linux/arch/alpha/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/alpha/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
   5 *
   6 * This file contains the PC-specific time handling details:
   7 * reading the RTC at bootup, etc..
   8 * 1994-07-02    Alan Modra
   9 *      fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10 * 1995-03-26    Markus Kuhn
  11 *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
  12 *      precision CMOS clock update
  13 * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
  14 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  15 * 1997-01-09    Adrian Sun
  16 *      use interval timer if CONFIG_RTC=y
  17 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
  18 *      fixed tick loss calculation in timer_interrupt
  19 *      (round system clock to nearest tick instead of truncating)
  20 *      fixed algorithm in time_init for getting time from CMOS clock
  21 * 1999-04-16   Thorsten Kranzkowski (dl8bcu@gmx.net)
  22 *      fixed algorithm in do_gettimeofday() for calculating the precise time
  23 *      from processor cycle counter (now taking lost_ticks into account)
  24 * 2000-08-13   Jan-Benedict Glaw <jbglaw@lug-owl.de>
  25 *      Fixed time_init to be aware of epoches != 1900. This prevents
  26 *      booting up in 2048 for me;) Code is stolen from rtc.c.
  27 * 2003-06-03   R. Scott Bailey <scott.bailey@eds.com>
  28 *      Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
  29 */
  30#include <linux/errno.h>
  31#include <linux/module.h>
  32#include <linux/sched.h>
  33#include <linux/kernel.h>
  34#include <linux/param.h>
  35#include <linux/string.h>
  36#include <linux/mm.h>
  37#include <linux/delay.h>
  38#include <linux/ioport.h>
  39#include <linux/irq.h>
  40#include <linux/interrupt.h>
  41#include <linux/init.h>
  42#include <linux/bcd.h>
  43#include <linux/profile.h>
  44#include <linux/irq_work.h>
  45
  46#include <asm/uaccess.h>
  47#include <asm/io.h>
  48#include <asm/hwrpb.h>
  49#include <asm/rtc.h>
  50
  51#include <linux/mc146818rtc.h>
  52#include <linux/time.h>
  53#include <linux/timex.h>
  54#include <linux/clocksource.h>
  55
  56#include "proto.h"
  57#include "irq_impl.h"
  58
  59static int set_rtc_mmss(unsigned long);
  60
  61DEFINE_SPINLOCK(rtc_lock);
  62EXPORT_SYMBOL(rtc_lock);
  63
  64#define TICK_SIZE (tick_nsec / 1000)
  65
  66/*
  67 * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
  68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
  69 * for large CPU clock rates.
  70 */
  71#define FIX_SHIFT       48
  72
  73/* lump static variables together for more efficient access: */
  74static struct {
  75        /* cycle counter last time it got invoked */
  76        __u32 last_time;
  77        /* ticks/cycle * 2^48 */
  78        unsigned long scaled_ticks_per_cycle;
  79        /* partial unused tick */
  80        unsigned long partial_tick;
  81} state;
  82
  83unsigned long est_cycle_freq;
  84
  85#ifdef CONFIG_IRQ_WORK
  86
  87DEFINE_PER_CPU(u8, irq_work_pending);
  88
  89#define set_irq_work_pending_flag()  __get_cpu_var(irq_work_pending) = 1
  90#define test_irq_work_pending()      __get_cpu_var(irq_work_pending)
  91#define clear_irq_work_pending()     __get_cpu_var(irq_work_pending) = 0
  92
  93void arch_irq_work_raise(void)
  94{
  95        set_irq_work_pending_flag();
  96}
  97
  98#else  /* CONFIG_IRQ_WORK */
  99
 100#define test_irq_work_pending()      0
 101#define clear_irq_work_pending()
 102
 103#endif /* CONFIG_IRQ_WORK */
 104
 105
 106static inline __u32 rpcc(void)
 107{
 108    __u32 result;
 109    asm volatile ("rpcc %0" : "=r"(result));
 110    return result;
 111}
 112
 113int update_persistent_clock(struct timespec now)
 114{
 115        return set_rtc_mmss(now.tv_sec);
 116}
 117
 118void read_persistent_clock(struct timespec *ts)
 119{
 120        unsigned int year, mon, day, hour, min, sec, epoch;
 121
 122        sec = CMOS_READ(RTC_SECONDS);
 123        min = CMOS_READ(RTC_MINUTES);
 124        hour = CMOS_READ(RTC_HOURS);
 125        day = CMOS_READ(RTC_DAY_OF_MONTH);
 126        mon = CMOS_READ(RTC_MONTH);
 127        year = CMOS_READ(RTC_YEAR);
 128
 129        if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 130                sec = bcd2bin(sec);
 131                min = bcd2bin(min);
 132                hour = bcd2bin(hour);
 133                day = bcd2bin(day);
 134                mon = bcd2bin(mon);
 135                year = bcd2bin(year);
 136        }
 137
 138        /* PC-like is standard; used for year >= 70 */
 139        epoch = 1900;
 140        if (year < 20)
 141                epoch = 2000;
 142        else if (year >= 20 && year < 48)
 143                /* NT epoch */
 144                epoch = 1980;
 145        else if (year >= 48 && year < 70)
 146                /* Digital UNIX epoch */
 147                epoch = 1952;
 148
 149        printk(KERN_INFO "Using epoch = %d\n", epoch);
 150
 151        if ((year += epoch) < 1970)
 152                year += 100;
 153
 154        ts->tv_sec = mktime(year, mon, day, hour, min, sec);
 155        ts->tv_nsec = 0;
 156}
 157
 158
 159
 160/*
 161 * timer_interrupt() needs to keep up the real-time clock,
 162 * as well as call the "xtime_update()" routine every clocktick
 163 */
 164irqreturn_t timer_interrupt(int irq, void *dev)
 165{
 166        unsigned long delta;
 167        __u32 now;
 168        long nticks;
 169
 170#ifndef CONFIG_SMP
 171        /* Not SMP, do kernel PC profiling here.  */
 172        profile_tick(CPU_PROFILING);
 173#endif
 174
 175        /*
 176         * Calculate how many ticks have passed since the last update,
 177         * including any previous partial leftover.  Save any resulting
 178         * fraction for the next pass.
 179         */
 180        now = rpcc();
 181        delta = now - state.last_time;
 182        state.last_time = now;
 183        delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
 184        state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 
 185        nticks = delta >> FIX_SHIFT;
 186
 187        if (nticks)
 188                xtime_update(nticks);
 189
 190        if (test_irq_work_pending()) {
 191                clear_irq_work_pending();
 192                irq_work_run();
 193        }
 194
 195#ifndef CONFIG_SMP
 196        while (nticks--)
 197                update_process_times(user_mode(get_irq_regs()));
 198#endif
 199
 200        return IRQ_HANDLED;
 201}
 202
 203void __init
 204common_init_rtc(void)
 205{
 206        unsigned char x;
 207
 208        /* Reset periodic interrupt frequency.  */
 209        x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
 210        /* Test includes known working values on various platforms
 211           where 0x26 is wrong; we refuse to change those. */
 212        if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
 213                printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
 214                CMOS_WRITE(0x26, RTC_FREQ_SELECT);
 215        }
 216
 217        /* Turn on periodic interrupts.  */
 218        x = CMOS_READ(RTC_CONTROL);
 219        if (!(x & RTC_PIE)) {
 220                printk("Turning on RTC interrupts.\n");
 221                x |= RTC_PIE;
 222                x &= ~(RTC_AIE | RTC_UIE);
 223                CMOS_WRITE(x, RTC_CONTROL);
 224        }
 225        (void) CMOS_READ(RTC_INTR_FLAGS);
 226
 227        outb(0x36, 0x43);       /* pit counter 0: system timer */
 228        outb(0x00, 0x40);
 229        outb(0x00, 0x40);
 230
 231        outb(0xb6, 0x43);       /* pit counter 2: speaker */
 232        outb(0x31, 0x42);
 233        outb(0x13, 0x42);
 234
 235        init_rtc_irq();
 236}
 237
 238unsigned int common_get_rtc_time(struct rtc_time *time)
 239{
 240        return __get_rtc_time(time);
 241}
 242
 243int common_set_rtc_time(struct rtc_time *time)
 244{
 245        return __set_rtc_time(time);
 246}
 247
 248/* Validate a computed cycle counter result against the known bounds for
 249   the given processor core.  There's too much brokenness in the way of
 250   timing hardware for any one method to work everywhere.  :-(
 251
 252   Return 0 if the result cannot be trusted, otherwise return the argument.  */
 253
 254static unsigned long __init
 255validate_cc_value(unsigned long cc)
 256{
 257        static struct bounds {
 258                unsigned int min, max;
 259        } cpu_hz[] __initdata = {
 260                [EV3_CPU]    = {   50000000,  200000000 },      /* guess */
 261                [EV4_CPU]    = {  100000000,  300000000 },
 262                [LCA4_CPU]   = {  100000000,  300000000 },      /* guess */
 263                [EV45_CPU]   = {  200000000,  300000000 },
 264                [EV5_CPU]    = {  250000000,  433000000 },
 265                [EV56_CPU]   = {  333000000,  667000000 },
 266                [PCA56_CPU]  = {  400000000,  600000000 },      /* guess */
 267                [PCA57_CPU]  = {  500000000,  600000000 },      /* guess */
 268                [EV6_CPU]    = {  466000000,  600000000 },
 269                [EV67_CPU]   = {  600000000,  750000000 },
 270                [EV68AL_CPU] = {  750000000,  940000000 },
 271                [EV68CB_CPU] = { 1000000000, 1333333333 },
 272                /* None of the following are shipping as of 2001-11-01.  */
 273                [EV68CX_CPU] = { 1000000000, 1700000000 },      /* guess */
 274                [EV69_CPU]   = { 1000000000, 1700000000 },      /* guess */
 275                [EV7_CPU]    = {  800000000, 1400000000 },      /* guess */
 276                [EV79_CPU]   = { 1000000000, 2000000000 },      /* guess */
 277        };
 278
 279        /* Allow for some drift in the crystal.  10MHz is more than enough.  */
 280        const unsigned int deviation = 10000000;
 281
 282        struct percpu_struct *cpu;
 283        unsigned int index;
 284
 285        cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
 286        index = cpu->type & 0xffffffff;
 287
 288        /* If index out of bounds, no way to validate.  */
 289        if (index >= ARRAY_SIZE(cpu_hz))
 290                return cc;
 291
 292        /* If index contains no data, no way to validate.  */
 293        if (cpu_hz[index].max == 0)
 294                return cc;
 295
 296        if (cc < cpu_hz[index].min - deviation
 297            || cc > cpu_hz[index].max + deviation)
 298                return 0;
 299
 300        return cc;
 301}
 302
 303
 304/*
 305 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
 306 * arch/i386/time.c.
 307 */
 308
 309#define CALIBRATE_LATCH 0xffff
 310#define TIMEOUT_COUNT   0x100000
 311
 312static unsigned long __init
 313calibrate_cc_with_pit(void)
 314{
 315        int cc, count = 0;
 316
 317        /* Set the Gate high, disable speaker */
 318        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 319
 320        /*
 321         * Now let's take care of CTC channel 2
 322         *
 323         * Set the Gate high, program CTC channel 2 for mode 0,
 324         * (interrupt on terminal count mode), binary count,
 325         * load 5 * LATCH count, (LSB and MSB) to begin countdown.
 326         */
 327        outb(0xb0, 0x43);               /* binary, mode 0, LSB/MSB, Ch 2 */
 328        outb(CALIBRATE_LATCH & 0xff, 0x42);     /* LSB of count */
 329        outb(CALIBRATE_LATCH >> 8, 0x42);       /* MSB of count */
 330
 331        cc = rpcc();
 332        do {
 333                count++;
 334        } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
 335        cc = rpcc() - cc;
 336
 337        /* Error: ECTCNEVERSET or ECPUTOOFAST.  */
 338        if (count <= 1 || count == TIMEOUT_COUNT)
 339                return 0;
 340
 341        return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
 342}
 343
 344/* The Linux interpretation of the CMOS clock register contents:
 345   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
 346   RTC registers show the second which has precisely just started.
 347   Let's hope other operating systems interpret the RTC the same way.  */
 348
 349static unsigned long __init
 350rpcc_after_update_in_progress(void)
 351{
 352        do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
 353        do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 354
 355        return rpcc();
 356}
 357
 358#ifndef CONFIG_SMP
 359/* Until and unless we figure out how to get cpu cycle counters
 360   in sync and keep them there, we can't use the rpcc.  */
 361static u64 read_rpcc(struct clocksource *cs)
 362{
 363        u64 ret = (u64)rpcc();
 364        return ret;
 365}
 366
 367static struct clocksource clocksource_rpcc = {
 368        .name                   = "rpcc",
 369        .rating                 = 300,
 370        .read                   = read_rpcc,
 371        .mask                   = CLOCKSOURCE_MASK(32),
 372        .flags                  = CLOCK_SOURCE_IS_CONTINUOUS
 373};
 374
 375static inline void register_rpcc_clocksource(long cycle_freq)
 376{
 377        clocksource_register_hz(&clocksource_rpcc, cycle_freq);
 378}
 379#else /* !CONFIG_SMP */
 380static inline void register_rpcc_clocksource(long cycle_freq)
 381{
 382}
 383#endif /* !CONFIG_SMP */
 384
 385void __init
 386time_init(void)
 387{
 388        unsigned int cc1, cc2;
 389        unsigned long cycle_freq, tolerance;
 390        long diff;
 391
 392        /* Calibrate CPU clock -- attempt #1.  */
 393        if (!est_cycle_freq)
 394                est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
 395
 396        cc1 = rpcc();
 397
 398        /* Calibrate CPU clock -- attempt #2.  */
 399        if (!est_cycle_freq) {
 400                cc1 = rpcc_after_update_in_progress();
 401                cc2 = rpcc_after_update_in_progress();
 402                est_cycle_freq = validate_cc_value(cc2 - cc1);
 403                cc1 = cc2;
 404        }
 405
 406        cycle_freq = hwrpb->cycle_freq;
 407        if (est_cycle_freq) {
 408                /* If the given value is within 250 PPM of what we calculated,
 409                   accept it.  Otherwise, use what we found.  */
 410                tolerance = cycle_freq / 4000;
 411                diff = cycle_freq - est_cycle_freq;
 412                if (diff < 0)
 413                        diff = -diff;
 414                if ((unsigned long)diff > tolerance) {
 415                        cycle_freq = est_cycle_freq;
 416                        printk("HWRPB cycle frequency bogus.  "
 417                               "Estimated %lu Hz\n", cycle_freq);
 418                } else {
 419                        est_cycle_freq = 0;
 420                }
 421        } else if (! validate_cc_value (cycle_freq)) {
 422                printk("HWRPB cycle frequency bogus, "
 423                       "and unable to estimate a proper value!\n");
 424        }
 425
 426        /* From John Bowman <bowman@math.ualberta.ca>: allow the values
 427           to settle, as the Update-In-Progress bit going low isn't good
 428           enough on some hardware.  2ms is our guess; we haven't found 
 429           bogomips yet, but this is close on a 500Mhz box.  */
 430        __delay(1000000);
 431
 432
 433        if (HZ > (1<<16)) {
 434                extern void __you_loose (void);
 435                __you_loose();
 436        }
 437
 438        register_rpcc_clocksource(cycle_freq);
 439
 440        state.last_time = cc1;
 441        state.scaled_ticks_per_cycle
 442                = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
 443        state.partial_tick = 0L;
 444
 445        /* Startup the timer source. */
 446        alpha_mv.init_rtc();
 447}
 448
 449/*
 450 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 451 * called 500 ms after the second nowtime has started, because when
 452 * nowtime is written into the registers of the CMOS clock, it will
 453 * jump to the next second precisely 500 ms later. Check the Motorola
 454 * MC146818A or Dallas DS12887 data sheet for details.
 455 *
 456 * BUG: This routine does not handle hour overflow properly; it just
 457 *      sets the minutes. Usually you won't notice until after reboot!
 458 */
 459
 460
 461static int
 462set_rtc_mmss(unsigned long nowtime)
 463{
 464        int retval = 0;
 465        int real_seconds, real_minutes, cmos_minutes;
 466        unsigned char save_control, save_freq_select;
 467
 468        /* irq are locally disabled here */
 469        spin_lock(&rtc_lock);
 470        /* Tell the clock it's being set */
 471        save_control = CMOS_READ(RTC_CONTROL);
 472        CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 473
 474        /* Stop and reset prescaler */
 475        save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 476        CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 477
 478        cmos_minutes = CMOS_READ(RTC_MINUTES);
 479        if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 480                cmos_minutes = bcd2bin(cmos_minutes);
 481
 482        /*
 483         * since we're only adjusting minutes and seconds,
 484         * don't interfere with hour overflow. This avoids
 485         * messing with unknown time zones but requires your
 486         * RTC not to be off by more than 15 minutes
 487         */
 488        real_seconds = nowtime % 60;
 489        real_minutes = nowtime / 60;
 490        if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
 491                /* correct for half hour time zone */
 492                real_minutes += 30;
 493        }
 494        real_minutes %= 60;
 495
 496        if (abs(real_minutes - cmos_minutes) < 30) {
 497                if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 498                        real_seconds = bin2bcd(real_seconds);
 499                        real_minutes = bin2bcd(real_minutes);
 500                }
 501                CMOS_WRITE(real_seconds,RTC_SECONDS);
 502                CMOS_WRITE(real_minutes,RTC_MINUTES);
 503        } else {
 504                printk_once(KERN_NOTICE
 505                       "set_rtc_mmss: can't update from %d to %d\n",
 506                       cmos_minutes, real_minutes);
 507                retval = -1;
 508        }
 509
 510        /* The following flags have to be released exactly in this order,
 511         * otherwise the DS12887 (popular MC146818A clone with integrated
 512         * battery and quartz) will not reset the oscillator and will not
 513         * update precisely 500 ms later. You won't find this mentioned in
 514         * the Dallas Semiconductor data sheets, but who believes data
 515         * sheets anyway ...                           -- Markus Kuhn
 516         */
 517        CMOS_WRITE(save_control, RTC_CONTROL);
 518        CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 519        spin_unlock(&rtc_lock);
 520
 521        return retval;
 522}
 523