570 * This code provides the following guarantees:
 571 *
 572 *   stime + utime == rtime
 573 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 574 *
 575 * Assuming that rtime_i+1 >= rtime_i.
 576 */
 577static void cputime_adjust(struct task_cputime *curr,
 578                           struct prev_cputime *prev,
 579                           cputime_t *ut, cputime_t *st)
 580{
 581        cputime_t rtime, stime, utime;
 582        unsigned long flags;
 583
 584        /* Serialize concurrent callers such that we can honour our guarantees */
 585        raw_spin_lock_irqsave(&prev->lock, flags);
 586        rtime = nsecs_to_cputime(curr->sum_exec_runtime);
 587
 588        /*
 589         * This is possible under two circumstances:
 590         *  - rtime isn't monotonic after all (a bug);
 591         *  - we got reordered by the lock.
 592         *
 593         * In both cases this acts as a filter such that the rest of the code
 594         * can assume it is monotonic regardless of anything else.
 595         */
 596        if (prev->stime + prev->utime >= rtime)
 597                goto out;
 598
 599        stime = curr->stime;
 600        utime = curr->utime;
 601        /*
 602         * If either stime or both stime and utime are 0, assume all runtime is
 603         * userspace. Once a task gets some ticks, the monotonicy code at
 604         * 'update' will ensure things converge to the observed ratio.
 605         */
 606        if (stime == 0) {
 607                utime = rtime;
 608                goto update;
 609        }
 610
 611        if (utime == 0) {
 612                stime = rtime;
 613                goto update;
 614        }
 615
 616        stime = scale_stime((__force u64)stime, (__force u64)rtime,
 617                            (__force u64)(stime + utime));
 618
 619update:
 620        /*
 621         * Make sure stime doesn't go backwards; this preserves monotonicity
 622         * for utime because rtime is monotonic.
 623         *
 624         *  utime_i+1 = rtime_i+1 - stime_i
 625         *            = rtime_i+1 - (rtime_i - utime_i)
 626         *            = (rtime_i+1 - rtime_i) + utime_i
 627         *            >= utime_i
 628         */
 629        if (stime < prev->stime)
 630                stime = prev->stime;
 631        utime = rtime - stime;
 632
 633        /*
 634         * Make sure utime doesn't go backwards; this still preserves
 635         * monotonicity for stime, analogous argument to above.
 636         */
 637        if (utime < prev->utime) {
 638                utime = prev->utime;
 639                stime = rtime - utime;
 640        }
 641
 642        prev->stime = stime;
 643        prev->utime = utime;
 644out:
 645        *ut = prev->utime;
 646        *st = prev->stime;
 647        raw_spin_unlock_irqrestore(&prev->lock, flags);
 648}
 649
 650void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 651{
 652        struct task_cputime cputime = {
 653                .sum_exec_runtime = p->se.sum_exec_runtime,
 654        };
 655
 656        task_cputime(p, &cputime.utime, &cputime.stime);
 657        cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 658}
 659
 660void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
 661{
 662        struct task_cputime cputime;
 663
 664        thread_group_cputime(p, &cputime);
 665        cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 666}
 667#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 668
 669#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 670static cputime_t vtime_delta(struct task_struct *tsk)
 671{
 672        unsigned long now = ACCESS_ONCE(jiffies);
 673
 674        if (time_before(now, (unsigned long)tsk->vtime_snap))
 675                return 0;
 676
 677        return jiffies_to_cputime(now - tsk->vtime_snap);
 678}
 679
 680static cputime_t get_vtime_delta(struct task_struct *tsk)
 681{
 682        unsigned long now = ACCESS_ONCE(jiffies);
 683        unsigned long delta = now - tsk->vtime_snap;
 684
 685        WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
 686        tsk->vtime_snap = now;
 687
 688        return jiffies_to_cputime(delta);
 689}
 690
 691static void __vtime_account_system(struct task_struct *tsk)
 692{
 693        cputime_t delta_cpu = get_vtime_delta(tsk);
 694
 695        account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
 696}
 697
 698void vtime_account_system(struct task_struct *tsk)
 699{
 700        if (!vtime_delta(tsk))
 701                return;
 702
 703        write_seqcount_begin(&tsk->vtime_seqlock.seqcount);
 704        __vtime_account_system(tsk);
 705        write_seqcount_end(&tsk->vtime_seqlock.seqcount);
 706}
 707
 708void vtime_gen_account_irq_exit(struct task_struct *tsk)
 709{
 710        write_seqcount_begin(&tsk->vtime_seqlock.seqcount);
 711        if (vtime_delta(tsk))
 712                __vtime_account_system(tsk);
 713        if (context_tracking_in_user())
 714                tsk->vtime_snap_whence = VTIME_USER;
 715        write_seqcount_end(&tsk->vtime_seqlock.seqcount);
 716}
 717
 718void vtime_account_user(struct task_struct *tsk)
 719{
 720        cputime_t delta_cpu;
 721
 722        write_seqcount_begin(&tsk->vtime_seqlock.seqcount);
 723        tsk->vtime_snap_whence = VTIME_SYS;
 724        if (vtime_delta(tsk)) {
 725                delta_cpu = get_vtime_delta(tsk);
 726                account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
 727        }
 728        write_seqcount_end(&tsk->vtime_seqlock.seqcount);
 729}
 730
 731void vtime_user_enter(struct task_struct *tsk)
 732{
 733        write_seqcount_begin(&tsk->vtime_seqlock.seqcount);
 734        if (vtime_delta(tsk))
 735                __vtime_account_system(tsk);
 736        tsk->vtime_snap_whence = VTIME_USER;
 737        write_seqcount_end(&tsk->vtime_seqlock.seqcount);
 738}
 739
 740void vtime_guest_enter(struct task_struct *tsk)
 741{
 742        /*
 743         * The flags must be updated under the lock with
 744         * the vtime_snap flush and update.
 745         * That enforces a right ordering and update sequence
 746         * synchronization against the reader (task_gtime())
 747         * that can thus safely catch up with a tickless delta.
 748         */
 749        write_seqcount_begin(&tsk->vtime_seqlock.seqcount);
 750        if (vtime_delta(tsk))
 751                __vtime_account_system(tsk);
 752        current->flags |= PF_VCPU;
 753        write_seqcount_end(&tsk->vtime_seqlock.seqcount);
 754}
 755EXPORT_SYMBOL_GPL(vtime_guest_enter);
 756
 757void vtime_guest_exit(struct task_struct *tsk)
 758{
 759        write_seqcount_begin(&tsk->vtime_seqlock.seqcount);
 760        if (vtime_delta(tsk))
 761                __vtime_account_system(tsk);
 762        current->flags &= ~PF_VCPU;
 763        write_seqcount_end(&tsk->vtime_seqlock.seqcount);
 764}
 765EXPORT_SYMBOL_GPL(vtime_guest_exit);
 766
 767void vtime_account_idle(struct task_struct *tsk)
 768{
 769        cputime_t delta_cpu = get_vtime_delta(tsk);
 770
 771        account_idle_time(delta_cpu);
 772}
 773
 774void arch_vtime_task_switch(struct task_struct *prev)
 775{
 776        write_seqcount_begin(&prev->vtime_seqlock.seqcount);
 777        prev->vtime_snap_whence = VTIME_SLEEPING;
 778        write_seqcount_end(&prev->vtime_seqlock.seqcount);
 779
 780        write_seqcount_begin(&current->vtime_seqlock.seqcount);
 781        current->vtime_snap_whence = VTIME_SYS;
 782        current->vtime_snap = jiffies;
 783        write_seqcount_end(&current->vtime_seqlock.seqcount);
 784}
 785
 786void vtime_init_idle(struct task_struct *t, int cpu)
 787{
 788        unsigned long flags;
 789
 790        local_irq_save(flags);
 791        write_seqcount_begin(&t->vtime_seqlock.seqcount);
 792        t->vtime_snap_whence = VTIME_SYS;
 793        t->vtime_snap = jiffies;
 794        write_seqcount_end(&t->vtime_seqlock.seqcount);
 795        local_irq_restore(flags);
 796}
 797
 798cputime_t task_gtime(struct task_struct *t)
 799{
 800        unsigned int seq;
 801        cputime_t gtime;
 802
 803        do {
 804                seq = read_seqbegin(&t->vtime_seqlock);
 805
 806                gtime = t->gtime;
 807                if (t->flags & PF_VCPU)
 808                        gtime += vtime_delta(t);
 809
 810        } while (read_seqretry(&t->vtime_seqlock, seq));
 811
 812        return gtime;
 813}
 814
 815/*
 816 * Fetch cputime raw values from fields of task_struct and
 817 * add up the pending nohz execution time since the last
 818 * cputime snapshot.
 819 */
 820static void
 821fetch_task_cputime(struct task_struct *t,
 822                   cputime_t *u_dst, cputime_t *s_dst,
 823                   cputime_t *u_src, cputime_t *s_src,
 824                   cputime_t *udelta, cputime_t *sdelta)
 825{
 826        unsigned int seq;
 827        unsigned long long delta;
 828
 829        do {
 830                *udelta = 0;
 831                *sdelta = 0;
 832
 833                seq = read_seqbegin(&t->vtime_seqlock);
 834
 835                if (u_dst)
 836                        *u_dst = *u_src;
 837                if (s_dst)
 838                        *s_dst = *s_src;
 839
 840                /* Task is sleeping, nothing to add */
 841                if (t->vtime_snap_whence == VTIME_SLEEPING ||
 842                    is_idle_task(t))
 843                        continue;
 844
 845                delta = vtime_delta(t);
 846
 847                /*
 848                 * Task runs either in user or kernel space, add pending nohz time to
 849                 * the right place.
 850                 */
 851                if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
 852                        *udelta = delta;
 853                } else {
 854                        if (t->vtime_snap_whence == VTIME_SYS)
 855                                *sdelta = delta;
 856                }
 857        } while (read_seqretry(&t->vtime_seqlock, seq));
 858}
 859
 860
 861void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
 862{
 863        cputime_t udelta, sdelta;
 864
 865        fetch_task_cputime(t, utime, stime, &t->utime,
 866                           &t->stime, &udelta, &sdelta);
 867        if (utime)
 868                *utime += udelta;
 869        if (stime)
 870                *stime += sdelta;
 871}
 872
 873void task_cputime_scaled(struct task_struct *t,
 874                         cputime_t *utimescaled, cputime_t *stimescaled)
 875{
 876        cputime_t udelta, sdelta;
 877
 878        fetch_task_cputime(t, utimescaled, stimescaled,
 879                           &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
 880        if (utimescaled)
 881                *utimescaled += cputime_to_scaled(udelta);
 882        if (stimescaled)
 883                *stimescaled += cputime_to_scaled(sdelta);
 884}
 885#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
 886