linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1/*
   2 *   This program is free software; you can redistribute it and/or
   3 *   modify it under the terms of the GNU General Public License
   4 *   as published by the Free Software Foundation; either version
   5 *   2 of the License, or (at your option) any later version.
   6 *
   7 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   8 *     & Swedish University of Agricultural Sciences.
   9 *
  10 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
  11 *     Agricultural Sciences.
  12 *
  13 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  14 *
  15 * This work is based on the LPC-trie which is originally described in:
  16 *
  17 * An experimental study of compression methods for dynamic tries
  18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  20 *
  21 *
  22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  24 *
  25 *
  26 * Code from fib_hash has been reused which includes the following header:
  27 *
  28 *
  29 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  30 *              operating system.  INET is implemented using the  BSD Socket
  31 *              interface as the means of communication with the user level.
  32 *
  33 *              IPv4 FIB: lookup engine and maintenance routines.
  34 *
  35 *
  36 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  37 *
  38 *              This program is free software; you can redistribute it and/or
  39 *              modify it under the terms of the GNU General Public License
  40 *              as published by the Free Software Foundation; either version
  41 *              2 of the License, or (at your option) any later version.
  42 *
  43 * Substantial contributions to this work comes from:
  44 *
  45 *              David S. Miller, <davem@davemloft.net>
  46 *              Stephen Hemminger <shemminger@osdl.org>
  47 *              Paul E. McKenney <paulmck@us.ibm.com>
  48 *              Patrick McHardy <kaber@trash.net>
  49 */
  50
  51#define VERSION "0.409"
  52
  53#include <asm/uaccess.h>
  54#include <linux/bitops.h>
  55#include <linux/types.h>
  56#include <linux/kernel.h>
  57#include <linux/mm.h>
  58#include <linux/string.h>
  59#include <linux/socket.h>
  60#include <linux/sockios.h>
  61#include <linux/errno.h>
  62#include <linux/in.h>
  63#include <linux/inet.h>
  64#include <linux/inetdevice.h>
  65#include <linux/netdevice.h>
  66#include <linux/if_arp.h>
  67#include <linux/proc_fs.h>
  68#include <linux/rcupdate.h>
  69#include <linux/skbuff.h>
  70#include <linux/netlink.h>
  71#include <linux/init.h>
  72#include <linux/list.h>
  73#include <linux/slab.h>
  74#include <linux/export.h>
  75#include <linux/notifier.h>
  76#include <net/net_namespace.h>
  77#include <net/ip.h>
  78#include <net/protocol.h>
  79#include <net/route.h>
  80#include <net/tcp.h>
  81#include <net/sock.h>
  82#include <net/ip_fib.h>
  83#include "fib_lookup.h"
  84
  85static unsigned int fib_seq_sum(void)
  86{
  87        unsigned int fib_seq = 0;
  88        struct net *net;
  89
  90        rtnl_lock();
  91        for_each_net(net)
  92                fib_seq += net->ipv4.fib_seq;
  93        rtnl_unlock();
  94
  95        return fib_seq;
  96}
  97
  98static ATOMIC_NOTIFIER_HEAD(fib_chain);
  99
 100static int call_fib_notifier(struct notifier_block *nb, struct net *net,
 101                             enum fib_event_type event_type,
 102                             struct fib_notifier_info *info)
 103{
 104        info->net = net;
 105        return nb->notifier_call(nb, event_type, info);
 106}
 107
 108static void fib_rules_notify(struct net *net, struct notifier_block *nb,
 109                             enum fib_event_type event_type)
 110{
 111#ifdef CONFIG_IP_MULTIPLE_TABLES
 112        struct fib_notifier_info info;
 113
 114        if (net->ipv4.fib_has_custom_rules)
 115                call_fib_notifier(nb, net, event_type, &info);
 116#endif
 117}
 118
 119static void fib_notify(struct net *net, struct notifier_block *nb,
 120                       enum fib_event_type event_type);
 121
 122static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
 123                                   enum fib_event_type event_type, u32 dst,
 124                                   int dst_len, struct fib_info *fi,
 125                                   u8 tos, u8 type, u32 tb_id)
 126{
 127        struct fib_entry_notifier_info info = {
 128                .dst = dst,
 129                .dst_len = dst_len,
 130                .fi = fi,
 131                .tos = tos,
 132                .type = type,
 133                .tb_id = tb_id,
 134        };
 135        return call_fib_notifier(nb, net, event_type, &info.info);
 136}
 137
 138static bool fib_dump_is_consistent(struct notifier_block *nb,
 139                                   void (*cb)(struct notifier_block *nb),
 140                                   unsigned int fib_seq)
 141{
 142        atomic_notifier_chain_register(&fib_chain, nb);
 143        if (fib_seq == fib_seq_sum())
 144                return true;
 145        atomic_notifier_chain_unregister(&fib_chain, nb);
 146        if (cb)
 147                cb(nb);
 148        return false;
 149}
 150
 151#define FIB_DUMP_MAX_RETRIES 5
 152int register_fib_notifier(struct notifier_block *nb,
 153                          void (*cb)(struct notifier_block *nb))
 154{
 155        int retries = 0;
 156
 157        do {
 158                unsigned int fib_seq = fib_seq_sum();
 159                struct net *net;
 160
 161                /* Mutex semantics guarantee that every change done to
 162                 * FIB tries before we read the change sequence counter
 163                 * is now visible to us.
 164                 */
 165                rcu_read_lock();
 166                for_each_net_rcu(net) {
 167                        fib_rules_notify(net, nb, FIB_EVENT_RULE_ADD);
 168                        fib_notify(net, nb, FIB_EVENT_ENTRY_ADD);
 169                }
 170                rcu_read_unlock();
 171
 172                if (fib_dump_is_consistent(nb, cb, fib_seq))
 173                        return 0;
 174        } while (++retries < FIB_DUMP_MAX_RETRIES);
 175
 176        return -EBUSY;
 177}
 178EXPORT_SYMBOL(register_fib_notifier);
 179
 180int unregister_fib_notifier(struct notifier_block *nb)
 181{
 182        return atomic_notifier_chain_unregister(&fib_chain, nb);
 183}
 184EXPORT_SYMBOL(unregister_fib_notifier);
 185
 186int call_fib_notifiers(struct net *net, enum fib_event_type event_type,
 187                       struct fib_notifier_info *info)
 188{
 189        net->ipv4.fib_seq++;
 190        info->net = net;
 191        return atomic_notifier_call_chain(&fib_chain, event_type, info);
 192}
 193
 194static int call_fib_entry_notifiers(struct net *net,
 195                                    enum fib_event_type event_type, u32 dst,
 196                                    int dst_len, struct fib_info *fi,
 197                                    u8 tos, u8 type, u32 tb_id)
 198{
 199        struct fib_entry_notifier_info info = {
 200                .dst = dst,
 201                .dst_len = dst_len,
 202                .fi = fi,
 203                .tos = tos,
 204                .type = type,
 205                .tb_id = tb_id,
 206        };
 207        return call_fib_notifiers(net, event_type, &info.info);
 208}
 209
 210#define MAX_STAT_DEPTH 32
 211
 212#define KEYLENGTH       (8*sizeof(t_key))
 213#define KEY_MAX         ((t_key)~0)
 214
 215typedef unsigned int t_key;
 216
 217#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
 218#define IS_TNODE(n)     ((n)->bits)
 219#define IS_LEAF(n)      (!(n)->bits)
 220
 221struct key_vector {
 222        t_key key;
 223        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
 224        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 225        unsigned char slen;
 226        union {
 227                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 228                struct hlist_head leaf;
 229                /* This array is valid if (pos | bits) > 0 (TNODE) */
 230                struct key_vector __rcu *tnode[0];
 231        };
 232};
 233
 234struct tnode {
 235        struct rcu_head rcu;
 236        t_key empty_children;           /* KEYLENGTH bits needed */
 237        t_key full_children;            /* KEYLENGTH bits needed */
 238        struct key_vector __rcu *parent;
 239        struct key_vector kv[1];
 240#define tn_bits kv[0].bits
 241};
 242
 243#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 244#define LEAF_SIZE       TNODE_SIZE(1)
 245
 246#ifdef CONFIG_IP_FIB_TRIE_STATS
 247struct trie_use_stats {
 248        unsigned int gets;
 249        unsigned int backtrack;
 250        unsigned int semantic_match_passed;
 251        unsigned int semantic_match_miss;
 252        unsigned int null_node_hit;
 253        unsigned int resize_node_skipped;
 254};
 255#endif
 256
 257struct trie_stat {
 258        unsigned int totdepth;
 259        unsigned int maxdepth;
 260        unsigned int tnodes;
 261        unsigned int leaves;
 262        unsigned int nullpointers;
 263        unsigned int prefixes;
 264        unsigned int nodesizes[MAX_STAT_DEPTH];
 265};
 266
 267struct trie {
 268        struct rcu_head rcu;
 269        struct key_vector kv[1];
 270#ifdef CONFIG_IP_FIB_TRIE_STATS
 271        struct trie_use_stats __percpu *stats;
 272#endif
 273};
 274
 275static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 276static size_t tnode_free_size;
 277
 278/*
 279 * synchronize_rcu after call_rcu for that many pages; it should be especially
 280 * useful before resizing the root node with PREEMPT_NONE configs; the value was
 281 * obtained experimentally, aiming to avoid visible slowdown.
 282 */
 283static const int sync_pages = 128;
 284
 285static struct kmem_cache *fn_alias_kmem __read_mostly;
 286static struct kmem_cache *trie_leaf_kmem __read_mostly;
 287
 288static inline struct tnode *tn_info(struct key_vector *kv)
 289{
 290        return container_of(kv, struct tnode, kv[0]);
 291}
 292
 293/* caller must hold RTNL */
 294#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 295#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 296
 297/* caller must hold RCU read lock or RTNL */
 298#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 299#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 300
 301/* wrapper for rcu_assign_pointer */
 302static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 303{
 304        if (n)
 305                rcu_assign_pointer(tn_info(n)->parent, tp);
 306}
 307
 308#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 309
 310/* This provides us with the number of children in this node, in the case of a
 311 * leaf this will return 0 meaning none of the children are accessible.
 312 */
 313static inline unsigned long child_length(const struct key_vector *tn)
 314{
 315        return (1ul << tn->bits) & ~(1ul);
 316}
 317
 318#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 319
 320static inline unsigned long get_index(t_key key, struct key_vector *kv)
 321{
 322        unsigned long index = key ^ kv->key;
 323
 324        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 325                return 0;
 326
 327        return index >> kv->pos;
 328}
 329
 330/* To understand this stuff, an understanding of keys and all their bits is
 331 * necessary. Every node in the trie has a key associated with it, but not
 332 * all of the bits in that key are significant.
 333 *
 334 * Consider a node 'n' and its parent 'tp'.
 335 *
 336 * If n is a leaf, every bit in its key is significant. Its presence is
 337 * necessitated by path compression, since during a tree traversal (when
 338 * searching for a leaf - unless we are doing an insertion) we will completely
 339 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 340 * a potentially successful search, that we have indeed been walking the
 341 * correct key path.
 342 *
 343 * Note that we can never "miss" the correct key in the tree if present by
 344 * following the wrong path. Path compression ensures that segments of the key
 345 * that are the same for all keys with a given prefix are skipped, but the
 346 * skipped part *is* identical for each node in the subtrie below the skipped
 347 * bit! trie_insert() in this implementation takes care of that.
 348 *
 349 * if n is an internal node - a 'tnode' here, the various parts of its key
 350 * have many different meanings.
 351 *
 352 * Example:
 353 * _________________________________________________________________
 354 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 355 * -----------------------------------------------------------------
 356 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 357 *
 358 * _________________________________________________________________
 359 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 360 * -----------------------------------------------------------------
 361 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 362 *
 363 * tp->pos = 22
 364 * tp->bits = 3
 365 * n->pos = 13
 366 * n->bits = 4
 367 *
 368 * First, let's just ignore the bits that come before the parent tp, that is
 369 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 370 * point we do not use them for anything.
 371 *
 372 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 373 * index into the parent's child array. That is, they will be used to find
 374 * 'n' among tp's children.
 375 *
 376 * The bits from (n->pos + n->bits) to (tn->pos - 1) - "S" - are skipped bits
 377 * for the node n.
 378 *
 379 * All the bits we have seen so far are significant to the node n. The rest
 380 * of the bits are really not needed or indeed known in n->key.
 381 *
 382 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 383 * n's child array, and will of course be different for each child.
 384 *
 385 * The rest of the bits, from 0 to (n->pos + n->bits), are completely unknown
 386 * at this point.
 387 */
 388
 389static const int halve_threshold = 25;
 390static const int inflate_threshold = 50;
 391static const int halve_threshold_root = 15;
 392static const int inflate_threshold_root = 30;
 393
 394static void __alias_free_mem(struct rcu_head *head)
 395{
 396        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 397        kmem_cache_free(fn_alias_kmem, fa);
 398}
 399
 400static inline void alias_free_mem_rcu(struct fib_alias *fa)
 401{
 402        call_rcu(&fa->rcu, __alias_free_mem);
 403}
 404
 405#define TNODE_KMALLOC_MAX \
 406        ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 407#define TNODE_VMALLOC_MAX \
 408        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 409
 410static void __node_free_rcu(struct rcu_head *head)
 411{
 412        struct tnode *n = container_of(head, struct tnode, rcu);
 413
 414        if (!n->tn_bits)
 415                kmem_cache_free(trie_leaf_kmem, n);
 416        else if (n->tn_bits <= TNODE_KMALLOC_MAX)
 417                kfree(n);
 418        else
 419                vfree(n);
 420}
 421
 422#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 423
 424static struct tnode *tnode_alloc(int bits)
 425{
 426        size_t size;
 427
 428        /* verify bits is within bounds */
 429        if (bits > TNODE_VMALLOC_MAX)
 430                return NULL;
 431
 432        /* determine size and verify it is non-zero and didn't overflow */
 433        size = TNODE_SIZE(1ul << bits);
 434
 435        if (size <= PAGE_SIZE)
 436                return kzalloc(size, GFP_KERNEL);
 437        else
 438                return vzalloc(size);
 439}
 440
 441static inline void empty_child_inc(struct key_vector *n)
 442{
 443        ++tn_info(n)->empty_children ? : ++tn_info(n)->full_children;
 444}
 445
 446static inline void empty_child_dec(struct key_vector *n)
 447{
 448        tn_info(n)->empty_children-- ? : tn_info(n)->full_children--;
 449}
 450
 451static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 452{
 453        struct tnode *kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 454        struct key_vector *l = kv->kv;
 455
 456        if (!kv)
 457                return NULL;
 458
 459        /* initialize key vector */
 460        l->key = key;
 461        l->pos = 0;
 462        l->bits = 0;
 463        l->slen = fa->fa_slen;
 464
 465        /* link leaf to fib alias */
 466        INIT_HLIST_HEAD(&l->leaf);
 467        hlist_add_head(&fa->fa_list, &l->leaf);
 468
 469        return l;
 470}
 471
 472static struct key_vector *tnode_new(t_key key, int pos, int bits)
 473{
 474        struct tnode *tnode = tnode_alloc(bits);
 475        unsigned int shift = pos + bits;
 476        struct key_vector *tn = tnode->kv;
 477
 478        /* verify bits and pos their msb bits clear and values are valid */
 479        BUG_ON(!bits || (shift > KEYLENGTH));
 480
 481        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 482                 sizeof(struct key_vector *) << bits);
 483
 484        if (!tnode)
 485                return NULL;
 486
 487        if (bits == KEYLENGTH)
 488                tnode->full_children = 1;
 489        else
 490                tnode->empty_children = 1ul << bits;
 491
 492        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 493        tn->pos = pos;
 494        tn->bits = bits;
 495        tn->slen = pos;
 496
 497        return tn;
 498}
 499
 500/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 501 * and no bits are skipped. See discussion in dyntree paper p. 6
 502 */
 503static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 504{
 505        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 506}
 507
 508/* Add a child at position i overwriting the old value.
 509 * Update the value of full_children and empty_children.
 510 */
 511static void put_child(struct key_vector *tn, unsigned long i,
 512                      struct key_vector *n)
 513{
 514        struct key_vector *chi = get_child(tn, i);
 515        int isfull, wasfull;
 516
 517        BUG_ON(i >= child_length(tn));
 518
 519        /* update emptyChildren, overflow into fullChildren */
 520        if (n == NULL && chi != NULL)
 521                empty_child_inc(tn);
 522        if (n != NULL && chi == NULL)
 523                empty_child_dec(tn);
 524
 525        /* update fullChildren */
 526        wasfull = tnode_full(tn, chi);
 527        isfull = tnode_full(tn, n);
 528
 529        if (wasfull && !isfull)
 530                tn_info(tn)->full_children--;
 531        else if (!wasfull && isfull)
 532                tn_info(tn)->full_children++;
 533
 534        if (n && (tn->slen < n->slen))
 535                tn->slen = n->slen;
 536
 537        rcu_assign_pointer(tn->tnode[i], n);
 538}
 539
 540static void update_children(struct key_vector *tn)
 541{
 542        unsigned long i;
 543
 544        /* update all of the child parent pointers */
 545        for (i = child_length(tn); i;) {
 546                struct key_vector *inode = get_child(tn, --i);
 547
 548                if (!inode)
 549                        continue;
 550
 551                /* Either update the children of a tnode that
 552                 * already belongs to us or update the child
 553                 * to point to ourselves.
 554                 */
 555                if (node_parent(inode) == tn)
 556                        update_children(inode);
 557                else
 558                        node_set_parent(inode, tn);
 559        }
 560}
 561
 562static inline void put_child_root(struct key_vector *tp, t_key key,
 563                                  struct key_vector *n)
 564{
 565        if (IS_TRIE(tp))
 566                rcu_assign_pointer(tp->tnode[0], n);
 567        else
 568                put_child(tp, get_index(key, tp), n);
 569}
 570
 571static inline void tnode_free_init(struct key_vector *tn)
 572{
 573        tn_info(tn)->rcu.next = NULL;
 574}
 575
 576static inline void tnode_free_append(struct key_vector *tn,
 577                                     struct key_vector *n)
 578{
 579        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 580        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 581}
 582
 583static void tnode_free(struct key_vector *tn)
 584{
 585        struct callback_head *head = &tn_info(tn)->rcu;
 586
 587        while (head) {
 588                head = head->next;
 589                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 590                node_free(tn);
 591
 592                tn = container_of(head, struct tnode, rcu)->kv;
 593        }
 594
 595        if (tnode_free_size >= PAGE_SIZE * sync_pages) {
 596                tnode_free_size = 0;
 597                synchronize_rcu();
 598        }
 599}
 600
 601static struct key_vector *replace(struct trie *t,
 602                                  struct key_vector *oldtnode,
 603                                  struct key_vector *tn)
 604{
 605        struct key_vector *tp = node_parent(oldtnode);
 606        unsigned long i;
 607
 608        /* setup the parent pointer out of and back into this node */
 609        NODE_INIT_PARENT(tn, tp);
 610        put_child_root(tp, tn->key, tn);
 611
 612        /* update all of the child parent pointers */
 613        update_children(tn);
 614
 615        /* all pointers should be clean so we are done */
 616        tnode_free(oldtnode);
 617
 618        /* resize children now that oldtnode is freed */
 619        for (i = child_length(tn); i;) {
 620                struct key_vector *inode = get_child(tn, --i);
 621
 622                /* resize child node */
 623                if (tnode_full(tn, inode))
 624                        tn = resize(t, inode);
 625        }
 626
 627        return tp;
 628}
 629
 630static struct key_vector *inflate(struct trie *t,
 631                                  struct key_vector *oldtnode)
 632{
 633        struct key_vector *tn;
 634        unsigned long i;
 635        t_key m;
 636
 637        pr_debug("In inflate\n");
 638
 639        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 640        if (!tn)
 641                goto notnode;
 642
 643        /* prepare oldtnode to be freed */
 644        tnode_free_init(oldtnode);
 645
 646        /* Assemble all of the pointers in our cluster, in this case that
 647         * represents all of the pointers out of our allocated nodes that
 648         * point to existing tnodes and the links between our allocated
 649         * nodes.
 650         */
 651        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 652                struct key_vector *inode = get_child(oldtnode, --i);
 653                struct key_vector *node0, *node1;
 654                unsigned long j, k;
 655
 656                /* An empty child */
 657                if (inode == NULL)
 658                        continue;
 659
 660                /* A leaf or an internal node with skipped bits */
 661                if (!tnode_full(oldtnode, inode)) {
 662                        put_child(tn, get_index(inode->key, tn), inode);
 663                        continue;
 664                }
 665
 666                /* drop the node in the old tnode free list */
 667                tnode_free_append(oldtnode, inode);
 668
 669                /* An internal node with two children */
 670                if (inode->bits == 1) {
 671                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 672                        put_child(tn, 2 * i, get_child(inode, 0));
 673                        continue;
 674                }
 675
 676                /* We will replace this node 'inode' with two new
 677                 * ones, 'node0' and 'node1', each with half of the
 678                 * original children. The two new nodes will have
 679                 * a position one bit further down the key and this
 680                 * means that the "significant" part of their keys
 681                 * (see the discussion near the top of this file)
 682                 * will differ by one bit, which will be "0" in
 683                 * node0's key and "1" in node1's key. Since we are
 684                 * moving the key position by one step, the bit that
 685                 * we are moving away from - the bit at position
 686                 * (tn->pos) - is the one that will differ between
 687                 * node0 and node1. So... we synthesize that bit in the
 688                 * two new keys.
 689                 */
 690                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 691                if (!node1)
 692                        goto nomem;
 693                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 694
 695                tnode_free_append(tn, node1);
 696                if (!node0)
 697                        goto nomem;
 698                tnode_free_append(tn, node0);
 699
 700                /* populate child pointers in new nodes */
 701                for (k = child_length(inode), j = k / 2; j;) {
 702                        put_child(node1, --j, get_child(inode, --k));
 703                        put_child(node0, j, get_child(inode, j));
 704                        put_child(node1, --j, get_child(inode, --k));
 705                        put_child(node0, j, get_child(inode, j));
 706                }
 707
 708                /* link new nodes to parent */
 709                NODE_INIT_PARENT(node1, tn);
 710                NODE_INIT_PARENT(node0, tn);
 711
 712                /* link parent to nodes */
 713                put_child(tn, 2 * i + 1, node1);
 714                put_child(tn, 2 * i, node0);
 715        }
 716
 717        /* setup the parent pointers into and out of this node */
 718        return replace(t, oldtnode, tn);
 719nomem:
 720        /* all pointers should be clean so we are done */
 721        tnode_free(tn);
 722notnode:
 723        return NULL;
 724}
 725
 726static struct key_vector *halve(struct trie *t,
 727                                struct key_vector *oldtnode)
 728{
 729        struct key_vector *tn;
 730        unsigned long i;
 731
 732        pr_debug("In halve\n");
 733
 734        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 735        if (!tn)
 736                goto notnode;
 737
 738        /* prepare oldtnode to be freed */
 739        tnode_free_init(oldtnode);
 740
 741        /* Assemble all of the pointers in our cluster, in this case that
 742         * represents all of the pointers out of our allocated nodes that
 743         * point to existing tnodes and the links between our allocated
 744         * nodes.
 745         */
 746        for (i = child_length(oldtnode); i;) {
 747                struct key_vector *node1 = get_child(oldtnode, --i);
 748                struct key_vector *node0 = get_child(oldtnode, --i);
 749                struct key_vector *inode;
 750
 751                /* At least one of the children is empty */
 752                if (!node1 || !node0) {
 753                        put_child(tn, i / 2, node1 ? : node0);
 754                        continue;
 755                }
 756
 757                /* Two nonempty children */
 758                inode = tnode_new(node0->key, oldtnode->pos, 1);
 759                if (!inode)
 760                        goto nomem;
 761                tnode_free_append(tn, inode);
 762
 763                /* initialize pointers out of node */
 764                put_child(inode, 1, node1);
 765                put_child(inode, 0, node0);
 766                NODE_INIT_PARENT(inode, tn);
 767
 768                /* link parent to node */
 769                put_child(tn, i / 2, inode);
 770        }
 771
 772        /* setup the parent pointers into and out of this node */
 773        return replace(t, oldtnode, tn);
 774nomem:
 775        /* all pointers should be clean so we are done */
 776        tnode_free(tn);
 777notnode:
 778        return NULL;
 779}
 780
 781static struct key_vector *collapse(struct trie *t,
 782                                   struct key_vector *oldtnode)
 783{
 784        struct key_vector *n, *tp;
 785        unsigned long i;
 786
 787        /* scan the tnode looking for that one child that might still exist */
 788        for (n = NULL, i = child_length(oldtnode); !n && i;)
 789                n = get_child(oldtnode, --i);
 790
 791        /* compress one level */
 792        tp = node_parent(oldtnode);
 793        put_child_root(tp, oldtnode->key, n);
 794        node_set_parent(n, tp);
 795
 796        /* drop dead node */
 797        node_free(oldtnode);
 798
 799        return tp;
 800}
 801
 802static unsigned char update_suffix(struct key_vector *tn)
 803{
 804        unsigned char slen = tn->pos;
 805        unsigned long stride, i;
 806
 807        /* search though the list of children looking for nodes that might
 808         * have a suffix greater than the one we currently have.  This is
 809         * why we start with a stride of 2 since a stride of 1 would
 810         * represent the nodes with suffix length equal to tn->pos
 811         */
 812        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 813                struct key_vector *n = get_child(tn, i);
 814
 815                if (!n || (n->slen <= slen))
 816                        continue;
 817
 818                /* update stride and slen based on new value */
 819                stride <<= (n->slen - slen);
 820                slen = n->slen;
 821                i &= ~(stride - 1);
 822
 823                /* if slen covers all but the last bit we can stop here
 824                 * there will be nothing longer than that since only node
 825                 * 0 and 1 << (bits - 1) could have that as their suffix
 826                 * length.
 827                 */
 828                if ((slen + 1) >= (tn->pos + tn->bits))
 829                        break;
 830        }
 831
 832        tn->slen = slen;
 833
 834        return slen;
 835}
 836
 837/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 838 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 839 * Telecommunications, page 6:
 840 * "A node is doubled if the ratio of non-empty children to all
 841 * children in the *doubled* node is at least 'high'."
 842 *
 843 * 'high' in this instance is the variable 'inflate_threshold'. It
 844 * is expressed as a percentage, so we multiply it with
 845 * child_length() and instead of multiplying by 2 (since the
 846 * child array will be doubled by inflate()) and multiplying
 847 * the left-hand side by 100 (to handle the percentage thing) we
 848 * multiply the left-hand side by 50.
 849 *
 850 * The left-hand side may look a bit weird: child_length(tn)
 851 * - tn->empty_children is of course the number of non-null children
 852 * in the current node. tn->full_children is the number of "full"
 853 * children, that is non-null tnodes with a skip value of 0.
 854 * All of those will be doubled in the resulting inflated tnode, so
 855 * we just count them one extra time here.
 856 *
 857 * A clearer way to write this would be:
 858 *
 859 * to_be_doubled = tn->full_children;
 860 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 861 *     tn->full_children;
 862 *
 863 * new_child_length = child_length(tn) * 2;
 864 *
 865 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 866 *      new_child_length;
 867 * if (new_fill_factor >= inflate_threshold)
 868 *
 869 * ...and so on, tho it would mess up the while () loop.
 870 *
 871 * anyway,
 872 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 873 *      inflate_threshold
 874 *
 875 * avoid a division:
 876 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 877 *      inflate_threshold * new_child_length
 878 *
 879 * expand not_to_be_doubled and to_be_doubled, and shorten:
 880 * 100 * (child_length(tn) - tn->empty_children +
 881 *    tn->full_children) >= inflate_threshold * new_child_length
 882 *
 883 * expand new_child_length:
 884 * 100 * (child_length(tn) - tn->empty_children +
 885 *    tn->full_children) >=
 886 *      inflate_threshold * child_length(tn) * 2
 887 *
 888 * shorten again:
 889 * 50 * (tn->full_children + child_length(tn) -
 890 *    tn->empty_children) >= inflate_threshold *
 891 *    child_length(tn)
 892 *
 893 */
 894static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 895{
 896        unsigned long used = child_length(tn);
 897        unsigned long threshold = used;
 898
 899        /* Keep root node larger */
 900        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 901        used -= tn_info(tn)->empty_children;
 902        used += tn_info(tn)->full_children;
 903
 904        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 905
 906        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 907}
 908
 909static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 910{
 911        unsigned long used = child_length(tn);
 912        unsigned long threshold = used;
 913
 914        /* Keep root node larger */
 915        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 916        used -= tn_info(tn)->empty_children;
 917
 918        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 919
 920        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 921}
 922
 923static inline bool should_collapse(struct key_vector *tn)
 924{
 925        unsigned long used = child_length(tn);
 926
 927        used -= tn_info(tn)->empty_children;
 928
 929        /* account for bits == KEYLENGTH case */
 930        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 931                used -= KEY_MAX;
 932
 933        /* One child or none, time to drop us from the trie */
 934        return used < 2;
 935}
 936
 937#define MAX_WORK 10
 938static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 939{
 940#ifdef CONFIG_IP_FIB_TRIE_STATS
 941        struct trie_use_stats __percpu *stats = t->stats;
 942#endif
 943        struct key_vector *tp = node_parent(tn);
 944        unsigned long cindex = get_index(tn->key, tp);
 945        int max_work = MAX_WORK;
 946
 947        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 948                 tn, inflate_threshold, halve_threshold);
 949
 950        /* track the tnode via the pointer from the parent instead of
 951         * doing it ourselves.  This way we can let RCU fully do its
 952         * thing without us interfering
 953         */
 954        BUG_ON(tn != get_child(tp, cindex));
 955
 956        /* Double as long as the resulting node has a number of
 957         * nonempty nodes that are above the threshold.
 958         */
 959        while (should_inflate(tp, tn) && max_work) {
 960                tp = inflate(t, tn);
 961                if (!tp) {
 962#ifdef CONFIG_IP_FIB_TRIE_STATS
 963                        this_cpu_inc(stats->resize_node_skipped);
 964#endif
 965                        break;
 966                }
 967
 968                max_work--;
 969                tn = get_child(tp, cindex);
 970        }
 971
 972        /* update parent in case inflate failed */
 973        tp = node_parent(tn);
 974
 975        /* Return if at least one inflate is run */
 976        if (max_work != MAX_WORK)
 977                return tp;
 978
 979        /* Halve as long as the number of empty children in this
 980         * node is above threshold.
 981         */
 982        while (should_halve(tp, tn) && max_work) {
 983                tp = halve(t, tn);
 984                if (!tp) {
 985#ifdef CONFIG_IP_FIB_TRIE_STATS
 986                        this_cpu_inc(stats->resize_node_skipped);
 987#endif
 988                        break;
 989                }
 990
 991                max_work--;
 992                tn = get_child(tp, cindex);
 993        }
 994
 995        /* Only one child remains */
 996        if (should_collapse(tn))
 997                return collapse(t, tn);
 998
 999        /* update parent in case halve failed */
1000        tp = node_parent(tn);
1001
1002        /* Return if at least one deflate was run */
1003        if (max_work != MAX_WORK)
1004                return tp;
1005
1006        /* push the suffix length to the parent node */
1007        if (tn->slen > tn->pos) {
1008                unsigned char slen = update_suffix(tn);
1009
1010                if (slen > tp->slen)
1011                        tp->slen = slen;
1012        }
1013
1014        return tp;
1015}
1016
1017static void leaf_pull_suffix(struct key_vector *tp, struct key_vector *l)
1018{
1019        while ((tp->slen > tp->pos) && (tp->slen > l->slen)) {
1020                if (update_suffix(tp) > l->slen)
1021                        break;
1022                tp = node_parent(tp);
1023        }
1024}
1025
1026static void leaf_push_suffix(struct key_vector *tn, struct key_vector *l)
1027{
1028        /* if this is a new leaf then tn will be NULL and we can sort
1029         * out parent suffix lengths as a part of trie_rebalance
1030         */
1031        while (tn->slen < l->slen) {
1032                tn->slen = l->slen;
1033                tn = node_parent(tn);
1034        }
1035}
1036
1037/* rcu_read_lock needs to be hold by caller from readside */
1038static struct key_vector *fib_find_node(struct trie *t,
1039                                        struct key_vector **tp, u32 key)
1040{
1041        struct key_vector *pn, *n = t->kv;
1042        unsigned long index = 0;
1043
1044        do {
1045                pn = n;
1046                n = get_child_rcu(n, index);
1047
1048                if (!n)
1049                        break;
1050
1051                index = get_cindex(key, n);
1052
1053                /* This bit of code is a bit tricky but it combines multiple
1054                 * checks into a single check.  The prefix consists of the
1055                 * prefix plus zeros for the bits in the cindex. The index
1056                 * is the difference between the key and this value.  From
1057                 * this we can actually derive several pieces of data.
1058                 *   if (index >= (1ul << bits))
1059                 *     we have a mismatch in skip bits and failed
1060                 *   else
1061                 *     we know the value is cindex
1062                 *
1063                 * This check is safe even if bits == KEYLENGTH due to the
1064                 * fact that we can only allocate a node with 32 bits if a
1065                 * long is greater than 32 bits.
1066                 */
1067                if (index >= (1ul << n->bits)) {
1068                        n = NULL;
1069                        break;
1070                }
1071
1072                /* keep searching until we find a perfect match leaf or NULL */
1073        } while (IS_TNODE(n));
1074
1075        *tp = pn;
1076
1077        return n;
1078}
1079
1080/* Return the first fib alias matching TOS with
1081 * priority less than or equal to PRIO.
1082 */
1083static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
1084                                        u8 tos, u32 prio)
1085{
1086        struct fib_alias *fa;
1087
1088        if (!fah)
1089                return NULL;
1090
1091        hlist_for_each_entry(fa, fah, fa_list) {
1092                if (fa->fa_slen < slen)
1093                        continue;
1094                if (fa->fa_slen != slen)
1095                        break;
1096                if (fa->fa_tos > tos)
1097                        continue;
1098                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1099                        return fa;
1100        }
1101
1102        return NULL;
1103}
1104
1105static void trie_rebalance(struct trie *t, struct key_vector *tn)
1106{
1107        while (!IS_TRIE(tn))
1108                tn = resize(t, tn);
1109}
1110
1111static int fib_insert_node(struct trie *t, struct key_vector *tp,
1112                           struct fib_alias *new, t_key key)
1113{
1114        struct key_vector *n, *l;
1115
1116        l = leaf_new(key, new);
1117        if (!l)
1118                goto noleaf;
1119
1120        /* retrieve child from parent node */
1121        n = get_child(tp, get_index(key, tp));
1122
1123        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1124         *
1125         *  Add a new tnode here
1126         *  first tnode need some special handling
1127         *  leaves us in position for handling as case 3
1128         */
1129        if (n) {
1130                struct key_vector *tn;
1131
1132                tn = tnode_new(key, __fls(key ^ n->key), 1);
1133                if (!tn)
1134                        goto notnode;
1135
1136                /* initialize routes out of node */
1137                NODE_INIT_PARENT(tn, tp);
1138                put_child(tn, get_index(key, tn) ^ 1, n);
1139
1140                /* start adding routes into the node */
1141                put_child_root(tp, key, tn);
1142                node_set_parent(n, tn);
1143
1144                /* parent now has a NULL spot where the leaf can go */
1145                tp = tn;
1146        }
1147
1148        /* Case 3: n is NULL, and will just insert a new leaf */
1149        NODE_INIT_PARENT(l, tp);
1150        put_child_root(tp, key, l);
1151        trie_rebalance(t, tp);
1152
1153        return 0;
1154notnode:
1155        node_free(l);
1156noleaf:
1157        return -ENOMEM;
1158}
1159
1160static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1161                            struct key_vector *l, struct fib_alias *new,
1162                            struct fib_alias *fa, t_key key)
1163{
1164        if (!l)
1165                return fib_insert_node(t, tp, new, key);
1166
1167        if (fa) {
1168                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1169        } else {
1170                struct fib_alias *last;
1171
1172                hlist_for_each_entry(last, &l->leaf, fa_list) {
1173                        if (new->fa_slen < last->fa_slen)
1174                                break;
1175                        fa = last;
1176                }
1177
1178                if (fa)
1179                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1180                else
1181                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1182        }
1183
1184        /* if we added to the tail node then we need to update slen */
1185        if (l->slen < new->fa_slen) {
1186                l->slen = new->fa_slen;
1187                leaf_push_suffix(tp, l);
1188        }
1189
1190        return 0;
1191}
1192
1193/* Caller must hold RTNL. */
1194int fib_table_insert(struct net *net, struct fib_table *tb,
1195                     struct fib_config *cfg)
1196{
1197        enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1198        struct trie *t = (struct trie *)tb->tb_data;
1199        struct fib_alias *fa, *new_fa;
1200        struct key_vector *l, *tp;
1201        u16 nlflags = NLM_F_EXCL;
1202        struct fib_info *fi;
1203        u8 plen = cfg->fc_dst_len;
1204        u8 slen = KEYLENGTH - plen;
1205        u8 tos = cfg->fc_tos;
1206        u32 key;
1207        int err;
1208
1209        if (plen > KEYLENGTH)
1210                return -EINVAL;
1211
1212        key = ntohl(cfg->fc_dst);
1213
1214        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1215
1216        if ((plen < KEYLENGTH) && (key << plen))
1217                return -EINVAL;
1218
1219        fi = fib_create_info(cfg);
1220        if (IS_ERR(fi)) {
1221                err = PTR_ERR(fi);
1222                goto err;
1223        }
1224
1225        l = fib_find_node(t, &tp, key);
1226        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority) : NULL;
1227
1228        /* Now fa, if non-NULL, points to the first fib alias
1229         * with the same keys [prefix,tos,priority], if such key already
1230         * exists or to the node before which we will insert new one.
1231         *
1232         * If fa is NULL, we will need to allocate a new one and
1233         * insert to the tail of the section matching the suffix length
1234         * of the new alias.
1235         */
1236
1237        if (fa && fa->fa_tos == tos &&
1238            fa->fa_info->fib_priority == fi->fib_priority) {
1239                struct fib_alias *fa_first, *fa_match;
1240
1241                err = -EEXIST;
1242                if (cfg->fc_nlflags & NLM_F_EXCL)
1243                        goto out;
1244
1245                nlflags &= ~NLM_F_EXCL;
1246
1247                /* We have 2 goals:
1248                 * 1. Find exact match for type, scope, fib_info to avoid
1249                 * duplicate routes
1250                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1251                 */
1252                fa_match = NULL;
1253                fa_first = fa;
1254                hlist_for_each_entry_from(fa, fa_list) {
1255                        if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1256                                break;
1257                        if (fa->fa_info->fib_priority != fi->fib_priority)
1258                                break;
1259                        if (fa->fa_type == cfg->fc_type &&
1260                            fa->fa_info == fi) {
1261                                fa_match = fa;
1262                                break;
1263                        }
1264                }
1265
1266                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1267                        struct fib_info *fi_drop;
1268                        u8 state;
1269
1270                        nlflags |= NLM_F_REPLACE;
1271                        fa = fa_first;
1272                        if (fa_match) {
1273                                if (fa == fa_match)
1274                                        err = 0;
1275                                goto out;
1276                        }
1277                        err = -ENOBUFS;
1278                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1279                        if (new_fa == NULL)
1280                                goto out;
1281
1282                        fi_drop = fa->fa_info;
1283                        new_fa->fa_tos = fa->fa_tos;
1284                        new_fa->fa_info = fi;
1285                        new_fa->fa_type = cfg->fc_type;
1286                        state = fa->fa_state;
1287                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1288                        new_fa->fa_slen = fa->fa_slen;
1289
1290                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1291                                                 key, plen, fi,
1292                                                 new_fa->fa_tos, cfg->fc_type,
1293                                                 tb->tb_id);
1294                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1295                                  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1296
1297                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1298
1299                        alias_free_mem_rcu(fa);
1300
1301                        fib_release_info(fi_drop);
1302                        if (state & FA_S_ACCESSED)
1303                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1304
1305                        goto succeeded;
1306                }
1307                /* Error if we find a perfect match which
1308                 * uses the same scope, type, and nexthop
1309                 * information.
1310                 */
1311                if (fa_match)
1312                        goto out;
1313
1314                if (cfg->fc_nlflags & NLM_F_APPEND) {
1315                        event = FIB_EVENT_ENTRY_APPEND;
1316                        nlflags |= NLM_F_APPEND;
1317                } else {
1318                        fa = fa_first;
1319                }
1320        }
1321        err = -ENOENT;
1322        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1323                goto out;
1324
1325        nlflags |= NLM_F_CREATE;
1326        err = -ENOBUFS;
1327        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1328        if (new_fa == NULL)
1329                goto out;
1330
1331        new_fa->fa_info = fi;
1332        new_fa->fa_tos = tos;
1333        new_fa->fa_type = cfg->fc_type;
1334        new_fa->fa_state = 0;
1335        new_fa->fa_slen = slen;
1336
1337        /* Insert new entry to the list. */
1338        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1339        if (err)
1340                goto out_free_new_fa;
1341
1342        if (!plen)
1343                tb->tb_num_default++;
1344
1345        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1346        call_fib_entry_notifiers(net, event, key, plen, fi, tos, cfg->fc_type,
1347                                 tb->tb_id);
1348        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1349                  &cfg->fc_nlinfo, nlflags);
1350succeeded:
1351        return 0;
1352
1353out_free_new_fa:
1354        kmem_cache_free(fn_alias_kmem, new_fa);
1355out:
1356        fib_release_info(fi);
1357err:
1358        return err;
1359}
1360
1361static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1362{
1363        t_key prefix = n->key;
1364
1365        return (key ^ prefix) & (prefix | -prefix);
1366}
1367
1368/* should be called with rcu_read_lock */
1369int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1370                     struct fib_result *res, int fib_flags)
1371{
1372        struct trie *t = (struct trie *)tb->tb_data;
1373#ifdef CONFIG_IP_FIB_TRIE_STATS
1374        struct trie_use_stats __percpu *stats = t->stats;
1375#endif
1376        const t_key key = ntohl(flp->daddr);
1377        struct key_vector *n, *pn;
1378        struct fib_alias *fa;
1379        unsigned long index;
1380        t_key cindex;
1381
1382        pn = t->kv;
1383        cindex = 0;
1384
1385        n = get_child_rcu(pn, cindex);
1386        if (!n)
1387                return -EAGAIN;
1388
1389#ifdef CONFIG_IP_FIB_TRIE_STATS
1390        this_cpu_inc(stats->gets);
1391#endif
1392
1393        /* Step 1: Travel to the longest prefix match in the trie */
1394        for (;;) {
1395                index = get_cindex(key, n);
1396
1397                /* This bit of code is a bit tricky but it combines multiple
1398                 * checks into a single check.  The prefix consists of the
1399                 * prefix plus zeros for the "bits" in the prefix. The index
1400                 * is the difference between the key and this value.  From
1401                 * this we can actually derive several pieces of data.
1402                 *   if (index >= (1ul << bits))
1403                 *     we have a mismatch in skip bits and failed
1404                 *   else
1405                 *     we know the value is cindex
1406                 *
1407                 * This check is safe even if bits == KEYLENGTH due to the
1408                 * fact that we can only allocate a node with 32 bits if a
1409                 * long is greater than 32 bits.
1410                 */
1411                if (index >= (1ul << n->bits))
1412                        break;
1413
1414                /* we have found a leaf. Prefixes have already been compared */
1415                if (IS_LEAF(n))
1416                        goto found;
1417
1418                /* only record pn and cindex if we are going to be chopping
1419                 * bits later.  Otherwise we are just wasting cycles.
1420                 */
1421                if (n->slen > n->pos) {
1422                        pn = n;
1423                        cindex = index;
1424                }
1425
1426                n = get_child_rcu(n, index);
1427                if (unlikely(!n))
1428                        goto backtrace;
1429        }
1430
1431        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1432        for (;;) {
1433                /* record the pointer where our next node pointer is stored */
1434                struct key_vector __rcu **cptr = n->tnode;
1435
1436                /* This test verifies that none of the bits that differ
1437                 * between the key and the prefix exist in the region of
1438                 * the lsb and higher in the prefix.
1439                 */
1440                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1441                        goto backtrace;
1442
1443                /* exit out and process leaf */
1444                if (unlikely(IS_LEAF(n)))
1445                        break;
1446
1447                /* Don't bother recording parent info.  Since we are in
1448                 * prefix match mode we will have to come back to wherever
1449                 * we started this traversal anyway
1450                 */
1451
1452                while ((n = rcu_dereference(*cptr)) == NULL) {
1453backtrace:
1454#ifdef CONFIG_IP_FIB_TRIE_STATS
1455                        if (!n)
1456                                this_cpu_inc(stats->null_node_hit);
1457#endif
1458                        /* If we are at cindex 0 there are no more bits for
1459                         * us to strip at this level so we must ascend back
1460                         * up one level to see if there are any more bits to
1461                         * be stripped there.
1462                         */
1463                        while (!cindex) {
1464                                t_key pkey = pn->key;
1465
1466                                /* If we don't have a parent then there is
1467                                 * nothing for us to do as we do not have any
1468                                 * further nodes to parse.
1469                                 */
1470                                if (IS_TRIE(pn))
1471                                        return -EAGAIN;
1472#ifdef CONFIG_IP_FIB_TRIE_STATS
1473                                this_cpu_inc(stats->backtrack);
1474#endif
1475                                /* Get Child's index */
1476                                pn = node_parent_rcu(pn);
1477                                cindex = get_index(pkey, pn);
1478                        }
1479
1480                        /* strip the least significant bit from the cindex */
1481                        cindex &= cindex - 1;
1482
1483                        /* grab pointer for next child node */
1484                        cptr = &pn->tnode[cindex];
1485                }
1486        }
1487
1488found:
1489        /* this line carries forward the xor from earlier in the function */
1490        index = key ^ n->key;
1491
1492        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1493        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1494                struct fib_info *fi = fa->fa_info;
1495                int nhsel, err;
1496
1497                if ((index >= (1ul << fa->fa_slen)) &&
1498                    ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen != KEYLENGTH)))
1499                        continue;
1500                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1501                        continue;
1502                if (fi->fib_dead)
1503                        continue;
1504                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1505                        continue;
1506                fib_alias_accessed(fa);
1507                err = fib_props[fa->fa_type].error;
1508                if (unlikely(err < 0)) {
1509#ifdef CONFIG_IP_FIB_TRIE_STATS
1510                        this_cpu_inc(stats->semantic_match_passed);
1511#endif
1512                        return err;
1513                }
1514                if (fi->fib_flags & RTNH_F_DEAD)
1515                        continue;
1516                for (nhsel = 0; nhsel < fi->fib_nhs; nhsel++) {
1517                        const struct fib_nh *nh = &fi->fib_nh[nhsel];
1518
1519                        if (nh->nh_flags & RTNH_F_DEAD)
1520                                continue;
1521                        if (flp->flowi4_oif && flp->flowi4_oif != nh->nh_oif)
1522                                continue;
1523
1524                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1525                                atomic_inc(&fi->fib_clntref);
1526
1527                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1528                        res->nh_sel = nhsel;
1529                        res->type = fa->fa_type;
1530                        res->scope = fi->fib_scope;
1531                        res->fi = fi;
1532                        res->table = tb;
1533                        res->fa_head = &n->leaf;
1534#ifdef CONFIG_IP_FIB_TRIE_STATS
1535                        this_cpu_inc(stats->semantic_match_passed);
1536#endif
1537                        return err;
1538                }
1539        }
1540#ifdef CONFIG_IP_FIB_TRIE_STATS
1541        this_cpu_inc(stats->semantic_match_miss);
1542#endif
1543        goto backtrace;
1544}
1545EXPORT_SYMBOL_GPL(fib_table_lookup);
1546
1547static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1548                             struct key_vector *l, struct fib_alias *old)
1549{
1550        /* record the location of the previous list_info entry */
1551        struct hlist_node **pprev = old->fa_list.pprev;
1552        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1553
1554        /* remove the fib_alias from the list */
1555        hlist_del_rcu(&old->fa_list);
1556
1557        /* if we emptied the list this leaf will be freed and we can sort
1558         * out parent suffix lengths as a part of trie_rebalance
1559         */
1560        if (hlist_empty(&l->leaf)) {
1561                put_child_root(tp, l->key, NULL);
1562                node_free(l);
1563                trie_rebalance(t, tp);
1564                return;
1565        }
1566
1567        /* only access fa if it is pointing at the last valid hlist_node */
1568        if (*pprev)
1569                return;
1570
1571        /* update the trie with the latest suffix length */
1572        l->slen = fa->fa_slen;
1573        leaf_pull_suffix(tp, l);
1574}
1575
1576/* Caller must hold RTNL. */
1577int fib_table_delete(struct net *net, struct fib_table *tb,
1578                     struct fib_config *cfg)
1579{
1580        struct trie *t = (struct trie *) tb->tb_data;
1581        struct fib_alias *fa, *fa_to_delete;
1582        struct key_vector *l, *tp;
1583        u8 plen = cfg->fc_dst_len;
1584        u8 slen = KEYLENGTH - plen;
1585        u8 tos = cfg->fc_tos;
1586        u32 key;
1587
1588        if (plen > KEYLENGTH)
1589                return -EINVAL;
1590
1591        key = ntohl(cfg->fc_dst);
1592
1593        if ((plen < KEYLENGTH) && (key << plen))
1594                return -EINVAL;
1595
1596        l = fib_find_node(t, &tp, key);
1597        if (!l)
1598                return -ESRCH;
1599
1600        fa = fib_find_alias(&l->leaf, slen, tos, 0);
1601        if (!fa)
1602                return -ESRCH;
1603
1604        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1605
1606        fa_to_delete = NULL;
1607        hlist_for_each_entry_from(fa, fa_list) {
1608                struct fib_info *fi = fa->fa_info;
1609
1610                if ((fa->fa_slen != slen) || (fa->fa_tos != tos))
1611                        break;
1612
1613                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1614                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1615                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1616                    (!cfg->fc_prefsrc ||
1617                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1618                    (!cfg->fc_protocol ||
1619                     fi->fib_protocol == cfg->fc_protocol) &&
1620                    fib_nh_match(cfg, fi) == 0) {
1621                        fa_to_delete = fa;
1622                        break;
1623                }
1624        }
1625
1626        if (!fa_to_delete)
1627                return -ESRCH;
1628
1629        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1630                                 fa_to_delete->fa_info, tos,
1631                                 fa_to_delete->fa_type, tb->tb_id);
1632        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1633                  &cfg->fc_nlinfo, 0);
1634
1635        if (!plen)
1636                tb->tb_num_default--;
1637
1638        fib_remove_alias(t, tp, l, fa_to_delete);
1639
1640        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1641                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1642
1643        fib_release_info(fa_to_delete->fa_info);
1644        alias_free_mem_rcu(fa_to_delete);
1645        return 0;
1646}
1647
1648/* Scan for the next leaf starting at the provided key value */
1649static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1650{
1651        struct key_vector *pn, *n = *tn;
1652        unsigned long cindex;
1653
1654        /* this loop is meant to try and find the key in the trie */
1655        do {
1656                /* record parent and next child index */
1657                pn = n;
1658                cindex = (key > pn->key) ? get_index(key, pn) : 0;
1659
1660                if (cindex >> pn->bits)
1661                        break;
1662
1663                /* descend into the next child */
1664                n = get_child_rcu(pn, cindex++);
1665                if (!n)
1666                        break;
1667
1668                /* guarantee forward progress on the keys */
1669                if (IS_LEAF(n) && (n->key >= key))
1670                        goto found;
1671        } while (IS_TNODE(n));
1672
1673        /* this loop will search for the next leaf with a greater key */
1674        while (!IS_TRIE(pn)) {
1675                /* if we exhausted the parent node we will need to climb */
1676                if (cindex >= (1ul << pn->bits)) {
1677                        t_key pkey = pn->key;
1678
1679                        pn = node_parent_rcu(pn);
1680                        cindex = get_index(pkey, pn) + 1;
1681                        continue;
1682                }
1683
1684                /* grab the next available node */
1685                n = get_child_rcu(pn, cindex++);
1686                if (!n)
1687                        continue;
1688
1689                /* no need to compare keys since we bumped the index */
1690                if (IS_LEAF(n))
1691                        goto found;
1692
1693                /* Rescan start scanning in new node */
1694                pn = n;
1695                cindex = 0;
1696        }
1697
1698        *tn = pn;
1699        return NULL; /* Root of trie */
1700found:
1701        /* if we are at the limit for keys just return NULL for the tnode */
1702        *tn = pn;
1703        return n;
1704}
1705
1706/* Caller must hold RTNL. */
1707int fib_table_flush(struct net *net, struct fib_table *tb)
1708{
1709        struct trie *t = (struct trie *)tb->tb_data;
1710        struct key_vector *pn = t->kv;
1711        unsigned long cindex = 1;
1712        struct hlist_node *tmp;
1713        struct fib_alias *fa;
1714        int found = 0;
1715
1716        /* walk trie in reverse order */
1717        for (;;) {
1718                unsigned char slen = 0;
1719                struct key_vector *n;
1720
1721                if (!(cindex--)) {
1722                        t_key pkey = pn->key;
1723
1724                        /* cannot resize the trie vector */
1725                        if (IS_TRIE(pn))
1726                                break;
1727
1728                        /* resize completed node */
1729                        pn = resize(t, pn);
1730                        cindex = get_index(pkey, pn);
1731
1732                        continue;
1733                }
1734
1735                /* grab the next available node */
1736                n = get_child(pn, cindex);
1737                if (!n)
1738                        continue;
1739
1740                if (IS_TNODE(n)) {
1741                        /* record pn and cindex for leaf walking */
1742                        pn = n;
1743                        cindex = 1ul << n->bits;
1744
1745                        continue;
1746                }
1747
1748                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1749                        struct fib_info *fi = fa->fa_info;
1750
1751                        if (!fi || !(fi->fib_flags & RTNH_F_DEAD)) {
1752                                slen = fa->fa_slen;
1753                                continue;
1754                        }
1755
1756                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1757                                                 n->key,
1758                                                 KEYLENGTH - fa->fa_slen,
1759                                                 fi, fa->fa_tos, fa->fa_type,
1760                                                 tb->tb_id);
1761                        hlist_del_rcu(&fa->fa_list);
1762                        fib_release_info(fa->fa_info);
1763                        alias_free_mem_rcu(fa);
1764                        found++;
1765                }
1766
1767                /* update leaf slen */
1768                n->slen = slen;
1769
1770                if (hlist_empty(&n->leaf)) {
1771                        put_child_root(pn, n->key, NULL);
1772                        node_free(n);
1773                }
1774        }
1775
1776        pr_debug("trie_flush found=%d\n", found);
1777        return found;
1778}
1779
1780static void fib_leaf_notify(struct net *net, struct key_vector *l,
1781                            struct fib_table *tb, struct notifier_block *nb,
1782                            enum fib_event_type event_type)
1783{
1784        struct fib_alias *fa;
1785
1786        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1787                struct fib_info *fi = fa->fa_info;
1788
1789                if (!fi)
1790                        continue;
1791
1792#if 0
1793                /* local and main table can share the same trie,
1794                 * so don't notify twice for the same entry.
1795                 *
1796                 * RHEL note: This cannot happen because there is not
1797                 * backported 0ddcf43d5d4a ("ipv4: FIB Local/MAIN table
1798                 * collapse") in RHEL. Local and main tables cannot share
1799                 * a trie. Leaving the code and this note for future.
1800                 */
1801                if (tb->tb_id != fa->tb_id)
1802                        continue;
1803#endif
1804
1805                call_fib_entry_notifier(nb, net, event_type, l->key,
1806                                        KEYLENGTH - fa->fa_slen, fi, fa->fa_tos,
1807                                        fa->fa_type, tb->tb_id);
1808        }
1809}
1810
1811static void fib_table_notify(struct net *net, struct fib_table *tb,
1812                             struct notifier_block *nb,
1813                             enum fib_event_type event_type)
1814{
1815        struct trie *t = (struct trie *)tb->tb_data;
1816        struct key_vector *l, *tp = t->kv;
1817        t_key key = 0;
1818
1819        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1820                fib_leaf_notify(net, l, tb, nb, event_type);
1821
1822                key = l->key + 1;
1823                /* stop in case of wrap around */
1824                if (key < l->key)
1825                        break;
1826        }
1827}
1828
1829static void fib_notify(struct net *net, struct notifier_block *nb,
1830                       enum fib_event_type event_type)
1831{
1832        unsigned int h;
1833
1834        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
1835                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
1836                struct fib_table *tb;
1837
1838                hlist_for_each_entry_rcu(tb, head, tb_hlist)
1839                        fib_table_notify(net, tb, nb, event_type);
1840        }
1841}
1842
1843static void __trie_free_rcu(struct rcu_head *head)
1844{
1845        struct trie *t = container_of(head, struct trie, rcu);
1846        unsigned long *tb_data = (unsigned long *)t;
1847        struct fib_table *tb = container_of(tb_data, struct fib_table,
1848                                            tb_data[0]);
1849#ifdef CONFIG_IP_FIB_TRIE_STATS
1850        free_percpu(t->stats);
1851#endif /* CONFIG_IP_FIB_TRIE_STATS */
1852        kfree(tb);
1853}
1854
1855void fib_free_table(struct fib_table *tb)
1856{
1857        struct trie *t = (struct trie *)tb->tb_data;
1858
1859        call_rcu(&t->rcu, __trie_free_rcu);
1860}
1861
1862static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
1863                             struct sk_buff *skb, struct netlink_callback *cb)
1864{
1865        __be32 xkey = htonl(l->key);
1866        struct fib_alias *fa;
1867        int i, s_i;
1868
1869        s_i = cb->args[4];
1870        i = 0;
1871
1872        /* rcu_read_lock is hold by caller */
1873        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1874                if (i < s_i) {
1875                        i++;
1876                        continue;
1877                }
1878
1879                if (fib_dump_info(skb, NETLINK_CB(cb->skb).portid,
1880                                  cb->nlh->nlmsg_seq,
1881                                  RTM_NEWROUTE,
1882                                  tb->tb_id,
1883                                  fa->fa_type,
1884                                  xkey,
1885                                  KEYLENGTH - fa->fa_slen,
1886                                  fa->fa_tos,
1887                                  fa->fa_info, NLM_F_MULTI) < 0) {
1888                        cb->args[4] = i;
1889                        return -1;
1890                }
1891                i++;
1892        }
1893
1894        cb->args[4] = i;
1895        return skb->len;
1896}
1897
1898/* rcu_read_lock needs to be hold by caller from readside */
1899int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
1900                   struct netlink_callback *cb)
1901{
1902        struct trie *t = (struct trie *)tb->tb_data;
1903        struct key_vector *l, *tp = t->kv;
1904        /* Dump starting at last key.
1905         * Note: 0.0.0.0/0 (ie default) is first key.
1906         */
1907        int count = cb->args[2];
1908        t_key key = cb->args[3];
1909
1910        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1911                if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) {
1912                        cb->args[3] = key;
1913                        cb->args[2] = count;
1914                        return -1;
1915                }
1916
1917                ++count;
1918                key = l->key + 1;
1919
1920                memset(&cb->args[4], 0,
1921                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
1922
1923                /* stop loop if key wrapped back to 0 */
1924                if (key < l->key)
1925                        break;
1926        }
1927
1928        cb->args[3] = key;
1929        cb->args[2] = count;
1930
1931        return skb->len;
1932}
1933
1934void __init fib_trie_init(void)
1935{
1936        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1937                                          sizeof(struct fib_alias),
1938                                          0, SLAB_PANIC, NULL);
1939
1940        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
1941                                           LEAF_SIZE,
1942                                           0, SLAB_PANIC, NULL);
1943}
1944
1945struct fib_table *fib_trie_table(u32 id)
1946{
1947        struct fib_table *tb;
1948        struct trie *t;
1949
1950        tb = kzalloc(sizeof(*tb) + sizeof(struct trie), GFP_KERNEL);
1951        if (tb == NULL)
1952                return NULL;
1953
1954        tb->tb_id = id;
1955        tb->tb_default = -1;
1956        tb->tb_num_default = 0;
1957
1958        t = (struct trie *) tb->tb_data;
1959        t->kv[0].pos = KEYLENGTH;
1960        t->kv[0].slen = KEYLENGTH;
1961#ifdef CONFIG_IP_FIB_TRIE_STATS
1962        t->stats = alloc_percpu(struct trie_use_stats);
1963        if (!t->stats) {
1964                kfree(tb);
1965                tb = NULL;
1966        }
1967#endif
1968
1969        return tb;
1970}
1971
1972#ifdef CONFIG_PROC_FS
1973/* Depth first Trie walk iterator */
1974struct fib_trie_iter {
1975        struct seq_net_private p;
1976        struct fib_table *tb;
1977        struct key_vector *tnode;
1978        unsigned int index;
1979        unsigned int depth;
1980};
1981
1982static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
1983{
1984        unsigned long cindex = iter->index;
1985        struct key_vector *pn = iter->tnode;
1986        t_key pkey;
1987
1988        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
1989                 iter->tnode, iter->index, iter->depth);
1990
1991        while (!IS_TRIE(pn)) {
1992                while (cindex < child_length(pn)) {
1993                        struct key_vector *n = get_child_rcu(pn, cindex++);
1994
1995                        if (!n)
1996                                continue;
1997
1998                        if (IS_LEAF(n)) {
1999                                iter->tnode = pn;
2000                                iter->index = cindex;
2001                        } else {
2002                                /* push down one level */
2003                                iter->tnode = n;
2004                                iter->index = 0;
2005                                ++iter->depth;
2006                        }
2007
2008                        return n;
2009                }
2010
2011                /* Current node exhausted, pop back up */
2012                pkey = pn->key;
2013                pn = node_parent_rcu(pn);
2014                cindex = get_index(pkey, pn) + 1;
2015                --iter->depth;
2016        }
2017
2018        /* record root node so further searches know we are done */
2019        iter->tnode = pn;
2020        iter->index = 0;
2021
2022        return NULL;
2023}
2024
2025static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2026                                             struct trie *t)
2027{
2028        struct key_vector *n, *pn = t->kv;
2029
2030        if (!t)
2031                return NULL;
2032
2033        n = rcu_dereference(pn->tnode[0]);
2034        if (!n)
2035                return NULL;
2036
2037        if (IS_TNODE(n)) {
2038                iter->tnode = n;
2039                iter->index = 0;
2040                iter->depth = 1;
2041        } else {
2042                iter->tnode = pn;
2043                iter->index = 0;
2044                iter->depth = 0;
2045        }
2046
2047        return n;
2048}
2049
2050static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2051{
2052        struct key_vector *n;
2053        struct fib_trie_iter iter;
2054
2055        memset(s, 0, sizeof(*s));
2056
2057        rcu_read_lock();
2058        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2059                if (IS_LEAF(n)) {
2060                        struct fib_alias *fa;
2061
2062                        s->leaves++;
2063                        s->totdepth += iter.depth;
2064                        if (iter.depth > s->maxdepth)
2065                                s->maxdepth = iter.depth;
2066
2067                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2068                                ++s->prefixes;
2069                } else {
2070                        s->tnodes++;
2071                        if (n->bits < MAX_STAT_DEPTH)
2072                                s->nodesizes[n->bits]++;
2073                        s->nullpointers += tn_info(n)->empty_children;
2074                }
2075        }
2076        rcu_read_unlock();
2077}
2078
2079/*
2080 *      This outputs /proc/net/fib_triestats
2081 */
2082static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2083{
2084        unsigned int i, max, pointers, bytes, avdepth;
2085
2086        if (stat->leaves)
2087                avdepth = stat->totdepth*100 / stat->leaves;
2088        else
2089                avdepth = 0;
2090
2091        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2092                   avdepth / 100, avdepth % 100);
2093        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2094
2095        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2096        bytes = LEAF_SIZE * stat->leaves;
2097
2098        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2099        bytes += sizeof(struct fib_alias) * stat->prefixes;
2100
2101        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2102        bytes += TNODE_SIZE(0) * stat->tnodes;
2103
2104        max = MAX_STAT_DEPTH;
2105        while (max > 0 && stat->nodesizes[max-1] == 0)
2106                max--;
2107
2108        pointers = 0;
2109        for (i = 1; i < max; i++)
2110                if (stat->nodesizes[i] != 0) {
2111                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2112                        pointers += (1<<i) * stat->nodesizes[i];
2113                }
2114        seq_putc(seq, '\n');
2115        seq_printf(seq, "\tPointers: %u\n", pointers);
2116
2117        bytes += sizeof(struct key_vector *) * pointers;
2118        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2119        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2120}
2121
2122#ifdef CONFIG_IP_FIB_TRIE_STATS
2123static void trie_show_usage(struct seq_file *seq,
2124                            const struct trie_use_stats __percpu *stats)
2125{
2126        struct trie_use_stats s = { 0 };
2127        int cpu;
2128
2129        /* loop through all of the CPUs and gather up the stats */
2130        for_each_possible_cpu(cpu) {
2131                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2132
2133                s.gets += pcpu->gets;
2134                s.backtrack += pcpu->backtrack;
2135                s.semantic_match_passed += pcpu->semantic_match_passed;
2136                s.semantic_match_miss += pcpu->semantic_match_miss;
2137                s.null_node_hit += pcpu->null_node_hit;
2138                s.resize_node_skipped += pcpu->resize_node_skipped;
2139        }
2140
2141        seq_printf(seq, "\nCounters:\n---------\n");
2142        seq_printf(seq, "gets = %u\n", s.gets);
2143        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2144        seq_printf(seq, "semantic match passed = %u\n",
2145                   s.semantic_match_passed);
2146        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2147        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2148        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2149}
2150#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2151
2152static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2153{
2154        if (tb->tb_id == RT_TABLE_LOCAL)
2155                seq_puts(seq, "Local:\n");
2156        else if (tb->tb_id == RT_TABLE_MAIN)
2157                seq_puts(seq, "Main:\n");
2158        else
2159                seq_printf(seq, "Id %d:\n", tb->tb_id);
2160}
2161
2162
2163static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2164{
2165        struct net *net = (struct net *)seq->private;
2166        unsigned int h;
2167
2168        seq_printf(seq,
2169                   "Basic info: size of leaf:"
2170                   " %Zd bytes, size of tnode: %Zd bytes.\n",
2171                   LEAF_SIZE, TNODE_SIZE(0));
2172
2173        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2174                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2175                struct fib_table *tb;
2176
2177                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2178                        struct trie *t = (struct trie *) tb->tb_data;
2179                        struct trie_stat stat;
2180
2181                        if (!t)
2182                                continue;
2183
2184                        fib_table_print(seq, tb);
2185
2186                        trie_collect_stats(t, &stat);
2187                        trie_show_stats(seq, &stat);
2188#ifdef CONFIG_IP_FIB_TRIE_STATS
2189                        trie_show_usage(seq, t->stats);
2190#endif
2191                }
2192        }
2193
2194        return 0;
2195}
2196
2197static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2198{
2199        return single_open_net(inode, file, fib_triestat_seq_show);
2200}
2201
2202static const struct file_operations fib_triestat_fops = {
2203        .owner  = THIS_MODULE,
2204        .open   = fib_triestat_seq_open,
2205        .read   = seq_read,
2206        .llseek = seq_lseek,
2207        .release = single_release_net,
2208};
2209
2210static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2211{
2212        struct fib_trie_iter *iter = seq->private;
2213        struct net *net = seq_file_net(seq);
2214        loff_t idx = 0;
2215        unsigned int h;
2216
2217        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2218                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2219                struct fib_table *tb;
2220
2221                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2222                        struct key_vector *n;
2223
2224                        for (n = fib_trie_get_first(iter,
2225                                                    (struct trie *) tb->tb_data);
2226                             n; n = fib_trie_get_next(iter))
2227                                if (pos == idx++) {
2228                                        iter->tb = tb;
2229                                        return n;
2230                                }
2231                }
2232        }
2233
2234        return NULL;
2235}
2236
2237static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2238        __acquires(RCU)
2239{
2240        rcu_read_lock();
2241        return fib_trie_get_idx(seq, *pos);
2242}
2243
2244static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2245{
2246        struct fib_trie_iter *iter = seq->private;
2247        struct net *net = seq_file_net(seq);
2248        struct fib_table *tb = iter->tb;
2249        struct hlist_node *tb_node;
2250        unsigned int h;
2251        struct key_vector *n;
2252
2253        ++*pos;
2254        /* next node in same table */
2255        n = fib_trie_get_next(iter);
2256        if (n)
2257                return n;
2258
2259        /* walk rest of this hash chain */
2260        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2261        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2262                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2263                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2264                if (n)
2265                        goto found;
2266        }
2267
2268        /* new hash chain */
2269        while (++h < FIB_TABLE_HASHSZ) {
2270                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2271                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2272                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2273                        if (n)
2274                                goto found;
2275                }
2276        }
2277        return NULL;
2278
2279found:
2280        iter->tb = tb;
2281        return n;
2282}
2283
2284static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2285        __releases(RCU)
2286{
2287        rcu_read_unlock();
2288}
2289
2290static void seq_indent(struct seq_file *seq, int n)
2291{
2292        while (n-- > 0)
2293                seq_puts(seq, "   ");
2294}
2295
2296static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2297{
2298        switch (s) {
2299        case RT_SCOPE_UNIVERSE: return "universe";
2300        case RT_SCOPE_SITE:     return "site";
2301        case RT_SCOPE_LINK:     return "link";
2302        case RT_SCOPE_HOST:     return "host";
2303        case RT_SCOPE_NOWHERE:  return "nowhere";
2304        default:
2305                snprintf(buf, len, "scope=%d", s);
2306                return buf;
2307        }
2308}
2309
2310static const char *const rtn_type_names[__RTN_MAX] = {
2311        [RTN_UNSPEC] = "UNSPEC",
2312        [RTN_UNICAST] = "UNICAST",
2313        [RTN_LOCAL] = "LOCAL",
2314        [RTN_BROADCAST] = "BROADCAST",
2315        [RTN_ANYCAST] = "ANYCAST",
2316        [RTN_MULTICAST] = "MULTICAST",
2317        [RTN_BLACKHOLE] = "BLACKHOLE",
2318        [RTN_UNREACHABLE] = "UNREACHABLE",
2319        [RTN_PROHIBIT] = "PROHIBIT",
2320        [RTN_THROW] = "THROW",
2321        [RTN_NAT] = "NAT",
2322        [RTN_XRESOLVE] = "XRESOLVE",
2323};
2324
2325static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2326{
2327        if (t < __RTN_MAX && rtn_type_names[t])
2328                return rtn_type_names[t];
2329        snprintf(buf, len, "type %u", t);
2330        return buf;
2331}
2332
2333/* Pretty print the trie */
2334static int fib_trie_seq_show(struct seq_file *seq, void *v)
2335{
2336        const struct fib_trie_iter *iter = seq->private;
2337        struct key_vector *n = v;
2338
2339        if (IS_TRIE(node_parent_rcu(n)))
2340                fib_table_print(seq, iter->tb);
2341
2342        if (IS_TNODE(n)) {
2343                __be32 prf = htonl(n->key);
2344
2345                seq_indent(seq, iter->depth-1);
2346                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2347                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2348                           tn_info(n)->full_children,
2349                           tn_info(n)->empty_children);
2350        } else {
2351                __be32 val = htonl(n->key);
2352                struct fib_alias *fa;
2353
2354                seq_indent(seq, iter->depth);
2355                seq_printf(seq, "  |-- %pI4\n", &val);
2356
2357                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2358                        char buf1[32], buf2[32];
2359
2360                        seq_indent(seq, iter->depth + 1);
2361                        seq_printf(seq, "  /%zu %s %s",
2362                                   KEYLENGTH - fa->fa_slen,
2363                                   rtn_scope(buf1, sizeof(buf1),
2364                                             fa->fa_info->fib_scope),
2365                                   rtn_type(buf2, sizeof(buf2),
2366                                            fa->fa_type));
2367                        if (fa->fa_tos)
2368                                seq_printf(seq, " tos=%d", fa->fa_tos);
2369                        seq_putc(seq, '\n');
2370                }
2371        }
2372
2373        return 0;
2374}
2375
2376static const struct seq_operations fib_trie_seq_ops = {
2377        .start  = fib_trie_seq_start,
2378        .next   = fib_trie_seq_next,
2379        .stop   = fib_trie_seq_stop,
2380        .show   = fib_trie_seq_show,
2381};
2382
2383static int fib_trie_seq_open(struct inode *inode, struct file *file)
2384{
2385        return seq_open_net(inode, file, &fib_trie_seq_ops,
2386                            sizeof(struct fib_trie_iter));
2387}
2388
2389static const struct file_operations fib_trie_fops = {
2390        .owner  = THIS_MODULE,
2391        .open   = fib_trie_seq_open,
2392        .read   = seq_read,
2393        .llseek = seq_lseek,
2394        .release = seq_release_net,
2395};
2396
2397struct fib_route_iter {
2398        struct seq_net_private p;
2399        struct fib_table *main_tb;
2400        struct key_vector *tnode;
2401        loff_t  pos;
2402        t_key   key;
2403};
2404
2405static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2406                                            loff_t pos)
2407{
2408        struct key_vector *l, **tp = &iter->tnode;
2409        t_key key;
2410
2411        /* use cached location of previously found key */
2412        if (iter->pos > 0 && pos >= iter->pos) {
2413                key = iter->key;
2414        } else {
2415                iter->pos = 1;
2416                key = 0;
2417        }
2418
2419        pos -= iter->pos;
2420
2421        while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2422                key = l->key + 1;
2423                iter->pos++;
2424                l = NULL;
2425
2426                /* handle unlikely case of a key wrap */
2427                if (!key)
2428                        break;
2429        }
2430
2431        if (l)
2432                iter->key = l->key;     /* remember it */
2433        else
2434                iter->pos = 0;          /* forget it */
2435
2436        return l;
2437}
2438
2439static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2440        __acquires(RCU)
2441{
2442        struct fib_route_iter *iter = seq->private;
2443        struct fib_table *tb;
2444        struct trie *t;
2445
2446        rcu_read_lock();
2447
2448        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2449        if (!tb)
2450                return NULL;
2451
2452        iter->main_tb = tb;
2453        t = (struct trie *)tb->tb_data;
2454        iter->tnode = t->kv;
2455
2456        if (*pos != 0)
2457                return fib_route_get_idx(iter, *pos);
2458
2459        iter->pos = 0;
2460        iter->key = KEY_MAX;
2461
2462        return SEQ_START_TOKEN;
2463}
2464
2465static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2466{
2467        struct fib_route_iter *iter = seq->private;
2468        struct key_vector *l = NULL;
2469        t_key key = iter->key + 1;
2470
2471        ++*pos;
2472
2473        /* only allow key of 0 for start of sequence */
2474        if ((v == SEQ_START_TOKEN) || key)
2475                l = leaf_walk_rcu(&iter->tnode, key);
2476
2477        if (l) {
2478                iter->key = l->key;
2479                iter->pos++;
2480        } else {
2481                iter->pos = 0;
2482        }
2483
2484        return l;
2485}
2486
2487static void fib_route_seq_stop(struct seq_file *seq, void *v)
2488        __releases(RCU)
2489{
2490        rcu_read_unlock();
2491}
2492
2493static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2494{
2495        unsigned int flags = 0;
2496
2497        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2498                flags = RTF_REJECT;
2499        if (fi && fi->fib_nh->nh_gw)
2500                flags |= RTF_GATEWAY;
2501        if (mask == htonl(0xFFFFFFFF))
2502                flags |= RTF_HOST;
2503        flags |= RTF_UP;
2504        return flags;
2505}
2506
2507/*
2508 *      This outputs /proc/net/route.
2509 *      The format of the file is not supposed to be changed
2510 *      and needs to be same as fib_hash output to avoid breaking
2511 *      legacy utilities
2512 */
2513static int fib_route_seq_show(struct seq_file *seq, void *v)
2514{
2515        struct fib_alias *fa;
2516        struct key_vector *l = v;
2517        __be32 prefix;
2518
2519        if (v == SEQ_START_TOKEN) {
2520                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2521                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2522                           "\tWindow\tIRTT");
2523                return 0;
2524        }
2525
2526        prefix = htonl(l->key);
2527
2528        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2529                const struct fib_info *fi = fa->fa_info;
2530                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2531                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2532                int len;
2533
2534                if ((fa->fa_type == RTN_BROADCAST) ||
2535                    (fa->fa_type == RTN_MULTICAST))
2536                        continue;
2537
2538                if (fi)
2539                        seq_printf(seq,
2540                                 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2541                                 "%d\t%08X\t%d\t%u\t%u%n",
2542                                 fi->fib_dev ? fi->fib_dev->name : "*",
2543                                 prefix,
2544                                 fi->fib_nh->nh_gw, flags, 0, 0,
2545                                 fi->fib_priority,
2546                                 mask,
2547                                 (fi->fib_advmss ?
2548                                  fi->fib_advmss + 40 : 0),
2549                                 fi->fib_window,
2550                                 fi->fib_rtt >> 3, &len);
2551                else
2552                        seq_printf(seq,
2553                                 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2554                                 "%d\t%08X\t%d\t%u\t%u%n",
2555                                 prefix, 0, flags, 0, 0, 0,
2556                                 mask, 0, 0, 0, &len);
2557
2558                seq_printf(seq, "%*s\n", 127 - len, "");
2559        }
2560
2561        return 0;
2562}
2563
2564static const struct seq_operations fib_route_seq_ops = {
2565        .start  = fib_route_seq_start,
2566        .next   = fib_route_seq_next,
2567        .stop   = fib_route_seq_stop,
2568        .show   = fib_route_seq_show,
2569};
2570
2571static int fib_route_seq_open(struct inode *inode, struct file *file)
2572{
2573        return seq_open_net(inode, file, &fib_route_seq_ops,
2574                            sizeof(struct fib_route_iter));
2575}
2576
2577static const struct file_operations fib_route_fops = {
2578        .owner  = THIS_MODULE,
2579        .open   = fib_route_seq_open,
2580        .read   = seq_read,
2581        .llseek = seq_lseek,
2582        .release = seq_release_net,
2583};
2584
2585int __net_init fib_proc_init(struct net *net)
2586{
2587        if (!proc_create("fib_trie", S_IRUGO, net->proc_net, &fib_trie_fops))
2588                goto out1;
2589
2590        if (!proc_create("fib_triestat", S_IRUGO, net->proc_net,
2591                         &fib_triestat_fops))
2592                goto out2;
2593
2594        if (!proc_create("route", S_IRUGO, net->proc_net, &fib_route_fops))
2595                goto out3;
2596
2597        return 0;
2598
2599out3:
2600        remove_proc_entry("fib_triestat", net->proc_net);
2601out2:
2602        remove_proc_entry("fib_trie", net->proc_net);
2603out1:
2604        return -ENOMEM;
2605}
2606
2607void __net_exit fib_proc_exit(struct net *net)
2608{
2609        remove_proc_entry("fib_trie", net->proc_net);
2610        remove_proc_entry("fib_triestat", net->proc_net);
2611        remove_proc_entry("route", net->proc_net);
2612}
2613
2614#endif /* CONFIG_PROC_FS */
2615