linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/export.h>
  33#include <linux/swap.h>
  34#include <linux/aio.h>
  35#include <linux/syscalls.h>
  36#include <uapi/linux/memfd.h>
  37
  38static struct vfsmount *shm_mnt;
  39
  40#ifdef CONFIG_SHMEM
  41/*
  42 * This virtual memory filesystem is heavily based on the ramfs. It
  43 * extends ramfs by the ability to use swap and honor resource limits
  44 * which makes it a completely usable filesystem.
  45 */
  46
  47#include <linux/xattr.h>
  48#include <linux/exportfs.h>
  49#include <linux/posix_acl.h>
  50#include <linux/generic_acl.h>
  51#include <linux/mman.h>
  52#include <linux/string.h>
  53#include <linux/slab.h>
  54#include <linux/backing-dev.h>
  55#include <linux/shmem_fs.h>
  56#include <linux/writeback.h>
  57#include <linux/blkdev.h>
  58#include <linux/pagevec.h>
  59#include <linux/percpu_counter.h>
  60#include <linux/falloc.h>
  61#include <linux/splice.h>
  62#include <linux/security.h>
  63#include <linux/swapops.h>
  64#include <linux/mempolicy.h>
  65#include <linux/namei.h>
  66#include <linux/ctype.h>
  67#include <linux/migrate.h>
  68#include <linux/highmem.h>
  69#include <linux/seq_file.h>
  70#include <linux/magic.h>
  71#include <linux/fcntl.h>
  72#include <linux/userfaultfd_k.h>
  73#include <linux/rmap.h>
  74
  75#include <asm/uaccess.h>
  76#include <asm/pgtable.h>
  77
  78#define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
  79#define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
  80
  81/* Pretend that each entry is of this size in directory's i_size */
  82#define BOGO_DIRENT_SIZE 20
  83
  84/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  85#define SHORT_SYMLINK_LEN 128
  86
  87/*
  88 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  89 * inode->i_private (with i_mutex making sure that it has only one user at
  90 * a time): we would prefer not to enlarge the shmem inode just for that.
  91 */
  92struct shmem_falloc {
  93        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
  94        pgoff_t start;          /* start of range currently being fallocated */
  95        pgoff_t next;           /* the next page offset to be fallocated */
  96        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
  97        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
  98};
  99
 100/* Flag allocation requirements to shmem_getpage */
 101enum sgp_type {
 102        SGP_READ,       /* don't exceed i_size, don't allocate page */
 103        SGP_CACHE,      /* don't exceed i_size, may allocate page */
 104        SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
 105        SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
 106        SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112        return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 118}
 119#endif
 120
 121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 123                                struct shmem_inode_info *info, pgoff_t index);
 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 125                             struct page **pagep, enum sgp_type sgp,
 126                             gfp_t gfp, struct vm_area_struct *vma,
 127                             struct vm_fault *vmf, int *fault_type);
 128
 129static inline int shmem_getpage(struct inode *inode, pgoff_t index,
 130                                struct page **pagep, enum sgp_type sgp,
 131                                int *fault_type)
 132{
 133        return shmem_getpage_gfp(inode, index, pagep, sgp,
 134                                 mapping_gfp_mask(inode->i_mapping),
 135                                 NULL, NULL, fault_type);
 136}
 137
 138static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 139{
 140        return sb->s_fs_info;
 141}
 142
 143/*
 144 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 145 * for shared memory and for shared anonymous (/dev/zero) mappings
 146 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 147 * consistent with the pre-accounting of private mappings ...
 148 */
 149static inline int shmem_acct_size(unsigned long flags, loff_t size)
 150{
 151        return (flags & VM_NORESERVE) ?
 152                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 153}
 154
 155static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 156{
 157        if (!(flags & VM_NORESERVE))
 158                vm_unacct_memory(VM_ACCT(size));
 159}
 160
 161/*
 162 * ... whereas tmpfs objects are accounted incrementally as
 163 * pages are allocated, in order to allow huge sparse files.
 164 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 165 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 166 */
 167static inline int shmem_acct_block(unsigned long flags)
 168{
 169        return (flags & VM_NORESERVE) ?
 170                security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
 171}
 172
 173static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 174{
 175        if (flags & VM_NORESERVE)
 176                vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
 177}
 178
 179static const struct super_operations shmem_ops;
 180static const struct address_space_operations shmem_aops;
 181static const struct file_operations shmem_file_operations;
 182static const struct inode_operations shmem_inode_operations;
 183static const struct inode_operations_wrapper shmem_dir_inode_operations;
 184static const struct inode_operations shmem_special_inode_operations;
 185static const struct vm_operations_struct shmem_vm_ops;
 186
 187static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
 188        .ra_pages       = 0,    /* No readahead */
 189        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
 190};
 191
 192bool vma_is_shmem(struct vm_area_struct *vma)
 193{
 194        return vma->vm_ops == &shmem_vm_ops;
 195}
 196
 197static LIST_HEAD(shmem_swaplist);
 198static DEFINE_MUTEX(shmem_swaplist_mutex);
 199
 200static int shmem_reserve_inode(struct super_block *sb)
 201{
 202        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 203        if (sbinfo->max_inodes) {
 204                spin_lock(&sbinfo->stat_lock);
 205                if (!sbinfo->free_inodes) {
 206                        spin_unlock(&sbinfo->stat_lock);
 207                        return -ENOSPC;
 208                }
 209                sbinfo->free_inodes--;
 210                spin_unlock(&sbinfo->stat_lock);
 211        }
 212        return 0;
 213}
 214
 215static void shmem_free_inode(struct super_block *sb)
 216{
 217        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 218        if (sbinfo->max_inodes) {
 219                spin_lock(&sbinfo->stat_lock);
 220                sbinfo->free_inodes++;
 221                spin_unlock(&sbinfo->stat_lock);
 222        }
 223}
 224
 225/**
 226 * shmem_recalc_inode - recalculate the block usage of an inode
 227 * @inode: inode to recalc
 228 *
 229 * We have to calculate the free blocks since the mm can drop
 230 * undirtied hole pages behind our back.
 231 *
 232 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 233 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 234 *
 235 * It has to be called with the spinlock held.
 236 */
 237static void shmem_recalc_inode(struct inode *inode)
 238{
 239        struct shmem_inode_info *info = SHMEM_I(inode);
 240        long freed;
 241
 242        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 243        if (freed > 0) {
 244                struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 245                if (sbinfo->max_blocks)
 246                        percpu_counter_add(&sbinfo->used_blocks, -freed);
 247                info->alloced -= freed;
 248                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 249                shmem_unacct_blocks(info->flags, freed);
 250        }
 251}
 252
 253/*
 254 * Replace item expected in radix tree by a new item, while holding tree lock.
 255 */
 256static int shmem_radix_tree_replace(struct address_space *mapping,
 257                        pgoff_t index, void *expected, void *replacement)
 258{
 259        void **pslot;
 260        void *item;
 261
 262        VM_BUG_ON(!expected);
 263        VM_BUG_ON(!replacement);
 264        pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
 265        if (!pslot)
 266                return -ENOENT;
 267        item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
 268        if (item != expected)
 269                return -ENOENT;
 270        radix_tree_replace_slot(pslot, replacement);
 271        return 0;
 272}
 273
 274/*
 275 * Sometimes, before we decide whether to proceed or to fail, we must check
 276 * that an entry was not already brought back from swap by a racing thread.
 277 *
 278 * Checking page is not enough: by the time a SwapCache page is locked, it
 279 * might be reused, and again be SwapCache, using the same swap as before.
 280 */
 281static bool shmem_confirm_swap(struct address_space *mapping,
 282                               pgoff_t index, swp_entry_t swap)
 283{
 284        void *item;
 285
 286        rcu_read_lock();
 287        item = radix_tree_lookup(&mapping->page_tree, index);
 288        rcu_read_unlock();
 289        return item == swp_to_radix_entry(swap);
 290}
 291
 292/*
 293 * Like add_to_page_cache_locked, but error if expected item has gone.
 294 */
 295static int shmem_add_to_page_cache(struct page *page,
 296                                   struct address_space *mapping,
 297                                   pgoff_t index, gfp_t gfp, void *expected)
 298{
 299        int error;
 300
 301        VM_BUG_ON_PAGE(!PageLocked(page), page);
 302        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 303
 304        page_cache_get(page);
 305        page->mapping = mapping;
 306        page->index = index;
 307
 308        spin_lock_irq(&mapping->tree_lock);
 309        if (!expected)
 310                error = radix_tree_insert(&mapping->page_tree, index, page);
 311        else
 312                error = shmem_radix_tree_replace(mapping, index, expected,
 313                                                                 page);
 314        if (!error) {
 315                mapping->nrpages++;
 316                __inc_zone_page_state(page, NR_FILE_PAGES);
 317                __inc_zone_page_state(page, NR_SHMEM);
 318                spin_unlock_irq(&mapping->tree_lock);
 319        } else {
 320                page->mapping = NULL;
 321                spin_unlock_irq(&mapping->tree_lock);
 322                page_cache_release(page);
 323        }
 324        return error;
 325}
 326
 327/*
 328 * Like delete_from_page_cache, but substitutes swap for page.
 329 */
 330static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 331{
 332        struct address_space *mapping = page->mapping;
 333        int error;
 334
 335        spin_lock_irq(&mapping->tree_lock);
 336        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 337        page->mapping = NULL;
 338        mapping->nrpages--;
 339        __dec_zone_page_state(page, NR_FILE_PAGES);
 340        __dec_zone_page_state(page, NR_SHMEM);
 341        spin_unlock_irq(&mapping->tree_lock);
 342        page_cache_release(page);
 343        BUG_ON(error);
 344}
 345
 346/*
 347 * Remove swap entry from radix tree, free the swap and its page cache.
 348 */
 349static int shmem_free_swap(struct address_space *mapping,
 350                           pgoff_t index, void *radswap)
 351{
 352        void *old;
 353
 354        spin_lock_irq(&mapping->tree_lock);
 355        old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
 356        spin_unlock_irq(&mapping->tree_lock);
 357        if (old != radswap)
 358                return -ENOENT;
 359        free_swap_and_cache(radix_to_swp_entry(radswap));
 360        return 0;
 361}
 362
 363/*
 364 * Determine (in bytes) how many of the shmem object's pages mapped by the
 365 * given offsets are swapped out.
 366 *
 367 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 368 * as long as the inode doesn't go away and racy results are not a problem.
 369 */
 370unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 371                                                pgoff_t start, pgoff_t end)
 372{
 373        struct radix_tree_iter iter;
 374        void **slot;
 375        struct page *page;
 376        unsigned long swapped = 0;
 377
 378        rcu_read_lock();
 379
 380restart:
 381        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
 382                if (iter.index >= end)
 383                        break;
 384
 385                page = radix_tree_deref_slot(slot);
 386
 387                /*
 388                 * This should only be possible to happen at index 0, so we
 389                 * don't need to reset the counter, nor do we risk infinite
 390                 * restarts.
 391                 */
 392                if (radix_tree_deref_retry(page))
 393                        goto restart;
 394
 395                if (radix_tree_exceptional_entry(page))
 396                        swapped++;
 397
 398                if (need_resched()) {
 399                        cond_resched_rcu();
 400                        start = iter.index + 1;
 401                        goto restart;
 402                }
 403        }
 404
 405        rcu_read_unlock();
 406
 407        return swapped << PAGE_SHIFT;
 408}
 409
 410/*
 411 * Determine (in bytes) how many of the shmem object's pages mapped by the
 412 * given vma is swapped out.
 413 *
 414 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
 415 * as long as the inode doesn't go away and racy results are not a problem.
 416 */
 417unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 418{
 419        struct inode *inode = file_inode(vma->vm_file);
 420        struct shmem_inode_info *info = SHMEM_I(inode);
 421        struct address_space *mapping = inode->i_mapping;
 422        unsigned long swapped;
 423
 424        /* Be careful as we don't hold info->lock */
 425        swapped = READ_ONCE(info->swapped);
 426
 427        /*
 428         * The easier cases are when the shmem object has nothing in swap, or
 429         * the vma maps it whole. Then we can simply use the stats that we
 430         * already track.
 431         */
 432        if (!swapped)
 433                return 0;
 434
 435        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 436                return swapped << PAGE_SHIFT;
 437
 438        /* Here comes the more involved part */
 439        return shmem_partial_swap_usage(mapping,
 440                        linear_page_index(vma, vma->vm_start),
 441                        linear_page_index(vma, vma->vm_end));
 442}
 443
 444/*
 445 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 446 */
 447void shmem_unlock_mapping(struct address_space *mapping)
 448{
 449        struct pagevec pvec;
 450        pgoff_t indices[PAGEVEC_SIZE];
 451        pgoff_t index = 0;
 452
 453        pagevec_init(&pvec, 0);
 454        /*
 455         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 456         */
 457        while (!mapping_unevictable(mapping)) {
 458                /*
 459                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 460                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 461                 */
 462                pvec.nr = __find_get_pages(mapping, index,
 463                                        PAGEVEC_SIZE, pvec.pages, indices);
 464                if (!pvec.nr)
 465                        break;
 466                index = indices[pvec.nr - 1] + 1;
 467                pagevec_remove_exceptionals(&pvec);
 468                check_move_unevictable_pages(pvec.pages, pvec.nr);
 469                pagevec_release(&pvec);
 470                cond_resched();
 471        }
 472}
 473
 474/*
 475 * Remove range of pages and swap entries from radix tree, and free them.
 476 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 477 */
 478static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 479                                                                 bool unfalloc)
 480{
 481        struct address_space *mapping = inode->i_mapping;
 482        struct shmem_inode_info *info = SHMEM_I(inode);
 483        pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
 484        pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
 485        unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
 486        unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
 487        struct pagevec pvec;
 488        pgoff_t indices[PAGEVEC_SIZE];
 489        long nr_swaps_freed = 0;
 490        pgoff_t index;
 491        int i;
 492
 493        if (lend == -1)
 494                end = -1;       /* unsigned, so actually very big */
 495
 496        pagevec_init(&pvec, 0);
 497        index = start;
 498        while (index < end) {
 499                pvec.nr = __find_get_pages(mapping, index,
 500                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 501                        pvec.pages, indices);
 502                if (!pvec.nr)
 503                        break;
 504                mem_cgroup_uncharge_start();
 505                for (i = 0; i < pagevec_count(&pvec); i++) {
 506                        struct page *page = pvec.pages[i];
 507
 508                        index = indices[i];
 509                        if (index >= end)
 510                                break;
 511
 512                        if (radix_tree_exceptional_entry(page)) {
 513                                if (unfalloc)
 514                                        continue;
 515                                nr_swaps_freed += !shmem_free_swap(mapping,
 516                                                                index, page);
 517                                continue;
 518                        }
 519
 520                        if (!trylock_page(page))
 521                                continue;
 522                        if (!unfalloc || !PageUptodate(page)) {
 523                                if (page->mapping == mapping) {
 524                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 525                                        truncate_inode_page(mapping, page);
 526                                }
 527                        }
 528                        unlock_page(page);
 529                }
 530                pagevec_remove_exceptionals(&pvec);
 531                pagevec_release(&pvec);
 532                mem_cgroup_uncharge_end();
 533                cond_resched();
 534                index++;
 535        }
 536
 537        if (partial_start) {
 538                struct page *page = NULL;
 539                shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
 540                if (page) {
 541                        unsigned int top = PAGE_CACHE_SIZE;
 542                        if (start > end) {
 543                                top = partial_end;
 544                                partial_end = 0;
 545                        }
 546                        zero_user_segment(page, partial_start, top);
 547                        set_page_dirty(page);
 548                        unlock_page(page);
 549                        page_cache_release(page);
 550                }
 551        }
 552        if (partial_end) {
 553                struct page *page = NULL;
 554                shmem_getpage(inode, end, &page, SGP_READ, NULL);
 555                if (page) {
 556                        zero_user_segment(page, 0, partial_end);
 557                        set_page_dirty(page);
 558                        unlock_page(page);
 559                        page_cache_release(page);
 560                }
 561        }
 562        if (start >= end)
 563                return;
 564
 565        index = start;
 566        while (index < end) {
 567                cond_resched();
 568
 569                pvec.nr = __find_get_pages(mapping, index,
 570                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 571                                pvec.pages, indices);
 572                if (!pvec.nr) {
 573                        /* If all gone or hole-punch or unfalloc, we're done */
 574                        if (index == start || end != -1)
 575                                break;
 576                        /* But if truncating, restart to make sure all gone */
 577                        index = start;
 578                        continue;
 579                }
 580                mem_cgroup_uncharge_start();
 581                for (i = 0; i < pagevec_count(&pvec); i++) {
 582                        struct page *page = pvec.pages[i];
 583
 584                        index = indices[i];
 585                        if (index >= end)
 586                                break;
 587
 588                        if (radix_tree_exceptional_entry(page)) {
 589                                if (unfalloc)
 590                                        continue;
 591                                if (shmem_free_swap(mapping, index, page)) {
 592                                        /* Swap was replaced by page: retry */
 593                                        index--;
 594                                        break;
 595                                }
 596                                nr_swaps_freed++;
 597                                continue;
 598                        }
 599
 600                        lock_page(page);
 601                        if (!unfalloc || !PageUptodate(page)) {
 602                                if (page->mapping == mapping) {
 603                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 604                                        truncate_inode_page(mapping, page);
 605                                } else {
 606                                        /* Page was replaced by swap: retry */
 607                                        unlock_page(page);
 608                                        index--;
 609                                        break;
 610                                }
 611                        }
 612                        unlock_page(page);
 613                }
 614                pagevec_remove_exceptionals(&pvec);
 615                pagevec_release(&pvec);
 616                mem_cgroup_uncharge_end();
 617                index++;
 618        }
 619
 620        spin_lock(&info->lock);
 621        info->swapped -= nr_swaps_freed;
 622        shmem_recalc_inode(inode);
 623        spin_unlock(&info->lock);
 624}
 625
 626void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 627{
 628        shmem_undo_range(inode, lstart, lend, false);
 629        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 630}
 631EXPORT_SYMBOL_GPL(shmem_truncate_range);
 632
 633static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
 634{
 635        struct inode *inode = dentry->d_inode;
 636        struct shmem_inode_info *info = SHMEM_I(inode);
 637        int error;
 638
 639        error = inode_change_ok(inode, attr);
 640        if (error)
 641                return error;
 642
 643        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
 644                loff_t oldsize = inode->i_size;
 645                loff_t newsize = attr->ia_size;
 646
 647                /* protected by i_mutex */
 648                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
 649                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
 650                        return -EPERM;
 651
 652                if (newsize != oldsize) {
 653                        i_size_write(inode, newsize);
 654                        inode->i_ctime = inode->i_mtime = CURRENT_TIME;
 655                }
 656                if (newsize < oldsize) {
 657                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
 658                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 659                        shmem_truncate_range(inode, newsize, (loff_t)-1);
 660                        /* unmap again to remove racily COWed private pages */
 661                        unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
 662                }
 663        }
 664
 665        setattr_copy(inode, attr);
 666#ifdef CONFIG_TMPFS_POSIX_ACL
 667        if (attr->ia_valid & ATTR_MODE)
 668                error = generic_acl_chmod(inode);
 669#endif
 670        return error;
 671}
 672
 673static void shmem_evict_inode(struct inode *inode)
 674{
 675        struct shmem_inode_info *info = SHMEM_I(inode);
 676
 677        if (inode->i_mapping->a_ops == &shmem_aops) {
 678                shmem_unacct_size(info->flags, inode->i_size);
 679                inode->i_size = 0;
 680                shmem_truncate_range(inode, 0, (loff_t)-1);
 681                if (!list_empty(&info->swaplist)) {
 682                        mutex_lock(&shmem_swaplist_mutex);
 683                        list_del_init(&info->swaplist);
 684                        mutex_unlock(&shmem_swaplist_mutex);
 685                }
 686        } else
 687                kfree(info->symlink);
 688
 689        simple_xattrs_free(&info->xattrs);
 690        WARN_ON(inode->i_blocks);
 691        shmem_free_inode(inode->i_sb);
 692        clear_inode(inode);
 693}
 694
 695/*
 696 * If swap found in inode, free it and move page from swapcache to filecache.
 697 */
 698static int shmem_unuse_inode(struct shmem_inode_info *info,
 699                             swp_entry_t swap, struct page **pagep)
 700{
 701        struct address_space *mapping = info->vfs_inode.i_mapping;
 702        void *radswap;
 703        pgoff_t index;
 704        gfp_t gfp;
 705        int error = 0;
 706
 707        radswap = swp_to_radix_entry(swap);
 708        index = radix_tree_locate_item(&mapping->page_tree, radswap);
 709        if (index == -1)
 710                return 0;
 711
 712        /*
 713         * Move _head_ to start search for next from here.
 714         * But be careful: shmem_evict_inode checks list_empty without taking
 715         * mutex, and there's an instant in list_move_tail when info->swaplist
 716         * would appear empty, if it were the only one on shmem_swaplist.
 717         */
 718        if (shmem_swaplist.next != &info->swaplist)
 719                list_move_tail(&shmem_swaplist, &info->swaplist);
 720
 721        gfp = mapping_gfp_mask(mapping);
 722        if (shmem_should_replace_page(*pagep, gfp)) {
 723                mutex_unlock(&shmem_swaplist_mutex);
 724                error = shmem_replace_page(pagep, gfp, info, index);
 725                mutex_lock(&shmem_swaplist_mutex);
 726                /*
 727                 * We needed to drop mutex to make that restrictive page
 728                 * allocation, but the inode might have been freed while we
 729                 * dropped it: although a racing shmem_evict_inode() cannot
 730                 * complete without emptying the radix_tree, our page lock
 731                 * on this swapcache page is not enough to prevent that -
 732                 * free_swap_and_cache() of our swap entry will only
 733                 * trylock_page(), removing swap from radix_tree whatever.
 734                 *
 735                 * We must not proceed to shmem_add_to_page_cache() if the
 736                 * inode has been freed, but of course we cannot rely on
 737                 * inode or mapping or info to check that.  However, we can
 738                 * safely check if our swap entry is still in use (and here
 739                 * it can't have got reused for another page): if it's still
 740                 * in use, then the inode cannot have been freed yet, and we
 741                 * can safely proceed (if it's no longer in use, that tells
 742                 * nothing about the inode, but we don't need to unuse swap).
 743                 */
 744                if (!page_swapcount(*pagep))
 745                        error = -ENOENT;
 746        }
 747
 748        /*
 749         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
 750         * but also to hold up shmem_evict_inode(): so inode cannot be freed
 751         * beneath us (pagelock doesn't help until the page is in pagecache).
 752         */
 753        if (!error)
 754                error = shmem_add_to_page_cache(*pagep, mapping, index,
 755                                                GFP_NOWAIT, radswap);
 756        if (error != -ENOMEM) {
 757                /*
 758                 * Truncation and eviction use free_swap_and_cache(), which
 759                 * only does trylock page: if we raced, best clean up here.
 760                 */
 761                delete_from_swap_cache(*pagep);
 762                set_page_dirty(*pagep);
 763                if (!error) {
 764                        spin_lock(&info->lock);
 765                        info->swapped--;
 766                        spin_unlock(&info->lock);
 767                        swap_free(swap);
 768                }
 769                error = 1;      /* not an error, but entry was found */
 770        }
 771        return error;
 772}
 773
 774/*
 775 * Search through swapped inodes to find and replace swap by page.
 776 */
 777int shmem_unuse(swp_entry_t swap, struct page *page)
 778{
 779        struct list_head *this, *next;
 780        struct shmem_inode_info *info;
 781        int found = 0;
 782        int error = 0;
 783
 784        /*
 785         * There's a faint possibility that swap page was replaced before
 786         * caller locked it: caller will come back later with the right page.
 787         */
 788        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
 789                goto out;
 790
 791        /*
 792         * Charge page using GFP_KERNEL while we can wait, before taking
 793         * the shmem_swaplist_mutex which might hold up shmem_writepage().
 794         * Charged back to the user (not to caller) when swap account is used.
 795         */
 796        error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
 797        if (error)
 798                goto out;
 799        /* No radix_tree_preload: swap entry keeps a place for page in tree */
 800
 801        mutex_lock(&shmem_swaplist_mutex);
 802        list_for_each_safe(this, next, &shmem_swaplist) {
 803                info = list_entry(this, struct shmem_inode_info, swaplist);
 804                if (info->swapped)
 805                        found = shmem_unuse_inode(info, swap, &page);
 806                else
 807                        list_del_init(&info->swaplist);
 808                cond_resched();
 809                if (found)
 810                        break;
 811        }
 812        mutex_unlock(&shmem_swaplist_mutex);
 813
 814        if (found < 0)
 815                error = found;
 816out:
 817        unlock_page(page);
 818        page_cache_release(page);
 819        return error;
 820}
 821
 822/*
 823 * Move the page from the page cache to the swap cache.
 824 */
 825static int shmem_writepage(struct page *page, struct writeback_control *wbc)
 826{
 827        struct shmem_inode_info *info;
 828        struct address_space *mapping;
 829        struct inode *inode;
 830        swp_entry_t swap;
 831        pgoff_t index;
 832
 833        BUG_ON(!PageLocked(page));
 834        mapping = page->mapping;
 835        index = page->index;
 836        inode = mapping->host;
 837        info = SHMEM_I(inode);
 838        if (info->flags & VM_LOCKED)
 839                goto redirty;
 840        if (!total_swap_pages)
 841                goto redirty;
 842
 843        /*
 844         * shmem_backing_dev_info's capabilities prevent regular writeback or
 845         * sync from ever calling shmem_writepage; but a stacking filesystem
 846         * might use ->writepage of its underlying filesystem, in which case
 847         * tmpfs should write out to swap only in response to memory pressure,
 848         * and not for the writeback threads or sync.
 849         */
 850        if (!wbc->for_reclaim) {
 851                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
 852                goto redirty;
 853        }
 854
 855        /*
 856         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
 857         * value into swapfile.c, the only way we can correctly account for a
 858         * fallocated page arriving here is now to initialize it and write it.
 859         *
 860         * That's okay for a page already fallocated earlier, but if we have
 861         * not yet completed the fallocation, then (a) we want to keep track
 862         * of this page in case we have to undo it, and (b) it may not be a
 863         * good idea to continue anyway, once we're pushing into swap.  So
 864         * reactivate the page, and let shmem_fallocate() quit when too many.
 865         */
 866        if (!PageUptodate(page)) {
 867                if (inode->i_private) {
 868                        struct shmem_falloc *shmem_falloc;
 869                        spin_lock(&inode->i_lock);
 870                        shmem_falloc = inode->i_private;
 871                        if (shmem_falloc &&
 872                            !shmem_falloc->waitq &&
 873                            index >= shmem_falloc->start &&
 874                            index < shmem_falloc->next)
 875                                shmem_falloc->nr_unswapped++;
 876                        else
 877                                shmem_falloc = NULL;
 878                        spin_unlock(&inode->i_lock);
 879                        if (shmem_falloc)
 880                                goto redirty;
 881                }
 882                clear_highpage(page);
 883                flush_dcache_page(page);
 884                SetPageUptodate(page);
 885        }
 886
 887        swap = get_swap_page();
 888        if (!swap.val)
 889                goto redirty;
 890
 891        /*
 892         * Add inode to shmem_unuse()'s list of swapped-out inodes,
 893         * if it's not already there.  Do it now before the page is
 894         * moved to swap cache, when its pagelock no longer protects
 895         * the inode from eviction.  But don't unlock the mutex until
 896         * we've incremented swapped, because shmem_unuse_inode() will
 897         * prune a !swapped inode from the swaplist under this mutex.
 898         */
 899        mutex_lock(&shmem_swaplist_mutex);
 900        if (list_empty(&info->swaplist))
 901                list_add_tail(&info->swaplist, &shmem_swaplist);
 902
 903        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
 904                swap_shmem_alloc(swap);
 905                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
 906
 907                spin_lock(&info->lock);
 908                info->swapped++;
 909                shmem_recalc_inode(inode);
 910                spin_unlock(&info->lock);
 911
 912                mutex_unlock(&shmem_swaplist_mutex);
 913                BUG_ON(page_mapped(page));
 914                swap_writepage(page, wbc);
 915                return 0;
 916        }
 917
 918        mutex_unlock(&shmem_swaplist_mutex);
 919        swapcache_free(swap, NULL);
 920redirty:
 921        set_page_dirty(page);
 922        if (wbc->for_reclaim)
 923                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
 924        unlock_page(page);
 925        return 0;
 926}
 927
 928#ifdef CONFIG_NUMA
 929#ifdef CONFIG_TMPFS
 930static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 931{
 932        char buffer[64];
 933
 934        if (!mpol || mpol->mode == MPOL_DEFAULT)
 935                return;         /* show nothing */
 936
 937        mpol_to_str(buffer, sizeof(buffer), mpol);
 938
 939        seq_printf(seq, ",mpol=%s", buffer);
 940}
 941
 942static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
 943{
 944        struct mempolicy *mpol = NULL;
 945        if (sbinfo->mpol) {
 946                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
 947                mpol = sbinfo->mpol;
 948                mpol_get(mpol);
 949                spin_unlock(&sbinfo->stat_lock);
 950        }
 951        return mpol;
 952}
 953#endif /* CONFIG_TMPFS */
 954
 955static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
 956                        struct shmem_inode_info *info, pgoff_t index)
 957{
 958        struct vm_area_struct pvma;
 959        struct page *page;
 960
 961        /* Create a pseudo vma that just contains the policy */
 962        pvma.vm_start = 0;
 963        /* Bias interleave by inode number to distribute better across nodes */
 964        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 965        pvma.vm_ops = NULL;
 966        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 967
 968        page = swapin_readahead(swap, gfp, &pvma, 0);
 969
 970        /* Drop reference taken by mpol_shared_policy_lookup() */
 971        mpol_cond_put(pvma.vm_policy);
 972
 973        return page;
 974}
 975
 976static struct page *shmem_alloc_page(gfp_t gfp,
 977                        struct shmem_inode_info *info, pgoff_t index)
 978{
 979        struct vm_area_struct pvma;
 980        struct page *page;
 981
 982        /* Create a pseudo vma that just contains the policy */
 983        pvma.vm_start = 0;
 984        /* Bias interleave by inode number to distribute better across nodes */
 985        pvma.vm_pgoff = index + info->vfs_inode.i_ino;
 986        pvma.vm_ops = NULL;
 987        pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
 988
 989        page = alloc_page_vma(gfp, &pvma, 0);
 990
 991        /* Drop reference taken by mpol_shared_policy_lookup() */
 992        mpol_cond_put(pvma.vm_policy);
 993
 994        return page;
 995}
 996#else /* !CONFIG_NUMA */
 997#ifdef CONFIG_TMPFS
 998static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
 999{
1000}
1001#endif /* CONFIG_TMPFS */
1002
1003static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1004                        struct shmem_inode_info *info, pgoff_t index)
1005{
1006        return swapin_readahead(swap, gfp, NULL, 0);
1007}
1008
1009static inline struct page *shmem_alloc_page(gfp_t gfp,
1010                        struct shmem_inode_info *info, pgoff_t index)
1011{
1012        return alloc_page(gfp);
1013}
1014#endif /* CONFIG_NUMA */
1015
1016#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
1017static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1018{
1019        return NULL;
1020}
1021#endif
1022
1023/*
1024 * When a page is moved from swapcache to shmem filecache (either by the
1025 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1026 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1027 * ignorance of the mapping it belongs to.  If that mapping has special
1028 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1029 * we may need to copy to a suitable page before moving to filecache.
1030 *
1031 * In a future release, this may well be extended to respect cpuset and
1032 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1033 * but for now it is a simple matter of zone.
1034 */
1035static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1036{
1037        return page_zonenum(page) > gfp_zone(gfp);
1038}
1039
1040static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1041                                struct shmem_inode_info *info, pgoff_t index)
1042{
1043        struct page *oldpage, *newpage;
1044        struct address_space *swap_mapping;
1045        pgoff_t swap_index;
1046        int error;
1047
1048        oldpage = *pagep;
1049        swap_index = page_private(oldpage);
1050        swap_mapping = page_mapping(oldpage);
1051
1052        /*
1053         * We have arrived here because our zones are constrained, so don't
1054         * limit chance of success by further cpuset and node constraints.
1055         */
1056        gfp &= ~GFP_CONSTRAINT_MASK;
1057        newpage = shmem_alloc_page(gfp, info, index);
1058        if (!newpage)
1059                return -ENOMEM;
1060
1061        page_cache_get(newpage);
1062        copy_highpage(newpage, oldpage);
1063        flush_dcache_page(newpage);
1064
1065        __set_page_locked(newpage);
1066        SetPageUptodate(newpage);
1067        SetPageSwapBacked(newpage);
1068        set_page_private(newpage, swap_index);
1069        SetPageSwapCache(newpage);
1070
1071        /*
1072         * Our caller will very soon move newpage out of swapcache, but it's
1073         * a nice clean interface for us to replace oldpage by newpage there.
1074         */
1075        spin_lock_irq(&swap_mapping->tree_lock);
1076        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1077                                                                   newpage);
1078        if (!error) {
1079                __inc_zone_page_state(newpage, NR_FILE_PAGES);
1080                __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1081        }
1082        spin_unlock_irq(&swap_mapping->tree_lock);
1083
1084        if (unlikely(error)) {
1085                /*
1086                 * Is this possible?  I think not, now that our callers check
1087                 * both PageSwapCache and page_private after getting page lock;
1088                 * but be defensive.  Reverse old to newpage for clear and free.
1089                 */
1090                oldpage = newpage;
1091        } else {
1092                mem_cgroup_replace_page_cache(oldpage, newpage);
1093                lru_cache_add_anon(newpage);
1094                *pagep = newpage;
1095        }
1096
1097        ClearPageSwapCache(oldpage);
1098        set_page_private(oldpage, 0);
1099
1100        unlock_page(oldpage);
1101        page_cache_release(oldpage);
1102        page_cache_release(oldpage);
1103        return error;
1104}
1105
1106/*
1107 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1108 *
1109 * If we allocate a new one we do not mark it dirty. That's up to the
1110 * vm. If we swap it in we mark it dirty since we also free the swap
1111 * entry since a page cannot live in both the swap and page cache
1112 */
1113static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1114                             struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1115                             struct vm_area_struct *vma, struct vm_fault *vmf,
1116                             int *fault_type)
1117{
1118        struct address_space *mapping = inode->i_mapping;
1119        struct shmem_inode_info *info;
1120        struct shmem_sb_info *sbinfo;
1121        struct page *page;
1122        swp_entry_t swap;
1123        int error;
1124        int once = 0;
1125        int alloced = 0;
1126
1127        if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1128                return -EFBIG;
1129repeat:
1130        swap.val = 0;
1131        page = __find_lock_page(mapping, index);
1132        if (radix_tree_exceptional_entry(page)) {
1133                swap = radix_to_swp_entry(page);
1134                page = NULL;
1135        }
1136
1137        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1138            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1139                error = -EINVAL;
1140                goto failed;
1141        }
1142
1143        /* fallocated page? */
1144        if (page && !PageUptodate(page)) {
1145                if (sgp != SGP_READ)
1146                        goto clear;
1147                unlock_page(page);
1148                page_cache_release(page);
1149                page = NULL;
1150        }
1151        if (page || (sgp == SGP_READ && !swap.val)) {
1152                *pagep = page;
1153                return 0;
1154        }
1155
1156        /*
1157         * Fast cache lookup did not find it:
1158         * bring it back from swap or allocate.
1159         */
1160        info = SHMEM_I(inode);
1161        sbinfo = SHMEM_SB(inode->i_sb);
1162
1163        if (swap.val) {
1164                /* Look it up and read it in.. */
1165                page = lookup_swap_cache(swap);
1166                if (!page) {
1167                        /* here we actually do the io */
1168                        if (fault_type)
1169                                *fault_type |= VM_FAULT_MAJOR;
1170                        page = shmem_swapin(swap, gfp, info, index);
1171                        if (!page) {
1172                                error = -ENOMEM;
1173                                goto failed;
1174                        }
1175                }
1176
1177                /* We have to do this with page locked to prevent races */
1178                lock_page(page);
1179                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1180                    !shmem_confirm_swap(mapping, index, swap)) {
1181                        error = -EEXIST;        /* try again */
1182                        goto unlock;
1183                }
1184                if (!PageUptodate(page)) {
1185                        error = -EIO;
1186                        goto failed;
1187                }
1188                wait_on_page_writeback(page);
1189
1190                if (shmem_should_replace_page(page, gfp)) {
1191                        error = shmem_replace_page(&page, gfp, info, index);
1192                        if (error)
1193                                goto failed;
1194                }
1195
1196                error = mem_cgroup_cache_charge(page, current->mm,
1197                                                gfp & GFP_RECLAIM_MASK);
1198                if (!error) {
1199                        error = shmem_add_to_page_cache(page, mapping, index,
1200                                                gfp, swp_to_radix_entry(swap));
1201                        /*
1202                         * We already confirmed swap under page lock, and make
1203                         * no memory allocation here, so usually no possibility
1204                         * of error; but free_swap_and_cache() only trylocks a
1205                         * page, so it is just possible that the entry has been
1206                         * truncated or holepunched since swap was confirmed.
1207                         * shmem_undo_range() will have done some of the
1208                         * unaccounting, now delete_from_swap_cache() will do
1209                         * the rest (including mem_cgroup_uncharge_swapcache).
1210                         * Reset swap.val? No, leave it so "failed" goes back to
1211                         * "repeat": reading a hole and writing should succeed.
1212                         */
1213                        if (error)
1214                                delete_from_swap_cache(page);
1215                }
1216                if (error)
1217                        goto failed;
1218
1219                spin_lock(&info->lock);
1220                info->swapped--;
1221                shmem_recalc_inode(inode);
1222                spin_unlock(&info->lock);
1223
1224                delete_from_swap_cache(page);
1225                set_page_dirty(page);
1226                swap_free(swap);
1227
1228        } else {
1229                if (vma && userfaultfd_missing(vma)) {
1230                        *fault_type = handle_userfault(vma,
1231                                                       (unsigned long)
1232                                                       vmf->virtual_address,
1233                                                       vmf->flags,
1234                                                       VM_UFFD_MISSING);
1235                        return 0;
1236                }
1237                if (shmem_acct_block(info->flags)) {
1238                        error = -ENOSPC;
1239
1240                        goto failed;
1241                }
1242                if (sbinfo->max_blocks) {
1243                        if (percpu_counter_compare(&sbinfo->used_blocks,
1244                                                sbinfo->max_blocks) >= 0) {
1245                                error = -ENOSPC;
1246                                goto unacct;
1247                        }
1248                        percpu_counter_inc(&sbinfo->used_blocks);
1249                }
1250
1251                page = shmem_alloc_page(gfp, info, index);
1252                if (!page) {
1253                        error = -ENOMEM;
1254                        goto decused;
1255                }
1256
1257                SetPageSwapBacked(page);
1258                __set_page_locked(page);
1259                error = mem_cgroup_cache_charge(page, current->mm,
1260                                                gfp & GFP_RECLAIM_MASK);
1261                if (error)
1262                        goto decused;
1263                error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1264                if (!error) {
1265                        error = shmem_add_to_page_cache(page, mapping, index,
1266                                                        gfp, NULL);
1267                        radix_tree_preload_end();
1268                }
1269                if (error) {
1270                        mem_cgroup_uncharge_cache_page(page);
1271                        goto decused;
1272                }
1273                lru_cache_add_anon(page);
1274
1275                spin_lock(&info->lock);
1276                info->alloced++;
1277                inode->i_blocks += BLOCKS_PER_PAGE;
1278                shmem_recalc_inode(inode);
1279                spin_unlock(&info->lock);
1280                alloced = true;
1281
1282                /*
1283                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1284                 */
1285                if (sgp == SGP_FALLOC)
1286                        sgp = SGP_WRITE;
1287clear:
1288                /*
1289                 * Let SGP_WRITE caller clear ends if write does not fill page;
1290                 * but SGP_FALLOC on a page fallocated earlier must initialize
1291                 * it now, lest undo on failure cancel our earlier guarantee.
1292                 */
1293                if (sgp != SGP_WRITE) {
1294                        clear_highpage(page);
1295                        flush_dcache_page(page);
1296                        SetPageUptodate(page);
1297                }
1298                if (sgp == SGP_DIRTY)
1299                        set_page_dirty(page);
1300        }
1301
1302        /* Perhaps the file has been truncated since we checked */
1303        if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1304            ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1305                error = -EINVAL;
1306                if (alloced)
1307                        goto trunc;
1308                else
1309                        goto failed;
1310        }
1311        *pagep = page;
1312        return 0;
1313
1314        /*
1315         * Error recovery.
1316         */
1317trunc:
1318        info = SHMEM_I(inode);
1319        ClearPageDirty(page);
1320        delete_from_page_cache(page);
1321        spin_lock(&info->lock);
1322        info->alloced--;
1323        inode->i_blocks -= BLOCKS_PER_PAGE;
1324        spin_unlock(&info->lock);
1325decused:
1326        sbinfo = SHMEM_SB(inode->i_sb);
1327        if (sbinfo->max_blocks)
1328                percpu_counter_add(&sbinfo->used_blocks, -1);
1329unacct:
1330        shmem_unacct_blocks(info->flags, 1);
1331failed:
1332        if (swap.val && error != -EINVAL &&
1333            !shmem_confirm_swap(mapping, index, swap))
1334                error = -EEXIST;
1335unlock:
1336        if (page) {
1337                unlock_page(page);
1338                page_cache_release(page);
1339        }
1340        if (error == -ENOSPC && !once++) {
1341                info = SHMEM_I(inode);
1342                spin_lock(&info->lock);
1343                shmem_recalc_inode(inode);
1344                spin_unlock(&info->lock);
1345                goto repeat;
1346        }
1347        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1348                goto repeat;
1349        return error;
1350}
1351
1352/*
1353 * This is like autoremove_wake_function, but it removes the wait queue
1354 * entry unconditionally - even if something else had already woken the
1355 * target.
1356 */
1357static int synchronous_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1358{
1359        int ret = default_wake_function(wait, mode, sync, key);
1360        list_del_init(&wait->task_list);
1361        return ret;
1362}
1363
1364static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1365{
1366        struct inode *inode = file_inode(vma->vm_file);
1367        gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1368        int error;
1369        int ret = VM_FAULT_LOCKED;
1370
1371        /*
1372         * Trinity finds that probing a hole which tmpfs is punching can
1373         * prevent the hole-punch from ever completing: which in turn
1374         * locks writers out with its hold on i_mutex.  So refrain from
1375         * faulting pages into the hole while it's being punched.  Although
1376         * shmem_undo_range() does remove the additions, it may be unable to
1377         * keep up, as each new page needs its own unmap_mapping_range() call,
1378         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1379         *
1380         * It does not matter if we sometimes reach this check just before the
1381         * hole-punch begins, so that one fault then races with the punch:
1382         * we just need to make racing faults a rare case.
1383         *
1384         * The implementation below would be much simpler if we just used a
1385         * standard mutex or completion: but we cannot take i_mutex in fault,
1386         * and bloating every shmem inode for this unlikely case would be sad.
1387         */
1388        if (unlikely(inode->i_private)) {
1389                struct shmem_falloc *shmem_falloc;
1390
1391                spin_lock(&inode->i_lock);
1392                shmem_falloc = inode->i_private;
1393                if (shmem_falloc &&
1394                    shmem_falloc->waitq &&
1395                    vmf->pgoff >= shmem_falloc->start &&
1396                    vmf->pgoff < shmem_falloc->next) {
1397                        wait_queue_head_t *shmem_falloc_waitq;
1398                        DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1399
1400                        ret = VM_FAULT_NOPAGE;
1401                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1402                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1403                                /* It's polite to up mmap_sem if we can */
1404                                up_read(&vma->vm_mm->mmap_sem);
1405                                ret = VM_FAULT_RETRY;
1406                        }
1407
1408                        shmem_falloc_waitq = shmem_falloc->waitq;
1409                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1410                                        TASK_UNINTERRUPTIBLE);
1411                        spin_unlock(&inode->i_lock);
1412                        schedule();
1413
1414                        /*
1415                         * shmem_falloc_waitq points into the shmem_fallocate()
1416                         * stack of the hole-punching task: shmem_falloc_waitq
1417                         * is usually invalid by the time we reach here, but
1418                         * finish_wait() does not dereference it in that case;
1419                         * though i_lock needed lest racing with wake_up_all().
1420                         */
1421                        spin_lock(&inode->i_lock);
1422                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1423                        spin_unlock(&inode->i_lock);
1424                        return ret;
1425                }
1426                spin_unlock(&inode->i_lock);
1427        }
1428
1429        error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
1430                                  gfp, vma, vmf, &ret);
1431        if (error)
1432                return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1433
1434        if (ret & VM_FAULT_MAJOR) {
1435                count_vm_event(PGMAJFAULT);
1436                mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1437        }
1438        return ret;
1439}
1440
1441#ifdef CONFIG_NUMA
1442static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1443{
1444        struct inode *inode = file_inode(vma->vm_file);
1445        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1446}
1447
1448static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1449                                          unsigned long addr)
1450{
1451        struct inode *inode = file_inode(vma->vm_file);
1452        pgoff_t index;
1453
1454        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1455        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1456}
1457#endif
1458
1459int shmem_lock(struct file *file, int lock, struct user_struct *user)
1460{
1461        struct inode *inode = file_inode(file);
1462        struct shmem_inode_info *info = SHMEM_I(inode);
1463        int retval = -ENOMEM;
1464
1465        spin_lock(&info->lock);
1466        if (lock && !(info->flags & VM_LOCKED)) {
1467                if (!user_shm_lock(inode->i_size, user))
1468                        goto out_nomem;
1469                info->flags |= VM_LOCKED;
1470                mapping_set_unevictable(file->f_mapping);
1471        }
1472        if (!lock && (info->flags & VM_LOCKED) && user) {
1473                user_shm_unlock(inode->i_size, user);
1474                info->flags &= ~VM_LOCKED;
1475                mapping_clear_unevictable(file->f_mapping);
1476        }
1477        retval = 0;
1478
1479out_nomem:
1480        spin_unlock(&info->lock);
1481        return retval;
1482}
1483
1484static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1485{
1486        file_accessed(file);
1487        vma->vm_ops = &shmem_vm_ops;
1488        return 0;
1489}
1490
1491static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1492                                     umode_t mode, dev_t dev, unsigned long flags)
1493{
1494        struct inode *inode;
1495        struct shmem_inode_info *info;
1496        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1497
1498        if (shmem_reserve_inode(sb))
1499                return NULL;
1500
1501        inode = new_inode(sb);
1502        if (inode) {
1503                inode->i_ino = get_next_ino();
1504                inode_init_owner(inode, dir, mode);
1505                inode->i_blocks = 0;
1506                inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1507                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1508                inode->i_generation = get_seconds();
1509                info = SHMEM_I(inode);
1510                memset(info, 0, (char *)inode - (char *)info);
1511                spin_lock_init(&info->lock);
1512                info->seals = F_SEAL_SEAL;
1513                info->flags = flags & VM_NORESERVE;
1514                INIT_LIST_HEAD(&info->swaplist);
1515                simple_xattrs_init(&info->xattrs);
1516                cache_no_acl(inode);
1517
1518                switch (mode & S_IFMT) {
1519                default:
1520                        inode->i_op = &shmem_special_inode_operations;
1521                        init_special_inode(inode, mode, dev);
1522                        break;
1523                case S_IFREG:
1524                        inode->i_mapping->a_ops = &shmem_aops;
1525                        inode->i_op = &shmem_inode_operations;
1526                        inode->i_fop = &shmem_file_operations;
1527                        mpol_shared_policy_init(&info->policy,
1528                                                 shmem_get_sbmpol(sbinfo));
1529                        break;
1530                case S_IFDIR:
1531                        inc_nlink(inode);
1532                        /* Some things misbehave if size == 0 on a directory */
1533                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
1534                        inode->i_op = &shmem_dir_inode_operations.ops;
1535                        inode->i_fop = &simple_dir_operations;
1536                        inode->i_flags |= S_IOPS_WRAPPER;
1537                        break;
1538                case S_IFLNK:
1539                        /*
1540                         * Must not load anything in the rbtree,
1541                         * mpol_free_shared_policy will not be called.
1542                         */
1543                        mpol_shared_policy_init(&info->policy, NULL);
1544                        break;
1545                }
1546        } else
1547                shmem_free_inode(sb);
1548        return inode;
1549}
1550
1551bool shmem_mapping(struct address_space *mapping)
1552{
1553        return mapping->backing_dev_info == &shmem_backing_dev_info;
1554}
1555
1556int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
1557                           pmd_t *dst_pmd,
1558                           struct vm_area_struct *dst_vma,
1559                           unsigned long dst_addr,
1560                           unsigned long src_addr,
1561                           struct page **pagep)
1562{
1563        struct inode *inode = file_inode(dst_vma->vm_file);
1564        struct shmem_inode_info *info = SHMEM_I(inode);
1565        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1566        struct address_space *mapping = inode->i_mapping;
1567        gfp_t gfp = mapping_gfp_mask(mapping);
1568        pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
1569        spinlock_t *ptl;
1570        void *page_kaddr;
1571        struct page *page;
1572        pte_t _dst_pte, *dst_pte;
1573        int ret;
1574
1575        ret = -ENOMEM;
1576        if (shmem_acct_block(info->flags))
1577                goto out;
1578        if (sbinfo->max_blocks) {
1579                if (percpu_counter_compare(&sbinfo->used_blocks,
1580                                           sbinfo->max_blocks) >= 0)
1581                        goto out_unacct_blocks;
1582                percpu_counter_inc(&sbinfo->used_blocks);
1583        }
1584
1585        if (!*pagep) {
1586                page = shmem_alloc_page(gfp, info, pgoff);
1587                if (!page)
1588                        goto out_dec_used_blocks;
1589
1590                page_kaddr = kmap_atomic(page);
1591                ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
1592                                     PAGE_SIZE);
1593                kunmap_atomic(page_kaddr);
1594
1595                /* fallback to copy_from_user outside mmap_sem */
1596                if (unlikely(ret)) {
1597                        *pagep = page;
1598                        if (sbinfo->max_blocks)
1599                                percpu_counter_add(&sbinfo->used_blocks, -1);
1600                        shmem_unacct_blocks(info->flags, 1);
1601                        /* don't free the page */
1602                        return -EFAULT;
1603                }
1604        } else {
1605                page = *pagep;
1606                *pagep = NULL;
1607        }
1608
1609        VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
1610        __set_page_locked(page);
1611        __SetPageSwapBacked(page);
1612        __SetPageUptodate(page);
1613
1614        ret = mem_cgroup_cache_charge(page, dst_mm,
1615                                      gfp & GFP_RECLAIM_MASK);
1616        if (ret)
1617                goto out_release;
1618
1619        ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1620        if (!ret) {
1621                ret = shmem_add_to_page_cache(page, mapping, pgoff, gfp, NULL);
1622                radix_tree_preload_end();
1623        }
1624        if (ret)
1625                goto out_release_uncharge;
1626
1627        _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
1628        if (dst_vma->vm_flags & VM_WRITE)
1629                _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
1630
1631        ret = -EEXIST;
1632        dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
1633        if (!pte_none(*dst_pte))
1634                goto out_release_uncharge_unlock;
1635
1636        lru_cache_add_anon(page);
1637
1638        spin_lock(&info->lock);
1639        info->alloced++;
1640        inode->i_blocks += BLOCKS_PER_PAGE;
1641        shmem_recalc_inode(inode);
1642        spin_unlock(&info->lock);
1643
1644        inc_mm_counter(dst_mm, mm_counter_file(page));
1645        page_add_file_rmap(page);
1646        set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
1647
1648        /* No need to invalidate - it was non-present before */
1649        update_mmu_cache(dst_vma, dst_addr, dst_pte);
1650        unlock_page(page);
1651        pte_unmap_unlock(dst_pte, ptl);
1652        ret = 0;
1653out:
1654        return ret;
1655out_release_uncharge_unlock:
1656        pte_unmap_unlock(dst_pte, ptl);
1657out_release_uncharge:
1658        mem_cgroup_uncharge_cache_page(page);
1659out_release:
1660        unlock_page(page);
1661        put_page(page);
1662out_dec_used_blocks:
1663        if (sbinfo->max_blocks)
1664                percpu_counter_add(&sbinfo->used_blocks, -1);
1665out_unacct_blocks:
1666        shmem_unacct_blocks(info->flags, 1);
1667        goto out;
1668}
1669
1670#ifdef CONFIG_TMPFS
1671static const struct inode_operations shmem_symlink_inode_operations;
1672static const struct inode_operations shmem_short_symlink_operations;
1673
1674#ifdef CONFIG_TMPFS_XATTR
1675static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1676#else
1677#define shmem_initxattrs NULL
1678#endif
1679
1680static int
1681shmem_write_begin(struct file *file, struct address_space *mapping,
1682                        loff_t pos, unsigned len, unsigned flags,
1683                        struct page **pagep, void **fsdata)
1684{
1685        struct inode *inode = mapping->host;
1686        struct shmem_inode_info *info = SHMEM_I(inode);
1687        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1688
1689        /* i_mutex is held by caller */
1690        if (unlikely(info->seals)) {
1691                if (info->seals & F_SEAL_WRITE)
1692                        return -EPERM;
1693                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
1694                        return -EPERM;
1695        }
1696
1697        return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1698}
1699
1700static int
1701shmem_write_end(struct file *file, struct address_space *mapping,
1702                        loff_t pos, unsigned len, unsigned copied,
1703                        struct page *page, void *fsdata)
1704{
1705        struct inode *inode = mapping->host;
1706
1707        if (pos + copied > inode->i_size)
1708                i_size_write(inode, pos + copied);
1709
1710        if (!PageUptodate(page)) {
1711                if (copied < PAGE_CACHE_SIZE) {
1712                        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1713                        zero_user_segments(page, 0, from,
1714                                        from + copied, PAGE_CACHE_SIZE);
1715                }
1716                SetPageUptodate(page);
1717        }
1718        set_page_dirty(page);
1719        unlock_page(page);
1720        page_cache_release(page);
1721
1722        return copied;
1723}
1724
1725static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1726{
1727        struct inode *inode = file_inode(filp);
1728        struct address_space *mapping = inode->i_mapping;
1729        pgoff_t index;
1730        unsigned long offset;
1731        enum sgp_type sgp = SGP_READ;
1732
1733        /*
1734         * Might this read be for a stacking filesystem?  Then when reading
1735         * holes of a sparse file, we actually need to allocate those pages,
1736         * and even mark them dirty, so it cannot exceed the max_blocks limit.
1737         */
1738        if (segment_eq(get_fs(), KERNEL_DS))
1739                sgp = SGP_DIRTY;
1740
1741        index = *ppos >> PAGE_CACHE_SHIFT;
1742        offset = *ppos & ~PAGE_CACHE_MASK;
1743
1744        for (;;) {
1745                struct page *page = NULL;
1746                pgoff_t end_index;
1747                unsigned long nr, ret;
1748                loff_t i_size = i_size_read(inode);
1749
1750                end_index = i_size >> PAGE_CACHE_SHIFT;
1751                if (index > end_index)
1752                        break;
1753                if (index == end_index) {
1754                        nr = i_size & ~PAGE_CACHE_MASK;
1755                        if (nr <= offset)
1756                                break;
1757                }
1758
1759                desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1760                if (desc->error) {
1761                        if (desc->error == -EINVAL)
1762                                desc->error = 0;
1763                        break;
1764                }
1765                if (page)
1766                        unlock_page(page);
1767
1768                /*
1769                 * We must evaluate after, since reads (unlike writes)
1770                 * are called without i_mutex protection against truncate
1771                 */
1772                nr = PAGE_CACHE_SIZE;
1773                i_size = i_size_read(inode);
1774                end_index = i_size >> PAGE_CACHE_SHIFT;
1775                if (index == end_index) {
1776                        nr = i_size & ~PAGE_CACHE_MASK;
1777                        if (nr <= offset) {
1778                                if (page)
1779                                        page_cache_release(page);
1780                                break;
1781                        }
1782                }
1783                nr -= offset;
1784
1785                if (page) {
1786                        /*
1787                         * If users can be writing to this page using arbitrary
1788                         * virtual addresses, take care about potential aliasing
1789                         * before reading the page on the kernel side.
1790                         */
1791                        if (mapping_writably_mapped(mapping))
1792                                flush_dcache_page(page);
1793                        /*
1794                         * Mark the page accessed if we read the beginning.
1795                         */
1796                        if (!offset)
1797                                mark_page_accessed(page);
1798                } else {
1799                        page = ZERO_PAGE(0);
1800                        page_cache_get(page);
1801                }
1802
1803                /*
1804                 * Ok, we have the page, and it's up-to-date, so
1805                 * now we can copy it to user space...
1806                 *
1807                 * The actor routine returns how many bytes were actually used..
1808                 * NOTE! This may not be the same as how much of a user buffer
1809                 * we filled up (we may be padding etc), so we can only update
1810                 * "pos" here (the actor routine has to update the user buffer
1811                 * pointers and the remaining count).
1812                 */
1813                ret = actor(desc, page, offset, nr);
1814                offset += ret;
1815                index += offset >> PAGE_CACHE_SHIFT;
1816                offset &= ~PAGE_CACHE_MASK;
1817
1818                page_cache_release(page);
1819                if (ret != nr || !desc->count)
1820                        break;
1821
1822                cond_resched();
1823        }
1824
1825        *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1826        file_accessed(filp);
1827}
1828
1829static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1830                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1831{
1832        struct file *filp = iocb->ki_filp;
1833        ssize_t retval;
1834        unsigned long seg;
1835        size_t count;
1836        loff_t *ppos = &iocb->ki_pos;
1837
1838        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1839        if (retval)
1840                return retval;
1841
1842        for (seg = 0; seg < nr_segs; seg++) {
1843                read_descriptor_t desc;
1844
1845                desc.written = 0;
1846                desc.arg.buf = iov[seg].iov_base;
1847                desc.count = iov[seg].iov_len;
1848                if (desc.count == 0)
1849                        continue;
1850                desc.error = 0;
1851                do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1852                retval += desc.written;
1853                if (desc.error) {
1854                        retval = retval ?: desc.error;
1855                        break;
1856                }
1857                if (desc.count > 0)
1858                        break;
1859        }
1860        return retval;
1861}
1862
1863static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1864                                struct pipe_inode_info *pipe, size_t len,
1865                                unsigned int flags)
1866{
1867        struct address_space *mapping = in->f_mapping;
1868        struct inode *inode = mapping->host;
1869        unsigned int loff, nr_pages, req_pages;
1870        struct page *pages[PIPE_DEF_BUFFERS];
1871        struct partial_page partial[PIPE_DEF_BUFFERS];
1872        struct page *page;
1873        pgoff_t index, end_index;
1874        loff_t isize, left;
1875        int error, page_nr;
1876        struct splice_pipe_desc spd = {
1877                .pages = pages,
1878                .partial = partial,
1879                .nr_pages_max = PIPE_DEF_BUFFERS,
1880                .flags = flags,
1881                .ops = &page_cache_pipe_buf_ops,
1882                .spd_release = spd_release_page,
1883        };
1884
1885        isize = i_size_read(inode);
1886        if (unlikely(*ppos >= isize))
1887                return 0;
1888
1889        left = isize - *ppos;
1890        if (unlikely(left < len))
1891                len = left;
1892
1893        if (splice_grow_spd(pipe, &spd))
1894                return -ENOMEM;
1895
1896        index = *ppos >> PAGE_CACHE_SHIFT;
1897        loff = *ppos & ~PAGE_CACHE_MASK;
1898        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1899        nr_pages = min(req_pages, pipe->buffers);
1900
1901        spd.nr_pages = find_get_pages_contig(mapping, index,
1902                                                nr_pages, spd.pages);
1903        index += spd.nr_pages;
1904        error = 0;
1905
1906        while (spd.nr_pages < nr_pages) {
1907                error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1908                if (error)
1909                        break;
1910                unlock_page(page);
1911                spd.pages[spd.nr_pages++] = page;
1912                index++;
1913        }
1914
1915        index = *ppos >> PAGE_CACHE_SHIFT;
1916        nr_pages = spd.nr_pages;
1917        spd.nr_pages = 0;
1918
1919        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1920                unsigned int this_len;
1921
1922                if (!len)
1923                        break;
1924
1925                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1926                page = spd.pages[page_nr];
1927
1928                if (!PageUptodate(page) || page->mapping != mapping) {
1929                        error = shmem_getpage(inode, index, &page,
1930                                                        SGP_CACHE, NULL);
1931                        if (error)
1932                                break;
1933                        unlock_page(page);
1934                        page_cache_release(spd.pages[page_nr]);
1935                        spd.pages[page_nr] = page;
1936                }
1937
1938                isize = i_size_read(inode);
1939                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1940                if (unlikely(!isize || index > end_index))
1941                        break;
1942
1943                if (end_index == index) {
1944                        unsigned int plen;
1945
1946                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1947                        if (plen <= loff)
1948                                break;
1949
1950                        this_len = min(this_len, plen - loff);
1951                        len = this_len;
1952                }
1953
1954                spd.partial[page_nr].offset = loff;
1955                spd.partial[page_nr].len = this_len;
1956                len -= this_len;
1957                loff = 0;
1958                spd.nr_pages++;
1959                index++;
1960        }
1961
1962        while (page_nr < nr_pages)
1963                page_cache_release(spd.pages[page_nr++]);
1964
1965        if (spd.nr_pages)
1966                error = splice_to_pipe(pipe, &spd);
1967
1968        splice_shrink_spd(&spd);
1969
1970        if (error > 0) {
1971                *ppos += error;
1972                file_accessed(in);
1973        }
1974        return error;
1975}
1976
1977/*
1978 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1979 */
1980static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1981                                    pgoff_t index, pgoff_t end, int whence)
1982{
1983        struct page *page;
1984        struct pagevec pvec;
1985        pgoff_t indices[PAGEVEC_SIZE];
1986        bool done = false;
1987        int i;
1988
1989        pagevec_init(&pvec, 0);
1990        pvec.nr = 1;            /* start small: we may be there already */
1991        while (!done) {
1992                pvec.nr = __find_get_pages(mapping, index,
1993                                        pvec.nr, pvec.pages, indices);
1994                if (!pvec.nr) {
1995                        if (whence == SEEK_DATA)
1996                                index = end;
1997                        break;
1998                }
1999                for (i = 0; i < pvec.nr; i++, index++) {
2000                        if (index < indices[i]) {
2001                                if (whence == SEEK_HOLE) {
2002                                        done = true;
2003                                        break;
2004                                }
2005                                index = indices[i];
2006                        }
2007                        page = pvec.pages[i];
2008                        if (page && !radix_tree_exceptional_entry(page)) {
2009                                if (!PageUptodate(page))
2010                                        page = NULL;
2011                        }
2012                        if (index >= end ||
2013                            (page && whence == SEEK_DATA) ||
2014                            (!page && whence == SEEK_HOLE)) {
2015                                done = true;
2016                                break;
2017                        }
2018                }
2019                pagevec_remove_exceptionals(&pvec);
2020                pagevec_release(&pvec);
2021                pvec.nr = PAGEVEC_SIZE;
2022                cond_resched();
2023        }
2024        return index;
2025}
2026
2027static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2028{
2029        struct address_space *mapping = file->f_mapping;
2030        struct inode *inode = mapping->host;
2031        pgoff_t start, end;
2032        loff_t new_offset;
2033
2034        if (whence != SEEK_DATA && whence != SEEK_HOLE)
2035                return generic_file_llseek_size(file, offset, whence,
2036                                        MAX_LFS_FILESIZE, i_size_read(inode));
2037        mutex_lock(&inode->i_mutex);
2038        /* We're holding i_mutex so we can access i_size directly */
2039
2040        if (offset < 0)
2041                offset = -EINVAL;
2042        else if (offset >= inode->i_size)
2043                offset = -ENXIO;
2044        else {
2045                start = offset >> PAGE_CACHE_SHIFT;
2046                end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2047                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2048                new_offset <<= PAGE_CACHE_SHIFT;
2049                if (new_offset > offset) {
2050                        if (new_offset < inode->i_size)
2051                                offset = new_offset;
2052                        else if (whence == SEEK_DATA)
2053                                offset = -ENXIO;
2054                        else
2055                                offset = inode->i_size;
2056                }
2057        }
2058
2059        if (offset >= 0)
2060                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2061        mutex_unlock(&inode->i_mutex);
2062        return offset;
2063}
2064
2065/*
2066 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2067 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2068 */
2069#define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2070#define LAST_SCAN               4       /* about 150ms max */
2071
2072static void shmem_tag_pins(struct address_space *mapping)
2073{
2074        struct radix_tree_iter iter;
2075        void **slot;
2076        pgoff_t start;
2077        struct page *page;
2078
2079        lru_add_drain();
2080        start = 0;
2081        rcu_read_lock();
2082
2083restart:
2084        radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2085                page = radix_tree_deref_slot(slot);
2086                if (!page || radix_tree_exception(page)) {
2087                        if (radix_tree_deref_retry(page))
2088                                goto restart;
2089                } else if (page_count(page) - page_mapcount(page) > 1) {
2090                        spin_lock_irq(&mapping->tree_lock);
2091                        radix_tree_tag_set(&mapping->page_tree, iter.index,
2092                                           SHMEM_TAG_PINNED);
2093                        spin_unlock_irq(&mapping->tree_lock);
2094                }
2095
2096                if (need_resched()) {
2097                        cond_resched_rcu();
2098                        start = iter.index + 1;
2099                        goto restart;
2100                }
2101        }
2102        rcu_read_unlock();
2103}
2104
2105/*
2106 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2107 * via get_user_pages(), drivers might have some pending I/O without any active
2108 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2109 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2110 * them to be dropped.
2111 * The caller must guarantee that no new user will acquire writable references
2112 * to those pages to avoid races.
2113 */
2114static int shmem_wait_for_pins(struct address_space *mapping)
2115{
2116        struct radix_tree_iter iter;
2117        void **slot;
2118        pgoff_t start;
2119        struct page *page;
2120        int error, scan;
2121
2122        shmem_tag_pins(mapping);
2123
2124        error = 0;
2125        for (scan = 0; scan <= LAST_SCAN; scan++) {
2126                if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2127                        break;
2128
2129                if (!scan)
2130                        lru_add_drain_all();
2131                else if (schedule_timeout_killable((HZ << scan) / 200))
2132                        scan = LAST_SCAN;
2133
2134                start = 0;
2135                rcu_read_lock();
2136restart:
2137                radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2138                                           start, SHMEM_TAG_PINNED) {
2139
2140                        page = radix_tree_deref_slot(slot);
2141                        if (radix_tree_exception(page)) {
2142                                if (radix_tree_deref_retry(page))
2143                                        goto restart;
2144
2145                                page = NULL;
2146                        }
2147
2148                        if (page &&
2149                            page_count(page) - page_mapcount(page) != 1) {
2150                                if (scan < LAST_SCAN)
2151                                        goto continue_resched;
2152
2153                                /*
2154                                 * On the last scan, we clean up all those tags
2155                                 * we inserted; but make a note that we still
2156                                 * found pages pinned.
2157                                 */
2158                                error = -EBUSY;
2159                        }
2160
2161                        spin_lock_irq(&mapping->tree_lock);
2162                        radix_tree_tag_clear(&mapping->page_tree,
2163                                             iter.index, SHMEM_TAG_PINNED);
2164                        spin_unlock_irq(&mapping->tree_lock);
2165continue_resched:
2166                        if (need_resched()) {
2167                                cond_resched_rcu();
2168                                start = iter.index + 1;
2169                                goto restart;
2170                        }
2171                }
2172                rcu_read_unlock();
2173        }
2174
2175        return error;
2176}
2177
2178#define F_ALL_SEALS (F_SEAL_SEAL | \
2179                     F_SEAL_SHRINK | \
2180                     F_SEAL_GROW | \
2181                     F_SEAL_WRITE)
2182
2183int shmem_add_seals(struct file *file, unsigned int seals)
2184{
2185        struct inode *inode = file_inode(file);
2186        struct shmem_inode_info *info = SHMEM_I(inode);
2187        int error;
2188
2189        /*
2190         * SEALING
2191         * Sealing allows multiple parties to share a shmem-file but restrict
2192         * access to a specific subset of file operations. Seals can only be
2193         * added, but never removed. This way, mutually untrusted parties can
2194         * share common memory regions with a well-defined policy. A malicious
2195         * peer can thus never perform unwanted operations on a shared object.
2196         *
2197         * Seals are only supported on special shmem-files and always affect
2198         * the whole underlying inode. Once a seal is set, it may prevent some
2199         * kinds of access to the file. Currently, the following seals are
2200         * defined:
2201         *   SEAL_SEAL: Prevent further seals from being set on this file
2202         *   SEAL_SHRINK: Prevent the file from shrinking
2203         *   SEAL_GROW: Prevent the file from growing
2204         *   SEAL_WRITE: Prevent write access to the file
2205         *
2206         * As we don't require any trust relationship between two parties, we
2207         * must prevent seals from being removed. Therefore, sealing a file
2208         * only adds a given set of seals to the file, it never touches
2209         * existing seals. Furthermore, the "setting seals"-operation can be
2210         * sealed itself, which basically prevents any further seal from being
2211         * added.
2212         *
2213         * Semantics of sealing are only defined on volatile files. Only
2214         * anonymous shmem files support sealing. More importantly, seals are
2215         * never written to disk. Therefore, there's no plan to support it on
2216         * other file types.
2217         */
2218
2219        if (file->f_op != &shmem_file_operations)
2220                return -EINVAL;
2221        if (!(file->f_mode & FMODE_WRITE))
2222                return -EPERM;
2223        if (seals & ~(unsigned int)F_ALL_SEALS)
2224                return -EINVAL;
2225
2226        mutex_lock(&inode->i_mutex);
2227
2228        if (info->seals & F_SEAL_SEAL) {
2229                error = -EPERM;
2230                goto unlock;
2231        }
2232
2233        if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2234                error = mapping_deny_writable(file->f_mapping);
2235                if (error)
2236                        goto unlock;
2237
2238                error = shmem_wait_for_pins(file->f_mapping);
2239                if (error) {
2240                        mapping_allow_writable(file->f_mapping);
2241                        goto unlock;
2242                }
2243        }
2244
2245        info->seals |= seals;
2246        error = 0;
2247
2248unlock:
2249        mutex_unlock(&inode->i_mutex);
2250        return error;
2251}
2252EXPORT_SYMBOL_GPL(shmem_add_seals);
2253
2254int shmem_get_seals(struct file *file)
2255{
2256        if (file->f_op != &shmem_file_operations)
2257                return -EINVAL;
2258
2259        return SHMEM_I(file_inode(file))->seals;
2260}
2261EXPORT_SYMBOL_GPL(shmem_get_seals);
2262
2263long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2264{
2265        long error;
2266
2267        switch (cmd) {
2268        case F_ADD_SEALS:
2269                /* disallow upper 32bit */
2270                if (arg > UINT_MAX)
2271                        return -EINVAL;
2272
2273                error = shmem_add_seals(file, arg);
2274                break;
2275        case F_GET_SEALS:
2276                error = shmem_get_seals(file);
2277                break;
2278        default:
2279                error = -EINVAL;
2280                break;
2281        }
2282
2283        return error;
2284}
2285
2286static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2287                                                         loff_t len)
2288{
2289        struct inode *inode = file_inode(file);
2290        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2291        struct shmem_inode_info *info = SHMEM_I(inode);
2292        struct shmem_falloc shmem_falloc;
2293        pgoff_t start, index, end;
2294        int error;
2295
2296        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2297                return -EOPNOTSUPP;
2298
2299        mutex_lock(&inode->i_mutex);
2300
2301        if (mode & FALLOC_FL_PUNCH_HOLE) {
2302                struct address_space *mapping = file->f_mapping;
2303                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2304                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2305                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2306
2307                /* protected by i_mutex */
2308                if (info->seals & F_SEAL_WRITE) {
2309                        error = -EPERM;
2310                        goto out;
2311                }
2312
2313                shmem_falloc.waitq = &shmem_falloc_waitq;
2314                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2315                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2316                spin_lock(&inode->i_lock);
2317                inode->i_private = &shmem_falloc;
2318                spin_unlock(&inode->i_lock);
2319
2320                if ((u64)unmap_end > (u64)unmap_start)
2321                        unmap_mapping_range(mapping, unmap_start,
2322                                            1 + unmap_end - unmap_start, 0);
2323                shmem_truncate_range(inode, offset, offset + len - 1);
2324                /* No need to unmap again: hole-punching leaves COWed pages */
2325
2326                spin_lock(&inode->i_lock);
2327                inode->i_private = NULL;
2328                wake_up_all(&shmem_falloc_waitq);
2329                WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.task_list));
2330                spin_unlock(&inode->i_lock);
2331                error = 0;
2332                goto out;
2333        }
2334
2335        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2336        error = inode_newsize_ok(inode, offset + len);
2337        if (error)
2338                goto out;
2339
2340        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2341                error = -EPERM;
2342                goto out;
2343        }
2344
2345        start = offset >> PAGE_CACHE_SHIFT;
2346        end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2347        /* Try to avoid a swapstorm if len is impossible to satisfy */
2348        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2349                error = -ENOSPC;
2350                goto out;
2351        }
2352
2353        shmem_falloc.waitq = NULL;
2354        shmem_falloc.start = start;
2355        shmem_falloc.next  = start;
2356        shmem_falloc.nr_falloced = 0;
2357        shmem_falloc.nr_unswapped = 0;
2358        spin_lock(&inode->i_lock);
2359        inode->i_private = &shmem_falloc;
2360        spin_unlock(&inode->i_lock);
2361
2362        for (index = start; index < end; index++) {
2363                struct page *page;
2364
2365                /*
2366                 * Good, the fallocate(2) manpage permits EINTR: we may have
2367                 * been interrupted because we are using up too much memory.
2368                 */
2369                if (signal_pending(current))
2370                        error = -EINTR;
2371                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2372                        error = -ENOMEM;
2373                else
2374                        error = shmem_getpage(inode, index, &page, SGP_FALLOC,
2375                                                                        NULL);
2376                if (error) {
2377                        /* Remove the !PageUptodate pages we added */
2378                        shmem_undo_range(inode,
2379                                (loff_t)start << PAGE_CACHE_SHIFT,
2380                                (loff_t)index << PAGE_CACHE_SHIFT, true);
2381                        goto undone;
2382                }
2383
2384                /*
2385                 * Inform shmem_writepage() how far we have reached.
2386                 * No need for lock or barrier: we have the page lock.
2387                 */
2388                shmem_falloc.next++;
2389                if (!PageUptodate(page))
2390                        shmem_falloc.nr_falloced++;
2391
2392                /*
2393                 * If !PageUptodate, leave it that way so that freeable pages
2394                 * can be recognized if we need to rollback on error later.
2395                 * But set_page_dirty so that memory pressure will swap rather
2396                 * than free the pages we are allocating (and SGP_CACHE pages
2397                 * might still be clean: we now need to mark those dirty too).
2398                 */
2399                set_page_dirty(page);
2400                unlock_page(page);
2401                page_cache_release(page);
2402                cond_resched();
2403        }
2404
2405        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2406                i_size_write(inode, offset + len);
2407        inode->i_ctime = CURRENT_TIME;
2408undone:
2409        spin_lock(&inode->i_lock);
2410        inode->i_private = NULL;
2411        spin_unlock(&inode->i_lock);
2412out:
2413        mutex_unlock(&inode->i_mutex);
2414        return error;
2415}
2416
2417static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2418{
2419        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2420
2421        buf->f_type = TMPFS_MAGIC;
2422        buf->f_bsize = PAGE_CACHE_SIZE;
2423        buf->f_namelen = NAME_MAX;
2424        if (sbinfo->max_blocks) {
2425                buf->f_blocks = sbinfo->max_blocks;
2426                buf->f_bavail =
2427                buf->f_bfree  = sbinfo->max_blocks -
2428                                percpu_counter_sum(&sbinfo->used_blocks);
2429        }
2430        if (sbinfo->max_inodes) {
2431                buf->f_files = sbinfo->max_inodes;
2432                buf->f_ffree = sbinfo->free_inodes;
2433        }
2434        /* else leave those fields 0 like simple_statfs */
2435        return 0;
2436}
2437
2438/*
2439 * File creation. Allocate an inode, and we're done..
2440 */
2441static int
2442shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2443{
2444        struct inode *inode;
2445        int error = -ENOSPC;
2446
2447        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2448        if (inode) {
2449                error = security_inode_init_security(inode, dir,
2450                                                     &dentry->d_name,
2451                                                     shmem_initxattrs, NULL);
2452                if (error) {
2453                        if (error != -EOPNOTSUPP) {
2454                                iput(inode);
2455                                return error;
2456                        }
2457                }
2458#ifdef CONFIG_TMPFS_POSIX_ACL
2459                error = generic_acl_init(inode, dir);
2460                if (error) {
2461                        iput(inode);
2462                        return error;
2463                }
2464#else
2465                error = 0;
2466#endif
2467                dir->i_size += BOGO_DIRENT_SIZE;
2468                dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2469                d_instantiate(dentry, inode);
2470                dget(dentry); /* Extra count - pin the dentry in core */
2471        }
2472        return error;
2473}
2474
2475static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2476{
2477        int error;
2478
2479        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2480                return error;
2481        inc_nlink(dir);
2482        return 0;
2483}
2484
2485static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2486                bool excl)
2487{
2488        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2489}
2490
2491/*
2492 * Link a file..
2493 */
2494static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2495{
2496        struct inode *inode = old_dentry->d_inode;
2497        int ret;
2498
2499        /*
2500         * No ordinary (disk based) filesystem counts links as inodes;
2501         * but each new link needs a new dentry, pinning lowmem, and
2502         * tmpfs dentries cannot be pruned until they are unlinked.
2503         */
2504        ret = shmem_reserve_inode(inode->i_sb);
2505        if (ret)
2506                goto out;
2507
2508        dir->i_size += BOGO_DIRENT_SIZE;
2509        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2510        inc_nlink(inode);
2511        ihold(inode);   /* New dentry reference */
2512        dget(dentry);           /* Extra pinning count for the created dentry */
2513        d_instantiate(dentry, inode);
2514out:
2515        return ret;
2516}
2517
2518static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2519{
2520        struct inode *inode = dentry->d_inode;
2521
2522        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2523                shmem_free_inode(inode->i_sb);
2524
2525        dir->i_size -= BOGO_DIRENT_SIZE;
2526        inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2527        drop_nlink(inode);
2528        dput(dentry);   /* Undo the count from "create" - this does all the work */
2529        return 0;
2530}
2531
2532static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2533{
2534        if (!simple_empty(dentry))
2535                return -ENOTEMPTY;
2536
2537        drop_nlink(dentry->d_inode);
2538        drop_nlink(dir);
2539        return shmem_unlink(dir, dentry);
2540}
2541
2542static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2543{
2544        bool old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2545        bool new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
2546
2547        if (old_dir != new_dir && old_is_dir != new_is_dir) {
2548                if (old_is_dir) {
2549                        drop_nlink(old_dir);
2550                        inc_nlink(new_dir);
2551                } else {
2552                        drop_nlink(new_dir);
2553                        inc_nlink(old_dir);
2554                }
2555        }
2556        old_dir->i_ctime = old_dir->i_mtime =
2557        new_dir->i_ctime = new_dir->i_mtime =
2558        old_dentry->d_inode->i_ctime =
2559        new_dentry->d_inode->i_ctime = CURRENT_TIME;
2560
2561        return 0;
2562}
2563
2564static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2565{
2566        struct dentry *whiteout;
2567        int error;
2568
2569        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2570        if (!whiteout)
2571                return -ENOMEM;
2572
2573        error = shmem_mknod(old_dir, whiteout,
2574                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2575        dput(whiteout);
2576        if (error)
2577                return error;
2578
2579        /*
2580         * Cheat and hash the whiteout while the old dentry is still in
2581         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2582         *
2583         * d_lookup() will consistently find one of them at this point,
2584         * not sure which one, but that isn't even important.
2585         */
2586        d_rehash(whiteout);
2587        return 0;
2588}
2589
2590/*
2591 * The VFS layer already does all the dentry stuff for rename,
2592 * we just have to decrement the usage count for the target if
2593 * it exists so that the VFS layer correctly free's it when it
2594 * gets overwritten.
2595 */
2596static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2597{
2598        struct inode *inode = old_dentry->d_inode;
2599        int they_are_dirs = S_ISDIR(inode->i_mode);
2600
2601        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2602                return -EINVAL;
2603
2604        if (flags & RENAME_EXCHANGE)
2605                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2606
2607        if (!simple_empty(new_dentry))
2608                return -ENOTEMPTY;
2609
2610        if (flags & RENAME_WHITEOUT) {
2611                int error;
2612
2613                error = shmem_whiteout(old_dir, old_dentry);
2614                if (error)
2615                        return error;
2616        }
2617
2618        if (new_dentry->d_inode) {
2619                (void) shmem_unlink(new_dir, new_dentry);
2620                if (they_are_dirs)
2621                        drop_nlink(old_dir);
2622        } else if (they_are_dirs) {
2623                drop_nlink(old_dir);
2624                inc_nlink(new_dir);
2625        }
2626
2627        old_dir->i_size -= BOGO_DIRENT_SIZE;
2628        new_dir->i_size += BOGO_DIRENT_SIZE;
2629        old_dir->i_ctime = old_dir->i_mtime =
2630        new_dir->i_ctime = new_dir->i_mtime =
2631        inode->i_ctime = CURRENT_TIME;
2632        return 0;
2633}
2634
2635static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2636{
2637        return shmem_rename2(old_dir, old_dentry, new_dir, new_dentry, 0);
2638}
2639
2640static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2641{
2642        int error;
2643        int len;
2644        struct inode *inode;
2645        struct page *page;
2646        char *kaddr;
2647        struct shmem_inode_info *info;
2648
2649        len = strlen(symname) + 1;
2650        if (len > PAGE_CACHE_SIZE)
2651                return -ENAMETOOLONG;
2652
2653        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2654        if (!inode)
2655                return -ENOSPC;
2656
2657        error = security_inode_init_security(inode, dir, &dentry->d_name,
2658                                             shmem_initxattrs, NULL);
2659        if (error) {
2660                if (error != -EOPNOTSUPP) {
2661                        iput(inode);
2662                        return error;
2663                }
2664                error = 0;
2665        }
2666
2667        info = SHMEM_I(inode);
2668        inode->i_size = len-1;
2669        if (len <= SHORT_SYMLINK_LEN) {
2670                info->symlink = kmemdup(symname, len, GFP_KERNEL);
2671                if (!info->symlink) {
2672                        iput(inode);
2673                        return -ENOMEM;
2674                }
2675                inode->i_op = &shmem_short_symlink_operations;
2676        } else {
2677                error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2678                if (error) {
2679                        iput(inode);
2680                        return error;
2681                }
2682                inode->i_mapping->a_ops = &shmem_aops;
2683                inode->i_op = &shmem_symlink_inode_operations;
2684                kaddr = kmap_atomic(page);
2685                memcpy(kaddr, symname, len);
2686                kunmap_atomic(kaddr);
2687                SetPageUptodate(page);
2688                set_page_dirty(page);
2689                unlock_page(page);
2690                page_cache_release(page);
2691        }
2692        dir->i_size += BOGO_DIRENT_SIZE;
2693        dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2694        d_instantiate(dentry, inode);
2695        dget(dentry);
2696        return 0;
2697}
2698
2699static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2700{
2701        nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2702        return NULL;
2703}
2704
2705static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2706{
2707        struct page *page = NULL;
2708        int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2709        nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2710        if (page)
2711                unlock_page(page);
2712        return page;
2713}
2714
2715static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2716{
2717        if (!IS_ERR(nd_get_link(nd))) {
2718                struct page *page = cookie;
2719                kunmap(page);
2720                mark_page_accessed(page);
2721                page_cache_release(page);
2722        }
2723}
2724
2725#ifdef CONFIG_TMPFS_XATTR
2726/*
2727 * Superblocks without xattr inode operations may get some security.* xattr
2728 * support from the LSM "for free". As soon as we have any other xattrs
2729 * like ACLs, we also need to implement the security.* handlers at
2730 * filesystem level, though.
2731 */
2732
2733/*
2734 * Callback for security_inode_init_security() for acquiring xattrs.
2735 */
2736static int shmem_initxattrs(struct inode *inode,
2737                            const struct xattr *xattr_array,
2738                            void *fs_info)
2739{
2740        struct shmem_inode_info *info = SHMEM_I(inode);
2741        const struct xattr *xattr;
2742        struct simple_xattr *new_xattr;
2743        size_t len;
2744
2745        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2746                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2747                if (!new_xattr)
2748                        return -ENOMEM;
2749
2750                len = strlen(xattr->name) + 1;
2751                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2752                                          GFP_KERNEL);
2753                if (!new_xattr->name) {
2754                        kfree(new_xattr);
2755                        return -ENOMEM;
2756                }
2757
2758                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2759                       XATTR_SECURITY_PREFIX_LEN);
2760                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2761                       xattr->name, len);
2762
2763                simple_xattr_list_add(&info->xattrs, new_xattr);
2764        }
2765
2766        return 0;
2767}
2768
2769static const struct xattr_handler *shmem_xattr_handlers[] = {
2770#ifdef CONFIG_TMPFS_POSIX_ACL
2771        &generic_acl_access_handler,
2772        &generic_acl_default_handler,
2773#endif
2774        NULL
2775};
2776
2777static int shmem_xattr_validate(const char *name)
2778{
2779        struct { const char *prefix; size_t len; } arr[] = {
2780                { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2781                { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2782        };
2783        int i;
2784
2785        for (i = 0; i < ARRAY_SIZE(arr); i++) {
2786                size_t preflen = arr[i].len;
2787                if (strncmp(name, arr[i].prefix, preflen) == 0) {
2788                        if (!name[preflen])
2789                                return -EINVAL;
2790                        return 0;
2791                }
2792        }
2793        return -EOPNOTSUPP;
2794}
2795
2796static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2797                              void *buffer, size_t size)
2798{
2799        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2800        int err;
2801
2802        /*
2803         * If this is a request for a synthetic attribute in the system.*
2804         * namespace use the generic infrastructure to resolve a handler
2805         * for it via sb->s_xattr.
2806         */
2807        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2808                return generic_getxattr(dentry, name, buffer, size);
2809
2810        err = shmem_xattr_validate(name);
2811        if (err)
2812                return err;
2813
2814        return simple_xattr_get(&info->xattrs, name, buffer, size);
2815}
2816
2817static int shmem_setxattr(struct dentry *dentry, const char *name,
2818                          const void *value, size_t size, int flags)
2819{
2820        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2821        int err;
2822
2823        /*
2824         * If this is a request for a synthetic attribute in the system.*
2825         * namespace use the generic infrastructure to resolve a handler
2826         * for it via sb->s_xattr.
2827         */
2828        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2829                return generic_setxattr(dentry, name, value, size, flags);
2830
2831        err = shmem_xattr_validate(name);
2832        if (err)
2833                return err;
2834
2835        return simple_xattr_set(&info->xattrs, name, value, size, flags);
2836}
2837
2838static int shmem_removexattr(struct dentry *dentry, const char *name)
2839{
2840        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2841        int err;
2842
2843        /*
2844         * If this is a request for a synthetic attribute in the system.*
2845         * namespace use the generic infrastructure to resolve a handler
2846         * for it via sb->s_xattr.
2847         */
2848        if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2849                return generic_removexattr(dentry, name);
2850
2851        err = shmem_xattr_validate(name);
2852        if (err)
2853                return err;
2854
2855        return simple_xattr_remove(&info->xattrs, name);
2856}
2857
2858static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2859{
2860        struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2861        return simple_xattr_list(&info->xattrs, buffer, size);
2862}
2863#endif /* CONFIG_TMPFS_XATTR */
2864
2865static const struct inode_operations shmem_short_symlink_operations = {
2866        .readlink       = generic_readlink,
2867        .follow_link    = shmem_follow_short_symlink,
2868#ifdef CONFIG_TMPFS_XATTR
2869        .setxattr       = shmem_setxattr,
2870        .getxattr       = shmem_getxattr,
2871        .listxattr      = shmem_listxattr,
2872        .removexattr    = shmem_removexattr,
2873#endif
2874};
2875
2876static const struct inode_operations shmem_symlink_inode_operations = {
2877        .readlink       = generic_readlink,
2878        .follow_link    = shmem_follow_link,
2879        .put_link       = shmem_put_link,
2880#ifdef CONFIG_TMPFS_XATTR
2881        .setxattr       = shmem_setxattr,
2882        .getxattr       = shmem_getxattr,
2883        .listxattr      = shmem_listxattr,
2884        .removexattr    = shmem_removexattr,
2885#endif
2886};
2887
2888static struct dentry *shmem_get_parent(struct dentry *child)
2889{
2890        return ERR_PTR(-ESTALE);
2891}
2892
2893static int shmem_match(struct inode *ino, void *vfh)
2894{
2895        __u32 *fh = vfh;
2896        __u64 inum = fh[2];
2897        inum = (inum << 32) | fh[1];
2898        return ino->i_ino == inum && fh[0] == ino->i_generation;
2899}
2900
2901static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2902                struct fid *fid, int fh_len, int fh_type)
2903{
2904        struct inode *inode;
2905        struct dentry *dentry = NULL;
2906        u64 inum;
2907
2908        if (fh_len < 3)
2909                return NULL;
2910
2911        inum = fid->raw[2];
2912        inum = (inum << 32) | fid->raw[1];
2913
2914        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2915                        shmem_match, fid->raw);
2916        if (inode) {
2917                dentry = d_find_alias(inode);
2918                iput(inode);
2919        }
2920
2921        return dentry;
2922}
2923
2924static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2925                                struct inode *parent)
2926{
2927        if (*len < 3) {
2928                *len = 3;
2929                return FILEID_INVALID;
2930        }
2931
2932        if (inode_unhashed(inode)) {
2933                /* Unfortunately insert_inode_hash is not idempotent,
2934                 * so as we hash inodes here rather than at creation
2935                 * time, we need a lock to ensure we only try
2936                 * to do it once
2937                 */
2938                static DEFINE_SPINLOCK(lock);
2939                spin_lock(&lock);
2940                if (inode_unhashed(inode))
2941                        __insert_inode_hash(inode,
2942                                            inode->i_ino + inode->i_generation);
2943                spin_unlock(&lock);
2944        }
2945
2946        fh[0] = inode->i_generation;
2947        fh[1] = inode->i_ino;
2948        fh[2] = ((__u64)inode->i_ino) >> 32;
2949
2950        *len = 3;
2951        return 1;
2952}
2953
2954static const struct export_operations shmem_export_ops = {
2955        .get_parent     = shmem_get_parent,
2956        .encode_fh      = shmem_encode_fh,
2957        .fh_to_dentry   = shmem_fh_to_dentry,
2958};
2959
2960static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2961                               bool remount)
2962{
2963        char *this_char, *value, *rest;
2964        struct mempolicy *mpol = NULL;
2965        uid_t uid;
2966        gid_t gid;
2967
2968        while (options != NULL) {
2969                this_char = options;
2970                for (;;) {
2971                        /*
2972                         * NUL-terminate this option: unfortunately,
2973                         * mount options form a comma-separated list,
2974                         * but mpol's nodelist may also contain commas.
2975                         */
2976                        options = strchr(options, ',');
2977                        if (options == NULL)
2978                                break;
2979                        options++;
2980                        if (!isdigit(*options)) {
2981                                options[-1] = '\0';
2982                                break;
2983                        }
2984                }
2985                if (!*this_char)
2986                        continue;
2987                if ((value = strchr(this_char,'=')) != NULL) {
2988                        *value++ = 0;
2989                } else {
2990                        printk(KERN_ERR
2991                            "tmpfs: No value for mount option '%s'\n",
2992                            this_char);
2993                        goto error;
2994                }
2995
2996                if (!strcmp(this_char,"size")) {
2997                        unsigned long long size;
2998                        size = memparse(value,&rest);
2999                        if (*rest == '%') {
3000                                size <<= PAGE_SHIFT;
3001                                size *= totalram_pages;
3002                                do_div(size, 100);
3003                                rest++;
3004                        }
3005                        if (*rest)
3006                                goto bad_val;
3007                        sbinfo->max_blocks =
3008                                DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
3009                } else if (!strcmp(this_char,"nr_blocks")) {
3010                        sbinfo->max_blocks = memparse(value, &rest);
3011                        if (*rest)
3012                                goto bad_val;
3013                } else if (!strcmp(this_char,"nr_inodes")) {
3014                        sbinfo->max_inodes = memparse(value, &rest);
3015                        if (*rest)
3016                                goto bad_val;
3017                } else if (!strcmp(this_char,"mode")) {
3018                        if (remount)
3019                                continue;
3020                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3021                        if (*rest)
3022                                goto bad_val;
3023                } else if (!strcmp(this_char,"uid")) {
3024                        if (remount)
3025                                continue;
3026                        uid = simple_strtoul(value, &rest, 0);
3027                        if (*rest)
3028                                goto bad_val;
3029                        sbinfo->uid = make_kuid(current_user_ns(), uid);
3030                        if (!uid_valid(sbinfo->uid))
3031                                goto bad_val;
3032                } else if (!strcmp(this_char,"gid")) {
3033                        if (remount)
3034                                continue;
3035                        gid = simple_strtoul(value, &rest, 0);
3036                        if (*rest)
3037                                goto bad_val;
3038                        sbinfo->gid = make_kgid(current_user_ns(), gid);
3039                        if (!gid_valid(sbinfo->gid))
3040                                goto bad_val;
3041                } else if (!strcmp(this_char,"mpol")) {
3042                        mpol_put(mpol);
3043                        mpol = NULL;
3044                        if (mpol_parse_str(value, &mpol))
3045                                goto bad_val;
3046                } else {
3047                        printk(KERN_ERR "tmpfs: Bad mount option %s\n",
3048                               this_char);
3049                        goto error;
3050                }
3051        }
3052        sbinfo->mpol = mpol;
3053        return 0;
3054
3055bad_val:
3056        printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
3057               value, this_char);
3058error:
3059        mpol_put(mpol);
3060        return 1;
3061
3062}
3063
3064static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3065{
3066        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3067        struct shmem_sb_info config = *sbinfo;
3068        unsigned long inodes;
3069        int error = -EINVAL;
3070
3071        config.mpol = NULL;
3072        if (shmem_parse_options(data, &config, true))
3073                return error;
3074
3075        spin_lock(&sbinfo->stat_lock);
3076        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3077        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3078                goto out;
3079        if (config.max_inodes < inodes)
3080                goto out;
3081        /*
3082         * Those tests disallow limited->unlimited while any are in use;
3083         * but we must separately disallow unlimited->limited, because
3084         * in that case we have no record of how much is already in use.
3085         */
3086        if (config.max_blocks && !sbinfo->max_blocks)
3087                goto out;
3088        if (config.max_inodes && !sbinfo->max_inodes)
3089                goto out;
3090
3091        error = 0;
3092        sbinfo->max_blocks  = config.max_blocks;
3093        sbinfo->max_inodes  = config.max_inodes;
3094        sbinfo->free_inodes = config.max_inodes - inodes;
3095
3096        /*
3097         * Preserve previous mempolicy unless mpol remount option was specified.
3098         */
3099        if (config.mpol) {
3100                mpol_put(sbinfo->mpol);
3101                sbinfo->mpol = config.mpol;     /* transfers initial ref */
3102        }
3103out:
3104        spin_unlock(&sbinfo->stat_lock);
3105        return error;
3106}
3107
3108static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3109{
3110        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3111
3112        if (sbinfo->max_blocks != shmem_default_max_blocks())
3113                seq_printf(seq, ",size=%luk",
3114                        sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
3115        if (sbinfo->max_inodes != shmem_default_max_inodes())
3116                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3117        if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3118                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3119        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3120                seq_printf(seq, ",uid=%u",
3121                                from_kuid_munged(&init_user_ns, sbinfo->uid));
3122        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3123                seq_printf(seq, ",gid=%u",
3124                                from_kgid_munged(&init_user_ns, sbinfo->gid));
3125        shmem_show_mpol(seq, sbinfo->mpol);
3126        return 0;
3127}
3128
3129#define MFD_NAME_PREFIX "memfd:"
3130#define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3131#define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3132
3133#define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3134
3135SYSCALL_DEFINE2(memfd_create,
3136                const char __user *, uname,
3137                unsigned int, flags)
3138{
3139        struct shmem_inode_info *info;
3140        struct file *file;
3141        int fd, error;
3142        char *name;
3143        long len;
3144
3145        if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3146                return -EINVAL;
3147
3148        /* length includes terminating zero */
3149        len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3150        if (len <= 0)
3151                return -EFAULT;
3152        if (len > MFD_NAME_MAX_LEN + 1)
3153                return -EINVAL;
3154
3155        name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3156        if (!name)
3157                return -ENOMEM;
3158
3159        strcpy(name, MFD_NAME_PREFIX);
3160        if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3161                error = -EFAULT;
3162                goto err_name;
3163        }
3164
3165        /* terminating-zero may have changed after strnlen_user() returned */
3166        if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3167                error = -EFAULT;
3168                goto err_name;
3169        }
3170
3171        fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3172        if (fd < 0) {
3173                error = fd;
3174                goto err_name;
3175        }
3176
3177        file = shmem_file_setup(name, 0, VM_NORESERVE);
3178        if (IS_ERR(file)) {
3179                error = PTR_ERR(file);
3180                goto err_fd;
3181        }
3182        info = SHMEM_I(file_inode(file));
3183        file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3184        file->f_flags |= O_RDWR | O_LARGEFILE;
3185        if (flags & MFD_ALLOW_SEALING)
3186                info->seals &= ~F_SEAL_SEAL;
3187
3188        fd_install(fd, file);
3189        kfree(name);
3190        return fd;
3191
3192err_fd:
3193        put_unused_fd(fd);
3194err_name:
3195        kfree(name);
3196        return error;
3197}
3198
3199#endif /* CONFIG_TMPFS */
3200
3201static void shmem_put_super(struct super_block *sb)
3202{
3203        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3204
3205        percpu_counter_destroy(&sbinfo->used_blocks);
3206        mpol_put(sbinfo->mpol);
3207        kfree(sbinfo);
3208        sb->s_fs_info = NULL;
3209}
3210
3211int shmem_fill_super(struct super_block *sb, void *data, int silent)
3212{
3213        struct inode *inode;
3214        struct shmem_sb_info *sbinfo;
3215        int err = -ENOMEM;
3216
3217        /* Round up to L1_CACHE_BYTES to resist false sharing */
3218        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3219                                L1_CACHE_BYTES), GFP_KERNEL);
3220        if (!sbinfo)
3221                return -ENOMEM;
3222
3223        sbinfo->mode = S_IRWXUGO | S_ISVTX;
3224        sbinfo->uid = current_fsuid();
3225        sbinfo->gid = current_fsgid();
3226        sb->s_fs_info = sbinfo;
3227
3228#ifdef CONFIG_TMPFS
3229        /*
3230         * Per default we only allow half of the physical ram per
3231         * tmpfs instance, limiting inodes to one per page of lowmem;
3232         * but the internal instance is left unlimited.
3233         */
3234        if (!(sb->s_flags & MS_NOUSER)) {
3235                sbinfo->max_blocks = shmem_default_max_blocks();
3236                sbinfo->max_inodes = shmem_default_max_inodes();
3237                if (shmem_parse_options(data, sbinfo, false)) {
3238                        err = -EINVAL;
3239                        goto failed;
3240                }
3241        }
3242        sb->s_export_op = &shmem_export_ops;
3243        sb->s_flags |= MS_NOSEC;
3244#else
3245        sb->s_flags |= MS_NOUSER;
3246#endif
3247
3248        spin_lock_init(&sbinfo->stat_lock);
3249        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3250                goto failed;
3251        sbinfo->free_inodes = sbinfo->max_inodes;
3252
3253        sb->s_maxbytes = MAX_LFS_FILESIZE;
3254        sb->s_blocksize = PAGE_CACHE_SIZE;
3255        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
3256        sb->s_magic = TMPFS_MAGIC;
3257        sb->s_op = &shmem_ops;
3258        sb->s_time_gran = 1;
3259#ifdef CONFIG_TMPFS_XATTR
3260        sb->s_xattr = shmem_xattr_handlers;
3261#endif
3262#ifdef CONFIG_TMPFS_POSIX_ACL
3263        sb->s_flags |= MS_POSIXACL;
3264#endif
3265
3266        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3267        if (!inode)
3268                goto failed;
3269        inode->i_uid = sbinfo->uid;
3270        inode->i_gid = sbinfo->gid;
3271        sb->s_root = d_make_root(inode);
3272        if (!sb->s_root)
3273                goto failed;
3274        return 0;
3275
3276failed:
3277        shmem_put_super(sb);
3278        return err;
3279}
3280
3281static struct kmem_cache *shmem_inode_cachep;
3282
3283static struct inode *shmem_alloc_inode(struct super_block *sb)
3284{
3285        struct shmem_inode_info *info;
3286        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3287        if (!info)
3288                return NULL;
3289        return &info->vfs_inode;
3290}
3291
3292static void shmem_destroy_callback(struct rcu_head *head)
3293{
3294        struct inode *inode = container_of(head, struct inode, i_rcu);
3295        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3296}
3297
3298static void shmem_destroy_inode(struct inode *inode)
3299{
3300        if (S_ISREG(inode->i_mode))
3301                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3302        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3303}
3304
3305static void shmem_init_inode(void *foo)
3306{
3307        struct shmem_inode_info *info = foo;
3308        inode_init_once(&info->vfs_inode);
3309}
3310
3311static int shmem_init_inodecache(void)
3312{
3313        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3314                                sizeof(struct shmem_inode_info),
3315                                0, SLAB_PANIC, shmem_init_inode);
3316        return 0;
3317}
3318
3319static void shmem_destroy_inodecache(void)
3320{
3321        kmem_cache_destroy(shmem_inode_cachep);
3322}
3323
3324static const struct address_space_operations shmem_aops = {
3325        .writepage      = shmem_writepage,
3326        .set_page_dirty = __set_page_dirty_no_writeback,
3327#ifdef CONFIG_TMPFS
3328        .write_begin    = shmem_write_begin,
3329        .write_end      = shmem_write_end,
3330#endif
3331        .migratepage    = migrate_page,
3332        .error_remove_page = generic_error_remove_page,
3333};
3334
3335static const struct file_operations shmem_file_operations = {
3336        .mmap           = shmem_mmap,
3337#ifdef CONFIG_TMPFS
3338        .llseek         = shmem_file_llseek,
3339        .read           = do_sync_read,
3340        .write          = do_sync_write,
3341        .aio_read       = shmem_file_aio_read,
3342        .aio_write      = generic_file_aio_write,
3343        .fsync          = noop_fsync,
3344        .splice_read    = shmem_file_splice_read,
3345        .splice_write   = generic_file_splice_write,
3346        .fallocate      = shmem_fallocate,
3347#endif
3348};
3349
3350static const struct inode_operations shmem_inode_operations = {
3351        .setattr        = shmem_setattr,
3352#ifdef CONFIG_TMPFS_XATTR
3353        .setxattr       = shmem_setxattr,
3354        .getxattr       = shmem_getxattr,
3355        .listxattr      = shmem_listxattr,
3356        .removexattr    = shmem_removexattr,
3357#endif
3358};
3359
3360static const struct inode_operations_wrapper shmem_dir_inode_operations = {
3361        .ops = {
3362#ifdef CONFIG_TMPFS
3363        .create         = shmem_create,
3364        .lookup         = simple_lookup,
3365        .link           = shmem_link,
3366        .unlink         = shmem_unlink,
3367        .symlink        = shmem_symlink,
3368        .mkdir          = shmem_mkdir,
3369        .rmdir          = shmem_rmdir,
3370        .mknod          = shmem_mknod,
3371        .rename         = shmem_rename,
3372#endif
3373#ifdef CONFIG_TMPFS_XATTR
3374        .setxattr       = shmem_setxattr,
3375        .getxattr       = shmem_getxattr,
3376        .listxattr      = shmem_listxattr,
3377        .removexattr    = shmem_removexattr,
3378#endif
3379#ifdef CONFIG_TMPFS_POSIX_ACL
3380        .setattr        = shmem_setattr,
3381#endif
3382        },
3383#ifdef CONFIG_TMPFS
3384        .rename2        = shmem_rename2,
3385#endif
3386};
3387
3388static const struct inode_operations shmem_special_inode_operations = {
3389#ifdef CONFIG_TMPFS_XATTR
3390        .setxattr       = shmem_setxattr,
3391        .getxattr       = shmem_getxattr,
3392        .listxattr      = shmem_listxattr,
3393        .removexattr    = shmem_removexattr,
3394#endif
3395#ifdef CONFIG_TMPFS_POSIX_ACL
3396        .setattr        = shmem_setattr,
3397#endif
3398};
3399
3400static const struct super_operations shmem_ops = {
3401        .alloc_inode    = shmem_alloc_inode,
3402        .destroy_inode  = shmem_destroy_inode,
3403#ifdef CONFIG_TMPFS
3404        .statfs         = shmem_statfs,
3405        .remount_fs     = shmem_remount_fs,
3406        .show_options   = shmem_show_options,
3407#endif
3408        .evict_inode    = shmem_evict_inode,
3409        .drop_inode     = generic_delete_inode,
3410        .put_super      = shmem_put_super,
3411};
3412
3413static const struct vm_operations_struct shmem_vm_ops = {
3414        .fault          = shmem_fault,
3415#ifdef CONFIG_NUMA
3416        .set_policy     = shmem_set_policy,
3417        .get_policy     = shmem_get_policy,
3418#endif
3419        .remap_pages    = generic_file_remap_pages,
3420};
3421
3422static struct dentry *shmem_mount(struct file_system_type *fs_type,
3423        int flags, const char *dev_name, void *data)
3424{
3425        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3426}
3427
3428static struct file_system_type shmem_fs_type = {
3429        .owner          = THIS_MODULE,
3430        .name           = "tmpfs",
3431        .mount          = shmem_mount,
3432        .kill_sb        = kill_litter_super,
3433        .fs_flags       = FS_USERNS_MOUNT,
3434};
3435
3436int __init shmem_init(void)
3437{
3438        int error;
3439
3440        /* If rootfs called this, don't re-init */
3441        if (shmem_inode_cachep)
3442                return 0;
3443
3444        error = bdi_init(&shmem_backing_dev_info);
3445        if (error)
3446                goto out4;
3447
3448        error = shmem_init_inodecache();
3449        if (error)
3450                goto out3;
3451
3452        error = register_filesystem(&shmem_fs_type);
3453        if (error) {
3454                printk(KERN_ERR "Could not register tmpfs\n");
3455                goto out2;
3456        }
3457
3458        shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
3459                                 shmem_fs_type.name, NULL);
3460        if (IS_ERR(shm_mnt)) {
3461                error = PTR_ERR(shm_mnt);
3462                printk(KERN_ERR "Could not kern_mount tmpfs\n");
3463                goto out1;
3464        }
3465        return 0;
3466
3467out1:
3468        unregister_filesystem(&shmem_fs_type);
3469out2:
3470        shmem_destroy_inodecache();
3471out3:
3472        bdi_destroy(&shmem_backing_dev_info);
3473out4:
3474        shm_mnt = ERR_PTR(error);
3475        return error;
3476}
3477
3478#else /* !CONFIG_SHMEM */
3479
3480/*
3481 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3482 *
3483 * This is intended for small system where the benefits of the full
3484 * shmem code (swap-backed and resource-limited) are outweighed by
3485 * their complexity. On systems without swap this code should be
3486 * effectively equivalent, but much lighter weight.
3487 */
3488
3489static struct file_system_type shmem_fs_type = {
3490        .name           = "tmpfs",
3491        .mount          = ramfs_mount,
3492        .kill_sb        = kill_litter_super,
3493        .fs_flags       = FS_USERNS_MOUNT,
3494};
3495
3496int __init shmem_init(void)
3497{
3498        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3499
3500        shm_mnt = kern_mount(&shmem_fs_type);
3501        BUG_ON(IS_ERR(shm_mnt));
3502
3503        return 0;
3504}
3505
3506int shmem_unuse(swp_entry_t swap, struct page *page)
3507{
3508        return 0;
3509}
3510
3511int shmem_lock(struct file *file, int lock, struct user_struct *user)
3512{
3513        return 0;
3514}
3515
3516void shmem_unlock_mapping(struct address_space *mapping)
3517{
3518}
3519
3520void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3521{
3522        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3523}
3524EXPORT_SYMBOL_GPL(shmem_truncate_range);
3525
3526#define shmem_vm_ops                            generic_file_vm_ops
3527#define shmem_file_operations                   ramfs_file_operations
3528#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3529#define shmem_acct_size(flags, size)            0
3530#define shmem_unacct_size(flags, size)          do {} while (0)
3531
3532#endif /* CONFIG_SHMEM */
3533
3534/* common code */
3535
3536static struct dentry_operations anon_ops = {
3537        .d_dname = simple_dname
3538};
3539
3540static struct file *__shmem_file_setup(const char *name, loff_t size,
3541                                       unsigned long flags, unsigned int i_flags)
3542{
3543        struct file *res;
3544        struct inode *inode;
3545        struct path path;
3546        struct super_block *sb;
3547        struct qstr this;
3548
3549        if (IS_ERR(shm_mnt))
3550                return ERR_CAST(shm_mnt);
3551
3552        if (size < 0 || size > MAX_LFS_FILESIZE)
3553                return ERR_PTR(-EINVAL);
3554
3555        if (shmem_acct_size(flags, size))
3556                return ERR_PTR(-ENOMEM);
3557
3558        res = ERR_PTR(-ENOMEM);
3559        this.name = name;
3560        this.len = strlen(name);
3561        this.hash = 0; /* will go */
3562        sb = shm_mnt->mnt_sb;
3563        path.dentry = d_alloc_pseudo(sb, &this);
3564        if (!path.dentry)
3565                goto put_memory;
3566        d_set_d_op(path.dentry, &anon_ops);
3567        path.mnt = mntget(shm_mnt);
3568
3569        res = ERR_PTR(-ENOSPC);
3570        inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
3571        if (!inode)
3572                goto put_dentry;
3573
3574        inode->i_flags |= i_flags;
3575        d_instantiate(path.dentry, inode);
3576        inode->i_size = size;
3577        clear_nlink(inode);     /* It is unlinked */
3578        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3579        if (IS_ERR(res))
3580                goto put_dentry;
3581
3582        res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
3583                  &shmem_file_operations);
3584        if (IS_ERR(res))
3585                goto put_dentry;
3586
3587        return res;
3588
3589put_dentry:
3590        path_put(&path);
3591put_memory:
3592        shmem_unacct_size(flags, size);
3593        return res;
3594}
3595
3596/**
3597 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3598 *      kernel internal.  There will be NO LSM permission checks against the
3599 *      underlying inode.  So users of this interface must do LSM checks at a
3600 *      higher layer.  The one user is the big_key implementation.  LSM checks
3601 *      are provided at the key level rather than the inode level.
3602 * @name: name for dentry (to be seen in /proc/<pid>/maps
3603 * @size: size to be set for the file
3604 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3605 */
3606struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3607{
3608        return __shmem_file_setup(name, size, flags, S_PRIVATE);
3609}
3610
3611/**
3612 * shmem_file_setup - get an unlinked file living in tmpfs
3613 * @name: name for dentry (to be seen in /proc/<pid>/maps
3614 * @size: size to be set for the file
3615 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3616 */
3617struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3618{
3619        return __shmem_file_setup(name, size, flags, 0);
3620}
3621EXPORT_SYMBOL_GPL(shmem_file_setup);
3622
3623/**
3624 * shmem_zero_setup - setup a shared anonymous mapping
3625 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3626 */
3627int shmem_zero_setup(struct vm_area_struct *vma)
3628{
3629        struct file *file;
3630        loff_t size = vma->vm_end - vma->vm_start;
3631
3632        file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3633        if (IS_ERR(file))
3634                return PTR_ERR(file);
3635
3636        if (vma->vm_file)
3637                fput(vma->vm_file);
3638        vma->vm_file = file;
3639        vma->vm_ops = &shmem_vm_ops;
3640        return 0;
3641}
3642
3643/**
3644 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3645 * @mapping:    the page's address_space
3646 * @index:      the page index
3647 * @gfp:        the page allocator flags to use if allocating
3648 *
3649 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3650 * with any new page allocations done using the specified allocation flags.
3651 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3652 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3653 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3654 *
3655 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3656 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3657 */
3658struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3659                                         pgoff_t index, gfp_t gfp)
3660{
3661#ifdef CONFIG_SHMEM
3662        struct inode *inode = mapping->host;
3663        struct page *page;
3664        int error;
3665
3666        BUG_ON(mapping->a_ops != &shmem_aops);
3667        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
3668                                  gfp, NULL, NULL, NULL);
3669        if (error)
3670                page = ERR_PTR(error);
3671        else
3672                unlock_page(page);
3673        return page;
3674#else
3675        /*
3676         * The tiny !SHMEM case uses ramfs without swap
3677         */
3678        return read_cache_page_gfp(mapping, index, gfp);
3679#endif
3680}
3681EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
3682