linux/arch/ia64/kernel/time.c
<<
>>
Prefs
   1/*
   2 * linux/arch/ia64/kernel/time.c
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      Stephane Eranian <eranian@hpl.hp.com>
   6 *      David Mosberger <davidm@hpl.hp.com>
   7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
   8 * Copyright (C) 1999-2000 VA Linux Systems
   9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/profile.h>
  17#include <linux/sched.h>
  18#include <linux/time.h>
  19#include <linux/interrupt.h>
  20#include <linux/efi.h>
  21#include <linux/timex.h>
  22#include <linux/timekeeper_internal.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/machvec.h>
  26#include <asm/delay.h>
  27#include <asm/hw_irq.h>
  28#include <asm/paravirt.h>
  29#include <asm/ptrace.h>
  30#include <asm/sal.h>
  31#include <asm/sections.h>
  32
  33#include "fsyscall_gtod_data.h"
  34
  35static u64 itc_get_cycles(struct clocksource *cs);
  36
  37struct fsyscall_gtod_data_t fsyscall_gtod_data;
  38
  39struct itc_jitter_data_t itc_jitter_data;
  40
  41volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  42
  43#ifdef CONFIG_IA64_DEBUG_IRQ
  44
  45unsigned long last_cli_ip;
  46EXPORT_SYMBOL(last_cli_ip);
  47
  48#endif
  49
  50#ifdef CONFIG_PARAVIRT
  51/* We need to define a real function for sched_clock, to override the
  52   weak default version */
  53unsigned long long sched_clock(void)
  54{
  55        return paravirt_sched_clock();
  56}
  57#endif
  58
  59#ifdef CONFIG_PARAVIRT
  60static void
  61paravirt_clocksource_resume(struct clocksource *cs)
  62{
  63        if (pv_time_ops.clocksource_resume)
  64                pv_time_ops.clocksource_resume();
  65}
  66#endif
  67
  68static struct clocksource clocksource_itc = {
  69        .name           = "itc",
  70        .rating         = 350,
  71        .read           = itc_get_cycles,
  72        .mask           = CLOCKSOURCE_MASK(64),
  73        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  74#ifdef CONFIG_PARAVIRT
  75        .resume         = paravirt_clocksource_resume,
  76#endif
  77};
  78static struct clocksource *itc_clocksource;
  79
  80#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  81
  82#include <linux/kernel_stat.h>
  83
  84extern cputime_t cycle_to_cputime(u64 cyc);
  85
  86void vtime_account_user(struct task_struct *tsk)
  87{
  88        cputime_t delta_utime;
  89        struct thread_info *ti = task_thread_info(tsk);
  90
  91        if (ti->ac_utime) {
  92                delta_utime = cycle_to_cputime(ti->ac_utime);
  93                account_user_time(tsk, delta_utime, delta_utime);
  94                ti->ac_utime = 0;
  95        }
  96}
  97
  98/*
  99 * Called from the context switch with interrupts disabled, to charge all
 100 * accumulated times to the current process, and to prepare accounting on
 101 * the next process.
 102 */
 103void arch_vtime_task_switch(struct task_struct *prev)
 104{
 105        struct thread_info *pi = task_thread_info(prev);
 106        struct thread_info *ni = task_thread_info(current);
 107
 108        pi->ac_stamp = ni->ac_stamp;
 109        ni->ac_stime = ni->ac_utime = 0;
 110}
 111
 112/*
 113 * Account time for a transition between system, hard irq or soft irq state.
 114 * Note that this function is called with interrupts enabled.
 115 */
 116static cputime_t vtime_delta(struct task_struct *tsk)
 117{
 118        struct thread_info *ti = task_thread_info(tsk);
 119        cputime_t delta_stime;
 120        __u64 now;
 121
 122        WARN_ON_ONCE(!irqs_disabled());
 123
 124        now = ia64_get_itc();
 125
 126        delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
 127        ti->ac_stime = 0;
 128        ti->ac_stamp = now;
 129
 130        return delta_stime;
 131}
 132
 133void vtime_account_system(struct task_struct *tsk)
 134{
 135        cputime_t delta = vtime_delta(tsk);
 136
 137        account_system_time(tsk, 0, delta, delta);
 138}
 139EXPORT_SYMBOL_GPL(vtime_account_system);
 140
 141void vtime_account_idle(struct task_struct *tsk)
 142{
 143        account_idle_time(vtime_delta(tsk));
 144}
 145
 146#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 147
 148static irqreturn_t
 149timer_interrupt (int irq, void *dev_id)
 150{
 151        unsigned long new_itm;
 152
 153        if (cpu_is_offline(smp_processor_id())) {
 154                return IRQ_HANDLED;
 155        }
 156
 157        platform_timer_interrupt(irq, dev_id);
 158
 159        new_itm = local_cpu_data->itm_next;
 160
 161        if (!time_after(ia64_get_itc(), new_itm))
 162                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 163                       ia64_get_itc(), new_itm);
 164
 165        profile_tick(CPU_PROFILING);
 166
 167        if (paravirt_do_steal_accounting(&new_itm))
 168                goto skip_process_time_accounting;
 169
 170        while (1) {
 171                update_process_times(user_mode(get_irq_regs()));
 172
 173                new_itm += local_cpu_data->itm_delta;
 174
 175                if (smp_processor_id() == time_keeper_id)
 176                        xtime_update(1);
 177
 178                local_cpu_data->itm_next = new_itm;
 179
 180                if (time_after(new_itm, ia64_get_itc()))
 181                        break;
 182
 183                /*
 184                 * Allow IPIs to interrupt the timer loop.
 185                 */
 186                local_irq_enable();
 187                local_irq_disable();
 188        }
 189
 190skip_process_time_accounting:
 191
 192        do {
 193                /*
 194                 * If we're too close to the next clock tick for
 195                 * comfort, we increase the safety margin by
 196                 * intentionally dropping the next tick(s).  We do NOT
 197                 * update itm.next because that would force us to call
 198                 * xtime_update() which in turn would let our clock run
 199                 * too fast (with the potentially devastating effect
 200                 * of losing monotony of time).
 201                 */
 202                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 203                        new_itm += local_cpu_data->itm_delta;
 204                ia64_set_itm(new_itm);
 205                /* double check, in case we got hit by a (slow) PMI: */
 206        } while (time_after_eq(ia64_get_itc(), new_itm));
 207        return IRQ_HANDLED;
 208}
 209
 210/*
 211 * Encapsulate access to the itm structure for SMP.
 212 */
 213void
 214ia64_cpu_local_tick (void)
 215{
 216        int cpu = smp_processor_id();
 217        unsigned long shift = 0, delta;
 218
 219        /* arrange for the cycle counter to generate a timer interrupt: */
 220        ia64_set_itv(IA64_TIMER_VECTOR);
 221
 222        delta = local_cpu_data->itm_delta;
 223        /*
 224         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 225         * same time:
 226         */
 227        if (cpu) {
 228                unsigned long hi = 1UL << ia64_fls(cpu);
 229                shift = (2*(cpu - hi) + 1) * delta/hi/2;
 230        }
 231        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 232        ia64_set_itm(local_cpu_data->itm_next);
 233}
 234
 235static int nojitter;
 236
 237static int __init nojitter_setup(char *str)
 238{
 239        nojitter = 1;
 240        printk("Jitter checking for ITC timers disabled\n");
 241        return 1;
 242}
 243
 244__setup("nojitter", nojitter_setup);
 245
 246
 247void ia64_init_itm(void)
 248{
 249        unsigned long platform_base_freq, itc_freq;
 250        struct pal_freq_ratio itc_ratio, proc_ratio;
 251        long status, platform_base_drift, itc_drift;
 252
 253        /*
 254         * According to SAL v2.6, we need to use a SAL call to determine the platform base
 255         * frequency and then a PAL call to determine the frequency ratio between the ITC
 256         * and the base frequency.
 257         */
 258        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 259                                    &platform_base_freq, &platform_base_drift);
 260        if (status != 0) {
 261                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 262        } else {
 263                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 264                if (status != 0)
 265                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 266        }
 267        if (status != 0) {
 268                /* invent "random" values */
 269                printk(KERN_ERR
 270                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 271                platform_base_freq = 100000000;
 272                platform_base_drift = -1;       /* no drift info */
 273                itc_ratio.num = 3;
 274                itc_ratio.den = 1;
 275        }
 276        if (platform_base_freq < 40000000) {
 277                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 278                       platform_base_freq);
 279                platform_base_freq = 75000000;
 280                platform_base_drift = -1;
 281        }
 282        if (!proc_ratio.den)
 283                proc_ratio.den = 1;     /* avoid division by zero */
 284        if (!itc_ratio.den)
 285                itc_ratio.den = 1;      /* avoid division by zero */
 286
 287        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 288
 289        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 290        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 291               "ITC freq=%lu.%03luMHz", smp_processor_id(),
 292               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 293               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 294
 295        if (platform_base_drift != -1) {
 296                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 297                printk("+/-%ldppm\n", itc_drift);
 298        } else {
 299                itc_drift = -1;
 300                printk("\n");
 301        }
 302
 303        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 304        local_cpu_data->itc_freq = itc_freq;
 305        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 306        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 307                                        + itc_freq/2)/itc_freq;
 308
 309        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 310#ifdef CONFIG_SMP
 311                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 312                 * Jitter compensation requires a cmpxchg which may limit
 313                 * the scalability of the syscalls for retrieving time.
 314                 * The ITC synchronization is usually successful to within a few
 315                 * ITC ticks but this is not a sure thing. If you need to improve
 316                 * timer performance in SMP situations then boot the kernel with the
 317                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 318                 * even going backward) if the ITC offsets between the individual CPUs
 319                 * are too large.
 320                 */
 321                if (!nojitter)
 322                        itc_jitter_data.itc_jitter = 1;
 323#endif
 324        } else
 325                /*
 326                 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 327                 * ITC values may fluctuate significantly between processors.
 328                 * Clock should not be used for hrtimers. Mark itc as only
 329                 * useful for boot and testing.
 330                 *
 331                 * Note that jitter compensation is off! There is no point of
 332                 * synchronizing ITCs since they may be large differentials
 333                 * that change over time.
 334                 *
 335                 * The only way to fix this would be to repeatedly sync the
 336                 * ITCs. Until that time we have to avoid ITC.
 337                 */
 338                clocksource_itc.rating = 50;
 339
 340        paravirt_init_missing_ticks_accounting(smp_processor_id());
 341
 342        /* avoid softlock up message when cpu is unplug and plugged again. */
 343        touch_softlockup_watchdog();
 344
 345        /* Setup the CPU local timer tick */
 346        ia64_cpu_local_tick();
 347
 348        if (!itc_clocksource) {
 349                clocksource_register_hz(&clocksource_itc,
 350                                                local_cpu_data->itc_freq);
 351                itc_clocksource = &clocksource_itc;
 352        }
 353}
 354
 355static u64 itc_get_cycles(struct clocksource *cs)
 356{
 357        unsigned long lcycle, now, ret;
 358
 359        if (!itc_jitter_data.itc_jitter)
 360                return get_cycles();
 361
 362        lcycle = itc_jitter_data.itc_lastcycle;
 363        now = get_cycles();
 364        if (lcycle && time_after(lcycle, now))
 365                return lcycle;
 366
 367        /*
 368         * Keep track of the last timer value returned.
 369         * In an SMP environment, you could lose out in contention of
 370         * cmpxchg. If so, your cmpxchg returns new value which the
 371         * winner of contention updated to. Use the new value instead.
 372         */
 373        ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 374        if (unlikely(ret != lcycle))
 375                return ret;
 376
 377        return now;
 378}
 379
 380
 381static struct irqaction timer_irqaction = {
 382        .handler =      timer_interrupt,
 383        .flags =        IRQF_DISABLED | IRQF_IRQPOLL,
 384        .name =         "timer"
 385};
 386
 387static struct platform_device rtc_efi_dev = {
 388        .name = "rtc-efi",
 389        .id = -1,
 390};
 391
 392static int __init rtc_init(void)
 393{
 394        if (platform_device_register(&rtc_efi_dev) < 0)
 395                printk(KERN_ERR "unable to register rtc device...\n");
 396
 397        /* not necessarily an error */
 398        return 0;
 399}
 400module_init(rtc_init);
 401
 402void read_persistent_clock(struct timespec *ts)
 403{
 404        efi_gettimeofday(ts);
 405}
 406
 407void __init
 408time_init (void)
 409{
 410        register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 411        ia64_init_itm();
 412}
 413
 414/*
 415 * Generic udelay assumes that if preemption is allowed and the thread
 416 * migrates to another CPU, that the ITC values are synchronized across
 417 * all CPUs.
 418 */
 419static void
 420ia64_itc_udelay (unsigned long usecs)
 421{
 422        unsigned long start = ia64_get_itc();
 423        unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 424
 425        while (time_before(ia64_get_itc(), end))
 426                cpu_relax();
 427}
 428
 429void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 430
 431void
 432udelay (unsigned long usecs)
 433{
 434        (*ia64_udelay)(usecs);
 435}
 436EXPORT_SYMBOL(udelay);
 437
 438/* IA64 doesn't cache the timezone */
 439void update_vsyscall_tz(void)
 440{
 441}
 442
 443void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
 444                        struct clocksource *c, u32 mult)
 445{
 446        write_seqcount_begin(&fsyscall_gtod_data.seq);
 447
 448        /* copy fsyscall clock data */
 449        fsyscall_gtod_data.clk_mask = c->mask;
 450        fsyscall_gtod_data.clk_mult = mult;
 451        fsyscall_gtod_data.clk_shift = c->shift;
 452        fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
 453        fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
 454
 455        /* copy kernel time structures */
 456        fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
 457        fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
 458        fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
 459                                                        + wall->tv_sec;
 460        fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
 461                                                        + wall->tv_nsec;
 462
 463        /* normalize */
 464        while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
 465                fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
 466                fsyscall_gtod_data.monotonic_time.tv_sec++;
 467        }
 468
 469        write_seqcount_end(&fsyscall_gtod_data.seq);
 470}
 471
 472