1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "cpuid.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/swap.h>
34#include <linux/hugetlb.h>
35#include <linux/compiler.h>
36#include <linux/srcu.h>
37#include <linux/slab.h>
38#include <linux/uaccess.h>
39#include <linux/hash.h>
40#include <linux/kern_levels.h>
41
42#include <asm/page.h>
43#include <asm/cmpxchg.h>
44#include <asm/io.h>
45#include <asm/vmx.h>
46#include <asm/kvm_page_track.h>
47
48
49
50
51
52
53
54
55bool tdp_enabled = false;
56
57enum {
58 AUDIT_PRE_PAGE_FAULT,
59 AUDIT_POST_PAGE_FAULT,
60 AUDIT_PRE_PTE_WRITE,
61 AUDIT_POST_PTE_WRITE,
62 AUDIT_PRE_SYNC,
63 AUDIT_POST_SYNC
64};
65
66#undef MMU_DEBUG
67
68#ifdef MMU_DEBUG
69static bool dbg = 0;
70module_param(dbg, bool, 0644);
71
72#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
73#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
74#define MMU_WARN_ON(x) WARN_ON(x)
75#else
76#define pgprintk(x...) do { } while (0)
77#define rmap_printk(x...) do { } while (0)
78#define MMU_WARN_ON(x) do { } while (0)
79#endif
80
81#define PTE_PREFETCH_NUM 8
82
83#define PT_FIRST_AVAIL_BITS_SHIFT 10
84#define PT64_SECOND_AVAIL_BITS_SHIFT 52
85
86#define PT64_LEVEL_BITS 9
87
88#define PT64_LEVEL_SHIFT(level) \
89 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
90
91#define PT64_INDEX(address, level)\
92 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
93
94
95#define PT32_LEVEL_BITS 10
96
97#define PT32_LEVEL_SHIFT(level) \
98 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
99
100#define PT32_LVL_OFFSET_MASK(level) \
101 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
102 * PT32_LEVEL_BITS))) - 1))
103
104#define PT32_INDEX(address, level)\
105 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
106
107
108#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
109#define PT64_DIR_BASE_ADDR_MASK \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
111#define PT64_LVL_ADDR_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
114#define PT64_LVL_OFFSET_MASK(level) \
115 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
116 * PT64_LEVEL_BITS))) - 1))
117
118#define PT32_BASE_ADDR_MASK PAGE_MASK
119#define PT32_DIR_BASE_ADDR_MASK \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
121#define PT32_LVL_ADDR_MASK(level) \
122 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT32_LEVEL_BITS))) - 1))
124
125#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
126 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
127
128#define ACC_EXEC_MASK 1
129#define ACC_WRITE_MASK PT_WRITABLE_MASK
130#define ACC_USER_MASK PT_USER_MASK
131#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
132
133
134#define PT64_EPT_READABLE_MASK 0x1ull
135#define PT64_EPT_EXECUTABLE_MASK 0x4ull
136
137#include <trace/events/kvm.h>
138
139#define CREATE_TRACE_POINTS
140#include "mmutrace.h"
141
142#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
143#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
144
145#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
146
147
148#define PTE_LIST_EXT 3
149
150struct pte_list_desc {
151 u64 *sptes[PTE_LIST_EXT];
152 struct pte_list_desc *more;
153};
154
155struct kvm_shadow_walk_iterator {
156 u64 addr;
157 hpa_t shadow_addr;
158 u64 *sptep;
159 int level;
160 unsigned index;
161};
162
163#define for_each_shadow_entry(_vcpu, _addr, _walker) \
164 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
165 shadow_walk_okay(&(_walker)); \
166 shadow_walk_next(&(_walker)))
167
168#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)) && \
171 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
172 __shadow_walk_next(&(_walker), spte))
173
174static struct kmem_cache *pte_list_desc_cache;
175static struct kmem_cache *mmu_page_header_cache;
176static struct percpu_counter kvm_total_used_mmu_pages;
177
178static u64 __read_mostly shadow_nx_mask;
179static u64 __read_mostly shadow_x_mask;
180static u64 __read_mostly shadow_user_mask;
181static u64 __read_mostly shadow_accessed_mask;
182static u64 __read_mostly shadow_dirty_mask;
183static u64 __read_mostly shadow_mmio_mask;
184static u64 __read_mostly shadow_mmio_value;
185static u64 __read_mostly shadow_present_mask;
186static u64 __read_mostly shadow_me_mask;
187
188
189
190
191
192
193static u64 __read_mostly shadow_acc_track_mask;
194static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
195
196
197
198
199
200
201
202static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
203 PT64_EPT_EXECUTABLE_MASK;
204static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
205
206static void mmu_spte_set(u64 *sptep, u64 spte);
207static void mmu_free_roots(struct kvm_vcpu *vcpu);
208
209void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
210{
211 BUG_ON((mmio_mask & mmio_value) != mmio_value);
212 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
213 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
214}
215EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
216
217static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
218{
219 return sp->role.ad_disabled;
220}
221
222static inline bool spte_ad_enabled(u64 spte)
223{
224 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
225 return !(spte & shadow_acc_track_value);
226}
227
228static inline u64 spte_shadow_accessed_mask(u64 spte)
229{
230 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
231 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
232}
233
234static inline u64 spte_shadow_dirty_mask(u64 spte)
235{
236 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
237 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
238}
239
240static inline bool is_access_track_spte(u64 spte)
241{
242 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
243}
244
245
246
247
248
249
250
251
252
253
254#define MMIO_SPTE_GEN_LOW_SHIFT 2
255#define MMIO_SPTE_GEN_HIGH_SHIFT 52
256
257#define MMIO_GEN_SHIFT 20
258#define MMIO_GEN_LOW_SHIFT 10
259#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
260#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
261
262static u64 generation_mmio_spte_mask(unsigned int gen)
263{
264 u64 mask;
265
266 WARN_ON(gen & ~MMIO_GEN_MASK);
267
268 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
269 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
270 return mask;
271}
272
273static unsigned int get_mmio_spte_generation(u64 spte)
274{
275 unsigned int gen;
276
277 spte &= ~shadow_mmio_mask;
278
279 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
280 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
281 return gen;
282}
283
284static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
285{
286 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
287}
288
289static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
290 unsigned access)
291{
292 unsigned int gen = kvm_current_mmio_generation(vcpu);
293 u64 mask = generation_mmio_spte_mask(gen);
294
295 access &= ACC_WRITE_MASK | ACC_USER_MASK;
296 mask |= shadow_mmio_value | access | gfn << PAGE_SHIFT;
297
298 trace_mark_mmio_spte(sptep, gfn, access, gen);
299 mmu_spte_set(sptep, mask);
300}
301
302static bool is_mmio_spte(u64 spte)
303{
304 return (spte & shadow_mmio_mask) == shadow_mmio_value;
305}
306
307static gfn_t get_mmio_spte_gfn(u64 spte)
308{
309 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
310 return (spte & ~mask) >> PAGE_SHIFT;
311}
312
313static unsigned get_mmio_spte_access(u64 spte)
314{
315 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
316 return (spte & ~mask) & ~PAGE_MASK;
317}
318
319static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
320 kvm_pfn_t pfn, unsigned access)
321{
322 if (unlikely(is_noslot_pfn(pfn))) {
323 mark_mmio_spte(vcpu, sptep, gfn, access);
324 return true;
325 }
326
327 return false;
328}
329
330static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
331{
332 unsigned int kvm_gen, spte_gen;
333
334 kvm_gen = kvm_current_mmio_generation(vcpu);
335 spte_gen = get_mmio_spte_generation(spte);
336
337 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
338 return likely(kvm_gen == spte_gen);
339}
340
341
342
343
344
345
346
347
348void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
349 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
350 u64 acc_track_mask, u64 me_mask)
351{
352 BUG_ON(!dirty_mask != !accessed_mask);
353 BUG_ON(!accessed_mask && !acc_track_mask);
354 BUG_ON(acc_track_mask & shadow_acc_track_value);
355
356 shadow_user_mask = user_mask;
357 shadow_accessed_mask = accessed_mask;
358 shadow_dirty_mask = dirty_mask;
359 shadow_nx_mask = nx_mask;
360 shadow_x_mask = x_mask;
361 shadow_present_mask = p_mask;
362 shadow_acc_track_mask = acc_track_mask;
363 shadow_me_mask = me_mask;
364}
365EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
366
367void kvm_mmu_clear_all_pte_masks(void)
368{
369 shadow_user_mask = 0;
370 shadow_accessed_mask = 0;
371 shadow_dirty_mask = 0;
372 shadow_nx_mask = 0;
373 shadow_x_mask = 0;
374 shadow_mmio_mask = 0;
375 shadow_present_mask = 0;
376 shadow_acc_track_mask = 0;
377}
378
379static int is_cpuid_PSE36(void)
380{
381 return 1;
382}
383
384static int is_nx(struct kvm_vcpu *vcpu)
385{
386 return vcpu->arch.efer & EFER_NX;
387}
388
389static int is_shadow_present_pte(u64 pte)
390{
391 return (pte != 0) && !is_mmio_spte(pte);
392}
393
394static int is_large_pte(u64 pte)
395{
396 return pte & PT_PAGE_SIZE_MASK;
397}
398
399static int is_last_spte(u64 pte, int level)
400{
401 if (level == PT_PAGE_TABLE_LEVEL)
402 return 1;
403 if (is_large_pte(pte))
404 return 1;
405 return 0;
406}
407
408static bool is_executable_pte(u64 spte)
409{
410 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
411}
412
413static kvm_pfn_t spte_to_pfn(u64 pte)
414{
415 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
416}
417
418static gfn_t pse36_gfn_delta(u32 gpte)
419{
420 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
421
422 return (gpte & PT32_DIR_PSE36_MASK) << shift;
423}
424
425#ifdef CONFIG_X86_64
426static void __set_spte(u64 *sptep, u64 spte)
427{
428 WRITE_ONCE(*sptep, spte);
429}
430
431static void __update_clear_spte_fast(u64 *sptep, u64 spte)
432{
433 WRITE_ONCE(*sptep, spte);
434}
435
436static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
437{
438 return xchg(sptep, spte);
439}
440
441static u64 __get_spte_lockless(u64 *sptep)
442{
443 return ACCESS_ONCE(*sptep);
444}
445#else
446union split_spte {
447 struct {
448 u32 spte_low;
449 u32 spte_high;
450 };
451 u64 spte;
452};
453
454static void count_spte_clear(u64 *sptep, u64 spte)
455{
456 struct kvm_mmu_page *sp = page_header(__pa(sptep));
457
458 if (is_shadow_present_pte(spte))
459 return;
460
461
462 smp_wmb();
463 sp->clear_spte_count++;
464}
465
466static void __set_spte(u64 *sptep, u64 spte)
467{
468 union split_spte *ssptep, sspte;
469
470 ssptep = (union split_spte *)sptep;
471 sspte = (union split_spte)spte;
472
473 ssptep->spte_high = sspte.spte_high;
474
475
476
477
478
479
480 smp_wmb();
481
482 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
483}
484
485static void __update_clear_spte_fast(u64 *sptep, u64 spte)
486{
487 union split_spte *ssptep, sspte;
488
489 ssptep = (union split_spte *)sptep;
490 sspte = (union split_spte)spte;
491
492 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
493
494
495
496
497
498 smp_wmb();
499
500 ssptep->spte_high = sspte.spte_high;
501 count_spte_clear(sptep, spte);
502}
503
504static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
505{
506 union split_spte *ssptep, sspte, orig;
507
508 ssptep = (union split_spte *)sptep;
509 sspte = (union split_spte)spte;
510
511
512 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
513 orig.spte_high = ssptep->spte_high;
514 ssptep->spte_high = sspte.spte_high;
515 count_spte_clear(sptep, spte);
516
517 return orig.spte;
518}
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538static u64 __get_spte_lockless(u64 *sptep)
539{
540 struct kvm_mmu_page *sp = page_header(__pa(sptep));
541 union split_spte spte, *orig = (union split_spte *)sptep;
542 int count;
543
544retry:
545 count = sp->clear_spte_count;
546 smp_rmb();
547
548 spte.spte_low = orig->spte_low;
549 smp_rmb();
550
551 spte.spte_high = orig->spte_high;
552 smp_rmb();
553
554 if (unlikely(spte.spte_low != orig->spte_low ||
555 count != sp->clear_spte_count))
556 goto retry;
557
558 return spte.spte;
559}
560#endif
561
562static bool spte_can_locklessly_be_made_writable(u64 spte)
563{
564 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
565 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
566}
567
568static bool spte_has_volatile_bits(u64 spte)
569{
570 if (!is_shadow_present_pte(spte))
571 return false;
572
573
574
575
576
577
578
579 if (spte_can_locklessly_be_made_writable(spte) ||
580 is_access_track_spte(spte))
581 return true;
582
583 if (spte_ad_enabled(spte)) {
584 if ((spte & shadow_accessed_mask) == 0 ||
585 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
586 return true;
587 }
588
589 return false;
590}
591
592static bool is_accessed_spte(u64 spte)
593{
594 u64 accessed_mask = spte_shadow_accessed_mask(spte);
595
596 return accessed_mask ? spte & accessed_mask
597 : !is_access_track_spte(spte);
598}
599
600static bool is_dirty_spte(u64 spte)
601{
602 u64 dirty_mask = spte_shadow_dirty_mask(spte);
603
604 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
605}
606
607
608
609
610
611
612
613static void mmu_spte_set(u64 *sptep, u64 new_spte)
614{
615 WARN_ON(is_shadow_present_pte(*sptep));
616 __set_spte(sptep, new_spte);
617}
618
619
620
621
622
623static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
624{
625 u64 old_spte = *sptep;
626
627 WARN_ON(!is_shadow_present_pte(new_spte));
628
629 if (!is_shadow_present_pte(old_spte)) {
630 mmu_spte_set(sptep, new_spte);
631 return old_spte;
632 }
633
634 if (!spte_has_volatile_bits(old_spte))
635 __update_clear_spte_fast(sptep, new_spte);
636 else
637 old_spte = __update_clear_spte_slow(sptep, new_spte);
638
639 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
640
641 return old_spte;
642}
643
644
645
646
647
648
649
650
651
652
653
654
655static bool mmu_spte_update(u64 *sptep, u64 new_spte)
656{
657 bool flush = false;
658 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
659
660 if (!is_shadow_present_pte(old_spte))
661 return false;
662
663
664
665
666
667
668 if (spte_can_locklessly_be_made_writable(old_spte) &&
669 !is_writable_pte(new_spte))
670 flush = true;
671
672
673
674
675
676
677 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
678 flush = true;
679 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
680 }
681
682 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
683 flush = true;
684 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
685 }
686
687 return flush;
688}
689
690
691
692
693
694
695
696static int mmu_spte_clear_track_bits(u64 *sptep)
697{
698 kvm_pfn_t pfn;
699 u64 old_spte = *sptep;
700
701 if (!spte_has_volatile_bits(old_spte))
702 __update_clear_spte_fast(sptep, 0ull);
703 else
704 old_spte = __update_clear_spte_slow(sptep, 0ull);
705
706 if (!is_shadow_present_pte(old_spte))
707 return 0;
708
709 pfn = spte_to_pfn(old_spte);
710
711
712
713
714
715
716 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
717
718 if (is_accessed_spte(old_spte))
719 kvm_set_pfn_accessed(pfn);
720
721 if (is_dirty_spte(old_spte))
722 kvm_set_pfn_dirty(pfn);
723
724 return 1;
725}
726
727
728
729
730
731
732static void mmu_spte_clear_no_track(u64 *sptep)
733{
734 __update_clear_spte_fast(sptep, 0ull);
735}
736
737static u64 mmu_spte_get_lockless(u64 *sptep)
738{
739 return __get_spte_lockless(sptep);
740}
741
742static u64 mark_spte_for_access_track(u64 spte)
743{
744 if (spte_ad_enabled(spte))
745 return spte & ~shadow_accessed_mask;
746
747 if (is_access_track_spte(spte))
748 return spte;
749
750
751
752
753
754
755 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
756 !spte_can_locklessly_be_made_writable(spte),
757 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
758
759 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
760 shadow_acc_track_saved_bits_shift),
761 "kvm: Access Tracking saved bit locations are not zero\n");
762
763 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
764 shadow_acc_track_saved_bits_shift;
765 spte &= ~shadow_acc_track_mask;
766
767 return spte;
768}
769
770
771static u64 restore_acc_track_spte(u64 spte)
772{
773 u64 new_spte = spte;
774 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
775 & shadow_acc_track_saved_bits_mask;
776
777 WARN_ON_ONCE(spte_ad_enabled(spte));
778 WARN_ON_ONCE(!is_access_track_spte(spte));
779
780 new_spte &= ~shadow_acc_track_mask;
781 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
782 shadow_acc_track_saved_bits_shift);
783 new_spte |= saved_bits;
784
785 return new_spte;
786}
787
788
789static bool mmu_spte_age(u64 *sptep)
790{
791 u64 spte = mmu_spte_get_lockless(sptep);
792
793 if (!is_accessed_spte(spte))
794 return false;
795
796 if (spte_ad_enabled(spte)) {
797 clear_bit((ffs(shadow_accessed_mask) - 1),
798 (unsigned long *)sptep);
799 } else {
800
801
802
803
804 if (is_writable_pte(spte))
805 kvm_set_pfn_dirty(spte_to_pfn(spte));
806
807 spte = mark_spte_for_access_track(spte);
808 mmu_spte_update_no_track(sptep, spte);
809 }
810
811 return true;
812}
813
814static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
815{
816
817
818
819
820 local_irq_disable();
821 vcpu->mode = READING_SHADOW_PAGE_TABLES;
822
823
824
825
826 smp_mb();
827}
828
829static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
830{
831
832
833
834
835
836 smp_mb();
837 vcpu->mode = OUTSIDE_GUEST_MODE;
838 local_irq_enable();
839}
840
841static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
842 struct kmem_cache *base_cache, int min)
843{
844 void *obj;
845
846 if (cache->nobjs >= min)
847 return 0;
848 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
849 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
850 if (!obj)
851 return -ENOMEM;
852 cache->objects[cache->nobjs++] = obj;
853 }
854 return 0;
855}
856
857static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
858{
859 return cache->nobjs;
860}
861
862static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
863 struct kmem_cache *cache)
864{
865 while (mc->nobjs)
866 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
867}
868
869static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
870 int min)
871{
872 void *page;
873
874 if (cache->nobjs >= min)
875 return 0;
876 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
877 page = (void *)__get_free_page(GFP_KERNEL);
878 if (!page)
879 return -ENOMEM;
880 cache->objects[cache->nobjs++] = page;
881 }
882 return 0;
883}
884
885static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
886{
887 while (mc->nobjs)
888 free_page((unsigned long)mc->objects[--mc->nobjs]);
889}
890
891static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
892{
893 int r;
894
895 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
896 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
897 if (r)
898 goto out;
899 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
900 if (r)
901 goto out;
902 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
903 mmu_page_header_cache, 4);
904out:
905 return r;
906}
907
908static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
909{
910 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
911 pte_list_desc_cache);
912 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
913 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
914 mmu_page_header_cache);
915}
916
917static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
918{
919 void *p;
920
921 BUG_ON(!mc->nobjs);
922 p = mc->objects[--mc->nobjs];
923 return p;
924}
925
926static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
927{
928 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
929}
930
931static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
932{
933 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
934}
935
936static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
937{
938 if (!sp->role.direct)
939 return sp->gfns[index];
940
941 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
942}
943
944static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
945{
946 if (sp->role.direct)
947 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
948 else
949 sp->gfns[index] = gfn;
950}
951
952
953
954
955
956static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
957 struct kvm_memory_slot *slot,
958 int level)
959{
960 unsigned long idx;
961
962 idx = gfn_to_index(gfn, slot->base_gfn, level);
963 return &slot->arch.lpage_info[level - 2][idx];
964}
965
966static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
967 gfn_t gfn, int count)
968{
969 struct kvm_lpage_info *linfo;
970 int i;
971
972 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
973 linfo = lpage_info_slot(gfn, slot, i);
974 linfo->disallow_lpage += count;
975 WARN_ON(linfo->disallow_lpage < 0);
976 }
977}
978
979void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
980{
981 update_gfn_disallow_lpage_count(slot, gfn, 1);
982}
983
984void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
985{
986 update_gfn_disallow_lpage_count(slot, gfn, -1);
987}
988
989static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
990{
991 struct kvm_memslots *slots;
992 struct kvm_memory_slot *slot;
993 gfn_t gfn;
994
995 kvm->arch.indirect_shadow_pages++;
996 gfn = sp->gfn;
997 slots = kvm_memslots_for_spte_role(kvm, sp->role);
998 slot = __gfn_to_memslot(slots, gfn);
999
1000
1001 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1002 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1003 KVM_PAGE_TRACK_WRITE);
1004
1005 kvm_mmu_gfn_disallow_lpage(slot, gfn);
1006}
1007
1008static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
1009{
1010 struct kvm_memslots *slots;
1011 struct kvm_memory_slot *slot;
1012 gfn_t gfn;
1013
1014 kvm->arch.indirect_shadow_pages--;
1015 gfn = sp->gfn;
1016 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1017 slot = __gfn_to_memslot(slots, gfn);
1018 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1019 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1020 KVM_PAGE_TRACK_WRITE);
1021
1022 kvm_mmu_gfn_allow_lpage(slot, gfn);
1023}
1024
1025static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1026 struct kvm_memory_slot *slot)
1027{
1028 struct kvm_lpage_info *linfo;
1029
1030 if (slot) {
1031 linfo = lpage_info_slot(gfn, slot, level);
1032 return !!linfo->disallow_lpage;
1033 }
1034
1035 return true;
1036}
1037
1038static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1039 int level)
1040{
1041 struct kvm_memory_slot *slot;
1042
1043 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1044 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
1045}
1046
1047static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
1048{
1049 unsigned long page_size;
1050 int i, ret = 0;
1051
1052 page_size = kvm_host_page_size(kvm, gfn);
1053
1054 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1055 if (page_size >= KVM_HPAGE_SIZE(i))
1056 ret = i;
1057 else
1058 break;
1059 }
1060
1061 return ret;
1062}
1063
1064static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1065 bool no_dirty_log)
1066{
1067 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1068 return false;
1069 if (no_dirty_log && slot->dirty_bitmap)
1070 return false;
1071
1072 return true;
1073}
1074
1075static struct kvm_memory_slot *
1076gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1077 bool no_dirty_log)
1078{
1079 struct kvm_memory_slot *slot;
1080
1081 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1082 if (!memslot_valid_for_gpte(slot, no_dirty_log))
1083 slot = NULL;
1084
1085 return slot;
1086}
1087
1088static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1089 bool *force_pt_level)
1090{
1091 int host_level, level, max_level;
1092 struct kvm_memory_slot *slot;
1093
1094 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1095
1096 if (likely(!*force_pt_level))
1097 *force_pt_level = !memslot_valid_for_gpte(slot, true);
1098 if (unlikely(*force_pt_level))
1099 return PT_PAGE_TABLE_LEVEL;
1100
1101 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1102
1103 if (host_level == PT_PAGE_TABLE_LEVEL)
1104 return host_level;
1105
1106 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
1107
1108 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
1109 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
1110 break;
1111
1112 return level - 1;
1113}
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
1127 struct kvm_rmap_head *rmap_head)
1128{
1129 struct pte_list_desc *desc;
1130 int i, count = 0;
1131
1132 if (!rmap_head->val) {
1133 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
1134 rmap_head->val = (unsigned long)spte;
1135 } else if (!(rmap_head->val & 1)) {
1136 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1137 desc = mmu_alloc_pte_list_desc(vcpu);
1138 desc->sptes[0] = (u64 *)rmap_head->val;
1139 desc->sptes[1] = spte;
1140 rmap_head->val = (unsigned long)desc | 1;
1141 ++count;
1142 } else {
1143 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
1144 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1145 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
1146 desc = desc->more;
1147 count += PTE_LIST_EXT;
1148 }
1149 if (desc->sptes[PTE_LIST_EXT-1]) {
1150 desc->more = mmu_alloc_pte_list_desc(vcpu);
1151 desc = desc->more;
1152 }
1153 for (i = 0; desc->sptes[i]; ++i)
1154 ++count;
1155 desc->sptes[i] = spte;
1156 }
1157 return count;
1158}
1159
1160static void
1161pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1162 struct pte_list_desc *desc, int i,
1163 struct pte_list_desc *prev_desc)
1164{
1165 int j;
1166
1167 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
1168 ;
1169 desc->sptes[i] = desc->sptes[j];
1170 desc->sptes[j] = NULL;
1171 if (j != 0)
1172 return;
1173 if (!prev_desc && !desc->more)
1174 rmap_head->val = (unsigned long)desc->sptes[0];
1175 else
1176 if (prev_desc)
1177 prev_desc->more = desc->more;
1178 else
1179 rmap_head->val = (unsigned long)desc->more | 1;
1180 mmu_free_pte_list_desc(desc);
1181}
1182
1183static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1184{
1185 struct pte_list_desc *desc;
1186 struct pte_list_desc *prev_desc;
1187 int i;
1188
1189 if (!rmap_head->val) {
1190 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1191 BUG();
1192 } else if (!(rmap_head->val & 1)) {
1193 rmap_printk("pte_list_remove: %p 1->0\n", spte);
1194 if ((u64 *)rmap_head->val != spte) {
1195 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
1196 BUG();
1197 }
1198 rmap_head->val = 0;
1199 } else {
1200 rmap_printk("pte_list_remove: %p many->many\n", spte);
1201 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1202 prev_desc = NULL;
1203 while (desc) {
1204 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1205 if (desc->sptes[i] == spte) {
1206 pte_list_desc_remove_entry(rmap_head,
1207 desc, i, prev_desc);
1208 return;
1209 }
1210 }
1211 prev_desc = desc;
1212 desc = desc->more;
1213 }
1214 pr_err("pte_list_remove: %p many->many\n", spte);
1215 BUG();
1216 }
1217}
1218
1219typedef void (*pte_list_walk_fn) (u64 *spte);
1220static void pte_list_walk(struct kvm_rmap_head *rmap_head, pte_list_walk_fn fn)
1221{
1222 struct pte_list_desc *desc;
1223 int i;
1224
1225 if (!rmap_head->val)
1226 return;
1227
1228 if (!(rmap_head->val & 1))
1229 return fn((u64 *)rmap_head->val);
1230
1231 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1232 while (desc) {
1233 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1234 fn(desc->sptes[i]);
1235 desc = desc->more;
1236 }
1237}
1238
1239static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1240 struct kvm_memory_slot *slot)
1241{
1242 unsigned long idx;
1243
1244 idx = gfn_to_index(gfn, slot->base_gfn, level);
1245 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1246}
1247
1248static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1249 struct kvm_mmu_page *sp)
1250{
1251 struct kvm_memslots *slots;
1252 struct kvm_memory_slot *slot;
1253
1254 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255 slot = __gfn_to_memslot(slots, gfn);
1256 return __gfn_to_rmap(gfn, sp->role.level, slot);
1257}
1258
1259static bool rmap_can_add(struct kvm_vcpu *vcpu)
1260{
1261 struct kvm_mmu_memory_cache *cache;
1262
1263 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1264 return mmu_memory_cache_free_objects(cache);
1265}
1266
1267static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1268{
1269 struct kvm_mmu_page *sp;
1270 struct kvm_rmap_head *rmap_head;
1271
1272 sp = page_header(__pa(spte));
1273 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1274 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1275 return pte_list_add(vcpu, spte, rmap_head);
1276}
1277
1278static void rmap_remove(struct kvm *kvm, u64 *spte)
1279{
1280 struct kvm_mmu_page *sp;
1281 gfn_t gfn;
1282 struct kvm_rmap_head *rmap_head;
1283
1284 sp = page_header(__pa(spte));
1285 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1286 rmap_head = gfn_to_rmap(kvm, gfn, sp);
1287 pte_list_remove(spte, rmap_head);
1288}
1289
1290
1291
1292
1293
1294struct rmap_iterator {
1295
1296 struct pte_list_desc *desc;
1297 int pos;
1298};
1299
1300
1301
1302
1303
1304
1305
1306
1307static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1308 struct rmap_iterator *iter)
1309{
1310 u64 *sptep;
1311
1312 if (!rmap_head->val)
1313 return NULL;
1314
1315 if (!(rmap_head->val & 1)) {
1316 iter->desc = NULL;
1317 sptep = (u64 *)rmap_head->val;
1318 goto out;
1319 }
1320
1321 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1322 iter->pos = 0;
1323 sptep = iter->desc->sptes[iter->pos];
1324out:
1325 BUG_ON(!is_shadow_present_pte(*sptep));
1326 return sptep;
1327}
1328
1329
1330
1331
1332
1333
1334static u64 *rmap_get_next(struct rmap_iterator *iter)
1335{
1336 u64 *sptep;
1337
1338 if (iter->desc) {
1339 if (iter->pos < PTE_LIST_EXT - 1) {
1340 ++iter->pos;
1341 sptep = iter->desc->sptes[iter->pos];
1342 if (sptep)
1343 goto out;
1344 }
1345
1346 iter->desc = iter->desc->more;
1347
1348 if (iter->desc) {
1349 iter->pos = 0;
1350
1351 sptep = iter->desc->sptes[iter->pos];
1352 goto out;
1353 }
1354 }
1355
1356 return NULL;
1357out:
1358 BUG_ON(!is_shadow_present_pte(*sptep));
1359 return sptep;
1360}
1361
1362#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1363 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1364 _spte_; _spte_ = rmap_get_next(_iter_))
1365
1366static void drop_spte(struct kvm *kvm, u64 *sptep)
1367{
1368 if (mmu_spte_clear_track_bits(sptep))
1369 rmap_remove(kvm, sptep);
1370}
1371
1372
1373static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1374{
1375 if (is_large_pte(*sptep)) {
1376 WARN_ON(page_header(__pa(sptep))->role.level ==
1377 PT_PAGE_TABLE_LEVEL);
1378 drop_spte(kvm, sptep);
1379 --kvm->stat.lpages;
1380 return true;
1381 }
1382
1383 return false;
1384}
1385
1386static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1387{
1388 if (__drop_large_spte(vcpu->kvm, sptep))
1389 kvm_flush_remote_tlbs(vcpu->kvm);
1390}
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405static bool spte_write_protect(u64 *sptep, bool pt_protect)
1406{
1407 u64 spte = *sptep;
1408
1409 if (!is_writable_pte(spte) &&
1410 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1411 return false;
1412
1413 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1414
1415 if (pt_protect)
1416 spte &= ~SPTE_MMU_WRITEABLE;
1417 spte = spte & ~PT_WRITABLE_MASK;
1418
1419 return mmu_spte_update(sptep, spte);
1420}
1421
1422static bool __rmap_write_protect(struct kvm *kvm,
1423 struct kvm_rmap_head *rmap_head,
1424 bool pt_protect)
1425{
1426 u64 *sptep;
1427 struct rmap_iterator iter;
1428 bool flush = false;
1429
1430 for_each_rmap_spte(rmap_head, &iter, sptep)
1431 flush |= spte_write_protect(sptep, pt_protect);
1432
1433 return flush;
1434}
1435
1436static bool spte_clear_dirty(u64 *sptep)
1437{
1438 u64 spte = *sptep;
1439
1440 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1441
1442 spte &= ~shadow_dirty_mask;
1443
1444 return mmu_spte_update(sptep, spte);
1445}
1446
1447static bool wrprot_ad_disabled_spte(u64 *sptep)
1448{
1449 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1450 (unsigned long *)sptep);
1451 if (was_writable)
1452 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1453
1454 return was_writable;
1455}
1456
1457
1458
1459
1460
1461
1462
1463static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1464{
1465 u64 *sptep;
1466 struct rmap_iterator iter;
1467 bool flush = false;
1468
1469 for_each_rmap_spte(rmap_head, &iter, sptep)
1470 if (spte_ad_enabled(*sptep))
1471 flush |= spte_clear_dirty(sptep);
1472 else
1473 flush |= wrprot_ad_disabled_spte(sptep);
1474
1475 return flush;
1476}
1477
1478static bool spte_set_dirty(u64 *sptep)
1479{
1480 u64 spte = *sptep;
1481
1482 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1483
1484 spte |= shadow_dirty_mask;
1485
1486 return mmu_spte_update(sptep, spte);
1487}
1488
1489static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1490{
1491 u64 *sptep;
1492 struct rmap_iterator iter;
1493 bool flush = false;
1494
1495 for_each_rmap_spte(rmap_head, &iter, sptep)
1496 if (spte_ad_enabled(*sptep))
1497 flush |= spte_set_dirty(sptep);
1498
1499 return flush;
1500}
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1513 struct kvm_memory_slot *slot,
1514 gfn_t gfn_offset, unsigned long mask)
1515{
1516 struct kvm_rmap_head *rmap_head;
1517
1518 while (mask) {
1519 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1520 PT_PAGE_TABLE_LEVEL, slot);
1521 __rmap_write_protect(kvm, rmap_head, false);
1522
1523
1524 mask &= mask - 1;
1525 }
1526}
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1539 struct kvm_memory_slot *slot,
1540 gfn_t gfn_offset, unsigned long mask)
1541{
1542 struct kvm_rmap_head *rmap_head;
1543
1544 while (mask) {
1545 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1546 PT_PAGE_TABLE_LEVEL, slot);
1547 __rmap_clear_dirty(kvm, rmap_head);
1548
1549
1550 mask &= mask - 1;
1551 }
1552}
1553EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1566 struct kvm_memory_slot *slot,
1567 gfn_t gfn_offset, unsigned long mask)
1568{
1569 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1570 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1571 mask);
1572 else
1573 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1574}
1575
1576
1577
1578
1579
1580
1581
1582
1583int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1584{
1585 if (kvm_x86_ops->write_log_dirty)
1586 return kvm_x86_ops->write_log_dirty(vcpu);
1587
1588 return 0;
1589}
1590
1591bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1592 struct kvm_memory_slot *slot, u64 gfn)
1593{
1594 struct kvm_rmap_head *rmap_head;
1595 int i;
1596 bool write_protected = false;
1597
1598 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1599 rmap_head = __gfn_to_rmap(gfn, i, slot);
1600 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1601 }
1602
1603 return write_protected;
1604}
1605
1606static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1607{
1608 struct kvm_memory_slot *slot;
1609
1610 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1611 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1612}
1613
1614static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1615{
1616 u64 *sptep;
1617 struct rmap_iterator iter;
1618 bool flush = false;
1619
1620 while ((sptep = rmap_get_first(rmap_head, &iter))) {
1621 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1622
1623 drop_spte(kvm, sptep);
1624 flush = true;
1625 }
1626
1627 return flush;
1628}
1629
1630static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1631 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1632 unsigned long data)
1633{
1634 return kvm_zap_rmapp(kvm, rmap_head);
1635}
1636
1637static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1638 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1639 unsigned long data)
1640{
1641 u64 *sptep;
1642 struct rmap_iterator iter;
1643 int need_flush = 0;
1644 u64 new_spte;
1645 pte_t *ptep = (pte_t *)data;
1646 kvm_pfn_t new_pfn;
1647
1648 WARN_ON(pte_huge(*ptep));
1649 new_pfn = pte_pfn(*ptep);
1650
1651restart:
1652 for_each_rmap_spte(rmap_head, &iter, sptep) {
1653 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1654 sptep, *sptep, gfn, level);
1655
1656 need_flush = 1;
1657
1658 if (pte_write(*ptep)) {
1659 drop_spte(kvm, sptep);
1660 goto restart;
1661 } else {
1662 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1663 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1664
1665 new_spte &= ~PT_WRITABLE_MASK;
1666 new_spte &= ~SPTE_HOST_WRITEABLE;
1667
1668 new_spte = mark_spte_for_access_track(new_spte);
1669
1670 mmu_spte_clear_track_bits(sptep);
1671 mmu_spte_set(sptep, new_spte);
1672 }
1673 }
1674
1675 if (need_flush)
1676 kvm_flush_remote_tlbs(kvm);
1677
1678 return 0;
1679}
1680
1681struct slot_rmap_walk_iterator {
1682
1683 struct kvm_memory_slot *slot;
1684 gfn_t start_gfn;
1685 gfn_t end_gfn;
1686 int start_level;
1687 int end_level;
1688
1689
1690 gfn_t gfn;
1691 struct kvm_rmap_head *rmap;
1692 int level;
1693
1694
1695 struct kvm_rmap_head *end_rmap;
1696};
1697
1698static void
1699rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1700{
1701 iterator->level = level;
1702 iterator->gfn = iterator->start_gfn;
1703 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1704 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1705 iterator->slot);
1706}
1707
1708static void
1709slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1710 struct kvm_memory_slot *slot, int start_level,
1711 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1712{
1713 iterator->slot = slot;
1714 iterator->start_level = start_level;
1715 iterator->end_level = end_level;
1716 iterator->start_gfn = start_gfn;
1717 iterator->end_gfn = end_gfn;
1718
1719 rmap_walk_init_level(iterator, iterator->start_level);
1720}
1721
1722static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1723{
1724 return !!iterator->rmap;
1725}
1726
1727static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1728{
1729 if (++iterator->rmap <= iterator->end_rmap) {
1730 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1731 return;
1732 }
1733
1734 if (++iterator->level > iterator->end_level) {
1735 iterator->rmap = NULL;
1736 return;
1737 }
1738
1739 rmap_walk_init_level(iterator, iterator->level);
1740}
1741
1742#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1743 _start_gfn, _end_gfn, _iter_) \
1744 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1745 _end_level_, _start_gfn, _end_gfn); \
1746 slot_rmap_walk_okay(_iter_); \
1747 slot_rmap_walk_next(_iter_))
1748
1749static int kvm_handle_hva_range(struct kvm *kvm,
1750 unsigned long start,
1751 unsigned long end,
1752 unsigned long data,
1753 int (*handler)(struct kvm *kvm,
1754 struct kvm_rmap_head *rmap_head,
1755 struct kvm_memory_slot *slot,
1756 gfn_t gfn,
1757 int level,
1758 unsigned long data))
1759{
1760 struct kvm_memslots *slots;
1761 struct kvm_memory_slot *memslot;
1762 struct slot_rmap_walk_iterator iterator;
1763 int ret = 0;
1764 int i;
1765
1766 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1767 slots = __kvm_memslots(kvm, i);
1768 kvm_for_each_memslot(memslot, slots) {
1769 unsigned long hva_start, hva_end;
1770 gfn_t gfn_start, gfn_end;
1771
1772 hva_start = max(start, memslot->userspace_addr);
1773 hva_end = min(end, memslot->userspace_addr +
1774 (memslot->npages << PAGE_SHIFT));
1775 if (hva_start >= hva_end)
1776 continue;
1777
1778
1779
1780
1781 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1782 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1783
1784 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1785 PT_MAX_HUGEPAGE_LEVEL,
1786 gfn_start, gfn_end - 1,
1787 &iterator)
1788 ret |= handler(kvm, iterator.rmap, memslot,
1789 iterator.gfn, iterator.level, data);
1790 }
1791 }
1792
1793 return ret;
1794}
1795
1796static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1797 unsigned long data,
1798 int (*handler)(struct kvm *kvm,
1799 struct kvm_rmap_head *rmap_head,
1800 struct kvm_memory_slot *slot,
1801 gfn_t gfn, int level,
1802 unsigned long data))
1803{
1804 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1805}
1806
1807int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1808{
1809 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1810}
1811
1812int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1813{
1814 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1815}
1816
1817void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1818{
1819 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1820}
1821
1822static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1823 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1824 unsigned long data)
1825{
1826 u64 *sptep;
1827 struct rmap_iterator uninitialized_var(iter);
1828 int young = 0;
1829
1830 for_each_rmap_spte(rmap_head, &iter, sptep)
1831 young |= mmu_spte_age(sptep);
1832
1833 trace_kvm_age_page(gfn, level, slot, young);
1834 return young;
1835}
1836
1837static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1838 struct kvm_memory_slot *slot, gfn_t gfn,
1839 int level, unsigned long data)
1840{
1841 u64 *sptep;
1842 struct rmap_iterator iter;
1843
1844 for_each_rmap_spte(rmap_head, &iter, sptep)
1845 if (is_accessed_spte(*sptep))
1846 return 1;
1847 return 0;
1848}
1849
1850#define RMAP_RECYCLE_THRESHOLD 1000
1851
1852static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1853{
1854 struct kvm_rmap_head *rmap_head;
1855 struct kvm_mmu_page *sp;
1856
1857 sp = page_header(__pa(spte));
1858
1859 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1860
1861 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1862 kvm_flush_remote_tlbs(vcpu->kvm);
1863}
1864
1865int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1866{
1867 return kvm_handle_hva_range(kvm, hva, hva + PAGE_SIZE, 0, kvm_age_rmapp);
1868}
1869
1870int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1871{
1872 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1873}
1874
1875#ifdef MMU_DEBUG
1876static int is_empty_shadow_page(u64 *spt)
1877{
1878 u64 *pos;
1879 u64 *end;
1880
1881 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1882 if (is_shadow_present_pte(*pos)) {
1883 printk(KERN_ERR "%s: %p %llx\n", __func__,
1884 pos, *pos);
1885 return 0;
1886 }
1887 return 1;
1888}
1889#endif
1890
1891
1892
1893
1894
1895
1896
1897static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1898{
1899 kvm->arch.n_used_mmu_pages += nr;
1900 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1901}
1902
1903static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1904{
1905 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1906 hlist_del(&sp->hash_link);
1907 list_del(&sp->link);
1908 free_page((unsigned long)sp->spt);
1909 if (!sp->role.direct)
1910 free_page((unsigned long)sp->gfns);
1911 kmem_cache_free(mmu_page_header_cache, sp);
1912}
1913
1914static unsigned kvm_page_table_hashfn(gfn_t gfn)
1915{
1916 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1917}
1918
1919static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1920 struct kvm_mmu_page *sp, u64 *parent_pte)
1921{
1922 if (!parent_pte)
1923 return;
1924
1925 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1926}
1927
1928static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1929 u64 *parent_pte)
1930{
1931 pte_list_remove(parent_pte, &sp->parent_ptes);
1932}
1933
1934static void drop_parent_pte(struct kvm_mmu_page *sp,
1935 u64 *parent_pte)
1936{
1937 mmu_page_remove_parent_pte(sp, parent_pte);
1938 mmu_spte_clear_no_track(parent_pte);
1939}
1940
1941static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1942 u64 *parent_pte, int direct)
1943{
1944 struct kvm_mmu_page *sp;
1945
1946 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1947 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1948 if (!direct)
1949 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1950 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1951
1952
1953
1954
1955
1956
1957 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1958 sp->parent_ptes.val = 0;
1959 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1960 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1961 return sp;
1962}
1963
1964static void mark_unsync(u64 *spte);
1965static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1966{
1967 pte_list_walk(&sp->parent_ptes, mark_unsync);
1968}
1969
1970static void mark_unsync(u64 *spte)
1971{
1972 struct kvm_mmu_page *sp;
1973 unsigned int index;
1974
1975 sp = page_header(__pa(spte));
1976 index = spte - sp->spt;
1977 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1978 return;
1979 if (sp->unsync_children++)
1980 return;
1981 kvm_mmu_mark_parents_unsync(sp);
1982}
1983
1984static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1985 struct kvm_mmu_page *sp)
1986{
1987 return 1;
1988}
1989
1990static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1991{
1992}
1993
1994static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1995 struct kvm_mmu_page *sp, u64 *spte,
1996 const void *pte)
1997{
1998 WARN_ON(1);
1999}
2000
2001#define KVM_PAGE_ARRAY_NR 16
2002
2003struct kvm_mmu_pages {
2004 struct mmu_page_and_offset {
2005 struct kvm_mmu_page *sp;
2006 unsigned int idx;
2007 } page[KVM_PAGE_ARRAY_NR];
2008 unsigned int nr;
2009};
2010
2011static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2012 int idx)
2013{
2014 int i;
2015
2016 if (sp->unsync)
2017 for (i=0; i < pvec->nr; i++)
2018 if (pvec->page[i].sp == sp)
2019 return 0;
2020
2021 pvec->page[pvec->nr].sp = sp;
2022 pvec->page[pvec->nr].idx = idx;
2023 pvec->nr++;
2024 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2025}
2026
2027static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2028 struct kvm_mmu_pages *pvec)
2029{
2030 int i, ret, nr_unsync_leaf = 0;
2031
2032 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
2033 struct kvm_mmu_page *child;
2034 u64 ent = sp->spt[i];
2035
2036 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
2037 goto clear_child_bitmap;
2038
2039 child = page_header(ent & PT64_BASE_ADDR_MASK);
2040
2041 if (child->unsync_children) {
2042 if (mmu_pages_add(pvec, child, i))
2043 return -ENOSPC;
2044
2045 ret = __mmu_unsync_walk(child, pvec);
2046 if (!ret)
2047 goto clear_child_bitmap;
2048 else if (ret > 0)
2049 nr_unsync_leaf += ret;
2050 else
2051 return ret;
2052 } else if (child->unsync) {
2053 nr_unsync_leaf++;
2054 if (mmu_pages_add(pvec, child, i))
2055 return -ENOSPC;
2056 } else
2057 goto clear_child_bitmap;
2058
2059 continue;
2060
2061clear_child_bitmap:
2062 __clear_bit(i, sp->unsync_child_bitmap);
2063 sp->unsync_children--;
2064 WARN_ON((int)sp->unsync_children < 0);
2065 }
2066
2067
2068 return nr_unsync_leaf;
2069}
2070
2071static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2072 struct kvm_mmu_pages *pvec)
2073{
2074 if (!sp->unsync_children)
2075 return 0;
2076
2077 mmu_pages_add(pvec, sp, 0);
2078 return __mmu_unsync_walk(sp, pvec);
2079}
2080
2081static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2082{
2083 WARN_ON(!sp->unsync);
2084 trace_kvm_mmu_sync_page(sp);
2085 sp->unsync = 0;
2086 --kvm->stat.mmu_unsync;
2087}
2088
2089static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2090 struct list_head *invalid_list);
2091static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2092 struct list_head *invalid_list);
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104#define for_each_gfn_sp(_kvm, _sp, _gfn) \
2105 hlist_for_each_entry(_sp, \
2106 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
2107 if ((_sp)->gfn != (_gfn)) {} else
2108
2109#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
2110 for_each_gfn_sp(_kvm, _sp, _gfn) \
2111 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
2112
2113
2114static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2115 struct list_head *invalid_list, bool clear_unsync)
2116{
2117 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
2118 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2119 return 1;
2120 }
2121
2122 if (clear_unsync)
2123 kvm_unlink_unsync_page(vcpu->kvm, sp);
2124
2125 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
2126 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
2127 return 1;
2128 }
2129
2130 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2131 return 0;
2132}
2133
2134static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
2135 struct kvm_mmu_page *sp)
2136{
2137 LIST_HEAD(invalid_list);
2138 int ret;
2139
2140 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
2141 if (ret)
2142 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2143
2144 return ret;
2145}
2146
2147#ifdef CONFIG_KVM_MMU_AUDIT
2148#include "mmu_audit.c"
2149#else
2150static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2151static void mmu_audit_disable(void) { }
2152#endif
2153
2154static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2155 struct list_head *invalid_list)
2156{
2157 return __kvm_sync_page(vcpu, sp, invalid_list, true);
2158}
2159
2160
2161static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2162{
2163 struct kvm_mmu_page *s;
2164 LIST_HEAD(invalid_list);
2165 bool flush = false;
2166
2167 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2168 if (!s->unsync)
2169 continue;
2170
2171 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2172 kvm_unlink_unsync_page(vcpu->kvm, s);
2173 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
2174 (vcpu->arch.mmu.sync_page(vcpu, s))) {
2175 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
2176 continue;
2177 }
2178 flush = true;
2179 }
2180
2181 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2182 if (flush)
2183 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2184}
2185
2186struct mmu_page_path {
2187 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
2188 unsigned int idx[PT64_ROOT_LEVEL-1];
2189};
2190
2191#define for_each_sp(pvec, sp, parents, i) \
2192 for (i = mmu_pages_next(&pvec, &parents, -1), \
2193 sp = pvec.page[i].sp; \
2194 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2195 i = mmu_pages_next(&pvec, &parents, i))
2196
2197static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2198 struct mmu_page_path *parents,
2199 int i)
2200{
2201 int n;
2202
2203 for (n = i+1; n < pvec->nr; n++) {
2204 struct kvm_mmu_page *sp = pvec->page[n].sp;
2205
2206 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
2207 parents->idx[0] = pvec->page[n].idx;
2208 return n;
2209 }
2210
2211 parents->parent[sp->role.level-2] = sp;
2212 parents->idx[sp->role.level-1] = pvec->page[n].idx;
2213 }
2214
2215 return n;
2216}
2217
2218static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2219{
2220 struct kvm_mmu_page *sp;
2221 unsigned int level = 0;
2222
2223 do {
2224 unsigned int idx = parents->idx[level];
2225
2226 sp = parents->parent[level];
2227 if (!sp)
2228 return;
2229
2230 --sp->unsync_children;
2231 WARN_ON((int)sp->unsync_children < 0);
2232 __clear_bit(idx, sp->unsync_child_bitmap);
2233 level++;
2234 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2235}
2236
2237static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2238 struct mmu_page_path *parents,
2239 struct kvm_mmu_pages *pvec)
2240{
2241 parents->parent[parent->role.level-1] = NULL;
2242 pvec->nr = 0;
2243}
2244
2245static void mmu_sync_children(struct kvm_vcpu *vcpu,
2246 struct kvm_mmu_page *parent)
2247{
2248 int i;
2249 struct kvm_mmu_page *sp;
2250 struct mmu_page_path parents;
2251 struct kvm_mmu_pages pages;
2252 LIST_HEAD(invalid_list);
2253
2254 kvm_mmu_pages_init(parent, &parents, &pages);
2255 while (mmu_unsync_walk(parent, &pages)) {
2256 bool protected = false;
2257
2258 for_each_sp(pages, sp, parents, i)
2259 protected |= rmap_write_protect(vcpu, sp->gfn);
2260
2261 if (protected)
2262 kvm_flush_remote_tlbs(vcpu->kvm);
2263
2264 for_each_sp(pages, sp, parents, i) {
2265 kvm_sync_page(vcpu, sp, &invalid_list);
2266 mmu_pages_clear_parents(&parents);
2267 }
2268 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2269 cond_resched_lock(&vcpu->kvm->mmu_lock);
2270 kvm_mmu_pages_init(parent, &parents, &pages);
2271 }
2272}
2273
2274static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2275{
2276 atomic_set(&sp->write_flooding_count, 0);
2277}
2278
2279static void clear_sp_write_flooding_count(u64 *spte)
2280{
2281 struct kvm_mmu_page *sp = page_header(__pa(spte));
2282
2283 __clear_sp_write_flooding_count(sp);
2284}
2285
2286static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2287{
2288 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2289}
2290
2291static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2292 gfn_t gfn,
2293 gva_t gaddr,
2294 unsigned level,
2295 int direct,
2296 unsigned access,
2297 u64 *parent_pte)
2298{
2299 union kvm_mmu_page_role role;
2300 unsigned quadrant;
2301 struct kvm_mmu_page *sp;
2302 bool need_sync = false;
2303
2304 role = vcpu->arch.mmu.base_role;
2305 role.level = level;
2306 role.direct = direct;
2307 if (role.direct)
2308 role.cr4_pae = 0;
2309 role.access = access;
2310 if (!vcpu->arch.mmu.direct_map
2311 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2312 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2313 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2314 role.quadrant = quadrant;
2315 }
2316 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2317 if (is_obsolete_sp(vcpu->kvm, sp))
2318 continue;
2319
2320 if (!need_sync && sp->unsync)
2321 need_sync = true;
2322
2323 if (sp->role.word != role.word)
2324 continue;
2325
2326 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2327 break;
2328
2329 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2330 if (sp->unsync_children) {
2331 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2332 kvm_mmu_mark_parents_unsync(sp);
2333 } else if (sp->unsync)
2334 kvm_mmu_mark_parents_unsync(sp);
2335
2336 __clear_sp_write_flooding_count(sp);
2337 trace_kvm_mmu_get_page(sp, false);
2338 return sp;
2339 }
2340 ++vcpu->kvm->stat.mmu_cache_miss;
2341 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2342 if (!sp)
2343 return sp;
2344 sp->gfn = gfn;
2345 sp->role = role;
2346 hlist_add_head(&sp->hash_link,
2347 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2348 if (!direct) {
2349
2350
2351
2352
2353
2354 account_shadowed(vcpu->kvm, sp);
2355 if (level == PT_PAGE_TABLE_LEVEL &&
2356 rmap_write_protect(vcpu, gfn))
2357 kvm_flush_remote_tlbs(vcpu->kvm);
2358
2359 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2360 kvm_sync_pages(vcpu, gfn);
2361 }
2362 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2363 clear_page(sp->spt);
2364 trace_kvm_mmu_get_page(sp, true);
2365 return sp;
2366}
2367
2368static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2369 struct kvm_vcpu *vcpu, u64 addr)
2370{
2371 iterator->addr = addr;
2372 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2373 iterator->level = vcpu->arch.mmu.shadow_root_level;
2374
2375 if (iterator->level == PT64_ROOT_LEVEL &&
2376 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2377 !vcpu->arch.mmu.direct_map)
2378 --iterator->level;
2379
2380 if (iterator->level == PT32E_ROOT_LEVEL) {
2381 iterator->shadow_addr
2382 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2383 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2384 --iterator->level;
2385 if (!iterator->shadow_addr)
2386 iterator->level = 0;
2387 }
2388}
2389
2390static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2391{
2392 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2393 return false;
2394
2395 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2396 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2397 return true;
2398}
2399
2400static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2401 u64 spte)
2402{
2403 if (is_last_spte(spte, iterator->level)) {
2404 iterator->level = 0;
2405 return;
2406 }
2407
2408 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2409 --iterator->level;
2410}
2411
2412static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2413{
2414 return __shadow_walk_next(iterator, *iterator->sptep);
2415}
2416
2417static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2418{
2419 u64 spte;
2420
2421 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2422
2423 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
2424 shadow_user_mask | shadow_x_mask | shadow_me_mask;
2425
2426 if (sp_ad_disabled(sp))
2427 spte |= shadow_acc_track_value;
2428 else
2429 spte |= shadow_accessed_mask;
2430
2431 mmu_spte_set(sptep, spte);
2432}
2433
2434static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2435 unsigned direct_access)
2436{
2437 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2438 struct kvm_mmu_page *child;
2439
2440
2441
2442
2443
2444
2445
2446
2447 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2448 if (child->role.access == direct_access)
2449 return;
2450
2451 drop_parent_pte(child, sptep);
2452 kvm_flush_remote_tlbs(vcpu->kvm);
2453 }
2454}
2455
2456static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2457 u64 *spte)
2458{
2459 u64 pte;
2460 struct kvm_mmu_page *child;
2461
2462 pte = *spte;
2463 if (is_shadow_present_pte(pte)) {
2464 if (is_last_spte(pte, sp->role.level)) {
2465 drop_spte(kvm, spte);
2466 if (is_large_pte(pte))
2467 --kvm->stat.lpages;
2468 } else {
2469 child = page_header(pte & PT64_BASE_ADDR_MASK);
2470 drop_parent_pte(child, spte);
2471 }
2472 return true;
2473 }
2474
2475 if (is_mmio_spte(pte))
2476 mmu_spte_clear_no_track(spte);
2477
2478 return false;
2479}
2480
2481static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2482 struct kvm_mmu_page *sp)
2483{
2484 unsigned i;
2485
2486 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2487 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2488}
2489
2490static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2491{
2492 mmu_page_remove_parent_pte(sp, parent_pte);
2493}
2494
2495static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2496{
2497 u64 *sptep;
2498 struct rmap_iterator iter;
2499
2500 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2501 drop_parent_pte(sp, sptep);
2502}
2503
2504static int mmu_zap_unsync_children(struct kvm *kvm,
2505 struct kvm_mmu_page *parent,
2506 struct list_head *invalid_list)
2507{
2508 int i, zapped = 0;
2509 struct mmu_page_path parents;
2510 struct kvm_mmu_pages pages;
2511
2512 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2513 return 0;
2514
2515 kvm_mmu_pages_init(parent, &parents, &pages);
2516 while (mmu_unsync_walk(parent, &pages)) {
2517 struct kvm_mmu_page *sp;
2518
2519 for_each_sp(pages, sp, parents, i) {
2520 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2521 mmu_pages_clear_parents(&parents);
2522 zapped++;
2523 }
2524 kvm_mmu_pages_init(parent, &parents, &pages);
2525 }
2526
2527 return zapped;
2528}
2529
2530static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2531 struct list_head *invalid_list)
2532{
2533 int ret;
2534
2535 trace_kvm_mmu_prepare_zap_page(sp);
2536 ++kvm->stat.mmu_shadow_zapped;
2537 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2538 kvm_mmu_page_unlink_children(kvm, sp);
2539 kvm_mmu_unlink_parents(kvm, sp);
2540
2541 if (!sp->role.invalid && !sp->role.direct)
2542 unaccount_shadowed(kvm, sp);
2543
2544 if (sp->unsync)
2545 kvm_unlink_unsync_page(kvm, sp);
2546 if (!sp->root_count) {
2547
2548 ret++;
2549 list_move(&sp->link, invalid_list);
2550 kvm_mod_used_mmu_pages(kvm, -1);
2551 } else {
2552 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2553
2554
2555
2556
2557
2558 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2559 kvm_reload_remote_mmus(kvm);
2560 }
2561
2562 sp->role.invalid = 1;
2563 return ret;
2564}
2565
2566static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2567 struct list_head *invalid_list)
2568{
2569 struct kvm_mmu_page *sp, *nsp;
2570
2571 if (list_empty(invalid_list))
2572 return;
2573
2574
2575
2576
2577
2578 smp_mb();
2579
2580
2581
2582
2583
2584 kvm_flush_remote_tlbs(kvm);
2585
2586 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2587 WARN_ON(!sp->role.invalid || sp->root_count);
2588 kvm_mmu_free_page(sp);
2589 }
2590}
2591
2592static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2593 struct list_head *invalid_list)
2594{
2595 struct kvm_mmu_page *sp;
2596
2597 if (list_empty(&kvm->arch.active_mmu_pages))
2598 return false;
2599
2600 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2601 struct kvm_mmu_page, link);
2602 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2603}
2604
2605
2606
2607
2608
2609void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2610{
2611 LIST_HEAD(invalid_list);
2612
2613 spin_lock(&kvm->mmu_lock);
2614
2615 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2616
2617 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2618 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2619 break;
2620
2621 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2622 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2623 }
2624
2625 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2626
2627 spin_unlock(&kvm->mmu_lock);
2628}
2629
2630int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2631{
2632 struct kvm_mmu_page *sp;
2633 LIST_HEAD(invalid_list);
2634 int r;
2635
2636 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2637 r = 0;
2638 spin_lock(&kvm->mmu_lock);
2639 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2640 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2641 sp->role.word);
2642 r = 1;
2643 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2644 }
2645 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2646 spin_unlock(&kvm->mmu_lock);
2647
2648 return r;
2649}
2650EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2651
2652static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2653{
2654 trace_kvm_mmu_unsync_page(sp);
2655 ++vcpu->kvm->stat.mmu_unsync;
2656 sp->unsync = 1;
2657
2658 kvm_mmu_mark_parents_unsync(sp);
2659}
2660
2661static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2662 bool can_unsync)
2663{
2664 struct kvm_mmu_page *sp;
2665
2666 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2667 return true;
2668
2669 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2670 if (!can_unsync)
2671 return true;
2672
2673 if (sp->unsync)
2674 continue;
2675
2676 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2677 kvm_unsync_page(vcpu, sp);
2678 }
2679
2680 return false;
2681}
2682
2683static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2684{
2685 if (pfn_valid(pfn))
2686 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2687
2688 return true;
2689}
2690
2691static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2692 unsigned pte_access, int level,
2693 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2694 bool can_unsync, bool host_writable)
2695{
2696 u64 spte = 0;
2697 int ret = 0;
2698 struct kvm_mmu_page *sp;
2699
2700 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2701 return 0;
2702
2703 sp = page_header(__pa(sptep));
2704 if (sp_ad_disabled(sp))
2705 spte |= shadow_acc_track_value;
2706
2707
2708
2709
2710
2711
2712
2713 spte |= shadow_present_mask;
2714 if (!speculative)
2715 spte |= spte_shadow_accessed_mask(spte);
2716
2717 if (pte_access & ACC_EXEC_MASK)
2718 spte |= shadow_x_mask;
2719 else
2720 spte |= shadow_nx_mask;
2721
2722 if (pte_access & ACC_USER_MASK)
2723 spte |= shadow_user_mask;
2724
2725 if (level > PT_PAGE_TABLE_LEVEL)
2726 spte |= PT_PAGE_SIZE_MASK;
2727 if (tdp_enabled)
2728 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2729 kvm_is_mmio_pfn(pfn));
2730
2731 if (host_writable)
2732 spte |= SPTE_HOST_WRITEABLE;
2733 else
2734 pte_access &= ~ACC_WRITE_MASK;
2735
2736 spte |= (u64)pfn << PAGE_SHIFT;
2737 spte |= shadow_me_mask;
2738
2739 if (pte_access & ACC_WRITE_MASK) {
2740
2741
2742
2743
2744
2745
2746
2747 if (level > PT_PAGE_TABLE_LEVEL &&
2748 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2749 goto done;
2750
2751 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2752
2753
2754
2755
2756
2757
2758
2759 if (!can_unsync && is_writable_pte(*sptep))
2760 goto set_pte;
2761
2762 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2763 pgprintk("%s: found shadow page for %llx, marking ro\n",
2764 __func__, gfn);
2765 ret = 1;
2766 pte_access &= ~ACC_WRITE_MASK;
2767 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2768 }
2769 }
2770
2771 if (pte_access & ACC_WRITE_MASK) {
2772 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2773 spte |= spte_shadow_dirty_mask(spte);
2774 }
2775
2776 if (speculative)
2777 spte = mark_spte_for_access_track(spte);
2778
2779set_pte:
2780 if (mmu_spte_update(sptep, spte))
2781 kvm_flush_remote_tlbs(vcpu->kvm);
2782done:
2783 return ret;
2784}
2785
2786static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2787 unsigned pte_access, int write_fault, int *emulate,
2788 int level, gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2789 bool host_writable)
2790{
2791 int was_rmapped = 0;
2792 int rmap_count;
2793
2794 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2795 *sptep, write_fault, gfn);
2796
2797 if (is_shadow_present_pte(*sptep)) {
2798
2799
2800
2801
2802 if (level > PT_PAGE_TABLE_LEVEL &&
2803 !is_large_pte(*sptep)) {
2804 struct kvm_mmu_page *child;
2805 u64 pte = *sptep;
2806
2807 child = page_header(pte & PT64_BASE_ADDR_MASK);
2808 drop_parent_pte(child, sptep);
2809 kvm_flush_remote_tlbs(vcpu->kvm);
2810 } else if (pfn != spte_to_pfn(*sptep)) {
2811 pgprintk("hfn old %llx new %llx\n",
2812 spte_to_pfn(*sptep), pfn);
2813 drop_spte(vcpu->kvm, sptep);
2814 kvm_flush_remote_tlbs(vcpu->kvm);
2815 } else
2816 was_rmapped = 1;
2817 }
2818
2819 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2820 true, host_writable)) {
2821 if (write_fault)
2822 *emulate = 1;
2823 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2824 }
2825
2826 if (unlikely(is_mmio_spte(*sptep) && emulate))
2827 *emulate = 1;
2828
2829 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2830 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2831 is_large_pte(*sptep)? "2MB" : "4kB",
2832 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
2833 *sptep, sptep);
2834 if (!was_rmapped && is_large_pte(*sptep))
2835 ++vcpu->kvm->stat.lpages;
2836
2837 if (is_shadow_present_pte(*sptep)) {
2838 if (!was_rmapped) {
2839 rmap_count = rmap_add(vcpu, sptep, gfn);
2840 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2841 rmap_recycle(vcpu, sptep, gfn);
2842 }
2843 }
2844
2845 kvm_release_pfn_clean(pfn);
2846}
2847
2848static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2849 bool no_dirty_log)
2850{
2851 struct kvm_memory_slot *slot;
2852
2853 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2854 if (!slot)
2855 return KVM_PFN_ERR_FAULT;
2856
2857 return gfn_to_pfn_memslot_atomic(slot, gfn);
2858}
2859
2860static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2861 struct kvm_mmu_page *sp,
2862 u64 *start, u64 *end)
2863{
2864 struct page *pages[PTE_PREFETCH_NUM];
2865 struct kvm_memory_slot *slot;
2866 unsigned access = sp->role.access;
2867 int i, ret;
2868 gfn_t gfn;
2869
2870 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2871 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2872 if (!slot)
2873 return -1;
2874
2875 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2876 if (ret <= 0)
2877 return -1;
2878
2879 for (i = 0; i < ret; i++, gfn++, start++)
2880 mmu_set_spte(vcpu, start, access, 0, NULL,
2881 sp->role.level, gfn, page_to_pfn(pages[i]),
2882 true, true);
2883
2884 return 0;
2885}
2886
2887static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2888 struct kvm_mmu_page *sp, u64 *sptep)
2889{
2890 u64 *spte, *start = NULL;
2891 int i;
2892
2893 WARN_ON(!sp->role.direct);
2894
2895 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2896 spte = sp->spt + i;
2897
2898 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2899 if (is_shadow_present_pte(*spte) || spte == sptep) {
2900 if (!start)
2901 continue;
2902 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2903 break;
2904 start = NULL;
2905 } else if (!start)
2906 start = spte;
2907 }
2908}
2909
2910static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2911{
2912 struct kvm_mmu_page *sp;
2913
2914 sp = page_header(__pa(sptep));
2915
2916
2917
2918
2919
2920
2921 if (sp_ad_disabled(sp))
2922 return;
2923
2924 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2925 return;
2926
2927 __direct_pte_prefetch(vcpu, sp, sptep);
2928}
2929
2930static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2931 int map_writable, int level, gfn_t gfn, kvm_pfn_t pfn,
2932 bool prefault)
2933{
2934 struct kvm_shadow_walk_iterator iterator;
2935 struct kvm_mmu_page *sp;
2936 int emulate = 0;
2937 gfn_t pseudo_gfn;
2938
2939 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2940 return 0;
2941
2942 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2943 if (iterator.level == level) {
2944 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2945 write, &emulate, level, gfn, pfn,
2946 prefault, map_writable);
2947 direct_pte_prefetch(vcpu, iterator.sptep);
2948 ++vcpu->stat.pf_fixed;
2949 break;
2950 }
2951
2952 drop_large_spte(vcpu, iterator.sptep);
2953 if (!is_shadow_present_pte(*iterator.sptep)) {
2954 u64 base_addr = iterator.addr;
2955
2956 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2957 pseudo_gfn = base_addr >> PAGE_SHIFT;
2958 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2959 iterator.level - 1,
2960 1, ACC_ALL, iterator.sptep);
2961
2962 link_shadow_page(iterator.sptep, sp);
2963 }
2964 }
2965 return emulate;
2966}
2967
2968static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2969{
2970 siginfo_t info;
2971
2972 info.si_signo = SIGBUS;
2973 info.si_errno = 0;
2974 info.si_code = BUS_MCEERR_AR;
2975 info.si_addr = (void __user *)address;
2976 info.si_addr_lsb = PAGE_SHIFT;
2977
2978 send_sig_info(SIGBUS, &info, tsk);
2979}
2980
2981static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2982{
2983
2984
2985
2986
2987
2988
2989 if (pfn == KVM_PFN_ERR_RO_FAULT)
2990 return 1;
2991
2992 if (pfn == KVM_PFN_ERR_HWPOISON) {
2993 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2994 return 0;
2995 }
2996
2997 return -EFAULT;
2998}
2999
3000static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
3001 gfn_t *gfnp, kvm_pfn_t *pfnp,
3002 int *levelp)
3003{
3004 kvm_pfn_t pfn = *pfnp;
3005 gfn_t gfn = *gfnp;
3006 int level = *levelp;
3007
3008
3009
3010
3011
3012
3013
3014 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
3015 level == PT_PAGE_TABLE_LEVEL &&
3016 PageTransCompound(pfn_to_page(pfn)) &&
3017 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
3018 unsigned long mask;
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028 *levelp = level = PT_DIRECTORY_LEVEL;
3029 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3030 VM_BUG_ON((gfn & mask) != (pfn & mask));
3031 if (pfn & mask) {
3032 gfn &= ~mask;
3033 *gfnp = gfn;
3034 kvm_release_pfn_clean(pfn);
3035 pfn &= ~mask;
3036 kvm_get_pfn(pfn);
3037 *pfnp = pfn;
3038 }
3039 }
3040}
3041
3042static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
3043 kvm_pfn_t pfn, unsigned access, int *ret_val)
3044{
3045 bool ret = true;
3046
3047
3048 if (unlikely(is_error_pfn(pfn))) {
3049 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
3050 goto exit;
3051 }
3052
3053 if (unlikely(is_noslot_pfn(pfn)))
3054 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
3055
3056 ret = false;
3057exit:
3058 return ret;
3059}
3060
3061static bool page_fault_can_be_fast(u32 error_code)
3062{
3063
3064
3065
3066
3067 if (unlikely(error_code & PFERR_RSVD_MASK))
3068 return false;
3069
3070
3071 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3072 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3073 return false;
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089 return shadow_acc_track_mask != 0 ||
3090 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3091 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
3092}
3093
3094
3095
3096
3097
3098static bool
3099fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
3100 u64 *sptep, u64 old_spte, u64 new_spte)
3101{
3102 gfn_t gfn;
3103
3104 WARN_ON(!sp->role.direct);
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3119 return false;
3120
3121 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3122
3123
3124
3125
3126 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3127 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3128 }
3129
3130 return true;
3131}
3132
3133static bool is_access_allowed(u32 fault_err_code, u64 spte)
3134{
3135 if (fault_err_code & PFERR_FETCH_MASK)
3136 return is_executable_pte(spte);
3137
3138 if (fault_err_code & PFERR_WRITE_MASK)
3139 return is_writable_pte(spte);
3140
3141
3142 return spte & PT_PRESENT_MASK;
3143}
3144
3145
3146
3147
3148
3149
3150static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3151 u32 error_code)
3152{
3153 struct kvm_shadow_walk_iterator iterator;
3154 struct kvm_mmu_page *sp;
3155 bool fault_handled = false;
3156 u64 spte = 0ull;
3157 uint retry_count = 0;
3158
3159 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3160 return false;
3161
3162 if (!page_fault_can_be_fast(error_code))
3163 return false;
3164
3165 walk_shadow_page_lockless_begin(vcpu);
3166
3167 do {
3168 u64 new_spte;
3169
3170 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3171 if (!is_shadow_present_pte(spte) ||
3172 iterator.level < level)
3173 break;
3174
3175 sp = page_header(__pa(iterator.sptep));
3176 if (!is_last_spte(spte, sp->role.level))
3177 break;
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189 if (is_access_allowed(error_code, spte)) {
3190 fault_handled = true;
3191 break;
3192 }
3193
3194 new_spte = spte;
3195
3196 if (is_access_track_spte(spte))
3197 new_spte = restore_acc_track_spte(new_spte);
3198
3199
3200
3201
3202
3203
3204 if ((error_code & PFERR_WRITE_MASK) &&
3205 spte_can_locklessly_be_made_writable(spte))
3206 {
3207 new_spte |= PT_WRITABLE_MASK;
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3221 break;
3222 }
3223
3224
3225 if (new_spte == spte ||
3226 !is_access_allowed(error_code, new_spte))
3227 break;
3228
3229
3230
3231
3232
3233
3234 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
3235 iterator.sptep, spte,
3236 new_spte);
3237 if (fault_handled)
3238 break;
3239
3240 if (++retry_count > 4) {
3241 printk_once(KERN_WARNING
3242 "kvm: Fast #PF retrying more than 4 times.\n");
3243 break;
3244 }
3245
3246 } while (true);
3247
3248 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3249 spte, fault_handled);
3250 walk_shadow_page_lockless_end(vcpu);
3251
3252 return fault_handled;
3253}
3254
3255static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3256 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3257static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3258
3259static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3260 gfn_t gfn, bool prefault)
3261{
3262 int r;
3263 int level;
3264 bool force_pt_level = false;
3265 kvm_pfn_t pfn;
3266 unsigned long mmu_seq;
3267 bool map_writable, write = error_code & PFERR_WRITE_MASK;
3268
3269 level = mapping_level(vcpu, gfn, &force_pt_level);
3270 if (likely(!force_pt_level)) {
3271
3272
3273
3274
3275
3276 if (level > PT_DIRECTORY_LEVEL)
3277 level = PT_DIRECTORY_LEVEL;
3278
3279 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3280 }
3281
3282 if (fast_page_fault(vcpu, v, level, error_code))
3283 return 0;
3284
3285 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3286 smp_rmb();
3287
3288 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3289 return 0;
3290
3291 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3292 return r;
3293
3294 spin_lock(&vcpu->kvm->mmu_lock);
3295 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3296 goto out_unlock;
3297 make_mmu_pages_available(vcpu);
3298 if (likely(!force_pt_level))
3299 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3300 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3301 prefault);
3302 spin_unlock(&vcpu->kvm->mmu_lock);
3303
3304
3305 return r;
3306
3307out_unlock:
3308 spin_unlock(&vcpu->kvm->mmu_lock);
3309 kvm_release_pfn_clean(pfn);
3310 return 0;
3311}
3312
3313
3314static void mmu_free_roots(struct kvm_vcpu *vcpu)
3315{
3316 int i;
3317 struct kvm_mmu_page *sp;
3318 LIST_HEAD(invalid_list);
3319
3320 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3321 return;
3322
3323 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3324 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3325 vcpu->arch.mmu.direct_map)) {
3326 hpa_t root = vcpu->arch.mmu.root_hpa;
3327
3328 spin_lock(&vcpu->kvm->mmu_lock);
3329 sp = page_header(root);
3330 --sp->root_count;
3331 if (!sp->root_count && sp->role.invalid) {
3332 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3333 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3334 }
3335 spin_unlock(&vcpu->kvm->mmu_lock);
3336 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3337 return;
3338 }
3339
3340 spin_lock(&vcpu->kvm->mmu_lock);
3341 for (i = 0; i < 4; ++i) {
3342 hpa_t root = vcpu->arch.mmu.pae_root[i];
3343
3344 if (root) {
3345 root &= PT64_BASE_ADDR_MASK;
3346 sp = page_header(root);
3347 --sp->root_count;
3348 if (!sp->root_count && sp->role.invalid)
3349 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3350 &invalid_list);
3351 }
3352 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3353 }
3354 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3355 spin_unlock(&vcpu->kvm->mmu_lock);
3356 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3357}
3358
3359static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3360{
3361 int ret = 0;
3362
3363 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3364 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3365 ret = 1;
3366 }
3367
3368 return ret;
3369}
3370
3371static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3372{
3373 struct kvm_mmu_page *sp;
3374 unsigned i;
3375
3376 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3377 spin_lock(&vcpu->kvm->mmu_lock);
3378 make_mmu_pages_available(vcpu);
3379 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3380 1, ACC_ALL, NULL);
3381 ++sp->root_count;
3382 spin_unlock(&vcpu->kvm->mmu_lock);
3383 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3384 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3385 for (i = 0; i < 4; ++i) {
3386 hpa_t root = vcpu->arch.mmu.pae_root[i];
3387
3388 MMU_WARN_ON(VALID_PAGE(root));
3389 spin_lock(&vcpu->kvm->mmu_lock);
3390 make_mmu_pages_available(vcpu);
3391 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3392 i << 30,
3393 PT32_ROOT_LEVEL, 1, ACC_ALL,
3394 NULL);
3395 root = __pa(sp->spt);
3396 ++sp->root_count;
3397 spin_unlock(&vcpu->kvm->mmu_lock);
3398 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3399 }
3400 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3401 } else
3402 BUG();
3403
3404 return 0;
3405}
3406
3407static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3408{
3409 struct kvm_mmu_page *sp;
3410 u64 pdptr, pm_mask;
3411 gfn_t root_gfn;
3412 int i;
3413
3414 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3415
3416 if (mmu_check_root(vcpu, root_gfn))
3417 return 1;
3418
3419
3420
3421
3422
3423 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3424 hpa_t root = vcpu->arch.mmu.root_hpa;
3425
3426 MMU_WARN_ON(VALID_PAGE(root));
3427
3428 spin_lock(&vcpu->kvm->mmu_lock);
3429 make_mmu_pages_available(vcpu);
3430 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3431 0, ACC_ALL, NULL);
3432 root = __pa(sp->spt);
3433 ++sp->root_count;
3434 spin_unlock(&vcpu->kvm->mmu_lock);
3435 vcpu->arch.mmu.root_hpa = root;
3436 return 0;
3437 }
3438
3439
3440
3441
3442
3443
3444 pm_mask = PT_PRESENT_MASK;
3445 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3446 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3447
3448 for (i = 0; i < 4; ++i) {
3449 hpa_t root = vcpu->arch.mmu.pae_root[i];
3450
3451 MMU_WARN_ON(VALID_PAGE(root));
3452 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3453 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3454 if (!(pdptr & PT_PRESENT_MASK)) {
3455 vcpu->arch.mmu.pae_root[i] = 0;
3456 continue;
3457 }
3458 root_gfn = pdptr >> PAGE_SHIFT;
3459 if (mmu_check_root(vcpu, root_gfn))
3460 return 1;
3461 }
3462 spin_lock(&vcpu->kvm->mmu_lock);
3463 make_mmu_pages_available(vcpu);
3464 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3465 PT32_ROOT_LEVEL, 0,
3466 ACC_ALL, NULL);
3467 root = __pa(sp->spt);
3468 ++sp->root_count;
3469 spin_unlock(&vcpu->kvm->mmu_lock);
3470
3471 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3472 }
3473 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3474
3475
3476
3477
3478
3479 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3480 if (vcpu->arch.mmu.lm_root == NULL) {
3481
3482
3483
3484
3485
3486 u64 *lm_root;
3487
3488 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3489 if (lm_root == NULL)
3490 return 1;
3491
3492 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3493
3494 vcpu->arch.mmu.lm_root = lm_root;
3495 }
3496
3497 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3498 }
3499
3500 return 0;
3501}
3502
3503static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3504{
3505 if (vcpu->arch.mmu.direct_map)
3506 return mmu_alloc_direct_roots(vcpu);
3507 else
3508 return mmu_alloc_shadow_roots(vcpu);
3509}
3510
3511static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3512{
3513 int i;
3514 struct kvm_mmu_page *sp;
3515
3516 if (vcpu->arch.mmu.direct_map)
3517 return;
3518
3519 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3520 return;
3521
3522 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3523 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3524 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3525 hpa_t root = vcpu->arch.mmu.root_hpa;
3526 sp = page_header(root);
3527 mmu_sync_children(vcpu, sp);
3528 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3529 return;
3530 }
3531 for (i = 0; i < 4; ++i) {
3532 hpa_t root = vcpu->arch.mmu.pae_root[i];
3533
3534 if (root && VALID_PAGE(root)) {
3535 root &= PT64_BASE_ADDR_MASK;
3536 sp = page_header(root);
3537 mmu_sync_children(vcpu, sp);
3538 }
3539 }
3540 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3541}
3542
3543void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3544{
3545 spin_lock(&vcpu->kvm->mmu_lock);
3546 mmu_sync_roots(vcpu);
3547 spin_unlock(&vcpu->kvm->mmu_lock);
3548}
3549EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3550
3551static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3552 u32 access, struct x86_exception *exception)
3553{
3554 if (exception)
3555 exception->error_code = 0;
3556 return vaddr;
3557}
3558
3559static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3560 u32 access,
3561 struct x86_exception *exception)
3562{
3563 if (exception)
3564 exception->error_code = 0;
3565 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3566}
3567
3568static bool
3569__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3570{
3571 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3572
3573 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3574 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3575}
3576
3577static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3578{
3579 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3580}
3581
3582static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3583{
3584 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3585}
3586
3587static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3588{
3589 if (direct)
3590 return vcpu_match_mmio_gpa(vcpu, addr);
3591
3592 return vcpu_match_mmio_gva(vcpu, addr);
3593}
3594
3595
3596static bool
3597walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3598{
3599 struct kvm_shadow_walk_iterator iterator;
3600 u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3601 int root, leaf;
3602 bool reserved = false;
3603
3604 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3605 goto exit;
3606
3607 walk_shadow_page_lockless_begin(vcpu);
3608
3609 for (shadow_walk_init(&iterator, vcpu, addr),
3610 leaf = root = iterator.level;
3611 shadow_walk_okay(&iterator);
3612 __shadow_walk_next(&iterator, spte)) {
3613 spte = mmu_spte_get_lockless(iterator.sptep);
3614
3615 sptes[leaf - 1] = spte;
3616 leaf--;
3617
3618 if (!is_shadow_present_pte(spte))
3619 break;
3620
3621 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3622 iterator.level);
3623 }
3624
3625 walk_shadow_page_lockless_end(vcpu);
3626
3627 if (reserved) {
3628 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3629 __func__, addr);
3630 while (root > leaf) {
3631 pr_err("------ spte 0x%llx level %d.\n",
3632 sptes[root - 1], root);
3633 root--;
3634 }
3635 }
3636exit:
3637 *sptep = spte;
3638 return reserved;
3639}
3640
3641int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3642{
3643 u64 spte;
3644 bool reserved;
3645
3646 if (mmio_info_in_cache(vcpu, addr, direct))
3647 return RET_MMIO_PF_EMULATE;
3648
3649 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3650 if (WARN_ON(reserved))
3651 return RET_MMIO_PF_BUG;
3652
3653 if (is_mmio_spte(spte)) {
3654 gfn_t gfn = get_mmio_spte_gfn(spte);
3655 unsigned access = get_mmio_spte_access(spte);
3656
3657 if (!check_mmio_spte(vcpu, spte))
3658 return RET_MMIO_PF_INVALID;
3659
3660 if (direct)
3661 addr = 0;
3662
3663 trace_handle_mmio_page_fault(addr, gfn, access);
3664 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3665 return RET_MMIO_PF_EMULATE;
3666 }
3667
3668
3669
3670
3671
3672 return RET_MMIO_PF_RETRY;
3673}
3674EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3675
3676static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3677 u32 error_code, gfn_t gfn)
3678{
3679 if (unlikely(error_code & PFERR_RSVD_MASK))
3680 return false;
3681
3682 if (!(error_code & PFERR_PRESENT_MASK) ||
3683 !(error_code & PFERR_WRITE_MASK))
3684 return false;
3685
3686
3687
3688
3689
3690 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3691 return true;
3692
3693 return false;
3694}
3695
3696static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3697{
3698 struct kvm_shadow_walk_iterator iterator;
3699 u64 spte;
3700
3701 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3702 return;
3703
3704 walk_shadow_page_lockless_begin(vcpu);
3705 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3706 clear_sp_write_flooding_count(iterator.sptep);
3707 if (!is_shadow_present_pte(spte))
3708 break;
3709 }
3710 walk_shadow_page_lockless_end(vcpu);
3711}
3712
3713static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3714 u32 error_code, bool prefault)
3715{
3716 gfn_t gfn = gva >> PAGE_SHIFT;
3717 int r;
3718
3719 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3720
3721 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3722 return 1;
3723
3724 r = mmu_topup_memory_caches(vcpu);
3725 if (r)
3726 return r;
3727
3728 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3729
3730
3731 return nonpaging_map(vcpu, gva & PAGE_MASK,
3732 error_code, gfn, prefault);
3733}
3734
3735static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3736{
3737 struct kvm_arch_async_pf arch;
3738
3739 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3740 arch.gfn = gfn;
3741 arch.direct_map = vcpu->arch.mmu.direct_map;
3742 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3743
3744 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3745}
3746
3747bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
3748{
3749 if (unlikely(!lapic_in_kernel(vcpu) ||
3750 kvm_event_needs_reinjection(vcpu)))
3751 return false;
3752
3753 if (is_guest_mode(vcpu))
3754 return false;
3755
3756 return kvm_x86_ops->interrupt_allowed(vcpu);
3757}
3758
3759static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3760 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3761{
3762 struct kvm_memory_slot *slot;
3763 bool async;
3764
3765 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3766 async = false;
3767 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3768 if (!async)
3769 return false;
3770
3771 if (!prefault && kvm_can_do_async_pf(vcpu)) {
3772 trace_kvm_try_async_get_page(gva, gfn);
3773 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3774 trace_kvm_async_pf_doublefault(gva, gfn);
3775 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3776 return true;
3777 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3778 return true;
3779 }
3780
3781 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3782 return false;
3783}
3784
3785static bool
3786check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3787{
3788 int page_num = KVM_PAGES_PER_HPAGE(level);
3789
3790 gfn &= ~(page_num - 1);
3791
3792 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3793}
3794
3795static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3796 bool prefault)
3797{
3798 kvm_pfn_t pfn;
3799 int r;
3800 int level;
3801 bool force_pt_level;
3802 gfn_t gfn = gpa >> PAGE_SHIFT;
3803 unsigned long mmu_seq;
3804 int write = error_code & PFERR_WRITE_MASK;
3805 bool map_writable;
3806
3807 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3808
3809 if (page_fault_handle_page_track(vcpu, error_code, gfn))
3810 return 1;
3811
3812 r = mmu_topup_memory_caches(vcpu);
3813 if (r)
3814 return r;
3815
3816 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3817 PT_DIRECTORY_LEVEL);
3818 level = mapping_level(vcpu, gfn, &force_pt_level);
3819 if (likely(!force_pt_level)) {
3820 if (level > PT_DIRECTORY_LEVEL &&
3821 !check_hugepage_cache_consistency(vcpu, gfn, level))
3822 level = PT_DIRECTORY_LEVEL;
3823 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3824 }
3825
3826 if (fast_page_fault(vcpu, gpa, level, error_code))
3827 return 0;
3828
3829 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3830 smp_rmb();
3831
3832 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3833 return 0;
3834
3835 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3836 return r;
3837
3838 spin_lock(&vcpu->kvm->mmu_lock);
3839 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3840 goto out_unlock;
3841 make_mmu_pages_available(vcpu);
3842 if (likely(!force_pt_level))
3843 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3844 r = __direct_map(vcpu, gpa, write, map_writable,
3845 level, gfn, pfn, prefault);
3846 spin_unlock(&vcpu->kvm->mmu_lock);
3847
3848 return r;
3849
3850out_unlock:
3851 spin_unlock(&vcpu->kvm->mmu_lock);
3852 kvm_release_pfn_clean(pfn);
3853 return 0;
3854}
3855
3856static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3857 struct kvm_mmu *context)
3858{
3859 context->page_fault = nonpaging_page_fault;
3860 context->gva_to_gpa = nonpaging_gva_to_gpa;
3861 context->sync_page = nonpaging_sync_page;
3862 context->invlpg = nonpaging_invlpg;
3863 context->update_pte = nonpaging_update_pte;
3864 context->root_level = 0;
3865 context->shadow_root_level = PT32E_ROOT_LEVEL;
3866 context->root_hpa = INVALID_PAGE;
3867 context->direct_map = true;
3868 context->nx = false;
3869}
3870
3871void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3872{
3873 mmu_free_roots(vcpu);
3874}
3875
3876static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3877{
3878 return kvm_read_cr3(vcpu);
3879}
3880
3881static void inject_page_fault(struct kvm_vcpu *vcpu,
3882 struct x86_exception *fault)
3883{
3884 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3885}
3886
3887static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3888 unsigned access, int *nr_present)
3889{
3890 if (unlikely(is_mmio_spte(*sptep))) {
3891 if (gfn != get_mmio_spte_gfn(*sptep)) {
3892 mmu_spte_clear_no_track(sptep);
3893 return true;
3894 }
3895
3896 (*nr_present)++;
3897 mark_mmio_spte(vcpu, sptep, gfn, access);
3898 return true;
3899 }
3900
3901 return false;
3902}
3903
3904static inline bool is_last_gpte(struct kvm_mmu *mmu,
3905 unsigned level, unsigned gpte)
3906{
3907
3908
3909
3910
3911
3912 gpte &= level - mmu->last_nonleaf_level;
3913
3914
3915
3916
3917
3918
3919 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3920
3921 return gpte & PT_PAGE_SIZE_MASK;
3922}
3923
3924#define PTTYPE_EPT 18
3925#define PTTYPE PTTYPE_EPT
3926#include "paging_tmpl.h"
3927#undef PTTYPE
3928
3929#define PTTYPE 64
3930#include "paging_tmpl.h"
3931#undef PTTYPE
3932
3933#define PTTYPE 32
3934#include "paging_tmpl.h"
3935#undef PTTYPE
3936
3937static void
3938__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3939 struct rsvd_bits_validate *rsvd_check,
3940 int maxphyaddr, int level, bool nx, bool gbpages,
3941 bool pse, bool amd)
3942{
3943 u64 exb_bit_rsvd = 0;
3944 u64 gbpages_bit_rsvd = 0;
3945 u64 nonleaf_bit8_rsvd = 0;
3946
3947 rsvd_check->bad_mt_xwr = 0;
3948
3949 if (!nx)
3950 exb_bit_rsvd = rsvd_bits(63, 63);
3951 if (!gbpages)
3952 gbpages_bit_rsvd = rsvd_bits(7, 7);
3953
3954
3955
3956
3957
3958 if (amd)
3959 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3960
3961 switch (level) {
3962 case PT32_ROOT_LEVEL:
3963
3964 rsvd_check->rsvd_bits_mask[0][1] = 0;
3965 rsvd_check->rsvd_bits_mask[0][0] = 0;
3966 rsvd_check->rsvd_bits_mask[1][0] =
3967 rsvd_check->rsvd_bits_mask[0][0];
3968
3969 if (!pse) {
3970 rsvd_check->rsvd_bits_mask[1][1] = 0;
3971 break;
3972 }
3973
3974 if (is_cpuid_PSE36())
3975
3976 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3977 else
3978
3979 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3980 break;
3981 case PT32E_ROOT_LEVEL:
3982 rsvd_check->rsvd_bits_mask[0][2] =
3983 rsvd_bits(maxphyaddr, 63) |
3984 rsvd_bits(5, 8) | rsvd_bits(1, 2);
3985 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3986 rsvd_bits(maxphyaddr, 62);
3987 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3988 rsvd_bits(maxphyaddr, 62);
3989 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3990 rsvd_bits(maxphyaddr, 62) |
3991 rsvd_bits(13, 20);
3992 rsvd_check->rsvd_bits_mask[1][0] =
3993 rsvd_check->rsvd_bits_mask[0][0];
3994 break;
3995 case PT64_ROOT_LEVEL:
3996 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3997 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3998 rsvd_bits(maxphyaddr, 51);
3999 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4000 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
4001 rsvd_bits(maxphyaddr, 51);
4002 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4003 rsvd_bits(maxphyaddr, 51);
4004 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4005 rsvd_bits(maxphyaddr, 51);
4006 rsvd_check->rsvd_bits_mask[1][3] =
4007 rsvd_check->rsvd_bits_mask[0][3];
4008 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4009 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4010 rsvd_bits(13, 29);
4011 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4012 rsvd_bits(maxphyaddr, 51) |
4013 rsvd_bits(13, 20);
4014 rsvd_check->rsvd_bits_mask[1][0] =
4015 rsvd_check->rsvd_bits_mask[0][0];
4016 break;
4017 }
4018}
4019
4020static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4021 struct kvm_mmu *context)
4022{
4023 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4024 cpuid_maxphyaddr(vcpu), context->root_level,
4025 context->nx,
4026 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4027 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
4028}
4029
4030static void
4031__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4032 int maxphyaddr, bool execonly)
4033{
4034 u64 bad_mt_xwr;
4035
4036 rsvd_check->rsvd_bits_mask[0][3] =
4037 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4038 rsvd_check->rsvd_bits_mask[0][2] =
4039 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4040 rsvd_check->rsvd_bits_mask[0][1] =
4041 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4042 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4043
4044
4045 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4046 rsvd_check->rsvd_bits_mask[1][2] =
4047 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4048 rsvd_check->rsvd_bits_mask[1][1] =
4049 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4050 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4051
4052 bad_mt_xwr = 0xFFull << (2 * 8);
4053 bad_mt_xwr |= 0xFFull << (3 * 8);
4054 bad_mt_xwr |= 0xFFull << (7 * 8);
4055 bad_mt_xwr |= REPEAT_BYTE(1ull << 2);
4056 bad_mt_xwr |= REPEAT_BYTE(1ull << 6);
4057 if (!execonly) {
4058
4059 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4060 }
4061 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4062}
4063
4064static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4065 struct kvm_mmu *context, bool execonly)
4066{
4067 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4068 cpuid_maxphyaddr(vcpu), execonly);
4069}
4070
4071
4072
4073
4074
4075
4076void
4077reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4078{
4079 bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
4080 struct rsvd_bits_validate *shadow_zero_check;
4081 int i;
4082
4083
4084
4085
4086
4087 shadow_zero_check = &context->shadow_zero_check;
4088 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4089 boot_cpu_data.x86_phys_bits,
4090 context->shadow_root_level, uses_nx,
4091 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4092 is_pse(vcpu), true);
4093
4094 if (!shadow_me_mask)
4095 return;
4096
4097 for (i = context->shadow_root_level; --i >= 0;) {
4098 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4099 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4100 }
4101
4102}
4103EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4104
4105static inline bool boot_cpu_is_amd(void)
4106{
4107 WARN_ON_ONCE(!tdp_enabled);
4108 return shadow_x_mask == 0;
4109}
4110
4111
4112
4113
4114
4115static void
4116reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4117 struct kvm_mmu *context)
4118{
4119 struct rsvd_bits_validate *shadow_zero_check;
4120 int i;
4121
4122 shadow_zero_check = &context->shadow_zero_check;
4123
4124 if (boot_cpu_is_amd())
4125 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4126 boot_cpu_data.x86_phys_bits,
4127 context->shadow_root_level, false,
4128 cpu_has_gbpages, true, true);
4129 else
4130 __reset_rsvds_bits_mask_ept(shadow_zero_check,
4131 boot_cpu_data.x86_phys_bits,
4132 false);
4133
4134 if (!shadow_me_mask)
4135 return;
4136
4137 for (i = context->shadow_root_level; --i >= 0;) {
4138 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4139 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4140 }
4141}
4142
4143
4144
4145
4146
4147static void
4148reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4149 struct kvm_mmu *context, bool execonly)
4150{
4151 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4152 boot_cpu_data.x86_phys_bits, execonly);
4153}
4154
4155#define BYTE_MASK(access) \
4156 ((1 & (access) ? 2 : 0) | \
4157 (2 & (access) ? 4 : 0) | \
4158 (3 & (access) ? 8 : 0) | \
4159 (4 & (access) ? 16 : 0) | \
4160 (5 & (access) ? 32 : 0) | \
4161 (6 & (access) ? 64 : 0) | \
4162 (7 & (access) ? 128 : 0))
4163
4164
4165static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4166 struct kvm_mmu *mmu, bool ept)
4167{
4168 unsigned byte;
4169
4170 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4171 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4172 const u8 u = BYTE_MASK(ACC_USER_MASK);
4173
4174 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4175 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4176 bool cr0_wp = is_write_protection(vcpu);
4177
4178 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4179 unsigned pfec = byte << 1;
4180
4181
4182
4183
4184
4185
4186
4187 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4188
4189 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4190
4191 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4192
4193 u8 smepf = 0;
4194
4195 u8 smapf = 0;
4196
4197 if (!ept) {
4198
4199 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4200
4201
4202 if (!mmu->nx)
4203 ff = 0;
4204
4205
4206 if (!cr0_wp)
4207 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4208
4209
4210 if (cr4_smep)
4211 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229 if (cr4_smap)
4230 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4231 }
4232
4233 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4234 }
4235}
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4262 bool ept)
4263{
4264 unsigned bit;
4265 bool wp;
4266
4267 if (ept) {
4268 mmu->pkru_mask = 0;
4269 return;
4270 }
4271
4272
4273 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4274 mmu->pkru_mask = 0;
4275 return;
4276 }
4277
4278 wp = is_write_protection(vcpu);
4279
4280 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4281 unsigned pfec, pkey_bits;
4282 bool check_pkey, check_write, ff, uf, wf, pte_user;
4283
4284 pfec = bit << 1;
4285 ff = pfec & PFERR_FETCH_MASK;
4286 uf = pfec & PFERR_USER_MASK;
4287 wf = pfec & PFERR_WRITE_MASK;
4288
4289
4290 pte_user = pfec & PFERR_RSVD_MASK;
4291
4292
4293
4294
4295
4296 check_pkey = (!ff && pte_user);
4297
4298
4299
4300
4301 check_write = check_pkey && wf && (uf || wp);
4302
4303
4304 pkey_bits = !!check_pkey;
4305
4306 pkey_bits |= (!!check_write) << 1;
4307
4308 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4309 }
4310}
4311
4312static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4313{
4314 unsigned root_level = mmu->root_level;
4315
4316 mmu->last_nonleaf_level = root_level;
4317 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4318 mmu->last_nonleaf_level++;
4319}
4320
4321static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4322 struct kvm_mmu *context,
4323 int level)
4324{
4325 context->nx = is_nx(vcpu);
4326 context->root_level = level;
4327
4328 reset_rsvds_bits_mask(vcpu, context);
4329 update_permission_bitmask(vcpu, context, false);
4330 update_pkru_bitmask(vcpu, context, false);
4331 update_last_nonleaf_level(vcpu, context);
4332
4333 MMU_WARN_ON(!is_pae(vcpu));
4334 context->page_fault = paging64_page_fault;
4335 context->gva_to_gpa = paging64_gva_to_gpa;
4336 context->sync_page = paging64_sync_page;
4337 context->invlpg = paging64_invlpg;
4338 context->update_pte = paging64_update_pte;
4339 context->shadow_root_level = level;
4340 context->root_hpa = INVALID_PAGE;
4341 context->direct_map = false;
4342}
4343
4344static void paging64_init_context(struct kvm_vcpu *vcpu,
4345 struct kvm_mmu *context)
4346{
4347 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4348}
4349
4350static void paging32_init_context(struct kvm_vcpu *vcpu,
4351 struct kvm_mmu *context)
4352{
4353 context->nx = false;
4354 context->root_level = PT32_ROOT_LEVEL;
4355
4356 reset_rsvds_bits_mask(vcpu, context);
4357 update_permission_bitmask(vcpu, context, false);
4358 update_pkru_bitmask(vcpu, context, false);
4359 update_last_nonleaf_level(vcpu, context);
4360
4361 context->page_fault = paging32_page_fault;
4362 context->gva_to_gpa = paging32_gva_to_gpa;
4363 context->sync_page = paging32_sync_page;
4364 context->invlpg = paging32_invlpg;
4365 context->update_pte = paging32_update_pte;
4366 context->shadow_root_level = PT32E_ROOT_LEVEL;
4367 context->root_hpa = INVALID_PAGE;
4368 context->direct_map = false;
4369}
4370
4371static void paging32E_init_context(struct kvm_vcpu *vcpu,
4372 struct kvm_mmu *context)
4373{
4374 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4375}
4376
4377static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4378{
4379 struct kvm_mmu *context = &vcpu->arch.mmu;
4380
4381 context->base_role.word = 0;
4382 context->base_role.smm = is_smm(vcpu);
4383 context->base_role.ad_disabled = (shadow_accessed_mask == 0);
4384 context->page_fault = tdp_page_fault;
4385 context->sync_page = nonpaging_sync_page;
4386 context->invlpg = nonpaging_invlpg;
4387 context->update_pte = nonpaging_update_pte;
4388 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4389 context->root_hpa = INVALID_PAGE;
4390 context->direct_map = true;
4391 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4392 context->get_cr3 = get_cr3;
4393 context->get_pdptr = kvm_pdptr_read;
4394 context->inject_page_fault = kvm_inject_page_fault;
4395
4396 if (!is_paging(vcpu)) {
4397 context->nx = false;
4398 context->gva_to_gpa = nonpaging_gva_to_gpa;
4399 context->root_level = 0;
4400 } else if (is_long_mode(vcpu)) {
4401 context->nx = is_nx(vcpu);
4402 context->root_level = PT64_ROOT_LEVEL;
4403 reset_rsvds_bits_mask(vcpu, context);
4404 context->gva_to_gpa = paging64_gva_to_gpa;
4405 } else if (is_pae(vcpu)) {
4406 context->nx = is_nx(vcpu);
4407 context->root_level = PT32E_ROOT_LEVEL;
4408 reset_rsvds_bits_mask(vcpu, context);
4409 context->gva_to_gpa = paging64_gva_to_gpa;
4410 } else {
4411 context->nx = false;
4412 context->root_level = PT32_ROOT_LEVEL;
4413 reset_rsvds_bits_mask(vcpu, context);
4414 context->gva_to_gpa = paging32_gva_to_gpa;
4415 }
4416
4417 update_permission_bitmask(vcpu, context, false);
4418 update_pkru_bitmask(vcpu, context, false);
4419 update_last_nonleaf_level(vcpu, context);
4420 reset_tdp_shadow_zero_bits_mask(vcpu, context);
4421}
4422
4423void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4424{
4425 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4426 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4427 struct kvm_mmu *context = &vcpu->arch.mmu;
4428
4429 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4430
4431 if (!is_paging(vcpu))
4432 nonpaging_init_context(vcpu, context);
4433 else if (is_long_mode(vcpu))
4434 paging64_init_context(vcpu, context);
4435 else if (is_pae(vcpu))
4436 paging32E_init_context(vcpu, context);
4437 else
4438 paging32_init_context(vcpu, context);
4439
4440 context->base_role.nxe = is_nx(vcpu);
4441 context->base_role.cr4_pae = !!is_pae(vcpu);
4442 context->base_role.cr0_wp = is_write_protection(vcpu);
4443 context->base_role.smep_andnot_wp
4444 = smep && !is_write_protection(vcpu);
4445 context->base_role.smap_andnot_wp
4446 = smap && !is_write_protection(vcpu);
4447 context->base_role.smm = is_smm(vcpu);
4448 reset_shadow_zero_bits_mask(vcpu, context);
4449}
4450EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4451
4452void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4453 bool accessed_dirty)
4454{
4455 struct kvm_mmu *context = &vcpu->arch.mmu;
4456
4457 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4458
4459 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4460
4461 context->nx = true;
4462 context->ept_ad = accessed_dirty;
4463 context->page_fault = ept_page_fault;
4464 context->gva_to_gpa = ept_gva_to_gpa;
4465 context->sync_page = ept_sync_page;
4466 context->invlpg = ept_invlpg;
4467 context->update_pte = ept_update_pte;
4468 context->root_level = context->shadow_root_level;
4469 context->root_hpa = INVALID_PAGE;
4470 context->direct_map = false;
4471 context->base_role.ad_disabled = !accessed_dirty;
4472
4473 update_permission_bitmask(vcpu, context, true);
4474 update_pkru_bitmask(vcpu, context, true);
4475 update_last_nonleaf_level(vcpu, context);
4476 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4477 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4478}
4479EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4480
4481static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4482{
4483 struct kvm_mmu *context = &vcpu->arch.mmu;
4484
4485 kvm_init_shadow_mmu(vcpu);
4486 context->set_cr3 = kvm_x86_ops->set_cr3;
4487 context->get_cr3 = get_cr3;
4488 context->get_pdptr = kvm_pdptr_read;
4489 context->inject_page_fault = kvm_inject_page_fault;
4490}
4491
4492static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4493{
4494 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4495
4496 g_context->get_cr3 = get_cr3;
4497 g_context->get_pdptr = kvm_pdptr_read;
4498 g_context->inject_page_fault = kvm_inject_page_fault;
4499
4500
4501
4502
4503
4504
4505
4506 if (!is_paging(vcpu)) {
4507 g_context->nx = false;
4508 g_context->root_level = 0;
4509 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4510 } else if (is_long_mode(vcpu)) {
4511 g_context->nx = is_nx(vcpu);
4512 g_context->root_level = PT64_ROOT_LEVEL;
4513 reset_rsvds_bits_mask(vcpu, g_context);
4514 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4515 } else if (is_pae(vcpu)) {
4516 g_context->nx = is_nx(vcpu);
4517 g_context->root_level = PT32E_ROOT_LEVEL;
4518 reset_rsvds_bits_mask(vcpu, g_context);
4519 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4520 } else {
4521 g_context->nx = false;
4522 g_context->root_level = PT32_ROOT_LEVEL;
4523 reset_rsvds_bits_mask(vcpu, g_context);
4524 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4525 }
4526
4527 update_permission_bitmask(vcpu, g_context, false);
4528 update_pkru_bitmask(vcpu, g_context, false);
4529 update_last_nonleaf_level(vcpu, g_context);
4530}
4531
4532static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4533{
4534 if (mmu_is_nested(vcpu))
4535 init_kvm_nested_mmu(vcpu);
4536 else if (tdp_enabled)
4537 init_kvm_tdp_mmu(vcpu);
4538 else
4539 init_kvm_softmmu(vcpu);
4540}
4541
4542void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4543{
4544 kvm_mmu_unload(vcpu);
4545 init_kvm_mmu(vcpu);
4546}
4547EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4548
4549int kvm_mmu_load(struct kvm_vcpu *vcpu)
4550{
4551 int r;
4552
4553 r = mmu_topup_memory_caches(vcpu);
4554 if (r)
4555 goto out;
4556 r = mmu_alloc_roots(vcpu);
4557 kvm_mmu_sync_roots(vcpu);
4558 if (r)
4559 goto out;
4560
4561 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4562out:
4563 return r;
4564}
4565EXPORT_SYMBOL_GPL(kvm_mmu_load);
4566
4567void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4568{
4569 mmu_free_roots(vcpu);
4570 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4571}
4572EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4573
4574static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4575 struct kvm_mmu_page *sp, u64 *spte,
4576 const void *new)
4577{
4578 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4579 ++vcpu->kvm->stat.mmu_pde_zapped;
4580 return;
4581 }
4582
4583 ++vcpu->kvm->stat.mmu_pte_updated;
4584 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4585}
4586
4587static bool need_remote_flush(u64 old, u64 new)
4588{
4589 if (!is_shadow_present_pte(old))
4590 return false;
4591 if (!is_shadow_present_pte(new))
4592 return true;
4593 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4594 return true;
4595 old ^= shadow_nx_mask;
4596 new ^= shadow_nx_mask;
4597 return (old & ~new & PT64_PERM_MASK) != 0;
4598}
4599
4600static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4601 bool remote_flush, bool local_flush)
4602{
4603 if (zap_page)
4604 return;
4605
4606 if (remote_flush)
4607 kvm_flush_remote_tlbs(vcpu->kvm);
4608 else if (local_flush)
4609 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4610}
4611
4612static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4613 const u8 *new, int *bytes)
4614{
4615 u64 gentry;
4616 int r;
4617
4618
4619
4620
4621
4622
4623 if (is_pae(vcpu) && *bytes == 4) {
4624
4625 *gpa &= ~(gpa_t)7;
4626 *bytes = 8;
4627 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4628 if (r)
4629 gentry = 0;
4630 new = (const u8 *)&gentry;
4631 }
4632
4633 switch (*bytes) {
4634 case 4:
4635 gentry = *(const u32 *)new;
4636 break;
4637 case 8:
4638 gentry = *(const u64 *)new;
4639 break;
4640 default:
4641 gentry = 0;
4642 break;
4643 }
4644
4645 return gentry;
4646}
4647
4648
4649
4650
4651
4652static bool detect_write_flooding(struct kvm_mmu_page *sp)
4653{
4654
4655
4656
4657
4658 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4659 return false;
4660
4661 atomic_inc(&sp->write_flooding_count);
4662 return atomic_read(&sp->write_flooding_count) >= 3;
4663}
4664
4665
4666
4667
4668
4669static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4670 int bytes)
4671{
4672 unsigned offset, pte_size, misaligned;
4673
4674 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4675 gpa, bytes, sp->role.word);
4676
4677 offset = offset_in_page(gpa);
4678 pte_size = sp->role.cr4_pae ? 8 : 4;
4679
4680
4681
4682
4683
4684 if (!(offset & (pte_size - 1)) && bytes == 1)
4685 return false;
4686
4687 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4688 misaligned |= bytes < 4;
4689
4690 return misaligned;
4691}
4692
4693static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4694{
4695 unsigned page_offset, quadrant;
4696 u64 *spte;
4697 int level;
4698
4699 page_offset = offset_in_page(gpa);
4700 level = sp->role.level;
4701 *nspte = 1;
4702 if (!sp->role.cr4_pae) {
4703 page_offset <<= 1;
4704
4705
4706
4707
4708
4709 if (level == PT32_ROOT_LEVEL) {
4710 page_offset &= ~7;
4711 page_offset <<= 1;
4712 *nspte = 2;
4713 }
4714 quadrant = page_offset >> PAGE_SHIFT;
4715 page_offset &= ~PAGE_MASK;
4716 if (quadrant != sp->role.quadrant)
4717 return NULL;
4718 }
4719
4720 spte = &sp->spt[page_offset / sizeof(*spte)];
4721 return spte;
4722}
4723
4724static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4725 const u8 *new, int bytes,
4726 struct kvm_page_track_notifier_node *node)
4727{
4728 gfn_t gfn = gpa >> PAGE_SHIFT;
4729 struct kvm_mmu_page *sp;
4730 LIST_HEAD(invalid_list);
4731 u64 entry, gentry, *spte;
4732 int npte;
4733 bool remote_flush, local_flush, zap_page;
4734 union kvm_mmu_page_role mask = { };
4735
4736 mask.cr0_wp = 1;
4737 mask.cr4_pae = 1;
4738 mask.nxe = 1;
4739 mask.smep_andnot_wp = 1;
4740 mask.smap_andnot_wp = 1;
4741 mask.smm = 1;
4742 mask.ad_disabled = 1;
4743
4744
4745
4746
4747
4748 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4749 return;
4750
4751 zap_page = remote_flush = local_flush = false;
4752
4753 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4754
4755 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4756
4757
4758
4759
4760
4761
4762 mmu_topup_memory_caches(vcpu);
4763
4764 spin_lock(&vcpu->kvm->mmu_lock);
4765 ++vcpu->kvm->stat.mmu_pte_write;
4766 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4767
4768 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4769 if (detect_write_misaligned(sp, gpa, bytes) ||
4770 detect_write_flooding(sp)) {
4771 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4772 &invalid_list);
4773 ++vcpu->kvm->stat.mmu_flooded;
4774 continue;
4775 }
4776
4777 spte = get_written_sptes(sp, gpa, &npte);
4778 if (!spte)
4779 continue;
4780
4781 local_flush = true;
4782 while (npte--) {
4783 entry = *spte;
4784 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4785 if (gentry &&
4786 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4787 & mask.word) && rmap_can_add(vcpu))
4788 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4789 if (need_remote_flush(entry, *spte))
4790 remote_flush = true;
4791 ++spte;
4792 }
4793 }
4794 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4795 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4796 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4797 spin_unlock(&vcpu->kvm->mmu_lock);
4798}
4799
4800int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4801{
4802 gpa_t gpa;
4803 int r;
4804
4805 if (vcpu->arch.mmu.direct_map)
4806 return 0;
4807
4808 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4809
4810 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4811
4812 return r;
4813}
4814EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4815
4816static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4817{
4818 LIST_HEAD(invalid_list);
4819
4820 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4821 return;
4822
4823 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4824 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4825 break;
4826
4827 ++vcpu->kvm->stat.mmu_recycled;
4828 }
4829 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4830}
4831
4832int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4833 void *insn, int insn_len)
4834{
4835 int r, emulation_type = EMULTYPE_RETRY;
4836 enum emulation_result er;
4837 bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4838
4839 if (unlikely(error_code & PFERR_RSVD_MASK)) {
4840 r = handle_mmio_page_fault(vcpu, cr2, direct);
4841 if (r == RET_MMIO_PF_EMULATE) {
4842 emulation_type = 0;
4843 goto emulate;
4844 }
4845 if (r == RET_MMIO_PF_RETRY)
4846 return 1;
4847 if (r < 0)
4848 return r;
4849 }
4850
4851 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4852 if (r < 0)
4853 return r;
4854 if (!r)
4855 return 1;
4856
4857 if (mmio_info_in_cache(vcpu, cr2, direct))
4858 emulation_type = 0;
4859emulate:
4860 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4861
4862 switch (er) {
4863 case EMULATE_DONE:
4864 return 1;
4865 case EMULATE_USER_EXIT:
4866 ++vcpu->stat.mmio_exits;
4867
4868 case EMULATE_FAIL:
4869 return 0;
4870 default:
4871 BUG();
4872 }
4873}
4874EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4875
4876void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4877{
4878 vcpu->arch.mmu.invlpg(vcpu, gva);
4879 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4880 ++vcpu->stat.invlpg;
4881}
4882EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4883
4884void kvm_enable_tdp(void)
4885{
4886 tdp_enabled = true;
4887}
4888EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4889
4890void kvm_disable_tdp(void)
4891{
4892 tdp_enabled = false;
4893}
4894EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4895
4896static void free_mmu_pages(struct kvm_vcpu *vcpu)
4897{
4898 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4899 if (vcpu->arch.mmu.lm_root != NULL)
4900 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4901}
4902
4903static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4904{
4905 struct page *page;
4906 int i;
4907
4908
4909
4910
4911
4912
4913 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4914 if (!page)
4915 return -ENOMEM;
4916
4917 vcpu->arch.mmu.pae_root = page_address(page);
4918 for (i = 0; i < 4; ++i)
4919 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4920
4921 return 0;
4922}
4923
4924int kvm_mmu_create(struct kvm_vcpu *vcpu)
4925{
4926 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4927 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4928 vcpu->arch.mmu.translate_gpa = translate_gpa;
4929 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4930
4931 return alloc_mmu_pages(vcpu);
4932}
4933
4934void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4935{
4936 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4937
4938 init_kvm_mmu(vcpu);
4939}
4940
4941static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
4942 struct kvm_memory_slot *slot,
4943 struct kvm_page_track_notifier_node *node)
4944{
4945 kvm_mmu_invalidate_zap_all_pages(kvm);
4946}
4947
4948void kvm_mmu_init_vm(struct kvm *kvm)
4949{
4950 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4951
4952 node->track_write = kvm_mmu_pte_write;
4953 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
4954 kvm_page_track_register_notifier(kvm, node);
4955}
4956
4957void kvm_mmu_uninit_vm(struct kvm *kvm)
4958{
4959 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4960
4961 kvm_page_track_unregister_notifier(kvm, node);
4962}
4963
4964
4965typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4966
4967
4968static bool
4969slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4970 slot_level_handler fn, int start_level, int end_level,
4971 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4972{
4973 struct slot_rmap_walk_iterator iterator;
4974 bool flush = false;
4975
4976 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4977 end_gfn, &iterator) {
4978 if (iterator.rmap)
4979 flush |= fn(kvm, iterator.rmap);
4980
4981 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4982 if (flush && lock_flush_tlb) {
4983 kvm_flush_remote_tlbs(kvm);
4984 flush = false;
4985 }
4986 cond_resched_lock(&kvm->mmu_lock);
4987 }
4988 }
4989
4990 if (flush && lock_flush_tlb) {
4991 kvm_flush_remote_tlbs(kvm);
4992 flush = false;
4993 }
4994
4995 return flush;
4996}
4997
4998static bool
4999slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5000 slot_level_handler fn, int start_level, int end_level,
5001 bool lock_flush_tlb)
5002{
5003 return slot_handle_level_range(kvm, memslot, fn, start_level,
5004 end_level, memslot->base_gfn,
5005 memslot->base_gfn + memslot->npages - 1,
5006 lock_flush_tlb);
5007}
5008
5009static bool
5010slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5011 slot_level_handler fn, bool lock_flush_tlb)
5012{
5013 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5014 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5015}
5016
5017static bool
5018slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5019 slot_level_handler fn, bool lock_flush_tlb)
5020{
5021 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5022 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5023}
5024
5025static bool
5026slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5027 slot_level_handler fn, bool lock_flush_tlb)
5028{
5029 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5030 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5031}
5032
5033void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5034{
5035 struct kvm_memslots *slots;
5036 struct kvm_memory_slot *memslot;
5037 int i;
5038
5039 spin_lock(&kvm->mmu_lock);
5040 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5041 slots = __kvm_memslots(kvm, i);
5042 kvm_for_each_memslot(memslot, slots) {
5043 gfn_t start, end;
5044
5045 start = max(gfn_start, memslot->base_gfn);
5046 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5047 if (start >= end)
5048 continue;
5049
5050 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5051 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5052 start, end - 1, true);
5053 }
5054 }
5055
5056 spin_unlock(&kvm->mmu_lock);
5057}
5058
5059static bool slot_rmap_write_protect(struct kvm *kvm,
5060 struct kvm_rmap_head *rmap_head)
5061{
5062 return __rmap_write_protect(kvm, rmap_head, false);
5063}
5064
5065void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5066 struct kvm_memory_slot *memslot)
5067{
5068 bool flush;
5069
5070 spin_lock(&kvm->mmu_lock);
5071 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5072 false);
5073 spin_unlock(&kvm->mmu_lock);
5074
5075
5076
5077
5078
5079
5080 lockdep_assert_held(&kvm->slots_lock);
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093 if (flush)
5094 kvm_flush_remote_tlbs(kvm);
5095}
5096
5097static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5098 struct kvm_rmap_head *rmap_head)
5099{
5100 u64 *sptep;
5101 struct rmap_iterator iter;
5102 int need_tlb_flush = 0;
5103 kvm_pfn_t pfn;
5104 struct kvm_mmu_page *sp;
5105
5106restart:
5107 for_each_rmap_spte(rmap_head, &iter, sptep) {
5108 sp = page_header(__pa(sptep));
5109 pfn = spte_to_pfn(*sptep);
5110
5111
5112
5113
5114
5115
5116
5117
5118 if (sp->role.direct &&
5119 !kvm_is_reserved_pfn(pfn) &&
5120 PageTransCompound(pfn_to_page(pfn))) {
5121 drop_spte(kvm, sptep);
5122 need_tlb_flush = 1;
5123 goto restart;
5124 }
5125 }
5126
5127 return need_tlb_flush;
5128}
5129
5130void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5131 const struct kvm_memory_slot *memslot)
5132{
5133
5134 spin_lock(&kvm->mmu_lock);
5135 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5136 kvm_mmu_zap_collapsible_spte, true);
5137 spin_unlock(&kvm->mmu_lock);
5138}
5139
5140void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5141 struct kvm_memory_slot *memslot)
5142{
5143 bool flush;
5144
5145 spin_lock(&kvm->mmu_lock);
5146 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5147 spin_unlock(&kvm->mmu_lock);
5148
5149 lockdep_assert_held(&kvm->slots_lock);
5150
5151
5152
5153
5154
5155
5156
5157 if (flush)
5158 kvm_flush_remote_tlbs(kvm);
5159}
5160EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5161
5162void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5163 struct kvm_memory_slot *memslot)
5164{
5165 bool flush;
5166
5167 spin_lock(&kvm->mmu_lock);
5168 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5169 false);
5170 spin_unlock(&kvm->mmu_lock);
5171
5172
5173 lockdep_assert_held(&kvm->slots_lock);
5174
5175 if (flush)
5176 kvm_flush_remote_tlbs(kvm);
5177}
5178EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5179
5180void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5181 struct kvm_memory_slot *memslot)
5182{
5183 bool flush;
5184
5185 spin_lock(&kvm->mmu_lock);
5186 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5187 spin_unlock(&kvm->mmu_lock);
5188
5189 lockdep_assert_held(&kvm->slots_lock);
5190
5191
5192 if (flush)
5193 kvm_flush_remote_tlbs(kvm);
5194}
5195EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5196
5197#define BATCH_ZAP_PAGES 10
5198static void kvm_zap_obsolete_pages(struct kvm *kvm)
5199{
5200 struct kvm_mmu_page *sp, *node;
5201 int batch = 0;
5202
5203restart:
5204 list_for_each_entry_safe_reverse(sp, node,
5205 &kvm->arch.active_mmu_pages, link) {
5206 int ret;
5207
5208
5209
5210
5211
5212 if (!is_obsolete_sp(kvm, sp))
5213 break;
5214
5215
5216
5217
5218
5219
5220 if (sp->role.invalid)
5221 continue;
5222
5223
5224
5225
5226
5227 if (batch >= BATCH_ZAP_PAGES &&
5228 cond_resched_lock(&kvm->mmu_lock)) {
5229 batch = 0;
5230 goto restart;
5231 }
5232
5233 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5234 &kvm->arch.zapped_obsolete_pages);
5235 batch += ret;
5236
5237 if (ret)
5238 goto restart;
5239 }
5240
5241
5242
5243
5244
5245 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5246}
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5258{
5259 spin_lock(&kvm->mmu_lock);
5260 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5261 kvm->arch.mmu_valid_gen++;
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272 kvm_reload_remote_mmus(kvm);
5273
5274 kvm_zap_obsolete_pages(kvm);
5275 spin_unlock(&kvm->mmu_lock);
5276}
5277
5278static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5279{
5280 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5281}
5282
5283void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
5284{
5285
5286
5287
5288
5289 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
5290 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5291 kvm_mmu_invalidate_zap_all_pages(kvm);
5292 }
5293}
5294
5295static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
5296{
5297 struct kvm *kvm;
5298 int nr_to_scan = sc->nr_to_scan;
5299
5300 if (nr_to_scan == 0)
5301 goto out;
5302
5303 spin_lock(&kvm_lock);
5304
5305 list_for_each_entry(kvm, &vm_list, vm_list) {
5306 int idx;
5307 LIST_HEAD(invalid_list);
5308
5309
5310
5311
5312
5313
5314
5315 if (!nr_to_scan--)
5316 break;
5317
5318
5319
5320
5321
5322
5323 if (!kvm->arch.n_used_mmu_pages &&
5324 !kvm_has_zapped_obsolete_pages(kvm))
5325 continue;
5326
5327 idx = srcu_read_lock(&kvm->srcu);
5328 spin_lock(&kvm->mmu_lock);
5329
5330 if (kvm_has_zapped_obsolete_pages(kvm)) {
5331 kvm_mmu_commit_zap_page(kvm,
5332 &kvm->arch.zapped_obsolete_pages);
5333 goto unlock;
5334 }
5335
5336 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
5337 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5338
5339unlock:
5340 spin_unlock(&kvm->mmu_lock);
5341 srcu_read_unlock(&kvm->srcu, idx);
5342
5343 list_move_tail(&kvm->vm_list, &vm_list);
5344 break;
5345 }
5346
5347 spin_unlock(&kvm_lock);
5348
5349out:
5350 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5351}
5352
5353static struct shrinker mmu_shrinker = {
5354 .shrink = mmu_shrink,
5355 .seeks = DEFAULT_SEEKS * 10,
5356};
5357
5358static void mmu_destroy_caches(void)
5359{
5360 if (pte_list_desc_cache)
5361 kmem_cache_destroy(pte_list_desc_cache);
5362 if (mmu_page_header_cache)
5363 kmem_cache_destroy(mmu_page_header_cache);
5364}
5365
5366int kvm_mmu_module_init(void)
5367{
5368 kvm_mmu_clear_all_pte_masks();
5369
5370 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5371 sizeof(struct pte_list_desc),
5372 0, 0, NULL);
5373 if (!pte_list_desc_cache)
5374 goto nomem;
5375
5376 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5377 sizeof(struct kvm_mmu_page),
5378 0, 0, NULL);
5379 if (!mmu_page_header_cache)
5380 goto nomem;
5381
5382 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5383 goto nomem;
5384
5385 register_shrinker(&mmu_shrinker);
5386
5387 return 0;
5388
5389nomem:
5390 mmu_destroy_caches();
5391 return -ENOMEM;
5392}
5393
5394
5395
5396
5397unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5398{
5399 unsigned int nr_mmu_pages;
5400 unsigned int nr_pages = 0;
5401 struct kvm_memslots *slots;
5402 struct kvm_memory_slot *memslot;
5403 int i;
5404
5405 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5406 slots = __kvm_memslots(kvm, i);
5407
5408 kvm_for_each_memslot(memslot, slots)
5409 nr_pages += memslot->npages;
5410 }
5411
5412 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5413 nr_mmu_pages = max(nr_mmu_pages,
5414 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5415
5416 return nr_mmu_pages;
5417}
5418
5419void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5420{
5421 kvm_mmu_unload(vcpu);
5422 free_mmu_pages(vcpu);
5423 mmu_free_memory_caches(vcpu);
5424}
5425
5426void kvm_mmu_module_exit(void)
5427{
5428 mmu_destroy_caches();
5429 percpu_counter_destroy(&kvm_total_used_mmu_pages);
5430 unregister_shrinker(&mmu_shrinker);
5431 mmu_audit_disable();
5432}
5433