linux/drivers/block/cciss.c
<<
>>
Prefs
   1/*
   2 *    Disk Array driver for HP Smart Array controllers.
   3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
   4 *
   5 *    This program is free software; you can redistribute it and/or modify
   6 *    it under the terms of the GNU General Public License as published by
   7 *    the Free Software Foundation; version 2 of the License.
   8 *
   9 *    This program is distributed in the hope that it will be useful,
  10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12 *    General Public License for more details.
  13 *
  14 *    You should have received a copy of the GNU General Public License
  15 *    along with this program; if not, write to the Free Software
  16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  17 *    02111-1307, USA.
  18 *
  19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
  20 *
  21 */
  22
  23#include <linux/module.h>
  24#include <linux/interrupt.h>
  25#include <linux/types.h>
  26#include <linux/pci.h>
  27#include <linux/pci-aspm.h>
  28#include <linux/kernel.h>
  29#include <linux/slab.h>
  30#include <linux/delay.h>
  31#include <linux/major.h>
  32#include <linux/fs.h>
  33#include <linux/bio.h>
  34#include <linux/blkpg.h>
  35#include <linux/timer.h>
  36#include <linux/proc_fs.h>
  37#include <linux/seq_file.h>
  38#include <linux/init.h>
  39#include <linux/jiffies.h>
  40#include <linux/hdreg.h>
  41#include <linux/spinlock.h>
  42#include <linux/compat.h>
  43#include <linux/mutex.h>
  44#include <linux/bitmap.h>
  45#include <linux/io.h>
  46#include <asm/uaccess.h>
  47
  48#include <linux/dma-mapping.h>
  49#include <linux/blkdev.h>
  50#include <linux/genhd.h>
  51#include <linux/completion.h>
  52#include <scsi/scsi.h>
  53#include <scsi/sg.h>
  54#include <scsi/scsi_ioctl.h>
  55#include <linux/cdrom.h>
  56#include <linux/scatterlist.h>
  57#include <linux/kthread.h>
  58
  59#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
  60#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
  61#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
  62
  63/* Embedded module documentation macros - see modules.h */
  64MODULE_AUTHOR("Hewlett-Packard Company");
  65MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
  66MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
  67MODULE_VERSION("3.6.26");
  68MODULE_LICENSE("GPL");
  69static int cciss_tape_cmds = 6;
  70module_param(cciss_tape_cmds, int, 0644);
  71MODULE_PARM_DESC(cciss_tape_cmds,
  72        "number of commands to allocate for tape devices (default: 6)");
  73static int cciss_simple_mode;
  74module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
  75MODULE_PARM_DESC(cciss_simple_mode,
  76        "Use 'simple mode' rather than 'performant mode'");
  77
  78static int cciss_allow_hpsa;
  79module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
  80MODULE_PARM_DESC(cciss_allow_hpsa,
  81        "Prevent cciss driver from accessing hardware known to be "
  82        " supported by the hpsa driver");
  83
  84static DEFINE_MUTEX(cciss_mutex);
  85static struct proc_dir_entry *proc_cciss;
  86
  87#include "cciss_cmd.h"
  88#include "cciss.h"
  89#include <linux/cciss_ioctl.h>
  90
  91/* define the PCI info for the cards we can control */
  92static const struct pci_device_id cciss_pci_device_id[] = {
  93        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
  94        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
  95        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
  96        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
  97        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
  98        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
  99        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
 100        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
 101        {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
 102        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
 103        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
 104        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
 105        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
 106        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
 107        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
 108        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
 109        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
 110        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
 111        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
 112        {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
 113        {0,}
 114};
 115
 116MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
 117
 118/*  board_id = Subsystem Device ID & Vendor ID
 119 *  product = Marketing Name for the board
 120 *  access = Address of the struct of function pointers
 121 */
 122static struct board_type products[] = {
 123        {0x40700E11, "Smart Array 5300", &SA5_access},
 124        {0x40800E11, "Smart Array 5i", &SA5B_access},
 125        {0x40820E11, "Smart Array 532", &SA5B_access},
 126        {0x40830E11, "Smart Array 5312", &SA5B_access},
 127        {0x409A0E11, "Smart Array 641", &SA5_access},
 128        {0x409B0E11, "Smart Array 642", &SA5_access},
 129        {0x409C0E11, "Smart Array 6400", &SA5_access},
 130        {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
 131        {0x40910E11, "Smart Array 6i", &SA5_access},
 132        {0x3225103C, "Smart Array P600", &SA5_access},
 133        {0x3223103C, "Smart Array P800", &SA5_access},
 134        {0x3234103C, "Smart Array P400", &SA5_access},
 135        {0x3235103C, "Smart Array P400i", &SA5_access},
 136        {0x3211103C, "Smart Array E200i", &SA5_access},
 137        {0x3212103C, "Smart Array E200", &SA5_access},
 138        {0x3213103C, "Smart Array E200i", &SA5_access},
 139        {0x3214103C, "Smart Array E200i", &SA5_access},
 140        {0x3215103C, "Smart Array E200i", &SA5_access},
 141        {0x3237103C, "Smart Array E500", &SA5_access},
 142        {0x3223103C, "Smart Array P800", &SA5_access},
 143        {0x3234103C, "Smart Array P400", &SA5_access},
 144        {0x323D103C, "Smart Array P700m", &SA5_access},
 145};
 146
 147/* How long to wait (in milliseconds) for board to go into simple mode */
 148#define MAX_CONFIG_WAIT 30000
 149#define MAX_IOCTL_CONFIG_WAIT 1000
 150
 151/*define how many times we will try a command because of bus resets */
 152#define MAX_CMD_RETRIES 3
 153
 154#define MAX_CTLR        32
 155
 156/* Originally cciss driver only supports 8 major numbers */
 157#define MAX_CTLR_ORIG   8
 158
 159static ctlr_info_t *hba[MAX_CTLR];
 160
 161static struct task_struct *cciss_scan_thread;
 162static DEFINE_MUTEX(scan_mutex);
 163static LIST_HEAD(scan_q);
 164
 165static void do_cciss_request(struct request_queue *q);
 166static irqreturn_t do_cciss_intx(int irq, void *dev_id);
 167static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
 168static int cciss_open(struct block_device *bdev, fmode_t mode);
 169static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
 170static void cciss_release(struct gendisk *disk, fmode_t mode);
 171static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
 172                       unsigned int cmd, unsigned long arg);
 173static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
 174
 175static int cciss_revalidate(struct gendisk *disk);
 176static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
 177static int deregister_disk(ctlr_info_t *h, int drv_index,
 178                           int clear_all, int via_ioctl);
 179
 180static void cciss_read_capacity(ctlr_info_t *h, int logvol,
 181                        sector_t *total_size, unsigned int *block_size);
 182static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
 183                        sector_t *total_size, unsigned int *block_size);
 184static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
 185                        sector_t total_size,
 186                        unsigned int block_size, InquiryData_struct *inq_buff,
 187                                   drive_info_struct *drv);
 188static void cciss_interrupt_mode(ctlr_info_t *);
 189static int cciss_enter_simple_mode(struct ctlr_info *h);
 190static void start_io(ctlr_info_t *h);
 191static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
 192                        __u8 page_code, unsigned char scsi3addr[],
 193                        int cmd_type);
 194static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
 195        int attempt_retry);
 196static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
 197
 198static int add_to_scan_list(struct ctlr_info *h);
 199static int scan_thread(void *data);
 200static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
 201static void cciss_hba_release(struct device *dev);
 202static void cciss_device_release(struct device *dev);
 203static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
 204static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
 205static inline u32 next_command(ctlr_info_t *h);
 206static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
 207                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
 208                                u64 *cfg_offset);
 209static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
 210                                     unsigned long *memory_bar);
 211static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
 212static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
 213
 214/* performant mode helper functions */
 215static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
 216                                int *bucket_map);
 217static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
 218
 219#ifdef CONFIG_PROC_FS
 220static void cciss_procinit(ctlr_info_t *h);
 221#else
 222static void cciss_procinit(ctlr_info_t *h)
 223{
 224}
 225#endif                          /* CONFIG_PROC_FS */
 226
 227#ifdef CONFIG_COMPAT
 228static int cciss_compat_ioctl(struct block_device *, fmode_t,
 229                              unsigned, unsigned long);
 230#endif
 231
 232static const struct block_device_operations cciss_fops = {
 233        .owner = THIS_MODULE,
 234        .open = cciss_unlocked_open,
 235        .release = cciss_release,
 236        .ioctl = cciss_ioctl,
 237        .getgeo = cciss_getgeo,
 238#ifdef CONFIG_COMPAT
 239        .compat_ioctl = cciss_compat_ioctl,
 240#endif
 241        .revalidate_disk = cciss_revalidate,
 242};
 243
 244/* set_performant_mode: Modify the tag for cciss performant
 245 * set bit 0 for pull model, bits 3-1 for block fetch
 246 * register number
 247 */
 248static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
 249{
 250        if (likely(h->transMethod & CFGTBL_Trans_Performant))
 251                c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
 252}
 253
 254/*
 255 * Enqueuing and dequeuing functions for cmdlists.
 256 */
 257static inline void addQ(struct list_head *list, CommandList_struct *c)
 258{
 259        list_add_tail(&c->list, list);
 260}
 261
 262static inline void removeQ(CommandList_struct *c)
 263{
 264        /*
 265         * After kexec/dump some commands might still
 266         * be in flight, which the firmware will try
 267         * to complete. Resetting the firmware doesn't work
 268         * with old fw revisions, so we have to mark
 269         * them off as 'stale' to prevent the driver from
 270         * falling over.
 271         */
 272        if (WARN_ON(list_empty(&c->list))) {
 273                c->cmd_type = CMD_MSG_STALE;
 274                return;
 275        }
 276
 277        list_del_init(&c->list);
 278}
 279
 280static void enqueue_cmd_and_start_io(ctlr_info_t *h,
 281        CommandList_struct *c)
 282{
 283        unsigned long flags;
 284        set_performant_mode(h, c);
 285        spin_lock_irqsave(&h->lock, flags);
 286        addQ(&h->reqQ, c);
 287        h->Qdepth++;
 288        if (h->Qdepth > h->maxQsinceinit)
 289                h->maxQsinceinit = h->Qdepth;
 290        start_io(h);
 291        spin_unlock_irqrestore(&h->lock, flags);
 292}
 293
 294static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
 295        int nr_cmds)
 296{
 297        int i;
 298
 299        if (!cmd_sg_list)
 300                return;
 301        for (i = 0; i < nr_cmds; i++) {
 302                kfree(cmd_sg_list[i]);
 303                cmd_sg_list[i] = NULL;
 304        }
 305        kfree(cmd_sg_list);
 306}
 307
 308static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
 309        ctlr_info_t *h, int chainsize, int nr_cmds)
 310{
 311        int j;
 312        SGDescriptor_struct **cmd_sg_list;
 313
 314        if (chainsize <= 0)
 315                return NULL;
 316
 317        cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
 318        if (!cmd_sg_list)
 319                return NULL;
 320
 321        /* Build up chain blocks for each command */
 322        for (j = 0; j < nr_cmds; j++) {
 323                /* Need a block of chainsized s/g elements. */
 324                cmd_sg_list[j] = kmalloc((chainsize *
 325                        sizeof(*cmd_sg_list[j])), GFP_KERNEL);
 326                if (!cmd_sg_list[j]) {
 327                        dev_err(&h->pdev->dev, "Cannot get memory "
 328                                "for s/g chains.\n");
 329                        goto clean;
 330                }
 331        }
 332        return cmd_sg_list;
 333clean:
 334        cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
 335        return NULL;
 336}
 337
 338static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
 339{
 340        SGDescriptor_struct *chain_sg;
 341        u64bit temp64;
 342
 343        if (c->Header.SGTotal <= h->max_cmd_sgentries)
 344                return;
 345
 346        chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 347        temp64.val32.lower = chain_sg->Addr.lower;
 348        temp64.val32.upper = chain_sg->Addr.upper;
 349        pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
 350}
 351
 352static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
 353        SGDescriptor_struct *chain_block, int len)
 354{
 355        SGDescriptor_struct *chain_sg;
 356        u64bit temp64;
 357
 358        chain_sg = &c->SG[h->max_cmd_sgentries - 1];
 359        chain_sg->Ext = CCISS_SG_CHAIN;
 360        chain_sg->Len = len;
 361        temp64.val = pci_map_single(h->pdev, chain_block, len,
 362                                PCI_DMA_TODEVICE);
 363        chain_sg->Addr.lower = temp64.val32.lower;
 364        chain_sg->Addr.upper = temp64.val32.upper;
 365}
 366
 367#include "cciss_scsi.c"         /* For SCSI tape support */
 368
 369static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
 370        "UNKNOWN"
 371};
 372#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
 373
 374#ifdef CONFIG_PROC_FS
 375
 376/*
 377 * Report information about this controller.
 378 */
 379#define ENG_GIG 1000000000
 380#define ENG_GIG_FACTOR (ENG_GIG/512)
 381#define ENGAGE_SCSI     "engage scsi"
 382
 383static void cciss_seq_show_header(struct seq_file *seq)
 384{
 385        ctlr_info_t *h = seq->private;
 386
 387        seq_printf(seq, "%s: HP %s Controller\n"
 388                "Board ID: 0x%08lx\n"
 389                "Firmware Version: %c%c%c%c\n"
 390                "IRQ: %d\n"
 391                "Logical drives: %d\n"
 392                "Current Q depth: %d\n"
 393                "Current # commands on controller: %d\n"
 394                "Max Q depth since init: %d\n"
 395                "Max # commands on controller since init: %d\n"
 396                "Max SG entries since init: %d\n",
 397                h->devname,
 398                h->product_name,
 399                (unsigned long)h->board_id,
 400                h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
 401                h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
 402                h->num_luns,
 403                h->Qdepth, h->commands_outstanding,
 404                h->maxQsinceinit, h->max_outstanding, h->maxSG);
 405
 406#ifdef CONFIG_CISS_SCSI_TAPE
 407        cciss_seq_tape_report(seq, h);
 408#endif /* CONFIG_CISS_SCSI_TAPE */
 409}
 410
 411static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
 412{
 413        ctlr_info_t *h = seq->private;
 414        unsigned long flags;
 415
 416        /* prevent displaying bogus info during configuration
 417         * or deconfiguration of a logical volume
 418         */
 419        spin_lock_irqsave(&h->lock, flags);
 420        if (h->busy_configuring) {
 421                spin_unlock_irqrestore(&h->lock, flags);
 422                return ERR_PTR(-EBUSY);
 423        }
 424        h->busy_configuring = 1;
 425        spin_unlock_irqrestore(&h->lock, flags);
 426
 427        if (*pos == 0)
 428                cciss_seq_show_header(seq);
 429
 430        return pos;
 431}
 432
 433static int cciss_seq_show(struct seq_file *seq, void *v)
 434{
 435        sector_t vol_sz, vol_sz_frac;
 436        ctlr_info_t *h = seq->private;
 437        unsigned ctlr = h->ctlr;
 438        loff_t *pos = v;
 439        drive_info_struct *drv = h->drv[*pos];
 440
 441        if (*pos > h->highest_lun)
 442                return 0;
 443
 444        if (drv == NULL) /* it's possible for h->drv[] to have holes. */
 445                return 0;
 446
 447        if (drv->heads == 0)
 448                return 0;
 449
 450        vol_sz = drv->nr_blocks;
 451        vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
 452        vol_sz_frac *= 100;
 453        sector_div(vol_sz_frac, ENG_GIG_FACTOR);
 454
 455        if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
 456                drv->raid_level = RAID_UNKNOWN;
 457        seq_printf(seq, "cciss/c%dd%d:"
 458                        "\t%4u.%02uGB\tRAID %s\n",
 459                        ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
 460                        raid_label[drv->raid_level]);
 461        return 0;
 462}
 463
 464static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 465{
 466        ctlr_info_t *h = seq->private;
 467
 468        if (*pos > h->highest_lun)
 469                return NULL;
 470        *pos += 1;
 471
 472        return pos;
 473}
 474
 475static void cciss_seq_stop(struct seq_file *seq, void *v)
 476{
 477        ctlr_info_t *h = seq->private;
 478
 479        /* Only reset h->busy_configuring if we succeeded in setting
 480         * it during cciss_seq_start. */
 481        if (v == ERR_PTR(-EBUSY))
 482                return;
 483
 484        h->busy_configuring = 0;
 485}
 486
 487static const struct seq_operations cciss_seq_ops = {
 488        .start = cciss_seq_start,
 489        .show  = cciss_seq_show,
 490        .next  = cciss_seq_next,
 491        .stop  = cciss_seq_stop,
 492};
 493
 494static int cciss_seq_open(struct inode *inode, struct file *file)
 495{
 496        int ret = seq_open(file, &cciss_seq_ops);
 497        struct seq_file *seq = file->private_data;
 498
 499        if (!ret)
 500                seq->private = PDE_DATA(inode);
 501
 502        return ret;
 503}
 504
 505static ssize_t
 506cciss_proc_write(struct file *file, const char __user *buf,
 507                 size_t length, loff_t *ppos)
 508{
 509        int err;
 510        char *buffer;
 511
 512#ifndef CONFIG_CISS_SCSI_TAPE
 513        return -EINVAL;
 514#endif
 515
 516        if (!buf || length > PAGE_SIZE - 1)
 517                return -EINVAL;
 518
 519        buffer = (char *)__get_free_page(GFP_KERNEL);
 520        if (!buffer)
 521                return -ENOMEM;
 522
 523        err = -EFAULT;
 524        if (copy_from_user(buffer, buf, length))
 525                goto out;
 526        buffer[length] = '\0';
 527
 528#ifdef CONFIG_CISS_SCSI_TAPE
 529        if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
 530                struct seq_file *seq = file->private_data;
 531                ctlr_info_t *h = seq->private;
 532
 533                err = cciss_engage_scsi(h);
 534                if (err == 0)
 535                        err = length;
 536        } else
 537#endif /* CONFIG_CISS_SCSI_TAPE */
 538                err = -EINVAL;
 539        /* might be nice to have "disengage" too, but it's not
 540           safely possible. (only 1 module use count, lock issues.) */
 541
 542out:
 543        free_page((unsigned long)buffer);
 544        return err;
 545}
 546
 547static const struct file_operations cciss_proc_fops = {
 548        .owner   = THIS_MODULE,
 549        .open    = cciss_seq_open,
 550        .read    = seq_read,
 551        .llseek  = seq_lseek,
 552        .release = seq_release,
 553        .write   = cciss_proc_write,
 554};
 555
 556static void cciss_procinit(ctlr_info_t *h)
 557{
 558        struct proc_dir_entry *pde;
 559
 560        if (proc_cciss == NULL)
 561                proc_cciss = proc_mkdir("driver/cciss", NULL);
 562        if (!proc_cciss)
 563                return;
 564        pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
 565                                        S_IROTH, proc_cciss,
 566                                        &cciss_proc_fops, h);
 567}
 568#endif                          /* CONFIG_PROC_FS */
 569
 570#define MAX_PRODUCT_NAME_LEN 19
 571
 572#define to_hba(n) container_of(n, struct ctlr_info, dev)
 573#define to_drv(n) container_of(n, drive_info_struct, dev)
 574
 575/* List of controllers which cannot be hard reset on kexec with reset_devices */
 576static u32 unresettable_controller[] = {
 577        0x324a103C, /* Smart Array P712m */
 578        0x324b103C, /* SmartArray P711m */
 579        0x3223103C, /* Smart Array P800 */
 580        0x3234103C, /* Smart Array P400 */
 581        0x3235103C, /* Smart Array P400i */
 582        0x3211103C, /* Smart Array E200i */
 583        0x3212103C, /* Smart Array E200 */
 584        0x3213103C, /* Smart Array E200i */
 585        0x3214103C, /* Smart Array E200i */
 586        0x3215103C, /* Smart Array E200i */
 587        0x3237103C, /* Smart Array E500 */
 588        0x323D103C, /* Smart Array P700m */
 589        0x409C0E11, /* Smart Array 6400 */
 590        0x409D0E11, /* Smart Array 6400 EM */
 591};
 592
 593/* List of controllers which cannot even be soft reset */
 594static u32 soft_unresettable_controller[] = {
 595        0x409C0E11, /* Smart Array 6400 */
 596        0x409D0E11, /* Smart Array 6400 EM */
 597};
 598
 599static int ctlr_is_hard_resettable(u32 board_id)
 600{
 601        int i;
 602
 603        for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
 604                if (unresettable_controller[i] == board_id)
 605                        return 0;
 606        return 1;
 607}
 608
 609static int ctlr_is_soft_resettable(u32 board_id)
 610{
 611        int i;
 612
 613        for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
 614                if (soft_unresettable_controller[i] == board_id)
 615                        return 0;
 616        return 1;
 617}
 618
 619static int ctlr_is_resettable(u32 board_id)
 620{
 621        return ctlr_is_hard_resettable(board_id) ||
 622                ctlr_is_soft_resettable(board_id);
 623}
 624
 625static ssize_t host_show_resettable(struct device *dev,
 626                                    struct device_attribute *attr,
 627                                    char *buf)
 628{
 629        struct ctlr_info *h = to_hba(dev);
 630
 631        return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
 632}
 633static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
 634
 635static ssize_t host_store_rescan(struct device *dev,
 636                                 struct device_attribute *attr,
 637                                 const char *buf, size_t count)
 638{
 639        struct ctlr_info *h = to_hba(dev);
 640
 641        add_to_scan_list(h);
 642        wake_up_process(cciss_scan_thread);
 643        wait_for_completion_interruptible(&h->scan_wait);
 644
 645        return count;
 646}
 647static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
 648
 649static ssize_t host_show_transport_mode(struct device *dev,
 650                                 struct device_attribute *attr,
 651                                 char *buf)
 652{
 653        struct ctlr_info *h = to_hba(dev);
 654
 655        return snprintf(buf, 20, "%s\n",
 656                h->transMethod & CFGTBL_Trans_Performant ?
 657                        "performant" : "simple");
 658}
 659static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
 660
 661static ssize_t dev_show_unique_id(struct device *dev,
 662                                 struct device_attribute *attr,
 663                                 char *buf)
 664{
 665        drive_info_struct *drv = to_drv(dev);
 666        struct ctlr_info *h = to_hba(drv->dev.parent);
 667        __u8 sn[16];
 668        unsigned long flags;
 669        int ret = 0;
 670
 671        spin_lock_irqsave(&h->lock, flags);
 672        if (h->busy_configuring)
 673                ret = -EBUSY;
 674        else
 675                memcpy(sn, drv->serial_no, sizeof(sn));
 676        spin_unlock_irqrestore(&h->lock, flags);
 677
 678        if (ret)
 679                return ret;
 680        else
 681                return snprintf(buf, 16 * 2 + 2,
 682                                "%02X%02X%02X%02X%02X%02X%02X%02X"
 683                                "%02X%02X%02X%02X%02X%02X%02X%02X\n",
 684                                sn[0], sn[1], sn[2], sn[3],
 685                                sn[4], sn[5], sn[6], sn[7],
 686                                sn[8], sn[9], sn[10], sn[11],
 687                                sn[12], sn[13], sn[14], sn[15]);
 688}
 689static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
 690
 691static ssize_t dev_show_vendor(struct device *dev,
 692                               struct device_attribute *attr,
 693                               char *buf)
 694{
 695        drive_info_struct *drv = to_drv(dev);
 696        struct ctlr_info *h = to_hba(drv->dev.parent);
 697        char vendor[VENDOR_LEN + 1];
 698        unsigned long flags;
 699        int ret = 0;
 700
 701        spin_lock_irqsave(&h->lock, flags);
 702        if (h->busy_configuring)
 703                ret = -EBUSY;
 704        else
 705                memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
 706        spin_unlock_irqrestore(&h->lock, flags);
 707
 708        if (ret)
 709                return ret;
 710        else
 711                return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
 712}
 713static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
 714
 715static ssize_t dev_show_model(struct device *dev,
 716                              struct device_attribute *attr,
 717                              char *buf)
 718{
 719        drive_info_struct *drv = to_drv(dev);
 720        struct ctlr_info *h = to_hba(drv->dev.parent);
 721        char model[MODEL_LEN + 1];
 722        unsigned long flags;
 723        int ret = 0;
 724
 725        spin_lock_irqsave(&h->lock, flags);
 726        if (h->busy_configuring)
 727                ret = -EBUSY;
 728        else
 729                memcpy(model, drv->model, MODEL_LEN + 1);
 730        spin_unlock_irqrestore(&h->lock, flags);
 731
 732        if (ret)
 733                return ret;
 734        else
 735                return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
 736}
 737static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
 738
 739static ssize_t dev_show_rev(struct device *dev,
 740                            struct device_attribute *attr,
 741                            char *buf)
 742{
 743        drive_info_struct *drv = to_drv(dev);
 744        struct ctlr_info *h = to_hba(drv->dev.parent);
 745        char rev[REV_LEN + 1];
 746        unsigned long flags;
 747        int ret = 0;
 748
 749        spin_lock_irqsave(&h->lock, flags);
 750        if (h->busy_configuring)
 751                ret = -EBUSY;
 752        else
 753                memcpy(rev, drv->rev, REV_LEN + 1);
 754        spin_unlock_irqrestore(&h->lock, flags);
 755
 756        if (ret)
 757                return ret;
 758        else
 759                return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
 760}
 761static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
 762
 763static ssize_t cciss_show_lunid(struct device *dev,
 764                                struct device_attribute *attr, char *buf)
 765{
 766        drive_info_struct *drv = to_drv(dev);
 767        struct ctlr_info *h = to_hba(drv->dev.parent);
 768        unsigned long flags;
 769        unsigned char lunid[8];
 770
 771        spin_lock_irqsave(&h->lock, flags);
 772        if (h->busy_configuring) {
 773                spin_unlock_irqrestore(&h->lock, flags);
 774                return -EBUSY;
 775        }
 776        if (!drv->heads) {
 777                spin_unlock_irqrestore(&h->lock, flags);
 778                return -ENOTTY;
 779        }
 780        memcpy(lunid, drv->LunID, sizeof(lunid));
 781        spin_unlock_irqrestore(&h->lock, flags);
 782        return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
 783                lunid[0], lunid[1], lunid[2], lunid[3],
 784                lunid[4], lunid[5], lunid[6], lunid[7]);
 785}
 786static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
 787
 788static ssize_t cciss_show_raid_level(struct device *dev,
 789                                     struct device_attribute *attr, char *buf)
 790{
 791        drive_info_struct *drv = to_drv(dev);
 792        struct ctlr_info *h = to_hba(drv->dev.parent);
 793        int raid;
 794        unsigned long flags;
 795
 796        spin_lock_irqsave(&h->lock, flags);
 797        if (h->busy_configuring) {
 798                spin_unlock_irqrestore(&h->lock, flags);
 799                return -EBUSY;
 800        }
 801        raid = drv->raid_level;
 802        spin_unlock_irqrestore(&h->lock, flags);
 803        if (raid < 0 || raid > RAID_UNKNOWN)
 804                raid = RAID_UNKNOWN;
 805
 806        return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
 807                        raid_label[raid]);
 808}
 809static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
 810
 811static ssize_t cciss_show_usage_count(struct device *dev,
 812                                      struct device_attribute *attr, char *buf)
 813{
 814        drive_info_struct *drv = to_drv(dev);
 815        struct ctlr_info *h = to_hba(drv->dev.parent);
 816        unsigned long flags;
 817        int count;
 818
 819        spin_lock_irqsave(&h->lock, flags);
 820        if (h->busy_configuring) {
 821                spin_unlock_irqrestore(&h->lock, flags);
 822                return -EBUSY;
 823        }
 824        count = drv->usage_count;
 825        spin_unlock_irqrestore(&h->lock, flags);
 826        return snprintf(buf, 20, "%d\n", count);
 827}
 828static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
 829
 830static struct attribute *cciss_host_attrs[] = {
 831        &dev_attr_rescan.attr,
 832        &dev_attr_resettable.attr,
 833        &dev_attr_transport_mode.attr,
 834        NULL
 835};
 836
 837static struct attribute_group cciss_host_attr_group = {
 838        .attrs = cciss_host_attrs,
 839};
 840
 841static const struct attribute_group *cciss_host_attr_groups[] = {
 842        &cciss_host_attr_group,
 843        NULL
 844};
 845
 846static struct device_type cciss_host_type = {
 847        .name           = "cciss_host",
 848        .groups         = cciss_host_attr_groups,
 849        .release        = cciss_hba_release,
 850};
 851
 852static struct attribute *cciss_dev_attrs[] = {
 853        &dev_attr_unique_id.attr,
 854        &dev_attr_model.attr,
 855        &dev_attr_vendor.attr,
 856        &dev_attr_rev.attr,
 857        &dev_attr_lunid.attr,
 858        &dev_attr_raid_level.attr,
 859        &dev_attr_usage_count.attr,
 860        NULL
 861};
 862
 863static struct attribute_group cciss_dev_attr_group = {
 864        .attrs = cciss_dev_attrs,
 865};
 866
 867static const struct attribute_group *cciss_dev_attr_groups[] = {
 868        &cciss_dev_attr_group,
 869        NULL
 870};
 871
 872static struct device_type cciss_dev_type = {
 873        .name           = "cciss_device",
 874        .groups         = cciss_dev_attr_groups,
 875        .release        = cciss_device_release,
 876};
 877
 878static struct bus_type cciss_bus_type = {
 879        .name           = "cciss",
 880};
 881
 882/*
 883 * cciss_hba_release is called when the reference count
 884 * of h->dev goes to zero.
 885 */
 886static void cciss_hba_release(struct device *dev)
 887{
 888        /*
 889         * nothing to do, but need this to avoid a warning
 890         * about not having a release handler from lib/kref.c.
 891         */
 892}
 893
 894/*
 895 * Initialize sysfs entry for each controller.  This sets up and registers
 896 * the 'cciss#' directory for each individual controller under
 897 * /sys/bus/pci/devices/<dev>/.
 898 */
 899static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
 900{
 901        device_initialize(&h->dev);
 902        h->dev.type = &cciss_host_type;
 903        h->dev.bus = &cciss_bus_type;
 904        dev_set_name(&h->dev, "%s", h->devname);
 905        h->dev.parent = &h->pdev->dev;
 906
 907        return device_add(&h->dev);
 908}
 909
 910/*
 911 * Remove sysfs entries for an hba.
 912 */
 913static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
 914{
 915        device_del(&h->dev);
 916        put_device(&h->dev); /* final put. */
 917}
 918
 919/* cciss_device_release is called when the reference count
 920 * of h->drv[x]dev goes to zero.
 921 */
 922static void cciss_device_release(struct device *dev)
 923{
 924        drive_info_struct *drv = to_drv(dev);
 925        kfree(drv);
 926}
 927
 928/*
 929 * Initialize sysfs for each logical drive.  This sets up and registers
 930 * the 'c#d#' directory for each individual logical drive under
 931 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
 932 * /sys/block/cciss!c#d# to this entry.
 933 */
 934static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
 935                                       int drv_index)
 936{
 937        struct device *dev;
 938
 939        if (h->drv[drv_index]->device_initialized)
 940                return 0;
 941
 942        dev = &h->drv[drv_index]->dev;
 943        device_initialize(dev);
 944        dev->type = &cciss_dev_type;
 945        dev->bus = &cciss_bus_type;
 946        dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
 947        dev->parent = &h->dev;
 948        h->drv[drv_index]->device_initialized = 1;
 949        return device_add(dev);
 950}
 951
 952/*
 953 * Remove sysfs entries for a logical drive.
 954 */
 955static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
 956        int ctlr_exiting)
 957{
 958        struct device *dev = &h->drv[drv_index]->dev;
 959
 960        /* special case for c*d0, we only destroy it on controller exit */
 961        if (drv_index == 0 && !ctlr_exiting)
 962                return;
 963
 964        device_del(dev);
 965        put_device(dev); /* the "final" put. */
 966        h->drv[drv_index] = NULL;
 967}
 968
 969/*
 970 * For operations that cannot sleep, a command block is allocated at init,
 971 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 972 * which ones are free or in use.
 973 */
 974static CommandList_struct *cmd_alloc(ctlr_info_t *h)
 975{
 976        CommandList_struct *c;
 977        int i;
 978        u64bit temp64;
 979        dma_addr_t cmd_dma_handle, err_dma_handle;
 980
 981        do {
 982                i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
 983                if (i == h->nr_cmds)
 984                        return NULL;
 985        } while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
 986        c = h->cmd_pool + i;
 987        memset(c, 0, sizeof(CommandList_struct));
 988        cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
 989        c->err_info = h->errinfo_pool + i;
 990        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
 991        err_dma_handle = h->errinfo_pool_dhandle
 992            + i * sizeof(ErrorInfo_struct);
 993        h->nr_allocs++;
 994
 995        c->cmdindex = i;
 996
 997        INIT_LIST_HEAD(&c->list);
 998        c->busaddr = (__u32) cmd_dma_handle;
 999        temp64.val = (__u64) err_dma_handle;
1000        c->ErrDesc.Addr.lower = temp64.val32.lower;
1001        c->ErrDesc.Addr.upper = temp64.val32.upper;
1002        c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1003
1004        c->ctlr = h->ctlr;
1005        return c;
1006}
1007
1008/* allocate a command using pci_alloc_consistent, used for ioctls,
1009 * etc., not for the main i/o path.
1010 */
1011static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1012{
1013        CommandList_struct *c;
1014        u64bit temp64;
1015        dma_addr_t cmd_dma_handle, err_dma_handle;
1016
1017        c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
1018                sizeof(CommandList_struct), &cmd_dma_handle);
1019        if (c == NULL)
1020                return NULL;
1021        memset(c, 0, sizeof(CommandList_struct));
1022
1023        c->cmdindex = -1;
1024
1025        c->err_info = (ErrorInfo_struct *)
1026            pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1027                    &err_dma_handle);
1028
1029        if (c->err_info == NULL) {
1030                pci_free_consistent(h->pdev,
1031                        sizeof(CommandList_struct), c, cmd_dma_handle);
1032                return NULL;
1033        }
1034        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1035
1036        INIT_LIST_HEAD(&c->list);
1037        c->busaddr = (__u32) cmd_dma_handle;
1038        temp64.val = (__u64) err_dma_handle;
1039        c->ErrDesc.Addr.lower = temp64.val32.lower;
1040        c->ErrDesc.Addr.upper = temp64.val32.upper;
1041        c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1042
1043        c->ctlr = h->ctlr;
1044        return c;
1045}
1046
1047static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1048{
1049        int i;
1050
1051        i = c - h->cmd_pool;
1052        clear_bit(i, h->cmd_pool_bits);
1053        h->nr_frees++;
1054}
1055
1056static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1057{
1058        u64bit temp64;
1059
1060        temp64.val32.lower = c->ErrDesc.Addr.lower;
1061        temp64.val32.upper = c->ErrDesc.Addr.upper;
1062        pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1063                            c->err_info, (dma_addr_t) temp64.val);
1064        pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1065                (dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1066}
1067
1068static inline ctlr_info_t *get_host(struct gendisk *disk)
1069{
1070        return disk->queue->queuedata;
1071}
1072
1073static inline drive_info_struct *get_drv(struct gendisk *disk)
1074{
1075        return disk->private_data;
1076}
1077
1078/*
1079 * Open.  Make sure the device is really there.
1080 */
1081static int cciss_open(struct block_device *bdev, fmode_t mode)
1082{
1083        ctlr_info_t *h = get_host(bdev->bd_disk);
1084        drive_info_struct *drv = get_drv(bdev->bd_disk);
1085
1086        dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1087        if (drv->busy_configuring)
1088                return -EBUSY;
1089        /*
1090         * Root is allowed to open raw volume zero even if it's not configured
1091         * so array config can still work. Root is also allowed to open any
1092         * volume that has a LUN ID, so it can issue IOCTL to reread the
1093         * disk information.  I don't think I really like this
1094         * but I'm already using way to many device nodes to claim another one
1095         * for "raw controller".
1096         */
1097        if (drv->heads == 0) {
1098                if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
1099                        /* if not node 0 make sure it is a partition = 0 */
1100                        if (MINOR(bdev->bd_dev) & 0x0f) {
1101                                return -ENXIO;
1102                                /* if it is, make sure we have a LUN ID */
1103                        } else if (memcmp(drv->LunID, CTLR_LUNID,
1104                                sizeof(drv->LunID))) {
1105                                return -ENXIO;
1106                        }
1107                }
1108                if (!capable(CAP_SYS_ADMIN))
1109                        return -EPERM;
1110        }
1111        drv->usage_count++;
1112        h->usage_count++;
1113        return 0;
1114}
1115
1116static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1117{
1118        int ret;
1119
1120        mutex_lock(&cciss_mutex);
1121        ret = cciss_open(bdev, mode);
1122        mutex_unlock(&cciss_mutex);
1123
1124        return ret;
1125}
1126
1127/*
1128 * Close.  Sync first.
1129 */
1130static void cciss_release(struct gendisk *disk, fmode_t mode)
1131{
1132        ctlr_info_t *h;
1133        drive_info_struct *drv;
1134
1135        mutex_lock(&cciss_mutex);
1136        h = get_host(disk);
1137        drv = get_drv(disk);
1138        dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1139        drv->usage_count--;
1140        h->usage_count--;
1141        mutex_unlock(&cciss_mutex);
1142}
1143
1144#ifdef CONFIG_COMPAT
1145
1146static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1147                                  unsigned cmd, unsigned long arg);
1148static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1149                                      unsigned cmd, unsigned long arg);
1150
1151static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1152                              unsigned cmd, unsigned long arg)
1153{
1154        switch (cmd) {
1155        case CCISS_GETPCIINFO:
1156        case CCISS_GETINTINFO:
1157        case CCISS_SETINTINFO:
1158        case CCISS_GETNODENAME:
1159        case CCISS_SETNODENAME:
1160        case CCISS_GETHEARTBEAT:
1161        case CCISS_GETBUSTYPES:
1162        case CCISS_GETFIRMVER:
1163        case CCISS_GETDRIVVER:
1164        case CCISS_REVALIDVOLS:
1165        case CCISS_DEREGDISK:
1166        case CCISS_REGNEWDISK:
1167        case CCISS_REGNEWD:
1168        case CCISS_RESCANDISK:
1169        case CCISS_GETLUNINFO:
1170                return cciss_ioctl(bdev, mode, cmd, arg);
1171
1172        case CCISS_PASSTHRU32:
1173                return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1174        case CCISS_BIG_PASSTHRU32:
1175                return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1176
1177        default:
1178                return -ENOIOCTLCMD;
1179        }
1180}
1181
1182static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1183                                  unsigned cmd, unsigned long arg)
1184{
1185        IOCTL32_Command_struct __user *arg32 =
1186            (IOCTL32_Command_struct __user *) arg;
1187        IOCTL_Command_struct arg64;
1188        IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1189        int err;
1190        u32 cp;
1191
1192        memset(&arg64, 0, sizeof(arg64));
1193        err = 0;
1194        err |=
1195            copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1196                           sizeof(arg64.LUN_info));
1197        err |=
1198            copy_from_user(&arg64.Request, &arg32->Request,
1199                           sizeof(arg64.Request));
1200        err |=
1201            copy_from_user(&arg64.error_info, &arg32->error_info,
1202                           sizeof(arg64.error_info));
1203        err |= get_user(arg64.buf_size, &arg32->buf_size);
1204        err |= get_user(cp, &arg32->buf);
1205        arg64.buf = compat_ptr(cp);
1206        err |= copy_to_user(p, &arg64, sizeof(arg64));
1207
1208        if (err)
1209                return -EFAULT;
1210
1211        err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1212        if (err)
1213                return err;
1214        err |=
1215            copy_in_user(&arg32->error_info, &p->error_info,
1216                         sizeof(arg32->error_info));
1217        if (err)
1218                return -EFAULT;
1219        return err;
1220}
1221
1222static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1223                                      unsigned cmd, unsigned long arg)
1224{
1225        BIG_IOCTL32_Command_struct __user *arg32 =
1226            (BIG_IOCTL32_Command_struct __user *) arg;
1227        BIG_IOCTL_Command_struct arg64;
1228        BIG_IOCTL_Command_struct __user *p =
1229            compat_alloc_user_space(sizeof(arg64));
1230        int err;
1231        u32 cp;
1232
1233        memset(&arg64, 0, sizeof(arg64));
1234        err = 0;
1235        err |=
1236            copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1237                           sizeof(arg64.LUN_info));
1238        err |=
1239            copy_from_user(&arg64.Request, &arg32->Request,
1240                           sizeof(arg64.Request));
1241        err |=
1242            copy_from_user(&arg64.error_info, &arg32->error_info,
1243                           sizeof(arg64.error_info));
1244        err |= get_user(arg64.buf_size, &arg32->buf_size);
1245        err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1246        err |= get_user(cp, &arg32->buf);
1247        arg64.buf = compat_ptr(cp);
1248        err |= copy_to_user(p, &arg64, sizeof(arg64));
1249
1250        if (err)
1251                return -EFAULT;
1252
1253        err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1254        if (err)
1255                return err;
1256        err |=
1257            copy_in_user(&arg32->error_info, &p->error_info,
1258                         sizeof(arg32->error_info));
1259        if (err)
1260                return -EFAULT;
1261        return err;
1262}
1263#endif
1264
1265static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1266{
1267        drive_info_struct *drv = get_drv(bdev->bd_disk);
1268
1269        if (!drv->cylinders)
1270                return -ENXIO;
1271
1272        geo->heads = drv->heads;
1273        geo->sectors = drv->sectors;
1274        geo->cylinders = drv->cylinders;
1275        return 0;
1276}
1277
1278static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1279{
1280        if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1281                        c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1282                (void)check_for_unit_attention(h, c);
1283}
1284
1285static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1286{
1287        cciss_pci_info_struct pciinfo;
1288
1289        if (!argp)
1290                return -EINVAL;
1291        pciinfo.domain = pci_domain_nr(h->pdev->bus);
1292        pciinfo.bus = h->pdev->bus->number;
1293        pciinfo.dev_fn = h->pdev->devfn;
1294        pciinfo.board_id = h->board_id;
1295        if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1296                return -EFAULT;
1297        return 0;
1298}
1299
1300static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1301{
1302        cciss_coalint_struct intinfo;
1303        unsigned long flags;
1304
1305        if (!argp)
1306                return -EINVAL;
1307        spin_lock_irqsave(&h->lock, flags);
1308        intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1309        intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1310        spin_unlock_irqrestore(&h->lock, flags);
1311        if (copy_to_user
1312            (argp, &intinfo, sizeof(cciss_coalint_struct)))
1313                return -EFAULT;
1314        return 0;
1315}
1316
1317static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1318{
1319        cciss_coalint_struct intinfo;
1320        unsigned long flags;
1321        int i;
1322
1323        if (!argp)
1324                return -EINVAL;
1325        if (!capable(CAP_SYS_ADMIN))
1326                return -EPERM;
1327        if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1328                return -EFAULT;
1329        if ((intinfo.delay == 0) && (intinfo.count == 0))
1330                return -EINVAL;
1331        spin_lock_irqsave(&h->lock, flags);
1332        /* Update the field, and then ring the doorbell */
1333        writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1334        writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1335        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1336
1337        for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1338                if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1339                        break;
1340                udelay(1000); /* delay and try again */
1341        }
1342        spin_unlock_irqrestore(&h->lock, flags);
1343        if (i >= MAX_IOCTL_CONFIG_WAIT)
1344                return -EAGAIN;
1345        return 0;
1346}
1347
1348static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1349{
1350        NodeName_type NodeName;
1351        unsigned long flags;
1352        int i;
1353
1354        if (!argp)
1355                return -EINVAL;
1356        spin_lock_irqsave(&h->lock, flags);
1357        for (i = 0; i < 16; i++)
1358                NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1359        spin_unlock_irqrestore(&h->lock, flags);
1360        if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1361                return -EFAULT;
1362        return 0;
1363}
1364
1365static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1366{
1367        NodeName_type NodeName;
1368        unsigned long flags;
1369        int i;
1370
1371        if (!argp)
1372                return -EINVAL;
1373        if (!capable(CAP_SYS_ADMIN))
1374                return -EPERM;
1375        if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1376                return -EFAULT;
1377        spin_lock_irqsave(&h->lock, flags);
1378        /* Update the field, and then ring the doorbell */
1379        for (i = 0; i < 16; i++)
1380                writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1381        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1382        for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1383                if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1384                        break;
1385                udelay(1000); /* delay and try again */
1386        }
1387        spin_unlock_irqrestore(&h->lock, flags);
1388        if (i >= MAX_IOCTL_CONFIG_WAIT)
1389                return -EAGAIN;
1390        return 0;
1391}
1392
1393static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1394{
1395        Heartbeat_type heartbeat;
1396        unsigned long flags;
1397
1398        if (!argp)
1399                return -EINVAL;
1400        spin_lock_irqsave(&h->lock, flags);
1401        heartbeat = readl(&h->cfgtable->HeartBeat);
1402        spin_unlock_irqrestore(&h->lock, flags);
1403        if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1404                return -EFAULT;
1405        return 0;
1406}
1407
1408static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1409{
1410        BusTypes_type BusTypes;
1411        unsigned long flags;
1412
1413        if (!argp)
1414                return -EINVAL;
1415        spin_lock_irqsave(&h->lock, flags);
1416        BusTypes = readl(&h->cfgtable->BusTypes);
1417        spin_unlock_irqrestore(&h->lock, flags);
1418        if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1419                return -EFAULT;
1420        return 0;
1421}
1422
1423static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1424{
1425        FirmwareVer_type firmware;
1426
1427        if (!argp)
1428                return -EINVAL;
1429        memcpy(firmware, h->firm_ver, 4);
1430
1431        if (copy_to_user
1432            (argp, firmware, sizeof(FirmwareVer_type)))
1433                return -EFAULT;
1434        return 0;
1435}
1436
1437static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1438{
1439        DriverVer_type DriverVer = DRIVER_VERSION;
1440
1441        if (!argp)
1442                return -EINVAL;
1443        if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1444                return -EFAULT;
1445        return 0;
1446}
1447
1448static int cciss_getluninfo(ctlr_info_t *h,
1449        struct gendisk *disk, void __user *argp)
1450{
1451        LogvolInfo_struct luninfo;
1452        drive_info_struct *drv = get_drv(disk);
1453
1454        if (!argp)
1455                return -EINVAL;
1456        memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1457        luninfo.num_opens = drv->usage_count;
1458        luninfo.num_parts = 0;
1459        if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1460                return -EFAULT;
1461        return 0;
1462}
1463
1464static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1465{
1466        IOCTL_Command_struct iocommand;
1467        CommandList_struct *c;
1468        char *buff = NULL;
1469        u64bit temp64;
1470        DECLARE_COMPLETION_ONSTACK(wait);
1471
1472        if (!argp)
1473                return -EINVAL;
1474
1475        if (!capable(CAP_SYS_RAWIO))
1476                return -EPERM;
1477
1478        if (copy_from_user
1479            (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1480                return -EFAULT;
1481        if ((iocommand.buf_size < 1) &&
1482            (iocommand.Request.Type.Direction != XFER_NONE)) {
1483                return -EINVAL;
1484        }
1485        if (iocommand.buf_size > 0) {
1486                buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1487                if (buff == NULL)
1488                        return -EFAULT;
1489        }
1490        if (iocommand.Request.Type.Direction == XFER_WRITE) {
1491                /* Copy the data into the buffer we created */
1492                if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1493                        kfree(buff);
1494                        return -EFAULT;
1495                }
1496        } else {
1497                memset(buff, 0, iocommand.buf_size);
1498        }
1499        c = cmd_special_alloc(h);
1500        if (!c) {
1501                kfree(buff);
1502                return -ENOMEM;
1503        }
1504        /* Fill in the command type */
1505        c->cmd_type = CMD_IOCTL_PEND;
1506        /* Fill in Command Header */
1507        c->Header.ReplyQueue = 0;   /* unused in simple mode */
1508        if (iocommand.buf_size > 0) { /* buffer to fill */
1509                c->Header.SGList = 1;
1510                c->Header.SGTotal = 1;
1511        } else { /* no buffers to fill */
1512                c->Header.SGList = 0;
1513                c->Header.SGTotal = 0;
1514        }
1515        c->Header.LUN = iocommand.LUN_info;
1516        /* use the kernel address the cmd block for tag */
1517        c->Header.Tag.lower = c->busaddr;
1518
1519        /* Fill in Request block */
1520        c->Request = iocommand.Request;
1521
1522        /* Fill in the scatter gather information */
1523        if (iocommand.buf_size > 0) {
1524                temp64.val = pci_map_single(h->pdev, buff,
1525                        iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1526                c->SG[0].Addr.lower = temp64.val32.lower;
1527                c->SG[0].Addr.upper = temp64.val32.upper;
1528                c->SG[0].Len = iocommand.buf_size;
1529                c->SG[0].Ext = 0;  /* we are not chaining */
1530        }
1531        c->waiting = &wait;
1532
1533        enqueue_cmd_and_start_io(h, c);
1534        wait_for_completion(&wait);
1535
1536        /* unlock the buffers from DMA */
1537        temp64.val32.lower = c->SG[0].Addr.lower;
1538        temp64.val32.upper = c->SG[0].Addr.upper;
1539        pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1540                         PCI_DMA_BIDIRECTIONAL);
1541        check_ioctl_unit_attention(h, c);
1542
1543        /* Copy the error information out */
1544        iocommand.error_info = *(c->err_info);
1545        if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1546                kfree(buff);
1547                cmd_special_free(h, c);
1548                return -EFAULT;
1549        }
1550
1551        if (iocommand.Request.Type.Direction == XFER_READ) {
1552                /* Copy the data out of the buffer we created */
1553                if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1554                        kfree(buff);
1555                        cmd_special_free(h, c);
1556                        return -EFAULT;
1557                }
1558        }
1559        kfree(buff);
1560        cmd_special_free(h, c);
1561        return 0;
1562}
1563
1564static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1565{
1566        BIG_IOCTL_Command_struct *ioc;
1567        CommandList_struct *c;
1568        unsigned char **buff = NULL;
1569        int *buff_size = NULL;
1570        u64bit temp64;
1571        BYTE sg_used = 0;
1572        int status = 0;
1573        int i;
1574        DECLARE_COMPLETION_ONSTACK(wait);
1575        __u32 left;
1576        __u32 sz;
1577        BYTE __user *data_ptr;
1578
1579        if (!argp)
1580                return -EINVAL;
1581        if (!capable(CAP_SYS_RAWIO))
1582                return -EPERM;
1583        ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1584        if (!ioc) {
1585                status = -ENOMEM;
1586                goto cleanup1;
1587        }
1588        if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1589                status = -EFAULT;
1590                goto cleanup1;
1591        }
1592        if ((ioc->buf_size < 1) &&
1593            (ioc->Request.Type.Direction != XFER_NONE)) {
1594                status = -EINVAL;
1595                goto cleanup1;
1596        }
1597        /* Check kmalloc limits  using all SGs */
1598        if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1599                status = -EINVAL;
1600                goto cleanup1;
1601        }
1602        if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1603                status = -EINVAL;
1604                goto cleanup1;
1605        }
1606        buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1607        if (!buff) {
1608                status = -ENOMEM;
1609                goto cleanup1;
1610        }
1611        buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1612        if (!buff_size) {
1613                status = -ENOMEM;
1614                goto cleanup1;
1615        }
1616        left = ioc->buf_size;
1617        data_ptr = ioc->buf;
1618        while (left) {
1619                sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1620                buff_size[sg_used] = sz;
1621                buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1622                if (buff[sg_used] == NULL) {
1623                        status = -ENOMEM;
1624                        goto cleanup1;
1625                }
1626                if (ioc->Request.Type.Direction == XFER_WRITE) {
1627                        if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1628                                status = -EFAULT;
1629                                goto cleanup1;
1630                        }
1631                } else {
1632                        memset(buff[sg_used], 0, sz);
1633                }
1634                left -= sz;
1635                data_ptr += sz;
1636                sg_used++;
1637        }
1638        c = cmd_special_alloc(h);
1639        if (!c) {
1640                status = -ENOMEM;
1641                goto cleanup1;
1642        }
1643        c->cmd_type = CMD_IOCTL_PEND;
1644        c->Header.ReplyQueue = 0;
1645        c->Header.SGList = sg_used;
1646        c->Header.SGTotal = sg_used;
1647        c->Header.LUN = ioc->LUN_info;
1648        c->Header.Tag.lower = c->busaddr;
1649
1650        c->Request = ioc->Request;
1651        for (i = 0; i < sg_used; i++) {
1652                temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1653                                    PCI_DMA_BIDIRECTIONAL);
1654                c->SG[i].Addr.lower = temp64.val32.lower;
1655                c->SG[i].Addr.upper = temp64.val32.upper;
1656                c->SG[i].Len = buff_size[i];
1657                c->SG[i].Ext = 0;       /* we are not chaining */
1658        }
1659        c->waiting = &wait;
1660        enqueue_cmd_and_start_io(h, c);
1661        wait_for_completion(&wait);
1662        /* unlock the buffers from DMA */
1663        for (i = 0; i < sg_used; i++) {
1664                temp64.val32.lower = c->SG[i].Addr.lower;
1665                temp64.val32.upper = c->SG[i].Addr.upper;
1666                pci_unmap_single(h->pdev,
1667                        (dma_addr_t) temp64.val, buff_size[i],
1668                        PCI_DMA_BIDIRECTIONAL);
1669        }
1670        check_ioctl_unit_attention(h, c);
1671        /* Copy the error information out */
1672        ioc->error_info = *(c->err_info);
1673        if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1674                cmd_special_free(h, c);
1675                status = -EFAULT;
1676                goto cleanup1;
1677        }
1678        if (ioc->Request.Type.Direction == XFER_READ) {
1679                /* Copy the data out of the buffer we created */
1680                BYTE __user *ptr = ioc->buf;
1681                for (i = 0; i < sg_used; i++) {
1682                        if (copy_to_user(ptr, buff[i], buff_size[i])) {
1683                                cmd_special_free(h, c);
1684                                status = -EFAULT;
1685                                goto cleanup1;
1686                        }
1687                        ptr += buff_size[i];
1688                }
1689        }
1690        cmd_special_free(h, c);
1691        status = 0;
1692cleanup1:
1693        if (buff) {
1694                for (i = 0; i < sg_used; i++)
1695                        kfree(buff[i]);
1696                kfree(buff);
1697        }
1698        kfree(buff_size);
1699        kfree(ioc);
1700        return status;
1701}
1702
1703static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1704        unsigned int cmd, unsigned long arg)
1705{
1706        struct gendisk *disk = bdev->bd_disk;
1707        ctlr_info_t *h = get_host(disk);
1708        void __user *argp = (void __user *)arg;
1709
1710        dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1711                cmd, arg);
1712        switch (cmd) {
1713        case CCISS_GETPCIINFO:
1714                return cciss_getpciinfo(h, argp);
1715        case CCISS_GETINTINFO:
1716                return cciss_getintinfo(h, argp);
1717        case CCISS_SETINTINFO:
1718                return cciss_setintinfo(h, argp);
1719        case CCISS_GETNODENAME:
1720                return cciss_getnodename(h, argp);
1721        case CCISS_SETNODENAME:
1722                return cciss_setnodename(h, argp);
1723        case CCISS_GETHEARTBEAT:
1724                return cciss_getheartbeat(h, argp);
1725        case CCISS_GETBUSTYPES:
1726                return cciss_getbustypes(h, argp);
1727        case CCISS_GETFIRMVER:
1728                return cciss_getfirmver(h, argp);
1729        case CCISS_GETDRIVVER:
1730                return cciss_getdrivver(h, argp);
1731        case CCISS_DEREGDISK:
1732        case CCISS_REGNEWD:
1733        case CCISS_REVALIDVOLS:
1734                return rebuild_lun_table(h, 0, 1);
1735        case CCISS_GETLUNINFO:
1736                return cciss_getluninfo(h, disk, argp);
1737        case CCISS_PASSTHRU:
1738                return cciss_passthru(h, argp);
1739        case CCISS_BIG_PASSTHRU:
1740                return cciss_bigpassthru(h, argp);
1741
1742        /* scsi_cmd_blk_ioctl handles these, below, though some are not */
1743        /* very meaningful for cciss.  SG_IO is the main one people want. */
1744
1745        case SG_GET_VERSION_NUM:
1746        case SG_SET_TIMEOUT:
1747        case SG_GET_TIMEOUT:
1748        case SG_GET_RESERVED_SIZE:
1749        case SG_SET_RESERVED_SIZE:
1750        case SG_EMULATED_HOST:
1751        case SG_IO:
1752        case SCSI_IOCTL_SEND_COMMAND:
1753                return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1754
1755        /* scsi_cmd_blk_ioctl would normally handle these, below, but */
1756        /* they aren't a good fit for cciss, as CD-ROMs are */
1757        /* not supported, and we don't have any bus/target/lun */
1758        /* which we present to the kernel. */
1759
1760        case CDROM_SEND_PACKET:
1761        case CDROMCLOSETRAY:
1762        case CDROMEJECT:
1763        case SCSI_IOCTL_GET_IDLUN:
1764        case SCSI_IOCTL_GET_BUS_NUMBER:
1765        default:
1766                return -ENOTTY;
1767        }
1768}
1769
1770static void cciss_check_queues(ctlr_info_t *h)
1771{
1772        int start_queue = h->next_to_run;
1773        int i;
1774
1775        /* check to see if we have maxed out the number of commands that can
1776         * be placed on the queue.  If so then exit.  We do this check here
1777         * in case the interrupt we serviced was from an ioctl and did not
1778         * free any new commands.
1779         */
1780        if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1781                return;
1782
1783        /* We have room on the queue for more commands.  Now we need to queue
1784         * them up.  We will also keep track of the next queue to run so
1785         * that every queue gets a chance to be started first.
1786         */
1787        for (i = 0; i < h->highest_lun + 1; i++) {
1788                int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1789                /* make sure the disk has been added and the drive is real
1790                 * because this can be called from the middle of init_one.
1791                 */
1792                if (!h->drv[curr_queue])
1793                        continue;
1794                if (!(h->drv[curr_queue]->queue) ||
1795                        !(h->drv[curr_queue]->heads))
1796                        continue;
1797                blk_start_queue(h->gendisk[curr_queue]->queue);
1798
1799                /* check to see if we have maxed out the number of commands
1800                 * that can be placed on the queue.
1801                 */
1802                if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1803                        if (curr_queue == start_queue) {
1804                                h->next_to_run =
1805                                    (start_queue + 1) % (h->highest_lun + 1);
1806                                break;
1807                        } else {
1808                                h->next_to_run = curr_queue;
1809                                break;
1810                        }
1811                }
1812        }
1813}
1814
1815static void cciss_softirq_done(struct request *rq)
1816{
1817        CommandList_struct *c = rq->completion_data;
1818        ctlr_info_t *h = hba[c->ctlr];
1819        SGDescriptor_struct *curr_sg = c->SG;
1820        u64bit temp64;
1821        unsigned long flags;
1822        int i, ddir;
1823        int sg_index = 0;
1824
1825        if (c->Request.Type.Direction == XFER_READ)
1826                ddir = PCI_DMA_FROMDEVICE;
1827        else
1828                ddir = PCI_DMA_TODEVICE;
1829
1830        /* command did not need to be retried */
1831        /* unmap the DMA mapping for all the scatter gather elements */
1832        for (i = 0; i < c->Header.SGList; i++) {
1833                if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1834                        cciss_unmap_sg_chain_block(h, c);
1835                        /* Point to the next block */
1836                        curr_sg = h->cmd_sg_list[c->cmdindex];
1837                        sg_index = 0;
1838                }
1839                temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1840                temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1841                pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1842                                ddir);
1843                ++sg_index;
1844        }
1845
1846        dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1847
1848        /* set the residual count for pc requests */
1849        if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1850                rq->resid_len = c->err_info->ResidualCnt;
1851
1852        blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1853
1854        spin_lock_irqsave(&h->lock, flags);
1855        cmd_free(h, c);
1856        cciss_check_queues(h);
1857        spin_unlock_irqrestore(&h->lock, flags);
1858}
1859
1860static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1861        unsigned char scsi3addr[], uint32_t log_unit)
1862{
1863        memcpy(scsi3addr, h->drv[log_unit]->LunID,
1864                sizeof(h->drv[log_unit]->LunID));
1865}
1866
1867/* This function gets the SCSI vendor, model, and revision of a logical drive
1868 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1869 * they cannot be read.
1870 */
1871static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1872                                   char *vendor, char *model, char *rev)
1873{
1874        int rc;
1875        InquiryData_struct *inq_buf;
1876        unsigned char scsi3addr[8];
1877
1878        *vendor = '\0';
1879        *model = '\0';
1880        *rev = '\0';
1881
1882        inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1883        if (!inq_buf)
1884                return;
1885
1886        log_unit_to_scsi3addr(h, scsi3addr, logvol);
1887        rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1888                        scsi3addr, TYPE_CMD);
1889        if (rc == IO_OK) {
1890                memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1891                vendor[VENDOR_LEN] = '\0';
1892                memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1893                model[MODEL_LEN] = '\0';
1894                memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1895                rev[REV_LEN] = '\0';
1896        }
1897
1898        kfree(inq_buf);
1899        return;
1900}
1901
1902/* This function gets the serial number of a logical drive via
1903 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1904 * number cannot be had, for whatever reason, 16 bytes of 0xff
1905 * are returned instead.
1906 */
1907static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1908                                unsigned char *serial_no, int buflen)
1909{
1910#define PAGE_83_INQ_BYTES 64
1911        int rc;
1912        unsigned char *buf;
1913        unsigned char scsi3addr[8];
1914
1915        if (buflen > 16)
1916                buflen = 16;
1917        memset(serial_no, 0xff, buflen);
1918        buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1919        if (!buf)
1920                return;
1921        memset(serial_no, 0, buflen);
1922        log_unit_to_scsi3addr(h, scsi3addr, logvol);
1923        rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1924                PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1925        if (rc == IO_OK)
1926                memcpy(serial_no, &buf[8], buflen);
1927        kfree(buf);
1928        return;
1929}
1930
1931/*
1932 * cciss_add_disk sets up the block device queue for a logical drive
1933 */
1934static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1935                                int drv_index)
1936{
1937        disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1938        if (!disk->queue)
1939                goto init_queue_failure;
1940        sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1941        disk->major = h->major;
1942        disk->first_minor = drv_index << NWD_SHIFT;
1943        disk->fops = &cciss_fops;
1944        if (cciss_create_ld_sysfs_entry(h, drv_index))
1945                goto cleanup_queue;
1946        disk->private_data = h->drv[drv_index];
1947        disk->driverfs_dev = &h->drv[drv_index]->dev;
1948
1949        /* Set up queue information */
1950        blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1951
1952        /* This is a hardware imposed limit. */
1953        blk_queue_max_segments(disk->queue, h->maxsgentries);
1954
1955        blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1956
1957        blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1958
1959        disk->queue->queuedata = h;
1960
1961        blk_queue_logical_block_size(disk->queue,
1962                                     h->drv[drv_index]->block_size);
1963
1964        /* Make sure all queue data is written out before */
1965        /* setting h->drv[drv_index]->queue, as setting this */
1966        /* allows the interrupt handler to start the queue */
1967        wmb();
1968        h->drv[drv_index]->queue = disk->queue;
1969        add_disk(disk);
1970        return 0;
1971
1972cleanup_queue:
1973        blk_cleanup_queue(disk->queue);
1974        disk->queue = NULL;
1975init_queue_failure:
1976        return -1;
1977}
1978
1979/* This function will check the usage_count of the drive to be updated/added.
1980 * If the usage_count is zero and it is a heretofore unknown drive, or,
1981 * the drive's capacity, geometry, or serial number has changed,
1982 * then the drive information will be updated and the disk will be
1983 * re-registered with the kernel.  If these conditions don't hold,
1984 * then it will be left alone for the next reboot.  The exception to this
1985 * is disk 0 which will always be left registered with the kernel since it
1986 * is also the controller node.  Any changes to disk 0 will show up on
1987 * the next reboot.
1988 */
1989static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
1990        int first_time, int via_ioctl)
1991{
1992        struct gendisk *disk;
1993        InquiryData_struct *inq_buff = NULL;
1994        unsigned int block_size;
1995        sector_t total_size;
1996        unsigned long flags = 0;
1997        int ret = 0;
1998        drive_info_struct *drvinfo;
1999
2000        /* Get information about the disk and modify the driver structure */
2001        inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2002        drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2003        if (inq_buff == NULL || drvinfo == NULL)
2004                goto mem_msg;
2005
2006        /* testing to see if 16-byte CDBs are already being used */
2007        if (h->cciss_read == CCISS_READ_16) {
2008                cciss_read_capacity_16(h, drv_index,
2009                        &total_size, &block_size);
2010
2011        } else {
2012                cciss_read_capacity(h, drv_index, &total_size, &block_size);
2013                /* if read_capacity returns all F's this volume is >2TB */
2014                /* in size so we switch to 16-byte CDB's for all */
2015                /* read/write ops */
2016                if (total_size == 0xFFFFFFFFULL) {
2017                        cciss_read_capacity_16(h, drv_index,
2018                        &total_size, &block_size);
2019                        h->cciss_read = CCISS_READ_16;
2020                        h->cciss_write = CCISS_WRITE_16;
2021                } else {
2022                        h->cciss_read = CCISS_READ_10;
2023                        h->cciss_write = CCISS_WRITE_10;
2024                }
2025        }
2026
2027        cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2028                               inq_buff, drvinfo);
2029        drvinfo->block_size = block_size;
2030        drvinfo->nr_blocks = total_size + 1;
2031
2032        cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2033                                drvinfo->model, drvinfo->rev);
2034        cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2035                        sizeof(drvinfo->serial_no));
2036        /* Save the lunid in case we deregister the disk, below. */
2037        memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2038                sizeof(drvinfo->LunID));
2039
2040        /* Is it the same disk we already know, and nothing's changed? */
2041        if (h->drv[drv_index]->raid_level != -1 &&
2042                ((memcmp(drvinfo->serial_no,
2043                                h->drv[drv_index]->serial_no, 16) == 0) &&
2044                drvinfo->block_size == h->drv[drv_index]->block_size &&
2045                drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2046                drvinfo->heads == h->drv[drv_index]->heads &&
2047                drvinfo->sectors == h->drv[drv_index]->sectors &&
2048                drvinfo->cylinders == h->drv[drv_index]->cylinders))
2049                        /* The disk is unchanged, nothing to update */
2050                        goto freeret;
2051
2052        /* If we get here it's not the same disk, or something's changed,
2053         * so we need to * deregister it, and re-register it, if it's not
2054         * in use.
2055         * If the disk already exists then deregister it before proceeding
2056         * (unless it's the first disk (for the controller node).
2057         */
2058        if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2059                dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2060                spin_lock_irqsave(&h->lock, flags);
2061                h->drv[drv_index]->busy_configuring = 1;
2062                spin_unlock_irqrestore(&h->lock, flags);
2063
2064                /* deregister_disk sets h->drv[drv_index]->queue = NULL
2065                 * which keeps the interrupt handler from starting
2066                 * the queue.
2067                 */
2068                ret = deregister_disk(h, drv_index, 0, via_ioctl);
2069        }
2070
2071        /* If the disk is in use return */
2072        if (ret)
2073                goto freeret;
2074
2075        /* Save the new information from cciss_geometry_inquiry
2076         * and serial number inquiry.  If the disk was deregistered
2077         * above, then h->drv[drv_index] will be NULL.
2078         */
2079        if (h->drv[drv_index] == NULL) {
2080                drvinfo->device_initialized = 0;
2081                h->drv[drv_index] = drvinfo;
2082                drvinfo = NULL; /* so it won't be freed below. */
2083        } else {
2084                /* special case for cxd0 */
2085                h->drv[drv_index]->block_size = drvinfo->block_size;
2086                h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2087                h->drv[drv_index]->heads = drvinfo->heads;
2088                h->drv[drv_index]->sectors = drvinfo->sectors;
2089                h->drv[drv_index]->cylinders = drvinfo->cylinders;
2090                h->drv[drv_index]->raid_level = drvinfo->raid_level;
2091                memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2092                memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2093                        VENDOR_LEN + 1);
2094                memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2095                memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2096        }
2097
2098        ++h->num_luns;
2099        disk = h->gendisk[drv_index];
2100        set_capacity(disk, h->drv[drv_index]->nr_blocks);
2101
2102        /* If it's not disk 0 (drv_index != 0)
2103         * or if it was disk 0, but there was previously
2104         * no actual corresponding configured logical drive
2105         * (raid_leve == -1) then we want to update the
2106         * logical drive's information.
2107         */
2108        if (drv_index || first_time) {
2109                if (cciss_add_disk(h, disk, drv_index) != 0) {
2110                        cciss_free_gendisk(h, drv_index);
2111                        cciss_free_drive_info(h, drv_index);
2112                        dev_warn(&h->pdev->dev, "could not update disk %d\n",
2113                                drv_index);
2114                        --h->num_luns;
2115                }
2116        }
2117
2118freeret:
2119        kfree(inq_buff);
2120        kfree(drvinfo);
2121        return;
2122mem_msg:
2123        dev_err(&h->pdev->dev, "out of memory\n");
2124        goto freeret;
2125}
2126
2127/* This function will find the first index of the controllers drive array
2128 * that has a null drv pointer and allocate the drive info struct and
2129 * will return that index   This is where new drives will be added.
2130 * If the index to be returned is greater than the highest_lun index for
2131 * the controller then highest_lun is set * to this new index.
2132 * If there are no available indexes or if tha allocation fails, then -1
2133 * is returned.  * "controller_node" is used to know if this is a real
2134 * logical drive, or just the controller node, which determines if this
2135 * counts towards highest_lun.
2136 */
2137static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2138{
2139        int i;
2140        drive_info_struct *drv;
2141
2142        /* Search for an empty slot for our drive info */
2143        for (i = 0; i < CISS_MAX_LUN; i++) {
2144
2145                /* if not cxd0 case, and it's occupied, skip it. */
2146                if (h->drv[i] && i != 0)
2147                        continue;
2148                /*
2149                 * If it's cxd0 case, and drv is alloc'ed already, and a
2150                 * disk is configured there, skip it.
2151                 */
2152                if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2153                        continue;
2154
2155                /*
2156                 * We've found an empty slot.  Update highest_lun
2157                 * provided this isn't just the fake cxd0 controller node.
2158                 */
2159                if (i > h->highest_lun && !controller_node)
2160                        h->highest_lun = i;
2161
2162                /* If adding a real disk at cxd0, and it's already alloc'ed */
2163                if (i == 0 && h->drv[i] != NULL)
2164                        return i;
2165
2166                /*
2167                 * Found an empty slot, not already alloc'ed.  Allocate it.
2168                 * Mark it with raid_level == -1, so we know it's new later on.
2169                 */
2170                drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2171                if (!drv)
2172                        return -1;
2173                drv->raid_level = -1; /* so we know it's new */
2174                h->drv[i] = drv;
2175                return i;
2176        }
2177        return -1;
2178}
2179
2180static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2181{
2182        kfree(h->drv[drv_index]);
2183        h->drv[drv_index] = NULL;
2184}
2185
2186static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2187{
2188        put_disk(h->gendisk[drv_index]);
2189        h->gendisk[drv_index] = NULL;
2190}
2191
2192/* cciss_add_gendisk finds a free hba[]->drv structure
2193 * and allocates a gendisk if needed, and sets the lunid
2194 * in the drvinfo structure.   It returns the index into
2195 * the ->drv[] array, or -1 if none are free.
2196 * is_controller_node indicates whether highest_lun should
2197 * count this disk, or if it's only being added to provide
2198 * a means to talk to the controller in case no logical
2199 * drives have yet been configured.
2200 */
2201static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2202        int controller_node)
2203{
2204        int drv_index;
2205
2206        drv_index = cciss_alloc_drive_info(h, controller_node);
2207        if (drv_index == -1)
2208                return -1;
2209
2210        /*Check if the gendisk needs to be allocated */
2211        if (!h->gendisk[drv_index]) {
2212                h->gendisk[drv_index] =
2213                        alloc_disk(1 << NWD_SHIFT);
2214                if (!h->gendisk[drv_index]) {
2215                        dev_err(&h->pdev->dev,
2216                                "could not allocate a new disk %d\n",
2217                                drv_index);
2218                        goto err_free_drive_info;
2219                }
2220        }
2221        memcpy(h->drv[drv_index]->LunID, lunid,
2222                sizeof(h->drv[drv_index]->LunID));
2223        if (cciss_create_ld_sysfs_entry(h, drv_index))
2224                goto err_free_disk;
2225        /* Don't need to mark this busy because nobody */
2226        /* else knows about this disk yet to contend */
2227        /* for access to it. */
2228        h->drv[drv_index]->busy_configuring = 0;
2229        wmb();
2230        return drv_index;
2231
2232err_free_disk:
2233        cciss_free_gendisk(h, drv_index);
2234err_free_drive_info:
2235        cciss_free_drive_info(h, drv_index);
2236        return -1;
2237}
2238
2239/* This is for the special case of a controller which
2240 * has no logical drives.  In this case, we still need
2241 * to register a disk so the controller can be accessed
2242 * by the Array Config Utility.
2243 */
2244static void cciss_add_controller_node(ctlr_info_t *h)
2245{
2246        struct gendisk *disk;
2247        int drv_index;
2248
2249        if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2250                return;
2251
2252        drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2253        if (drv_index == -1)
2254                goto error;
2255        h->drv[drv_index]->block_size = 512;
2256        h->drv[drv_index]->nr_blocks = 0;
2257        h->drv[drv_index]->heads = 0;
2258        h->drv[drv_index]->sectors = 0;
2259        h->drv[drv_index]->cylinders = 0;
2260        h->drv[drv_index]->raid_level = -1;
2261        memset(h->drv[drv_index]->serial_no, 0, 16);
2262        disk = h->gendisk[drv_index];
2263        if (cciss_add_disk(h, disk, drv_index) == 0)
2264                return;
2265        cciss_free_gendisk(h, drv_index);
2266        cciss_free_drive_info(h, drv_index);
2267error:
2268        dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2269        return;
2270}
2271
2272/* This function will add and remove logical drives from the Logical
2273 * drive array of the controller and maintain persistency of ordering
2274 * so that mount points are preserved until the next reboot.  This allows
2275 * for the removal of logical drives in the middle of the drive array
2276 * without a re-ordering of those drives.
2277 * INPUT
2278 * h            = The controller to perform the operations on
2279 */
2280static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2281        int via_ioctl)
2282{
2283        int num_luns;
2284        ReportLunData_struct *ld_buff = NULL;
2285        int return_code;
2286        int listlength = 0;
2287        int i;
2288        int drv_found;
2289        int drv_index = 0;
2290        unsigned char lunid[8] = CTLR_LUNID;
2291        unsigned long flags;
2292
2293        if (!capable(CAP_SYS_RAWIO))
2294                return -EPERM;
2295
2296        /* Set busy_configuring flag for this operation */
2297        spin_lock_irqsave(&h->lock, flags);
2298        if (h->busy_configuring) {
2299                spin_unlock_irqrestore(&h->lock, flags);
2300                return -EBUSY;
2301        }
2302        h->busy_configuring = 1;
2303        spin_unlock_irqrestore(&h->lock, flags);
2304
2305        ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2306        if (ld_buff == NULL)
2307                goto mem_msg;
2308
2309        return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2310                                      sizeof(ReportLunData_struct),
2311                                      0, CTLR_LUNID, TYPE_CMD);
2312
2313        if (return_code == IO_OK)
2314                listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2315        else {  /* reading number of logical volumes failed */
2316                dev_warn(&h->pdev->dev,
2317                        "report logical volume command failed\n");
2318                listlength = 0;
2319                goto freeret;
2320        }
2321
2322        num_luns = listlength / 8;      /* 8 bytes per entry */
2323        if (num_luns > CISS_MAX_LUN) {
2324                num_luns = CISS_MAX_LUN;
2325                dev_warn(&h->pdev->dev, "more luns configured"
2326                       " on controller than can be handled by"
2327                       " this driver.\n");
2328        }
2329
2330        if (num_luns == 0)
2331                cciss_add_controller_node(h);
2332
2333        /* Compare controller drive array to driver's drive array
2334         * to see if any drives are missing on the controller due
2335         * to action of Array Config Utility (user deletes drive)
2336         * and deregister logical drives which have disappeared.
2337         */
2338        for (i = 0; i <= h->highest_lun; i++) {
2339                int j;
2340                drv_found = 0;
2341
2342                /* skip holes in the array from already deleted drives */
2343                if (h->drv[i] == NULL)
2344                        continue;
2345
2346                for (j = 0; j < num_luns; j++) {
2347                        memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2348                        if (memcmp(h->drv[i]->LunID, lunid,
2349                                sizeof(lunid)) == 0) {
2350                                drv_found = 1;
2351                                break;
2352                        }
2353                }
2354                if (!drv_found) {
2355                        /* Deregister it from the OS, it's gone. */
2356                        spin_lock_irqsave(&h->lock, flags);
2357                        h->drv[i]->busy_configuring = 1;
2358                        spin_unlock_irqrestore(&h->lock, flags);
2359                        return_code = deregister_disk(h, i, 1, via_ioctl);
2360                        if (h->drv[i] != NULL)
2361                                h->drv[i]->busy_configuring = 0;
2362                }
2363        }
2364
2365        /* Compare controller drive array to driver's drive array.
2366         * Check for updates in the drive information and any new drives
2367         * on the controller due to ACU adding logical drives, or changing
2368         * a logical drive's size, etc.  Reregister any new/changed drives
2369         */
2370        for (i = 0; i < num_luns; i++) {
2371                int j;
2372
2373                drv_found = 0;
2374
2375                memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2376                /* Find if the LUN is already in the drive array
2377                 * of the driver.  If so then update its info
2378                 * if not in use.  If it does not exist then find
2379                 * the first free index and add it.
2380                 */
2381                for (j = 0; j <= h->highest_lun; j++) {
2382                        if (h->drv[j] != NULL &&
2383                                memcmp(h->drv[j]->LunID, lunid,
2384                                        sizeof(h->drv[j]->LunID)) == 0) {
2385                                drv_index = j;
2386                                drv_found = 1;
2387                                break;
2388                        }
2389                }
2390
2391                /* check if the drive was found already in the array */
2392                if (!drv_found) {
2393                        drv_index = cciss_add_gendisk(h, lunid, 0);
2394                        if (drv_index == -1)
2395                                goto freeret;
2396                }
2397                cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2398        }               /* end for */
2399
2400freeret:
2401        kfree(ld_buff);
2402        h->busy_configuring = 0;
2403        /* We return -1 here to tell the ACU that we have registered/updated
2404         * all of the drives that we can and to keep it from calling us
2405         * additional times.
2406         */
2407        return -1;
2408mem_msg:
2409        dev_err(&h->pdev->dev, "out of memory\n");
2410        h->busy_configuring = 0;
2411        goto freeret;
2412}
2413
2414static void cciss_clear_drive_info(drive_info_struct *drive_info)
2415{
2416        /* zero out the disk size info */
2417        drive_info->nr_blocks = 0;
2418        drive_info->block_size = 0;
2419        drive_info->heads = 0;
2420        drive_info->sectors = 0;
2421        drive_info->cylinders = 0;
2422        drive_info->raid_level = -1;
2423        memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2424        memset(drive_info->model, 0, sizeof(drive_info->model));
2425        memset(drive_info->rev, 0, sizeof(drive_info->rev));
2426        memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2427        /*
2428         * don't clear the LUNID though, we need to remember which
2429         * one this one is.
2430         */
2431}
2432
2433/* This function will deregister the disk and it's queue from the
2434 * kernel.  It must be called with the controller lock held and the
2435 * drv structures busy_configuring flag set.  It's parameters are:
2436 *
2437 * disk = This is the disk to be deregistered
2438 * drv  = This is the drive_info_struct associated with the disk to be
2439 *        deregistered.  It contains information about the disk used
2440 *        by the driver.
2441 * clear_all = This flag determines whether or not the disk information
2442 *             is going to be completely cleared out and the highest_lun
2443 *             reset.  Sometimes we want to clear out information about
2444 *             the disk in preparation for re-adding it.  In this case
2445 *             the highest_lun should be left unchanged and the LunID
2446 *             should not be cleared.
2447 * via_ioctl
2448 *    This indicates whether we've reached this path via ioctl.
2449 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2450 *    If this path is reached via ioctl(), then the max_usage_count will
2451 *    be 1, as the process calling ioctl() has got to have the device open.
2452 *    If we get here via sysfs, then the max usage count will be zero.
2453*/
2454static int deregister_disk(ctlr_info_t *h, int drv_index,
2455                           int clear_all, int via_ioctl)
2456{
2457        int i;
2458        struct gendisk *disk;
2459        drive_info_struct *drv;
2460        int recalculate_highest_lun;
2461
2462        if (!capable(CAP_SYS_RAWIO))
2463                return -EPERM;
2464
2465        drv = h->drv[drv_index];
2466        disk = h->gendisk[drv_index];
2467
2468        /* make sure logical volume is NOT is use */
2469        if (clear_all || (h->gendisk[0] == disk)) {
2470                if (drv->usage_count > via_ioctl)
2471                        return -EBUSY;
2472        } else if (drv->usage_count > 0)
2473                return -EBUSY;
2474
2475        recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2476
2477        /* invalidate the devices and deregister the disk.  If it is disk
2478         * zero do not deregister it but just zero out it's values.  This
2479         * allows us to delete disk zero but keep the controller registered.
2480         */
2481        if (h->gendisk[0] != disk) {
2482                struct request_queue *q = disk->queue;
2483                if (disk->flags & GENHD_FL_UP) {
2484                        cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2485                        del_gendisk(disk);
2486                }
2487                if (q)
2488                        blk_cleanup_queue(q);
2489                /* If clear_all is set then we are deleting the logical
2490                 * drive, not just refreshing its info.  For drives
2491                 * other than disk 0 we will call put_disk.  We do not
2492                 * do this for disk 0 as we need it to be able to
2493                 * configure the controller.
2494                 */
2495                if (clear_all){
2496                        /* This isn't pretty, but we need to find the
2497                         * disk in our array and NULL our the pointer.
2498                         * This is so that we will call alloc_disk if
2499                         * this index is used again later.
2500                         */
2501                        for (i=0; i < CISS_MAX_LUN; i++){
2502                                if (h->gendisk[i] == disk) {
2503                                        h->gendisk[i] = NULL;
2504                                        break;
2505                                }
2506                        }
2507                        put_disk(disk);
2508                }
2509        } else {
2510                set_capacity(disk, 0);
2511                cciss_clear_drive_info(drv);
2512        }
2513
2514        --h->num_luns;
2515
2516        /* if it was the last disk, find the new hightest lun */
2517        if (clear_all && recalculate_highest_lun) {
2518                int newhighest = -1;
2519                for (i = 0; i <= h->highest_lun; i++) {
2520                        /* if the disk has size > 0, it is available */
2521                        if (h->drv[i] && h->drv[i]->heads)
2522                                newhighest = i;
2523                }
2524                h->highest_lun = newhighest;
2525        }
2526        return 0;
2527}
2528
2529static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2530                size_t size, __u8 page_code, unsigned char *scsi3addr,
2531                int cmd_type)
2532{
2533        u64bit buff_dma_handle;
2534        int status = IO_OK;
2535
2536        c->cmd_type = CMD_IOCTL_PEND;
2537        c->Header.ReplyQueue = 0;
2538        if (buff != NULL) {
2539                c->Header.SGList = 1;
2540                c->Header.SGTotal = 1;
2541        } else {
2542                c->Header.SGList = 0;
2543                c->Header.SGTotal = 0;
2544        }
2545        c->Header.Tag.lower = c->busaddr;
2546        memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2547
2548        c->Request.Type.Type = cmd_type;
2549        if (cmd_type == TYPE_CMD) {
2550                switch (cmd) {
2551                case CISS_INQUIRY:
2552                        /* are we trying to read a vital product page */
2553                        if (page_code != 0) {
2554                                c->Request.CDB[1] = 0x01;
2555                                c->Request.CDB[2] = page_code;
2556                        }
2557                        c->Request.CDBLen = 6;
2558                        c->Request.Type.Attribute = ATTR_SIMPLE;
2559                        c->Request.Type.Direction = XFER_READ;
2560                        c->Request.Timeout = 0;
2561                        c->Request.CDB[0] = CISS_INQUIRY;
2562                        c->Request.CDB[4] = size & 0xFF;
2563                        break;
2564                case CISS_REPORT_LOG:
2565                case CISS_REPORT_PHYS:
2566                        /* Talking to controller so It's a physical command
2567                           mode = 00 target = 0.  Nothing to write.
2568                         */
2569                        c->Request.CDBLen = 12;
2570                        c->Request.Type.Attribute = ATTR_SIMPLE;
2571                        c->Request.Type.Direction = XFER_READ;
2572                        c->Request.Timeout = 0;
2573                        c->Request.CDB[0] = cmd;
2574                        c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2575                        c->Request.CDB[7] = (size >> 16) & 0xFF;
2576                        c->Request.CDB[8] = (size >> 8) & 0xFF;
2577                        c->Request.CDB[9] = size & 0xFF;
2578                        break;
2579
2580                case CCISS_READ_CAPACITY:
2581                        c->Request.CDBLen = 10;
2582                        c->Request.Type.Attribute = ATTR_SIMPLE;
2583                        c->Request.Type.Direction = XFER_READ;
2584                        c->Request.Timeout = 0;
2585                        c->Request.CDB[0] = cmd;
2586                        break;
2587                case CCISS_READ_CAPACITY_16:
2588                        c->Request.CDBLen = 16;
2589                        c->Request.Type.Attribute = ATTR_SIMPLE;
2590                        c->Request.Type.Direction = XFER_READ;
2591                        c->Request.Timeout = 0;
2592                        c->Request.CDB[0] = cmd;
2593                        c->Request.CDB[1] = 0x10;
2594                        c->Request.CDB[10] = (size >> 24) & 0xFF;
2595                        c->Request.CDB[11] = (size >> 16) & 0xFF;
2596                        c->Request.CDB[12] = (size >> 8) & 0xFF;
2597                        c->Request.CDB[13] = size & 0xFF;
2598                        c->Request.Timeout = 0;
2599                        c->Request.CDB[0] = cmd;
2600                        break;
2601                case CCISS_CACHE_FLUSH:
2602                        c->Request.CDBLen = 12;
2603                        c->Request.Type.Attribute = ATTR_SIMPLE;
2604                        c->Request.Type.Direction = XFER_WRITE;
2605                        c->Request.Timeout = 0;
2606                        c->Request.CDB[0] = BMIC_WRITE;
2607                        c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2608                        c->Request.CDB[7] = (size >> 8) & 0xFF;
2609                        c->Request.CDB[8] = size & 0xFF;
2610                        break;
2611                case TEST_UNIT_READY:
2612                        c->Request.CDBLen = 6;
2613                        c->Request.Type.Attribute = ATTR_SIMPLE;
2614                        c->Request.Type.Direction = XFER_NONE;
2615                        c->Request.Timeout = 0;
2616                        break;
2617                default:
2618                        dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2619                        return IO_ERROR;
2620                }
2621        } else if (cmd_type == TYPE_MSG) {
2622                switch (cmd) {
2623                case CCISS_ABORT_MSG:
2624                        c->Request.CDBLen = 12;
2625                        c->Request.Type.Attribute = ATTR_SIMPLE;
2626                        c->Request.Type.Direction = XFER_WRITE;
2627                        c->Request.Timeout = 0;
2628                        c->Request.CDB[0] = cmd;        /* abort */
2629                        c->Request.CDB[1] = 0;  /* abort a command */
2630                        /* buff contains the tag of the command to abort */
2631                        memcpy(&c->Request.CDB[4], buff, 8);
2632                        break;
2633                case CCISS_RESET_MSG:
2634                        c->Request.CDBLen = 16;
2635                        c->Request.Type.Attribute = ATTR_SIMPLE;
2636                        c->Request.Type.Direction = XFER_NONE;
2637                        c->Request.Timeout = 0;
2638                        memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2639                        c->Request.CDB[0] = cmd;        /* reset */
2640                        c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2641                        break;
2642                case CCISS_NOOP_MSG:
2643                        c->Request.CDBLen = 1;
2644                        c->Request.Type.Attribute = ATTR_SIMPLE;
2645                        c->Request.Type.Direction = XFER_WRITE;
2646                        c->Request.Timeout = 0;
2647                        c->Request.CDB[0] = cmd;
2648                        break;
2649                default:
2650                        dev_warn(&h->pdev->dev,
2651                                "unknown message type %d\n", cmd);
2652                        return IO_ERROR;
2653                }
2654        } else {
2655                dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2656                return IO_ERROR;
2657        }
2658        /* Fill in the scatter gather information */
2659        if (size > 0) {
2660                buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2661                                                             buff, size,
2662                                                             PCI_DMA_BIDIRECTIONAL);
2663                c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2664                c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2665                c->SG[0].Len = size;
2666                c->SG[0].Ext = 0;       /* we are not chaining */
2667        }
2668        return status;
2669}
2670
2671static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2672                            u8 reset_type)
2673{
2674        CommandList_struct *c;
2675        int return_status;
2676
2677        c = cmd_alloc(h);
2678        if (!c)
2679                return -ENOMEM;
2680        return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2681                CTLR_LUNID, TYPE_MSG);
2682        c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2683        if (return_status != IO_OK) {
2684                cmd_special_free(h, c);
2685                return return_status;
2686        }
2687        c->waiting = NULL;
2688        enqueue_cmd_and_start_io(h, c);
2689        /* Don't wait for completion, the reset won't complete.  Don't free
2690         * the command either.  This is the last command we will send before
2691         * re-initializing everything, so it doesn't matter and won't leak.
2692         */
2693        return 0;
2694}
2695
2696static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2697{
2698        switch (c->err_info->ScsiStatus) {
2699        case SAM_STAT_GOOD:
2700                return IO_OK;
2701        case SAM_STAT_CHECK_CONDITION:
2702                switch (0xf & c->err_info->SenseInfo[2]) {
2703                case 0: return IO_OK; /* no sense */
2704                case 1: return IO_OK; /* recovered error */
2705                default:
2706                        if (check_for_unit_attention(h, c))
2707                                return IO_NEEDS_RETRY;
2708                        dev_warn(&h->pdev->dev, "cmd 0x%02x "
2709                                "check condition, sense key = 0x%02x\n",
2710                                c->Request.CDB[0], c->err_info->SenseInfo[2]);
2711                }
2712                break;
2713        default:
2714                dev_warn(&h->pdev->dev, "cmd 0x%02x"
2715                        "scsi status = 0x%02x\n",
2716                        c->Request.CDB[0], c->err_info->ScsiStatus);
2717                break;
2718        }
2719        return IO_ERROR;
2720}
2721
2722static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2723{
2724        int return_status = IO_OK;
2725
2726        if (c->err_info->CommandStatus == CMD_SUCCESS)
2727                return IO_OK;
2728
2729        switch (c->err_info->CommandStatus) {
2730        case CMD_TARGET_STATUS:
2731                return_status = check_target_status(h, c);
2732                break;
2733        case CMD_DATA_UNDERRUN:
2734        case CMD_DATA_OVERRUN:
2735                /* expected for inquiry and report lun commands */
2736                break;
2737        case CMD_INVALID:
2738                dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2739                       "reported invalid\n", c->Request.CDB[0]);
2740                return_status = IO_ERROR;
2741                break;
2742        case CMD_PROTOCOL_ERR:
2743                dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2744                       "protocol error\n", c->Request.CDB[0]);
2745                return_status = IO_ERROR;
2746                break;
2747        case CMD_HARDWARE_ERR:
2748                dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2749                       " hardware error\n", c->Request.CDB[0]);
2750                return_status = IO_ERROR;
2751                break;
2752        case CMD_CONNECTION_LOST:
2753                dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2754                       "connection lost\n", c->Request.CDB[0]);
2755                return_status = IO_ERROR;
2756                break;
2757        case CMD_ABORTED:
2758                dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2759                       "aborted\n", c->Request.CDB[0]);
2760                return_status = IO_ERROR;
2761                break;
2762        case CMD_ABORT_FAILED:
2763                dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2764                       "abort failed\n", c->Request.CDB[0]);
2765                return_status = IO_ERROR;
2766                break;
2767        case CMD_UNSOLICITED_ABORT:
2768                dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2769                        c->Request.CDB[0]);
2770                return_status = IO_NEEDS_RETRY;
2771                break;
2772        case CMD_UNABORTABLE:
2773                dev_warn(&h->pdev->dev, "cmd unabortable\n");
2774                return_status = IO_ERROR;
2775                break;
2776        default:
2777                dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2778                       "unknown status %x\n", c->Request.CDB[0],
2779                       c->err_info->CommandStatus);
2780                return_status = IO_ERROR;
2781        }
2782        return return_status;
2783}
2784
2785static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2786        int attempt_retry)
2787{
2788        DECLARE_COMPLETION_ONSTACK(wait);
2789        u64bit buff_dma_handle;
2790        int return_status = IO_OK;
2791
2792resend_cmd2:
2793        c->waiting = &wait;
2794        enqueue_cmd_and_start_io(h, c);
2795
2796        wait_for_completion(&wait);
2797
2798        if (c->err_info->CommandStatus == 0 || !attempt_retry)
2799                goto command_done;
2800
2801        return_status = process_sendcmd_error(h, c);
2802
2803        if (return_status == IO_NEEDS_RETRY &&
2804                c->retry_count < MAX_CMD_RETRIES) {
2805                dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2806                        c->Request.CDB[0]);
2807                c->retry_count++;
2808                /* erase the old error information */
2809                memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2810                return_status = IO_OK;
2811                INIT_COMPLETION(wait);
2812                goto resend_cmd2;
2813        }
2814
2815command_done:
2816        /* unlock the buffers from DMA */
2817        buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2818        buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2819        pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2820                         c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2821        return return_status;
2822}
2823
2824static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2825                           __u8 page_code, unsigned char scsi3addr[],
2826                        int cmd_type)
2827{
2828        CommandList_struct *c;
2829        int return_status;
2830
2831        c = cmd_special_alloc(h);
2832        if (!c)
2833                return -ENOMEM;
2834        return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2835                scsi3addr, cmd_type);
2836        if (return_status == IO_OK)
2837                return_status = sendcmd_withirq_core(h, c, 1);
2838
2839        cmd_special_free(h, c);
2840        return return_status;
2841}
2842
2843static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2844                                   sector_t total_size,
2845                                   unsigned int block_size,
2846                                   InquiryData_struct *inq_buff,
2847                                   drive_info_struct *drv)
2848{
2849        int return_code;
2850        unsigned long t;
2851        unsigned char scsi3addr[8];
2852
2853        memset(inq_buff, 0, sizeof(InquiryData_struct));
2854        log_unit_to_scsi3addr(h, scsi3addr, logvol);
2855        return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2856                        sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2857        if (return_code == IO_OK) {
2858                if (inq_buff->data_byte[8] == 0xFF) {
2859                        dev_warn(&h->pdev->dev,
2860                               "reading geometry failed, volume "
2861                               "does not support reading geometry\n");
2862                        drv->heads = 255;
2863                        drv->sectors = 32;      /* Sectors per track */
2864                        drv->cylinders = total_size + 1;
2865                        drv->raid_level = RAID_UNKNOWN;
2866                } else {
2867                        drv->heads = inq_buff->data_byte[6];
2868                        drv->sectors = inq_buff->data_byte[7];
2869                        drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2870                        drv->cylinders += inq_buff->data_byte[5];
2871                        drv->raid_level = inq_buff->data_byte[8];
2872                }
2873                drv->block_size = block_size;
2874                drv->nr_blocks = total_size + 1;
2875                t = drv->heads * drv->sectors;
2876                if (t > 1) {
2877                        sector_t real_size = total_size + 1;
2878                        unsigned long rem = sector_div(real_size, t);
2879                        if (rem)
2880                                real_size++;
2881                        drv->cylinders = real_size;
2882                }
2883        } else {                /* Get geometry failed */
2884                dev_warn(&h->pdev->dev, "reading geometry failed\n");
2885        }
2886}
2887
2888static void
2889cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2890                    unsigned int *block_size)
2891{
2892        ReadCapdata_struct *buf;
2893        int return_code;
2894        unsigned char scsi3addr[8];
2895
2896        buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2897        if (!buf) {
2898                dev_warn(&h->pdev->dev, "out of memory\n");
2899                return;
2900        }
2901
2902        log_unit_to_scsi3addr(h, scsi3addr, logvol);
2903        return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2904                sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2905        if (return_code == IO_OK) {
2906                *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2907                *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2908        } else {                /* read capacity command failed */
2909                dev_warn(&h->pdev->dev, "read capacity failed\n");
2910                *total_size = 0;
2911                *block_size = BLOCK_SIZE;
2912        }
2913        kfree(buf);
2914}
2915
2916static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2917        sector_t *total_size, unsigned int *block_size)
2918{
2919        ReadCapdata_struct_16 *buf;
2920        int return_code;
2921        unsigned char scsi3addr[8];
2922
2923        buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2924        if (!buf) {
2925                dev_warn(&h->pdev->dev, "out of memory\n");
2926                return;
2927        }
2928
2929        log_unit_to_scsi3addr(h, scsi3addr, logvol);
2930        return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2931                buf, sizeof(ReadCapdata_struct_16),
2932                        0, scsi3addr, TYPE_CMD);
2933        if (return_code == IO_OK) {
2934                *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2935                *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2936        } else {                /* read capacity command failed */
2937                dev_warn(&h->pdev->dev, "read capacity failed\n");
2938                *total_size = 0;
2939                *block_size = BLOCK_SIZE;
2940        }
2941        dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2942               (unsigned long long)*total_size+1, *block_size);
2943        kfree(buf);
2944}
2945
2946static int cciss_revalidate(struct gendisk *disk)
2947{
2948        ctlr_info_t *h = get_host(disk);
2949        drive_info_struct *drv = get_drv(disk);
2950        int logvol;
2951        int FOUND = 0;
2952        unsigned int block_size;
2953        sector_t total_size;
2954        InquiryData_struct *inq_buff = NULL;
2955
2956        for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2957                if (!h->drv[logvol])
2958                        continue;
2959                if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2960                        sizeof(drv->LunID)) == 0) {
2961                        FOUND = 1;
2962                        break;
2963                }
2964        }
2965
2966        if (!FOUND)
2967                return 1;
2968
2969        inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2970        if (inq_buff == NULL) {
2971                dev_warn(&h->pdev->dev, "out of memory\n");
2972                return 1;
2973        }
2974        if (h->cciss_read == CCISS_READ_10) {
2975                cciss_read_capacity(h, logvol,
2976                                        &total_size, &block_size);
2977        } else {
2978                cciss_read_capacity_16(h, logvol,
2979                                        &total_size, &block_size);
2980        }
2981        cciss_geometry_inquiry(h, logvol, total_size, block_size,
2982                               inq_buff, drv);
2983
2984        blk_queue_logical_block_size(drv->queue, drv->block_size);
2985        set_capacity(disk, drv->nr_blocks);
2986
2987        kfree(inq_buff);
2988        return 0;
2989}
2990
2991/*
2992 * Map (physical) PCI mem into (virtual) kernel space
2993 */
2994static void __iomem *remap_pci_mem(ulong base, ulong size)
2995{
2996        ulong page_base = ((ulong) base) & PAGE_MASK;
2997        ulong page_offs = ((ulong) base) - page_base;
2998        void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2999
3000        return page_remapped ? (page_remapped + page_offs) : NULL;
3001}
3002
3003/*
3004 * Takes jobs of the Q and sends them to the hardware, then puts it on
3005 * the Q to wait for completion.
3006 */
3007static void start_io(ctlr_info_t *h)
3008{
3009        CommandList_struct *c;
3010
3011        while (!list_empty(&h->reqQ)) {
3012                c = list_entry(h->reqQ.next, CommandList_struct, list);
3013                /* can't do anything if fifo is full */
3014                if ((h->access.fifo_full(h))) {
3015                        dev_warn(&h->pdev->dev, "fifo full\n");
3016                        break;
3017                }
3018
3019                /* Get the first entry from the Request Q */
3020                removeQ(c);
3021                h->Qdepth--;
3022
3023                /* Tell the controller execute command */
3024                h->access.submit_command(h, c);
3025
3026                /* Put job onto the completed Q */
3027                addQ(&h->cmpQ, c);
3028        }
3029}
3030
3031/* Assumes that h->lock is held. */
3032/* Zeros out the error record and then resends the command back */
3033/* to the controller */
3034static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3035{
3036        /* erase the old error information */
3037        memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3038
3039        /* add it to software queue and then send it to the controller */
3040        addQ(&h->reqQ, c);
3041        h->Qdepth++;
3042        if (h->Qdepth > h->maxQsinceinit)
3043                h->maxQsinceinit = h->Qdepth;
3044
3045        start_io(h);
3046}
3047
3048static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3049        unsigned int msg_byte, unsigned int host_byte,
3050        unsigned int driver_byte)
3051{
3052        /* inverse of macros in scsi.h */
3053        return (scsi_status_byte & 0xff) |
3054                ((msg_byte & 0xff) << 8) |
3055                ((host_byte & 0xff) << 16) |
3056                ((driver_byte & 0xff) << 24);
3057}
3058
3059static inline int evaluate_target_status(ctlr_info_t *h,
3060                        CommandList_struct *cmd, int *retry_cmd)
3061{
3062        unsigned char sense_key;
3063        unsigned char status_byte, msg_byte, host_byte, driver_byte;
3064        int error_value;
3065
3066        *retry_cmd = 0;
3067        /* If we get in here, it means we got "target status", that is, scsi status */
3068        status_byte = cmd->err_info->ScsiStatus;
3069        driver_byte = DRIVER_OK;
3070        msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3071
3072        if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3073                host_byte = DID_PASSTHROUGH;
3074        else
3075                host_byte = DID_OK;
3076
3077        error_value = make_status_bytes(status_byte, msg_byte,
3078                host_byte, driver_byte);
3079
3080        if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3081                if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3082                        dev_warn(&h->pdev->dev, "cmd %p "
3083                               "has SCSI Status 0x%x\n",
3084                               cmd, cmd->err_info->ScsiStatus);
3085                return error_value;
3086        }
3087
3088        /* check the sense key */
3089        sense_key = 0xf & cmd->err_info->SenseInfo[2];
3090        /* no status or recovered error */
3091        if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3092            (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3093                error_value = 0;
3094
3095        if (check_for_unit_attention(h, cmd)) {
3096                *retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3097                return 0;
3098        }
3099
3100        /* Not SG_IO or similar? */
3101        if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3102                if (error_value != 0)
3103                        dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3104                               " sense key = 0x%x\n", cmd, sense_key);
3105                return error_value;
3106        }
3107
3108        /* SG_IO or similar, copy sense data back */
3109        if (cmd->rq->sense) {
3110                if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3111                        cmd->rq->sense_len = cmd->err_info->SenseLen;
3112                memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3113                        cmd->rq->sense_len);
3114        } else
3115                cmd->rq->sense_len = 0;
3116
3117        return error_value;
3118}
3119
3120/* checks the status of the job and calls complete buffers to mark all
3121 * buffers for the completed job. Note that this function does not need
3122 * to hold the hba/queue lock.
3123 */
3124static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3125                                    int timeout)
3126{
3127        int retry_cmd = 0;
3128        struct request *rq = cmd->rq;
3129
3130        rq->errors = 0;
3131
3132        if (timeout)
3133                rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3134
3135        if (cmd->err_info->CommandStatus == 0)  /* no error has occurred */
3136                goto after_error_processing;
3137
3138        switch (cmd->err_info->CommandStatus) {
3139        case CMD_TARGET_STATUS:
3140                rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3141                break;
3142        case CMD_DATA_UNDERRUN:
3143                if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3144                        dev_warn(&h->pdev->dev, "cmd %p has"
3145                               " completed with data underrun "
3146                               "reported\n", cmd);
3147                        cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3148                }
3149                break;
3150        case CMD_DATA_OVERRUN:
3151                if (cmd->rq->cmd_type == REQ_TYPE_FS)
3152                        dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3153                               " completed with data overrun "
3154                               "reported\n", cmd);
3155                break;
3156        case CMD_INVALID:
3157                dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3158                       "reported invalid\n", cmd);
3159                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3160                        cmd->err_info->CommandStatus, DRIVER_OK,
3161                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3162                                DID_PASSTHROUGH : DID_ERROR);
3163                break;
3164        case CMD_PROTOCOL_ERR:
3165                dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3166                       "protocol error\n", cmd);
3167                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3168                        cmd->err_info->CommandStatus, DRIVER_OK,
3169                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3170                                DID_PASSTHROUGH : DID_ERROR);
3171                break;
3172        case CMD_HARDWARE_ERR:
3173                dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3174                       " hardware error\n", cmd);
3175                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3176                        cmd->err_info->CommandStatus, DRIVER_OK,
3177                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3178                                DID_PASSTHROUGH : DID_ERROR);
3179                break;
3180        case CMD_CONNECTION_LOST:
3181                dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3182                       "connection lost\n", cmd);
3183                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3184                        cmd->err_info->CommandStatus, DRIVER_OK,
3185                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3186                                DID_PASSTHROUGH : DID_ERROR);
3187                break;
3188        case CMD_ABORTED:
3189                dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3190                       "aborted\n", cmd);
3191                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3192                        cmd->err_info->CommandStatus, DRIVER_OK,
3193                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3194                                DID_PASSTHROUGH : DID_ABORT);
3195                break;
3196        case CMD_ABORT_FAILED:
3197                dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3198                       "abort failed\n", cmd);
3199                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3200                        cmd->err_info->CommandStatus, DRIVER_OK,
3201                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3202                                DID_PASSTHROUGH : DID_ERROR);
3203                break;
3204        case CMD_UNSOLICITED_ABORT:
3205                dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3206                       "abort %p\n", h->ctlr, cmd);
3207                if (cmd->retry_count < MAX_CMD_RETRIES) {
3208                        retry_cmd = 1;
3209                        dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3210                        cmd->retry_count++;
3211                } else
3212                        dev_warn(&h->pdev->dev,
3213                                "%p retried too many times\n", cmd);
3214                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3215                        cmd->err_info->CommandStatus, DRIVER_OK,
3216                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3217                                DID_PASSTHROUGH : DID_ABORT);
3218                break;
3219        case CMD_TIMEOUT:
3220                dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3221                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3222                        cmd->err_info->CommandStatus, DRIVER_OK,
3223                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3224                                DID_PASSTHROUGH : DID_ERROR);
3225                break;
3226        case CMD_UNABORTABLE:
3227                dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3228                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3229                        cmd->err_info->CommandStatus, DRIVER_OK,
3230                        cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3231                                DID_PASSTHROUGH : DID_ERROR);
3232                break;
3233        default:
3234                dev_warn(&h->pdev->dev, "cmd %p returned "
3235                       "unknown status %x\n", cmd,
3236                       cmd->err_info->CommandStatus);
3237                rq->errors = make_status_bytes(SAM_STAT_GOOD,
3238                        cmd->err_info->CommandStatus, DRIVER_OK,
3239                        (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3240                                DID_PASSTHROUGH : DID_ERROR);
3241        }
3242
3243after_error_processing:
3244
3245        /* We need to return this command */
3246        if (retry_cmd) {
3247                resend_cciss_cmd(h, cmd);
3248                return;
3249        }
3250        cmd->rq->completion_data = cmd;
3251        blk_complete_request(cmd->rq);
3252}
3253
3254static inline u32 cciss_tag_contains_index(u32 tag)
3255{
3256#define DIRECT_LOOKUP_BIT 0x10
3257        return tag & DIRECT_LOOKUP_BIT;
3258}
3259
3260static inline u32 cciss_tag_to_index(u32 tag)
3261{
3262#define DIRECT_LOOKUP_SHIFT 5
3263        return tag >> DIRECT_LOOKUP_SHIFT;
3264}
3265
3266static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3267{
3268#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3269#define CCISS_SIMPLE_ERROR_BITS 0x03
3270        if (likely(h->transMethod & CFGTBL_Trans_Performant))
3271                return tag & ~CCISS_PERF_ERROR_BITS;
3272        return tag & ~CCISS_SIMPLE_ERROR_BITS;
3273}
3274
3275static inline void cciss_mark_tag_indexed(u32 *tag)
3276{
3277        *tag |= DIRECT_LOOKUP_BIT;
3278}
3279
3280static inline void cciss_set_tag_index(u32 *tag, u32 index)
3281{
3282        *tag |= (index << DIRECT_LOOKUP_SHIFT);
3283}
3284
3285/*
3286 * Get a request and submit it to the controller.
3287 */
3288static void do_cciss_request(struct request_queue *q)
3289{
3290        ctlr_info_t *h = q->queuedata;
3291        CommandList_struct *c;
3292        sector_t start_blk;
3293        int seg;
3294        struct request *creq;
3295        u64bit temp64;
3296        struct scatterlist *tmp_sg;
3297        SGDescriptor_struct *curr_sg;
3298        drive_info_struct *drv;
3299        int i, dir;
3300        int sg_index = 0;
3301        int chained = 0;
3302
3303      queue:
3304        creq = blk_peek_request(q);
3305        if (!creq)
3306                goto startio;
3307
3308        BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3309
3310        c = cmd_alloc(h);
3311        if (!c)
3312                goto full;
3313
3314        blk_start_request(creq);
3315
3316        tmp_sg = h->scatter_list[c->cmdindex];
3317        spin_unlock_irq(q->queue_lock);
3318
3319        c->cmd_type = CMD_RWREQ;
3320        c->rq = creq;
3321
3322        /* fill in the request */
3323        drv = creq->rq_disk->private_data;
3324        c->Header.ReplyQueue = 0;       /* unused in simple mode */
3325        /* got command from pool, so use the command block index instead */
3326        /* for direct lookups. */
3327        /* The first 2 bits are reserved for controller error reporting. */
3328        cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3329        cciss_mark_tag_indexed(&c->Header.Tag.lower);
3330        memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3331        c->Request.CDBLen = 10; /* 12 byte commands not in FW yet; */
3332        c->Request.Type.Type = TYPE_CMD;        /* It is a command. */
3333        c->Request.Type.Attribute = ATTR_SIMPLE;
3334        c->Request.Type.Direction =
3335            (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3336        c->Request.Timeout = 0; /* Don't time out */
3337        c->Request.CDB[0] =
3338            (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3339        start_blk = blk_rq_pos(creq);
3340        dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3341               (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3342        sg_init_table(tmp_sg, h->maxsgentries);
3343        seg = blk_rq_map_sg(q, creq, tmp_sg);
3344
3345        /* get the DMA records for the setup */
3346        if (c->Request.Type.Direction == XFER_READ)
3347                dir = PCI_DMA_FROMDEVICE;
3348        else
3349                dir = PCI_DMA_TODEVICE;
3350
3351        curr_sg = c->SG;
3352        sg_index = 0;
3353        chained = 0;
3354
3355        for (i = 0; i < seg; i++) {
3356                if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3357                        !chained && ((seg - i) > 1)) {
3358                        /* Point to next chain block. */
3359                        curr_sg = h->cmd_sg_list[c->cmdindex];
3360                        sg_index = 0;
3361                        chained = 1;
3362                }
3363                curr_sg[sg_index].Len = tmp_sg[i].length;
3364                temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3365                                                tmp_sg[i].offset,
3366                                                tmp_sg[i].length, dir);
3367                curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3368                curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3369                curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3370                ++sg_index;
3371        }
3372        if (chained)
3373                cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3374                        (seg - (h->max_cmd_sgentries - 1)) *
3375                                sizeof(SGDescriptor_struct));
3376
3377        /* track how many SG entries we are using */
3378        if (seg > h->maxSG)
3379                h->maxSG = seg;
3380
3381        dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3382                        "chained[%d]\n",
3383                        blk_rq_sectors(creq), seg, chained);
3384
3385        c->Header.SGTotal = seg + chained;
3386        if (seg <= h->max_cmd_sgentries)
3387                c->Header.SGList = c->Header.SGTotal;
3388        else
3389                c->Header.SGList = h->max_cmd_sgentries;
3390        set_performant_mode(h, c);
3391
3392        if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3393                if(h->cciss_read == CCISS_READ_10) {
3394                        c->Request.CDB[1] = 0;
3395                        c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3396                        c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3397                        c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3398                        c->Request.CDB[5] = start_blk & 0xff;
3399                        c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3400                        c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3401                        c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3402                        c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3403                } else {
3404                        u32 upper32 = upper_32_bits(start_blk);
3405
3406                        c->Request.CDBLen = 16;
3407                        c->Request.CDB[1]= 0;
3408                        c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3409                        c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3410                        c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3411                        c->Request.CDB[5]= upper32 & 0xff;
3412                        c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3413                        c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3414                        c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3415                        c->Request.CDB[9]= start_blk & 0xff;
3416                        c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3417                        c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3418                        c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3419                        c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3420                        c->Request.CDB[14] = c->Request.CDB[15] = 0;
3421                }
3422        } else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3423                c->Request.CDBLen = creq->cmd_len;
3424                memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3425        } else {
3426                dev_warn(&h->pdev->dev, "bad request type %d\n",
3427                        creq->cmd_type);
3428                BUG();
3429        }
3430
3431        spin_lock_irq(q->queue_lock);
3432
3433        addQ(&h->reqQ, c);
3434        h->Qdepth++;
3435        if (h->Qdepth > h->maxQsinceinit)
3436                h->maxQsinceinit = h->Qdepth;
3437
3438        goto queue;
3439full:
3440        blk_stop_queue(q);
3441startio:
3442        /* We will already have the driver lock here so not need
3443         * to lock it.
3444         */
3445        start_io(h);
3446}
3447
3448static inline unsigned long get_next_completion(ctlr_info_t *h)
3449{
3450        return h->access.command_completed(h);
3451}
3452
3453static inline int interrupt_pending(ctlr_info_t *h)
3454{
3455        return h->access.intr_pending(h);
3456}
3457
3458static inline long interrupt_not_for_us(ctlr_info_t *h)
3459{
3460        return ((h->access.intr_pending(h) == 0) ||
3461                (h->interrupts_enabled == 0));
3462}
3463
3464static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3465                        u32 raw_tag)
3466{
3467        if (unlikely(tag_index >= h->nr_cmds)) {
3468                dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3469                return 1;
3470        }
3471        return 0;
3472}
3473
3474static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3475                                u32 raw_tag)
3476{
3477        removeQ(c);
3478        if (likely(c->cmd_type == CMD_RWREQ))
3479                complete_command(h, c, 0);
3480        else if (c->cmd_type == CMD_IOCTL_PEND)
3481                complete(c->waiting);
3482#ifdef CONFIG_CISS_SCSI_TAPE
3483        else if (c->cmd_type == CMD_SCSI)
3484                complete_scsi_command(c, 0, raw_tag);
3485#endif
3486}
3487
3488static inline u32 next_command(ctlr_info_t *h)
3489{
3490        u32 a;
3491
3492        if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3493                return h->access.command_completed(h);
3494
3495        if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3496                a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3497                (h->reply_pool_head)++;
3498                h->commands_outstanding--;
3499        } else {
3500                a = FIFO_EMPTY;
3501        }
3502        /* Check for wraparound */
3503        if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3504                h->reply_pool_head = h->reply_pool;
3505                h->reply_pool_wraparound ^= 1;
3506        }
3507        return a;
3508}
3509
3510/* process completion of an indexed ("direct lookup") command */
3511static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3512{
3513        u32 tag_index;
3514        CommandList_struct *c;
3515
3516        tag_index = cciss_tag_to_index(raw_tag);
3517        if (bad_tag(h, tag_index, raw_tag))
3518                return next_command(h);
3519        c = h->cmd_pool + tag_index;
3520        finish_cmd(h, c, raw_tag);
3521        return next_command(h);
3522}
3523
3524/* process completion of a non-indexed command */
3525static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3526{
3527        CommandList_struct *c = NULL;
3528        __u32 busaddr_masked, tag_masked;
3529
3530        tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3531        list_for_each_entry(c, &h->cmpQ, list) {
3532                busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3533                if (busaddr_masked == tag_masked) {
3534                        finish_cmd(h, c, raw_tag);
3535                        return next_command(h);
3536                }
3537        }
3538        bad_tag(h, h->nr_cmds + 1, raw_tag);
3539        return next_command(h);
3540}
3541
3542/* Some controllers, like p400, will give us one interrupt
3543 * after a soft reset, even if we turned interrupts off.
3544 * Only need to check for this in the cciss_xxx_discard_completions
3545 * functions.
3546 */
3547static int ignore_bogus_interrupt(ctlr_info_t *h)
3548{
3549        if (likely(!reset_devices))
3550                return 0;
3551
3552        if (likely(h->interrupts_enabled))
3553                return 0;
3554
3555        dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3556                "(known firmware bug.)  Ignoring.\n");
3557
3558        return 1;
3559}
3560
3561static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3562{
3563        ctlr_info_t *h = dev_id;
3564        unsigned long flags;
3565        u32 raw_tag;
3566
3567        if (ignore_bogus_interrupt(h))
3568                return IRQ_NONE;
3569
3570        if (interrupt_not_for_us(h))
3571                return IRQ_NONE;
3572        spin_lock_irqsave(&h->lock, flags);
3573        while (interrupt_pending(h)) {
3574                raw_tag = get_next_completion(h);
3575                while (raw_tag != FIFO_EMPTY)
3576                        raw_tag = next_command(h);
3577        }
3578        spin_unlock_irqrestore(&h->lock, flags);
3579        return IRQ_HANDLED;
3580}
3581
3582static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3583{
3584        ctlr_info_t *h = dev_id;
3585        unsigned long flags;
3586        u32 raw_tag;
3587
3588        if (ignore_bogus_interrupt(h))
3589                return IRQ_NONE;
3590
3591        spin_lock_irqsave(&h->lock, flags);
3592        raw_tag = get_next_completion(h);
3593        while (raw_tag != FIFO_EMPTY)
3594                raw_tag = next_command(h);
3595        spin_unlock_irqrestore(&h->lock, flags);
3596        return IRQ_HANDLED;
3597}
3598
3599static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3600{
3601        ctlr_info_t *h = dev_id;
3602        unsigned long flags;
3603        u32 raw_tag;
3604
3605        if (interrupt_not_for_us(h))
3606                return IRQ_NONE;
3607        spin_lock_irqsave(&h->lock, flags);
3608        while (interrupt_pending(h)) {
3609                raw_tag = get_next_completion(h);
3610                while (raw_tag != FIFO_EMPTY) {
3611                        if (cciss_tag_contains_index(raw_tag))
3612                                raw_tag = process_indexed_cmd(h, raw_tag);
3613                        else
3614                                raw_tag = process_nonindexed_cmd(h, raw_tag);
3615                }
3616        }
3617        spin_unlock_irqrestore(&h->lock, flags);
3618        return IRQ_HANDLED;
3619}
3620
3621/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3622 * check the interrupt pending register because it is not set.
3623 */
3624static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3625{
3626        ctlr_info_t *h = dev_id;
3627        unsigned long flags;
3628        u32 raw_tag;
3629
3630        spin_lock_irqsave(&h->lock, flags);
3631        raw_tag = get_next_completion(h);
3632        while (raw_tag != FIFO_EMPTY) {
3633                if (cciss_tag_contains_index(raw_tag))
3634                        raw_tag = process_indexed_cmd(h, raw_tag);
3635                else
3636                        raw_tag = process_nonindexed_cmd(h, raw_tag);
3637        }
3638        spin_unlock_irqrestore(&h->lock, flags);
3639        return IRQ_HANDLED;
3640}
3641
3642/**
3643 * add_to_scan_list() - add controller to rescan queue
3644 * @h:                Pointer to the controller.
3645 *
3646 * Adds the controller to the rescan queue if not already on the queue.
3647 *
3648 * returns 1 if added to the queue, 0 if skipped (could be on the
3649 * queue already, or the controller could be initializing or shutting
3650 * down).
3651 **/
3652static int add_to_scan_list(struct ctlr_info *h)
3653{
3654        struct ctlr_info *test_h;
3655        int found = 0;
3656        int ret = 0;
3657
3658        if (h->busy_initializing)
3659                return 0;
3660
3661        if (!mutex_trylock(&h->busy_shutting_down))
3662                return 0;
3663
3664        mutex_lock(&scan_mutex);
3665        list_for_each_entry(test_h, &scan_q, scan_list) {
3666                if (test_h == h) {
3667                        found = 1;
3668                        break;
3669                }
3670        }
3671        if (!found && !h->busy_scanning) {
3672                INIT_COMPLETION(h->scan_wait);
3673                list_add_tail(&h->scan_list, &scan_q);
3674                ret = 1;
3675        }
3676        mutex_unlock(&scan_mutex);
3677        mutex_unlock(&h->busy_shutting_down);
3678
3679        return ret;
3680}
3681
3682/**
3683 * remove_from_scan_list() - remove controller from rescan queue
3684 * @h:                     Pointer to the controller.
3685 *
3686 * Removes the controller from the rescan queue if present. Blocks if
3687 * the controller is currently conducting a rescan.  The controller
3688 * can be in one of three states:
3689 * 1. Doesn't need a scan
3690 * 2. On the scan list, but not scanning yet (we remove it)
3691 * 3. Busy scanning (and not on the list). In this case we want to wait for
3692 *    the scan to complete to make sure the scanning thread for this
3693 *    controller is completely idle.
3694 **/
3695static void remove_from_scan_list(struct ctlr_info *h)
3696{
3697        struct ctlr_info *test_h, *tmp_h;
3698
3699        mutex_lock(&scan_mutex);
3700        list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3701                if (test_h == h) { /* state 2. */
3702                        list_del(&h->scan_list);
3703                        complete_all(&h->scan_wait);
3704                        mutex_unlock(&scan_mutex);
3705                        return;
3706                }
3707        }
3708        if (h->busy_scanning) { /* state 3. */
3709                mutex_unlock(&scan_mutex);
3710                wait_for_completion(&h->scan_wait);
3711        } else { /* state 1, nothing to do. */
3712                mutex_unlock(&scan_mutex);
3713        }
3714}
3715
3716/**
3717 * scan_thread() - kernel thread used to rescan controllers
3718 * @data:        Ignored.
3719 *
3720 * A kernel thread used scan for drive topology changes on
3721 * controllers. The thread processes only one controller at a time
3722 * using a queue.  Controllers are added to the queue using
3723 * add_to_scan_list() and removed from the queue either after done
3724 * processing or using remove_from_scan_list().
3725 *
3726 * returns 0.
3727 **/
3728static int scan_thread(void *data)
3729{
3730        struct ctlr_info *h;
3731
3732        while (1) {
3733                set_current_state(TASK_INTERRUPTIBLE);
3734                schedule();
3735                if (kthread_should_stop())
3736                        break;
3737
3738                while (1) {
3739                        mutex_lock(&scan_mutex);
3740                        if (list_empty(&scan_q)) {
3741                                mutex_unlock(&scan_mutex);
3742                                break;
3743                        }
3744
3745                        h = list_entry(scan_q.next,
3746                                       struct ctlr_info,
3747                                       scan_list);
3748                        list_del(&h->scan_list);
3749                        h->busy_scanning = 1;
3750                        mutex_unlock(&scan_mutex);
3751
3752                        rebuild_lun_table(h, 0, 0);
3753                        complete_all(&h->scan_wait);
3754                        mutex_lock(&scan_mutex);
3755                        h->busy_scanning = 0;
3756                        mutex_unlock(&scan_mutex);
3757                }
3758        }
3759
3760        return 0;
3761}
3762
3763static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3764{
3765        if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3766                return 0;
3767
3768        switch (c->err_info->SenseInfo[12]) {
3769        case STATE_CHANGED:
3770                dev_warn(&h->pdev->dev, "a state change "
3771                        "detected, command retried\n");
3772                return 1;
3773        break;
3774        case LUN_FAILED:
3775                dev_warn(&h->pdev->dev, "LUN failure "
3776                        "detected, action required\n");
3777                return 1;
3778        break;
3779        case REPORT_LUNS_CHANGED:
3780                dev_warn(&h->pdev->dev, "report LUN data changed\n");
3781        /*
3782         * Here, we could call add_to_scan_list and wake up the scan thread,
3783         * except that it's quite likely that we will get more than one
3784         * REPORT_LUNS_CHANGED condition in quick succession, which means
3785         * that those which occur after the first one will likely happen
3786         * *during* the scan_thread's rescan.  And the rescan code is not
3787         * robust enough to restart in the middle, undoing what it has already
3788         * done, and it's not clear that it's even possible to do this, since
3789         * part of what it does is notify the block layer, which starts
3790         * doing it's own i/o to read partition tables and so on, and the
3791         * driver doesn't have visibility to know what might need undoing.
3792         * In any event, if possible, it is horribly complicated to get right
3793         * so we just don't do it for now.
3794         *
3795         * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3796         */
3797                return 1;
3798        break;
3799        case POWER_OR_RESET:
3800                dev_warn(&h->pdev->dev,
3801                        "a power on or device reset detected\n");
3802                return 1;
3803        break;
3804        case UNIT_ATTENTION_CLEARED:
3805                dev_warn(&h->pdev->dev,
3806                        "unit attention cleared by another initiator\n");
3807                return 1;
3808        break;
3809        default:
3810                dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3811                return 1;
3812        }
3813}
3814
3815/*
3816 *  We cannot read the structure directly, for portability we must use
3817 *   the io functions.
3818 *   This is for debug only.
3819 */
3820static void print_cfg_table(ctlr_info_t *h)
3821{
3822        int i;
3823        char temp_name[17];
3824        CfgTable_struct *tb = h->cfgtable;
3825
3826        dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3827        dev_dbg(&h->pdev->dev, "------------------------------------\n");
3828        for (i = 0; i < 4; i++)
3829                temp_name[i] = readb(&(tb->Signature[i]));
3830        temp_name[4] = '\0';
3831        dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3832        dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3833                readl(&(tb->SpecValence)));
3834        dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3835               readl(&(tb->TransportSupport)));
3836        dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3837               readl(&(tb->TransportActive)));
3838        dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3839               readl(&(tb->HostWrite.TransportRequest)));
3840        dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3841               readl(&(tb->HostWrite.CoalIntDelay)));
3842        dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3843               readl(&(tb->HostWrite.CoalIntCount)));
3844        dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3845               readl(&(tb->CmdsOutMax)));
3846        dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3847                readl(&(tb->BusTypes)));
3848        for (i = 0; i < 16; i++)
3849                temp_name[i] = readb(&(tb->ServerName[i]));
3850        temp_name[16] = '\0';
3851        dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3852        dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3853                readl(&(tb->HeartBeat)));
3854}
3855
3856static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3857{
3858        int i, offset, mem_type, bar_type;
3859        if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3860                return 0;
3861        offset = 0;
3862        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3863                bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3864                if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3865                        offset += 4;
3866                else {
3867                        mem_type = pci_resource_flags(pdev, i) &
3868                            PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3869                        switch (mem_type) {
3870                        case PCI_BASE_ADDRESS_MEM_TYPE_32:
3871                        case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3872                                offset += 4;    /* 32 bit */
3873                                break;
3874                        case PCI_BASE_ADDRESS_MEM_TYPE_64:
3875                                offset += 8;
3876                                break;
3877                        default:        /* reserved in PCI 2.2 */
3878                                dev_warn(&pdev->dev,
3879                                       "Base address is invalid\n");
3880                                return -1;
3881                                break;
3882                        }
3883                }
3884                if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3885                        return i + 1;
3886        }
3887        return -1;
3888}
3889
3890/* Fill in bucket_map[], given nsgs (the max number of
3891 * scatter gather elements supported) and bucket[],
3892 * which is an array of 8 integers.  The bucket[] array
3893 * contains 8 different DMA transfer sizes (in 16
3894 * byte increments) which the controller uses to fetch
3895 * commands.  This function fills in bucket_map[], which
3896 * maps a given number of scatter gather elements to one of
3897 * the 8 DMA transfer sizes.  The point of it is to allow the
3898 * controller to only do as much DMA as needed to fetch the
3899 * command, with the DMA transfer size encoded in the lower
3900 * bits of the command address.
3901 */
3902static void  calc_bucket_map(int bucket[], int num_buckets,
3903        int nsgs, int *bucket_map)
3904{
3905        int i, j, b, size;
3906
3907        /* even a command with 0 SGs requires 4 blocks */
3908#define MINIMUM_TRANSFER_BLOCKS 4
3909#define NUM_BUCKETS 8
3910        /* Note, bucket_map must have nsgs+1 entries. */
3911        for (i = 0; i <= nsgs; i++) {
3912                /* Compute size of a command with i SG entries */
3913                size = i + MINIMUM_TRANSFER_BLOCKS;
3914                b = num_buckets; /* Assume the biggest bucket */
3915                /* Find the bucket that is just big enough */
3916                for (j = 0; j < 8; j++) {
3917                        if (bucket[j] >= size) {
3918                                b = j;
3919                                break;
3920                        }
3921                }
3922                /* for a command with i SG entries, use bucket b. */
3923                bucket_map[i] = b;
3924        }
3925}
3926
3927static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3928{
3929        int i;
3930
3931        /* under certain very rare conditions, this can take awhile.
3932         * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3933         * as we enter this code.) */
3934        for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3935                if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3936                        break;
3937                usleep_range(10000, 20000);
3938        }
3939}
3940
3941static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3942{
3943        /* This is a bit complicated.  There are 8 registers on
3944         * the controller which we write to to tell it 8 different
3945         * sizes of commands which there may be.  It's a way of
3946         * reducing the DMA done to fetch each command.  Encoded into
3947         * each command's tag are 3 bits which communicate to the controller
3948         * which of the eight sizes that command fits within.  The size of
3949         * each command depends on how many scatter gather entries there are.
3950         * Each SG entry requires 16 bytes.  The eight registers are programmed
3951         * with the number of 16-byte blocks a command of that size requires.
3952         * The smallest command possible requires 5 such 16 byte blocks.
3953         * the largest command possible requires MAXSGENTRIES + 4 16-byte
3954         * blocks.  Note, this only extends to the SG entries contained
3955         * within the command block, and does not extend to chained blocks
3956         * of SG elements.   bft[] contains the eight values we write to
3957         * the registers.  They are not evenly distributed, but have more
3958         * sizes for small commands, and fewer sizes for larger commands.
3959         */
3960        __u32 trans_offset;
3961        int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3962                        /*
3963                         *  5 = 1 s/g entry or 4k
3964                         *  6 = 2 s/g entry or 8k
3965                         *  8 = 4 s/g entry or 16k
3966                         * 10 = 6 s/g entry or 24k
3967                         */
3968        unsigned long register_value;
3969        BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3970
3971        h->reply_pool_wraparound = 1; /* spec: init to 1 */
3972
3973        /* Controller spec: zero out this buffer. */
3974        memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3975        h->reply_pool_head = h->reply_pool;
3976
3977        trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3978        calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3979                                h->blockFetchTable);
3980        writel(bft[0], &h->transtable->BlockFetch0);
3981        writel(bft[1], &h->transtable->BlockFetch1);
3982        writel(bft[2], &h->transtable->BlockFetch2);
3983        writel(bft[3], &h->transtable->BlockFetch3);
3984        writel(bft[4], &h->transtable->BlockFetch4);
3985        writel(bft[5], &h->transtable->BlockFetch5);
3986        writel(bft[6], &h->transtable->BlockFetch6);
3987        writel(bft[7], &h->transtable->BlockFetch7);
3988
3989        /* size of controller ring buffer */
3990        writel(h->max_commands, &h->transtable->RepQSize);
3991        writel(1, &h->transtable->RepQCount);
3992        writel(0, &h->transtable->RepQCtrAddrLow32);
3993        writel(0, &h->transtable->RepQCtrAddrHigh32);
3994        writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3995        writel(0, &h->transtable->RepQAddr0High32);
3996        writel(CFGTBL_Trans_Performant | use_short_tags,
3997                        &(h->cfgtable->HostWrite.TransportRequest));
3998
3999        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4000        cciss_wait_for_mode_change_ack(h);
4001        register_value = readl(&(h->cfgtable->TransportActive));
4002        if (!(register_value & CFGTBL_Trans_Performant))
4003                dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4004                                        " performant mode\n");
4005}
4006
4007static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4008{
4009        __u32 trans_support;
4010
4011        if (cciss_simple_mode)
4012                return;
4013
4014        dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4015        /* Attempt to put controller into performant mode if supported */
4016        /* Does board support performant mode? */
4017        trans_support = readl(&(h->cfgtable->TransportSupport));
4018        if (!(trans_support & PERFORMANT_MODE))
4019                return;
4020
4021        dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4022        /* Performant mode demands commands on a 32 byte boundary
4023         * pci_alloc_consistent aligns on page boundarys already.
4024         * Just need to check if divisible by 32
4025         */
4026        if ((sizeof(CommandList_struct) % 32) != 0) {
4027                dev_warn(&h->pdev->dev, "%s %d %s\n",
4028                        "cciss info: command size[",
4029                        (int)sizeof(CommandList_struct),
4030                        "] not divisible by 32, no performant mode..\n");
4031                return;
4032        }
4033
4034        /* Performant mode ring buffer and supporting data structures */
4035        h->reply_pool = (__u64 *)pci_alloc_consistent(
4036                h->pdev, h->max_commands * sizeof(__u64),
4037                &(h->reply_pool_dhandle));
4038
4039        /* Need a block fetch table for performant mode */
4040        h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4041                sizeof(__u32)), GFP_KERNEL);
4042
4043        if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4044                goto clean_up;
4045
4046        cciss_enter_performant_mode(h,
4047                trans_support & CFGTBL_Trans_use_short_tags);
4048
4049        /* Change the access methods to the performant access methods */
4050        h->access = SA5_performant_access;
4051        h->transMethod = CFGTBL_Trans_Performant;
4052
4053        return;
4054clean_up:
4055        kfree(h->blockFetchTable);
4056        if (h->reply_pool)
4057                pci_free_consistent(h->pdev,
4058                                h->max_commands * sizeof(__u64),
4059                                h->reply_pool,
4060                                h->reply_pool_dhandle);
4061        return;
4062
4063} /* cciss_put_controller_into_performant_mode */
4064
4065/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4066 * controllers that are capable. If not, we use IO-APIC mode.
4067 */
4068
4069static void cciss_interrupt_mode(ctlr_info_t *h)
4070{
4071#ifdef CONFIG_PCI_MSI
4072        int err;
4073        struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4074        {0, 2}, {0, 3}
4075        };
4076
4077        /* Some boards advertise MSI but don't really support it */
4078        if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4079            (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4080                goto default_int_mode;
4081
4082        if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4083                err = pci_enable_msix(h->pdev, cciss_msix_entries, 4);
4084                if (!err) {
4085                        h->intr[0] = cciss_msix_entries[0].vector;
4086                        h->intr[1] = cciss_msix_entries[1].vector;
4087                        h->intr[2] = cciss_msix_entries[2].vector;
4088                        h->intr[3] = cciss_msix_entries[3].vector;
4089                        h->msix_vector = 1;
4090                        return;
4091                }
4092                if (err > 0) {
4093                        dev_warn(&h->pdev->dev,
4094                                "only %d MSI-X vectors available\n", err);
4095                        goto default_int_mode;
4096                } else {
4097                        dev_warn(&h->pdev->dev,
4098                                "MSI-X init failed %d\n", err);
4099                        goto default_int_mode;
4100                }
4101        }
4102        if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4103                if (!pci_enable_msi(h->pdev))
4104                        h->msi_vector = 1;
4105                else
4106                        dev_warn(&h->pdev->dev, "MSI init failed\n");
4107        }
4108default_int_mode:
4109#endif                          /* CONFIG_PCI_MSI */
4110        /* if we get here we're going to use the default interrupt mode */
4111        h->intr[h->intr_mode] = h->pdev->irq;
4112        return;
4113}
4114
4115static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4116{
4117        int i;
4118        u32 subsystem_vendor_id, subsystem_device_id;
4119
4120        subsystem_vendor_id = pdev->subsystem_vendor;
4121        subsystem_device_id = pdev->subsystem_device;
4122        *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4123                        subsystem_vendor_id;
4124
4125        for (i = 0; i < ARRAY_SIZE(products); i++) {
4126                /* Stand aside for hpsa driver on request */
4127                if (cciss_allow_hpsa)
4128                        return -ENODEV;
4129                if (*board_id == products[i].board_id)
4130                        return i;
4131        }
4132        dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4133                *board_id);
4134        return -ENODEV;
4135}
4136
4137static inline bool cciss_board_disabled(ctlr_info_t *h)
4138{
4139        u16 command;
4140
4141        (void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4142        return ((command & PCI_COMMAND_MEMORY) == 0);
4143}
4144
4145static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4146                                     unsigned long *memory_bar)
4147{
4148        int i;
4149
4150        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4151                if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4152                        /* addressing mode bits already removed */
4153                        *memory_bar = pci_resource_start(pdev, i);
4154                        dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4155                                *memory_bar);
4156                        return 0;
4157                }
4158        dev_warn(&pdev->dev, "no memory BAR found\n");
4159        return -ENODEV;
4160}
4161
4162static int cciss_wait_for_board_state(struct pci_dev *pdev,
4163                                      void __iomem *vaddr, int wait_for_ready)
4164#define BOARD_READY 1
4165#define BOARD_NOT_READY 0
4166{
4167        int i, iterations;
4168        u32 scratchpad;
4169
4170        if (wait_for_ready)
4171                iterations = CCISS_BOARD_READY_ITERATIONS;
4172        else
4173                iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4174
4175        for (i = 0; i < iterations; i++) {
4176                scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4177                if (wait_for_ready) {
4178                        if (scratchpad == CCISS_FIRMWARE_READY)
4179                                return 0;
4180                } else {
4181                        if (scratchpad != CCISS_FIRMWARE_READY)
4182                                return 0;
4183                }
4184                msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4185        }
4186        dev_warn(&pdev->dev, "board not ready, timed out.\n");
4187        return -ENODEV;
4188}
4189
4190static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4191                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4192                                u64 *cfg_offset)
4193{
4194        *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4195        *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4196        *cfg_base_addr &= (u32) 0x0000ffff;
4197        *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4198        if (*cfg_base_addr_index == -1) {
4199                dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4200                        "*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4201                return -ENODEV;
4202        }
4203        return 0;
4204}
4205
4206static int cciss_find_cfgtables(ctlr_info_t *h)
4207{
4208        u64 cfg_offset;
4209        u32 cfg_base_addr;
4210        u64 cfg_base_addr_index;
4211        u32 trans_offset;
4212        int rc;
4213
4214        rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4215                &cfg_base_addr_index, &cfg_offset);
4216        if (rc)
4217                return rc;
4218        h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4219                cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4220        if (!h->cfgtable)
4221                return -ENOMEM;
4222        rc = write_driver_ver_to_cfgtable(h->cfgtable);
4223        if (rc)
4224                return rc;
4225        /* Find performant mode table. */
4226        trans_offset = readl(&h->cfgtable->TransMethodOffset);
4227        h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4228                                cfg_base_addr_index)+cfg_offset+trans_offset,
4229                                sizeof(*h->transtable));
4230        if (!h->transtable)
4231                return -ENOMEM;
4232        return 0;
4233}
4234
4235static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4236{
4237        h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4238
4239        /* Limit commands in memory limited kdump scenario. */
4240        if (reset_devices && h->max_commands > 32)
4241                h->max_commands = 32;
4242
4243        if (h->max_commands < 16) {
4244                dev_warn(&h->pdev->dev, "Controller reports "
4245                        "max supported commands of %d, an obvious lie. "
4246                        "Using 16.  Ensure that firmware is up to date.\n",
4247                        h->max_commands);
4248                h->max_commands = 16;
4249        }
4250}
4251
4252/* Interrogate the hardware for some limits:
4253 * max commands, max SG elements without chaining, and with chaining,
4254 * SG chain block size, etc.
4255 */
4256static void cciss_find_board_params(ctlr_info_t *h)
4257{
4258        cciss_get_max_perf_mode_cmds(h);
4259        h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4260        h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4261        /*
4262         * Limit in-command s/g elements to 32 save dma'able memory.
4263         * Howvever spec says if 0, use 31
4264         */
4265        h->max_cmd_sgentries = 31;
4266        if (h->maxsgentries > 512) {
4267                h->max_cmd_sgentries = 32;
4268                h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4269                h->maxsgentries--; /* save one for chain pointer */
4270        } else {
4271                h->maxsgentries = 31; /* default to traditional values */
4272                h->chainsize = 0;
4273        }
4274}
4275
4276static inline bool CISS_signature_present(ctlr_info_t *h)
4277{
4278        if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4279                dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4280                return false;
4281        }
4282        return true;
4283}
4284
4285/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4286static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4287{
4288#ifdef CONFIG_X86
4289        u32 prefetch;
4290
4291        prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4292        prefetch |= 0x100;
4293        writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4294#endif
4295}
4296
4297/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4298 * in a prefetch beyond physical memory.
4299 */
4300static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4301{
4302        u32 dma_prefetch;
4303        __u32 dma_refetch;
4304
4305        if (h->board_id != 0x3225103C)
4306                return;
4307        dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4308        dma_prefetch |= 0x8000;
4309        writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4310        pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4311        dma_refetch |= 0x1;
4312        pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4313}
4314
4315static int cciss_pci_init(ctlr_info_t *h)
4316{
4317        int prod_index, err;
4318
4319        prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4320        if (prod_index < 0)
4321                return -ENODEV;
4322        h->product_name = products[prod_index].product_name;
4323        h->access = *(products[prod_index].access);
4324
4325        if (cciss_board_disabled(h)) {
4326                dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4327                return -ENODEV;
4328        }
4329
4330        pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4331                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4332
4333        err = pci_enable_device(h->pdev);
4334        if (err) {
4335                dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4336                return err;
4337        }
4338
4339        err = pci_request_regions(h->pdev, "cciss");
4340        if (err) {
4341                dev_warn(&h->pdev->dev,
4342                        "Cannot obtain PCI resources, aborting\n");
4343                return err;
4344        }
4345
4346        dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4347        dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4348
4349/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4350 * else we use the IO-APIC interrupt assigned to us by system ROM.
4351 */
4352        cciss_interrupt_mode(h);
4353        err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4354        if (err)
4355                goto err_out_free_res;
4356        h->vaddr = remap_pci_mem(h->paddr, 0x250);
4357        if (!h->vaddr) {
4358                err = -ENOMEM;
4359                goto err_out_free_res;
4360        }
4361        err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4362        if (err)
4363                goto err_out_free_res;
4364        err = cciss_find_cfgtables(h);
4365        if (err)
4366                goto err_out_free_res;
4367        print_cfg_table(h);
4368        cciss_find_board_params(h);
4369
4370        if (!CISS_signature_present(h)) {
4371                err = -ENODEV;
4372                goto err_out_free_res;
4373        }
4374        cciss_enable_scsi_prefetch(h);
4375        cciss_p600_dma_prefetch_quirk(h);
4376        err = cciss_enter_simple_mode(h);
4377        if (err)
4378                goto err_out_free_res;
4379        cciss_put_controller_into_performant_mode(h);
4380        return 0;
4381
4382err_out_free_res:
4383        /*
4384         * Deliberately omit pci_disable_device(): it does something nasty to
4385         * Smart Array controllers that pci_enable_device does not undo
4386         */
4387        if (h->transtable)
4388                iounmap(h->transtable);
4389        if (h->cfgtable)
4390                iounmap(h->cfgtable);
4391        if (h->vaddr)
4392                iounmap(h->vaddr);
4393        pci_release_regions(h->pdev);
4394        return err;
4395}
4396
4397/* Function to find the first free pointer into our hba[] array
4398 * Returns -1 if no free entries are left.
4399 */
4400static int alloc_cciss_hba(struct pci_dev *pdev)
4401{
4402        int i;
4403
4404        for (i = 0; i < MAX_CTLR; i++) {
4405                if (!hba[i]) {
4406                        ctlr_info_t *h;
4407
4408                        h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4409                        if (!h)
4410                                goto Enomem;
4411                        hba[i] = h;
4412                        return i;
4413                }
4414        }
4415        dev_warn(&pdev->dev, "This driver supports a maximum"
4416               " of %d controllers.\n", MAX_CTLR);
4417        return -1;
4418Enomem:
4419        dev_warn(&pdev->dev, "out of memory.\n");
4420        return -1;
4421}
4422
4423static void free_hba(ctlr_info_t *h)
4424{
4425        int i;
4426
4427        hba[h->ctlr] = NULL;
4428        for (i = 0; i < h->highest_lun + 1; i++)
4429                if (h->gendisk[i] != NULL)
4430                        put_disk(h->gendisk[i]);
4431        kfree(h);
4432}
4433
4434/* Send a message CDB to the firmware. */
4435static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4436                         unsigned char type)
4437{
4438        typedef struct {
4439                CommandListHeader_struct CommandHeader;
4440                RequestBlock_struct Request;
4441                ErrDescriptor_struct ErrorDescriptor;
4442        } Command;
4443        static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4444        Command *cmd;
4445        dma_addr_t paddr64;
4446        uint32_t paddr32, tag;
4447        void __iomem *vaddr;
4448        int i, err;
4449
4450        vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4451        if (vaddr == NULL)
4452                return -ENOMEM;
4453
4454        /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4455           CCISS commands, so they must be allocated from the lower 4GiB of
4456           memory. */
4457        err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4458        if (err) {
4459                iounmap(vaddr);
4460                return -ENOMEM;
4461        }
4462
4463        cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4464        if (cmd == NULL) {
4465                iounmap(vaddr);
4466                return -ENOMEM;
4467        }
4468
4469        /* This must fit, because of the 32-bit consistent DMA mask.  Also,
4470           although there's no guarantee, we assume that the address is at
4471           least 4-byte aligned (most likely, it's page-aligned). */
4472        paddr32 = paddr64;
4473
4474        cmd->CommandHeader.ReplyQueue = 0;
4475        cmd->CommandHeader.SGList = 0;
4476        cmd->CommandHeader.SGTotal = 0;
4477        cmd->CommandHeader.Tag.lower = paddr32;
4478        cmd->CommandHeader.Tag.upper = 0;
4479        memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4480
4481        cmd->Request.CDBLen = 16;
4482        cmd->Request.Type.Type = TYPE_MSG;
4483        cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4484        cmd->Request.Type.Direction = XFER_NONE;
4485        cmd->Request.Timeout = 0; /* Don't time out */
4486        cmd->Request.CDB[0] = opcode;
4487        cmd->Request.CDB[1] = type;
4488        memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4489
4490        cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4491        cmd->ErrorDescriptor.Addr.upper = 0;
4492        cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4493
4494        writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4495
4496        for (i = 0; i < 10; i++) {
4497                tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4498                if ((tag & ~3) == paddr32)
4499                        break;
4500                msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4501        }
4502
4503        iounmap(vaddr);
4504
4505        /* we leak the DMA buffer here ... no choice since the controller could
4506           still complete the command. */
4507        if (i == 10) {
4508                dev_err(&pdev->dev,
4509                        "controller message %02x:%02x timed out\n",
4510                        opcode, type);
4511                return -ETIMEDOUT;
4512        }
4513
4514        pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4515
4516        if (tag & 2) {
4517                dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4518                        opcode, type);
4519                return -EIO;
4520        }
4521
4522        dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4523                opcode, type);
4524        return 0;
4525}
4526
4527#define cciss_noop(p) cciss_message(p, 3, 0)
4528
4529static int cciss_controller_hard_reset(struct pci_dev *pdev,
4530        void * __iomem vaddr, u32 use_doorbell)
4531{
4532        u16 pmcsr;
4533        int pos;
4534
4535        if (use_doorbell) {
4536                /* For everything after the P600, the PCI power state method
4537                 * of resetting the controller doesn't work, so we have this
4538                 * other way using the doorbell register.
4539                 */
4540                dev_info(&pdev->dev, "using doorbell to reset controller\n");
4541                writel(use_doorbell, vaddr + SA5_DOORBELL);
4542        } else { /* Try to do it the PCI power state way */
4543
4544                /* Quoting from the Open CISS Specification: "The Power
4545                 * Management Control/Status Register (CSR) controls the power
4546                 * state of the device.  The normal operating state is D0,
4547                 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4548                 * the controller, place the interface device in D3 then to D0,
4549                 * this causes a secondary PCI reset which will reset the
4550                 * controller." */
4551
4552                pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4553                if (pos == 0) {
4554                        dev_err(&pdev->dev,
4555                                "cciss_controller_hard_reset: "
4556                                "PCI PM not supported\n");
4557                        return -ENODEV;
4558                }
4559                dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4560                /* enter the D3hot power management state */
4561                pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4562                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4563                pmcsr |= PCI_D3hot;
4564                pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4565
4566                msleep(500);
4567
4568                /* enter the D0 power management state */
4569                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4570                pmcsr |= PCI_D0;
4571                pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4572
4573                /*
4574                 * The P600 requires a small delay when changing states.
4575                 * Otherwise we may think the board did not reset and we bail.
4576                 * This for kdump only and is particular to the P600.
4577                 */
4578                msleep(500);
4579        }
4580        return 0;
4581}
4582
4583static void init_driver_version(char *driver_version, int len)
4584{
4585        memset(driver_version, 0, len);
4586        strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4587}
4588
4589static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4590{
4591        char *driver_version;
4592        int i, size = sizeof(cfgtable->driver_version);
4593
4594        driver_version = kmalloc(size, GFP_KERNEL);
4595        if (!driver_version)
4596                return -ENOMEM;
4597
4598        init_driver_version(driver_version, size);
4599        for (i = 0; i < size; i++)
4600                writeb(driver_version[i], &cfgtable->driver_version[i]);
4601        kfree(driver_version);
4602        return 0;
4603}
4604
4605static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4606                                          unsigned char *driver_ver)
4607{
4608        int i;
4609
4610        for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4611                driver_ver[i] = readb(&cfgtable->driver_version[i]);
4612}
4613
4614static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4615{
4616
4617        char *driver_ver, *old_driver_ver;
4618        int rc, size = sizeof(cfgtable->driver_version);
4619
4620        old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4621        if (!old_driver_ver)
4622                return -ENOMEM;
4623        driver_ver = old_driver_ver + size;
4624
4625        /* After a reset, the 32 bytes of "driver version" in the cfgtable
4626         * should have been changed, otherwise we know the reset failed.
4627         */
4628        init_driver_version(old_driver_ver, size);
4629        read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4630        rc = !memcmp(driver_ver, old_driver_ver, size);
4631        kfree(old_driver_ver);
4632        return rc;
4633}
4634
4635/* This does a hard reset of the controller using PCI power management
4636 * states or using the doorbell register. */
4637static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4638{
4639        u64 cfg_offset;
4640        u32 cfg_base_addr;
4641        u64 cfg_base_addr_index;
4642        void __iomem *vaddr;
4643        unsigned long paddr;
4644        u32 misc_fw_support;
4645        int rc;
4646        CfgTable_struct __iomem *cfgtable;
4647        u32 use_doorbell;
4648        u32 board_id;
4649        u16 command_register;
4650
4651        /* For controllers as old a the p600, this is very nearly
4652         * the same thing as
4653         *
4654         * pci_save_state(pci_dev);
4655         * pci_set_power_state(pci_dev, PCI_D3hot);
4656         * pci_set_power_state(pci_dev, PCI_D0);
4657         * pci_restore_state(pci_dev);
4658         *
4659         * For controllers newer than the P600, the pci power state
4660         * method of resetting doesn't work so we have another way
4661         * using the doorbell register.
4662         */
4663
4664        /* Exclude 640x boards.  These are two pci devices in one slot
4665         * which share a battery backed cache module.  One controls the
4666         * cache, the other accesses the cache through the one that controls
4667         * it.  If we reset the one controlling the cache, the other will
4668         * likely not be happy.  Just forbid resetting this conjoined mess.
4669         */
4670        cciss_lookup_board_id(pdev, &board_id);
4671        if (!ctlr_is_resettable(board_id)) {
4672                dev_warn(&pdev->dev, "Cannot reset Smart Array 640x "
4673                                "due to shared cache module.");
4674                return -ENODEV;
4675        }
4676
4677        /* if controller is soft- but not hard resettable... */
4678        if (!ctlr_is_hard_resettable(board_id))
4679                return -ENOTSUPP; /* try soft reset later. */
4680
4681        /* Save the PCI command register */
4682        pci_read_config_word(pdev, 4, &command_register);
4683        /* Turn the board off.  This is so that later pci_restore_state()
4684         * won't turn the board on before the rest of config space is ready.
4685         */
4686        pci_disable_device(pdev);
4687        pci_save_state(pdev);
4688
4689        /* find the first memory BAR, so we can find the cfg table */
4690        rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4691        if (rc)
4692                return rc;
4693        vaddr = remap_pci_mem(paddr, 0x250);
4694        if (!vaddr)
4695                return -ENOMEM;
4696
4697        /* find cfgtable in order to check if reset via doorbell is supported */
4698        rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4699                                        &cfg_base_addr_index, &cfg_offset);
4700        if (rc)
4701                goto unmap_vaddr;
4702        cfgtable = remap_pci_mem(pci_resource_start(pdev,
4703                       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4704        if (!cfgtable) {
4705                rc = -ENOMEM;
4706                goto unmap_vaddr;
4707        }
4708        rc = write_driver_ver_to_cfgtable(cfgtable);
4709        if (rc)
4710                goto unmap_vaddr;
4711
4712        /* If reset via doorbell register is supported, use that.
4713         * There are two such methods.  Favor the newest method.
4714         */
4715        misc_fw_support = readl(&cfgtable->misc_fw_support);
4716        use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4717        if (use_doorbell) {
4718                use_doorbell = DOORBELL_CTLR_RESET2;
4719        } else {
4720                use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4721                if (use_doorbell) {
4722                        dev_warn(&pdev->dev, "Controller claims that "
4723                                "'Bit 2 doorbell reset' is "
4724                                "supported, but not 'bit 5 doorbell reset'.  "
4725                                "Firmware update is recommended.\n");
4726                        rc = -ENOTSUPP; /* use the soft reset */
4727                        goto unmap_cfgtable;
4728                }
4729        }
4730
4731        rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4732        if (rc)
4733                goto unmap_cfgtable;
4734        pci_restore_state(pdev);
4735        rc = pci_enable_device(pdev);
4736        if (rc) {
4737                dev_warn(&pdev->dev, "failed to enable device.\n");
4738                goto unmap_cfgtable;
4739        }
4740        pci_write_config_word(pdev, 4, command_register);
4741
4742        /* Some devices (notably the HP Smart Array 5i Controller)
4743           need a little pause here */
4744        msleep(CCISS_POST_RESET_PAUSE_MSECS);
4745
4746        /* Wait for board to become not ready, then ready. */
4747        dev_info(&pdev->dev, "Waiting for board to reset.\n");
4748        rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4749        if (rc) {
4750                dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4751                                "  Will try soft reset.\n");
4752                rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4753                goto unmap_cfgtable;
4754        }
4755        rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4756        if (rc) {
4757                dev_warn(&pdev->dev,
4758                        "failed waiting for board to become ready "
4759                        "after hard reset\n");
4760                goto unmap_cfgtable;
4761        }
4762
4763        rc = controller_reset_failed(vaddr);
4764        if (rc < 0)
4765                goto unmap_cfgtable;
4766        if (rc) {
4767                dev_warn(&pdev->dev, "Unable to successfully hard reset "
4768                        "controller. Will try soft reset.\n");
4769                rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4770        } else {
4771                dev_info(&pdev->dev, "Board ready after hard reset.\n");
4772        }
4773
4774unmap_cfgtable:
4775        iounmap(cfgtable);
4776
4777unmap_vaddr:
4778        iounmap(vaddr);
4779        return rc;
4780}
4781
4782static int cciss_init_reset_devices(struct pci_dev *pdev)
4783{
4784        int rc, i;
4785
4786        if (!reset_devices)
4787                return 0;
4788
4789        /* Reset the controller with a PCI power-cycle or via doorbell */
4790        rc = cciss_kdump_hard_reset_controller(pdev);
4791
4792        /* -ENOTSUPP here means we cannot reset the controller
4793         * but it's already (and still) up and running in
4794         * "performant mode".  Or, it might be 640x, which can't reset
4795         * due to concerns about shared bbwc between 6402/6404 pair.
4796         */
4797        if (rc == -ENOTSUPP)
4798                return rc; /* just try to do the kdump anyhow. */
4799        if (rc)
4800                return -ENODEV;
4801
4802        /* Now try to get the controller to respond to a no-op */
4803        dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4804        for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4805                if (cciss_noop(pdev) == 0)
4806                        break;
4807                else
4808                        dev_warn(&pdev->dev, "no-op failed%s\n",
4809                                (i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4810                                        "; re-trying" : ""));
4811                msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4812        }
4813        return 0;
4814}
4815
4816static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4817{
4818        h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4819                sizeof(unsigned long), GFP_KERNEL);
4820        h->cmd_pool = pci_alloc_consistent(h->pdev,
4821                h->nr_cmds * sizeof(CommandList_struct),
4822                &(h->cmd_pool_dhandle));
4823        h->errinfo_pool = pci_alloc_consistent(h->pdev,
4824                h->nr_cmds * sizeof(ErrorInfo_struct),
4825                &(h->errinfo_pool_dhandle));
4826        if ((h->cmd_pool_bits == NULL)
4827                || (h->cmd_pool == NULL)
4828                || (h->errinfo_pool == NULL)) {
4829                dev_err(&h->pdev->dev, "out of memory");
4830                return -ENOMEM;
4831        }
4832        return 0;
4833}
4834
4835static int cciss_allocate_scatterlists(ctlr_info_t *h)
4836{
4837        int i;
4838
4839        /* zero it, so that on free we need not know how many were alloc'ed */
4840        h->scatter_list = kzalloc(h->max_commands *
4841                                sizeof(struct scatterlist *), GFP_KERNEL);
4842        if (!h->scatter_list)
4843                return -ENOMEM;
4844
4845        for (i = 0; i < h->nr_cmds; i++) {
4846                h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4847                                                h->maxsgentries, GFP_KERNEL);
4848                if (h->scatter_list[i] == NULL) {
4849                        dev_err(&h->pdev->dev, "could not allocate "
4850                                "s/g lists\n");
4851                        return -ENOMEM;
4852                }
4853        }
4854        return 0;
4855}
4856
4857static void cciss_free_scatterlists(ctlr_info_t *h)
4858{
4859        int i;
4860
4861        if (h->scatter_list) {
4862                for (i = 0; i < h->nr_cmds; i++)
4863                        kfree(h->scatter_list[i]);
4864                kfree(h->scatter_list);
4865        }
4866}
4867
4868static void cciss_free_cmd_pool(ctlr_info_t *h)
4869{
4870        kfree(h->cmd_pool_bits);
4871        if (h->cmd_pool)
4872                pci_free_consistent(h->pdev,
4873                        h->nr_cmds * sizeof(CommandList_struct),
4874                        h->cmd_pool, h->cmd_pool_dhandle);
4875        if (h->errinfo_pool)
4876                pci_free_consistent(h->pdev,
4877                        h->nr_cmds * sizeof(ErrorInfo_struct),
4878                        h->errinfo_pool, h->errinfo_pool_dhandle);
4879}
4880
4881static int cciss_request_irq(ctlr_info_t *h,
4882        irqreturn_t (*msixhandler)(int, void *),
4883        irqreturn_t (*intxhandler)(int, void *))
4884{
4885        if (h->msix_vector || h->msi_vector) {
4886                if (!request_irq(h->intr[h->intr_mode], msixhandler,
4887                                0, h->devname, h))
4888                        return 0;
4889                dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4890                        " for %s\n", h->intr[h->intr_mode],
4891                        h->devname);
4892                return -1;
4893        }
4894
4895        if (!request_irq(h->intr[h->intr_mode], intxhandler,
4896                        IRQF_SHARED, h->devname, h))
4897                return 0;
4898        dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4899                h->intr[h->intr_mode], h->devname);
4900        return -1;
4901}
4902
4903static int cciss_kdump_soft_reset(ctlr_info_t *h)
4904{
4905        if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4906                dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4907                return -EIO;
4908        }
4909
4910        dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4911        if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4912                dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4913                return -1;
4914        }
4915
4916        dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4917        if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4918                dev_warn(&h->pdev->dev, "Board failed to become ready "
4919                        "after soft reset.\n");
4920                return -1;
4921        }
4922
4923        return 0;
4924}
4925
4926static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4927{
4928        int ctlr = h->ctlr;
4929
4930        free_irq(h->intr[h->intr_mode], h);
4931#ifdef CONFIG_PCI_MSI
4932        if (h->msix_vector)
4933                pci_disable_msix(h->pdev);
4934        else if (h->msi_vector)
4935                pci_disable_msi(h->pdev);
4936#endif /* CONFIG_PCI_MSI */
4937        cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4938        cciss_free_scatterlists(h);
4939        cciss_free_cmd_pool(h);
4940        kfree(h->blockFetchTable);
4941        if (h->reply_pool)
4942                pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4943                                h->reply_pool, h->reply_pool_dhandle);
4944        if (h->transtable)
4945                iounmap(h->transtable);
4946        if (h->cfgtable)
4947                iounmap(h->cfgtable);
4948        if (h->vaddr)
4949                iounmap(h->vaddr);
4950        unregister_blkdev(h->major, h->devname);
4951        cciss_destroy_hba_sysfs_entry(h);
4952        pci_release_regions(h->pdev);
4953        kfree(h);
4954        hba[ctlr] = NULL;
4955}
4956
4957/*
4958 *  This is it.  Find all the controllers and register them.  I really hate
4959 *  stealing all these major device numbers.
4960 *  returns the number of block devices registered.
4961 */
4962static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4963{
4964        int i;
4965        int j = 0;
4966        int rc;
4967        int try_soft_reset = 0;
4968        int dac, return_code;
4969        InquiryData_struct *inq_buff;
4970        ctlr_info_t *h;
4971        unsigned long flags;
4972
4973        /*
4974         * By default the cciss driver is used for all older HP Smart Array
4975         * controllers. There are module paramaters that allow a user to
4976         * override this behavior and instead use the hpsa SCSI driver. If
4977         * this is the case cciss may be loaded first from the kdump initrd
4978         * image and cause a kernel panic. So if reset_devices is true and
4979         * cciss_allow_hpsa is set just bail.
4980         */
4981        if ((reset_devices) && (cciss_allow_hpsa == 1))
4982                return -ENODEV;
4983        rc = cciss_init_reset_devices(pdev);
4984        if (rc) {
4985                if (rc != -ENOTSUPP)
4986                        return rc;
4987                /* If the reset fails in a particular way (it has no way to do
4988                 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4989                 * a soft reset once we get the controller configured up to the
4990                 * point that it can accept a command.
4991                 */
4992                try_soft_reset = 1;
4993                rc = 0;
4994        }
4995
4996reinit_after_soft_reset:
4997
4998        i = alloc_cciss_hba(pdev);
4999        if (i < 0)
5000                return -1;
5001
5002        h = hba[i];
5003        h->pdev = pdev;
5004        h->busy_initializing = 1;
5005        h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5006        INIT_LIST_HEAD(&h->cmpQ);
5007        INIT_LIST_HEAD(&h->reqQ);
5008        mutex_init(&h->busy_shutting_down);
5009
5010        if (cciss_pci_init(h) != 0)
5011                goto clean_no_release_regions;
5012
5013        sprintf(h->devname, "cciss%d", i);
5014        h->ctlr = i;
5015
5016        if (cciss_tape_cmds < 2)
5017                cciss_tape_cmds = 2;
5018        if (cciss_tape_cmds > 16)
5019                cciss_tape_cmds = 16;
5020
5021        init_completion(&h->scan_wait);
5022
5023        if (cciss_create_hba_sysfs_entry(h))
5024                goto clean0;
5025
5026        /* configure PCI DMA stuff */
5027        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5028                dac = 1;
5029        else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5030                dac = 0;
5031        else {
5032                dev_err(&h->pdev->dev, "no suitable DMA available\n");
5033                goto clean1;
5034        }
5035
5036        /*
5037         * register with the major number, or get a dynamic major number
5038         * by passing 0 as argument.  This is done for greater than
5039         * 8 controller support.
5040         */
5041        if (i < MAX_CTLR_ORIG)
5042                h->major = COMPAQ_CISS_MAJOR + i;
5043        rc = register_blkdev(h->major, h->devname);
5044        if (rc == -EBUSY || rc == -EINVAL) {
5045                dev_err(&h->pdev->dev,
5046                       "Unable to get major number %d for %s "
5047                       "on hba %d\n", h->major, h->devname, i);
5048                goto clean1;
5049        } else {
5050                if (i >= MAX_CTLR_ORIG)
5051                        h->major = rc;
5052        }
5053
5054        /* make sure the board interrupts are off */
5055        h->access.set_intr_mask(h, CCISS_INTR_OFF);
5056        rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5057        if (rc)
5058                goto clean2;
5059
5060        dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5061               h->devname, pdev->device, pci_name(pdev),
5062               h->intr[h->intr_mode], dac ? "" : " not");
5063
5064        if (cciss_allocate_cmd_pool(h))
5065                goto clean4;
5066
5067        if (cciss_allocate_scatterlists(h))
5068                goto clean4;
5069
5070        h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5071                h->chainsize, h->nr_cmds);
5072        if (!h->cmd_sg_list && h->chainsize > 0)
5073                goto clean4;
5074
5075        spin_lock_init(&h->lock);
5076
5077        /* Initialize the pdev driver private data.
5078           have it point to h.  */
5079        pci_set_drvdata(pdev, h);
5080        /* command and error info recs zeroed out before
5081           they are used */
5082        bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5083
5084        h->num_luns = 0;
5085        h->highest_lun = -1;
5086        for (j = 0; j < CISS_MAX_LUN; j++) {
5087                h->drv[j] = NULL;
5088                h->gendisk[j] = NULL;
5089        }
5090
5091        /* At this point, the controller is ready to take commands.
5092         * Now, if reset_devices and the hard reset didn't work, try
5093         * the soft reset and see if that works.
5094         */
5095        if (try_soft_reset) {
5096
5097                /* This is kind of gross.  We may or may not get a completion
5098                 * from the soft reset command, and if we do, then the value
5099                 * from the fifo may or may not be valid.  So, we wait 10 secs
5100                 * after the reset throwing away any completions we get during
5101                 * that time.  Unregister the interrupt handler and register
5102                 * fake ones to scoop up any residual completions.
5103                 */
5104                spin_lock_irqsave(&h->lock, flags);
5105                h->access.set_intr_mask(h, CCISS_INTR_OFF);
5106                spin_unlock_irqrestore(&h->lock, flags);
5107                free_irq(h->intr[h->intr_mode], h);
5108                rc = cciss_request_irq(h, cciss_msix_discard_completions,
5109                                        cciss_intx_discard_completions);
5110                if (rc) {
5111                        dev_warn(&h->pdev->dev, "Failed to request_irq after "
5112                                "soft reset.\n");
5113                        goto clean4;
5114                }
5115
5116                rc = cciss_kdump_soft_reset(h);
5117                if (rc) {
5118                        dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5119                        goto clean4;
5120                }
5121
5122                dev_info(&h->pdev->dev, "Board READY.\n");
5123                dev_info(&h->pdev->dev,
5124                        "Waiting for stale completions to drain.\n");
5125                h->access.set_intr_mask(h, CCISS_INTR_ON);
5126                msleep(10000);
5127                h->access.set_intr_mask(h, CCISS_INTR_OFF);
5128
5129                rc = controller_reset_failed(h->cfgtable);
5130                if (rc)
5131                        dev_info(&h->pdev->dev,
5132                                "Soft reset appears to have failed.\n");
5133
5134                /* since the controller's reset, we have to go back and re-init
5135                 * everything.  Easiest to just forget what we've done and do it
5136                 * all over again.
5137                 */
5138                cciss_undo_allocations_after_kdump_soft_reset(h);
5139                try_soft_reset = 0;
5140                if (rc)
5141                        /* don't go to clean4, we already unallocated */
5142                        return -ENODEV;
5143
5144                goto reinit_after_soft_reset;
5145        }
5146
5147        cciss_scsi_setup(h);
5148
5149        /* Turn the interrupts on so we can service requests */
5150        h->access.set_intr_mask(h, CCISS_INTR_ON);
5151
5152        /* Get the firmware version */
5153        inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5154        if (inq_buff == NULL) {
5155                dev_err(&h->pdev->dev, "out of memory\n");
5156                goto clean4;
5157        }
5158
5159        return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5160                sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5161        if (return_code == IO_OK) {
5162                h->firm_ver[0] = inq_buff->data_byte[32];
5163                h->firm_ver[1] = inq_buff->data_byte[33];
5164                h->firm_ver[2] = inq_buff->data_byte[34];
5165                h->firm_ver[3] = inq_buff->data_byte[35];
5166        } else {         /* send command failed */
5167                dev_warn(&h->pdev->dev, "unable to determine firmware"
5168                        " version of controller\n");
5169        }
5170        kfree(inq_buff);
5171
5172        cciss_procinit(h);
5173
5174        h->cciss_max_sectors = 8192;
5175
5176        rebuild_lun_table(h, 1, 0);
5177        cciss_engage_scsi(h);
5178        h->busy_initializing = 0;
5179        return 1;
5180
5181clean4:
5182        cciss_free_cmd_pool(h);
5183        cciss_free_scatterlists(h);
5184        cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5185        free_irq(h->intr[h->intr_mode], h);
5186clean2:
5187        unregister_blkdev(h->major, h->devname);
5188clean1:
5189        cciss_destroy_hba_sysfs_entry(h);
5190clean0:
5191        pci_release_regions(pdev);
5192clean_no_release_regions:
5193        h->busy_initializing = 0;
5194
5195        /*
5196         * Deliberately omit pci_disable_device(): it does something nasty to
5197         * Smart Array controllers that pci_enable_device does not undo
5198         */
5199        pci_set_drvdata(pdev, NULL);
5200        free_hba(h);
5201        return -1;
5202}
5203
5204static void cciss_shutdown(struct pci_dev *pdev)
5205{
5206        ctlr_info_t *h;
5207        char *flush_buf;
5208        int return_code;
5209
5210        h = pci_get_drvdata(pdev);
5211        flush_buf = kzalloc(4, GFP_KERNEL);
5212        if (!flush_buf) {
5213                dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5214                return;
5215        }
5216        /* write all data in the battery backed cache to disk */
5217        return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5218                4, 0, CTLR_LUNID, TYPE_CMD);
5219        kfree(flush_buf);
5220        if (return_code != IO_OK)
5221                dev_warn(&h->pdev->dev, "Error flushing cache\n");
5222        h->access.set_intr_mask(h, CCISS_INTR_OFF);
5223        free_irq(h->intr[h->intr_mode], h);
5224}
5225
5226static int cciss_enter_simple_mode(struct ctlr_info *h)
5227{
5228        u32 trans_support;
5229
5230        trans_support = readl(&(h->cfgtable->TransportSupport));
5231        if (!(trans_support & SIMPLE_MODE))
5232                return -ENOTSUPP;
5233
5234        h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5235        writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5236        writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5237        cciss_wait_for_mode_change_ack(h);
5238        print_cfg_table(h);
5239        if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5240                dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5241                return -ENODEV;
5242        }
5243        h->transMethod = CFGTBL_Trans_Simple;
5244        return 0;
5245}
5246
5247
5248static void cciss_remove_one(struct pci_dev *pdev)
5249{
5250        ctlr_info_t *h;
5251        int i, j;
5252
5253        if (pci_get_drvdata(pdev) == NULL) {
5254                dev_err(&pdev->dev, "Unable to remove device\n");
5255                return;
5256        }
5257
5258        h = pci_get_drvdata(pdev);
5259        i = h->ctlr;
5260        if (hba[i] == NULL) {
5261                dev_err(&pdev->dev, "device appears to already be removed\n");
5262                return;
5263        }
5264
5265        mutex_lock(&h->busy_shutting_down);
5266
5267        remove_from_scan_list(h);
5268        remove_proc_entry(h->devname, proc_cciss);
5269        unregister_blkdev(h->major, h->devname);
5270
5271        /* remove it from the disk list */
5272        for (j = 0; j < CISS_MAX_LUN; j++) {
5273                struct gendisk *disk = h->gendisk[j];
5274                if (disk) {
5275                        struct request_queue *q = disk->queue;
5276
5277                        if (disk->flags & GENHD_FL_UP) {
5278                                cciss_destroy_ld_sysfs_entry(h, j, 1);
5279                                del_gendisk(disk);
5280                        }
5281                        if (q)
5282                                blk_cleanup_queue(q);
5283                }
5284        }
5285
5286#ifdef CONFIG_CISS_SCSI_TAPE
5287        cciss_unregister_scsi(h);       /* unhook from SCSI subsystem */
5288#endif
5289
5290        cciss_shutdown(pdev);
5291
5292#ifdef CONFIG_PCI_MSI
5293        if (h->msix_vector)
5294                pci_disable_msix(h->pdev);
5295        else if (h->msi_vector)
5296                pci_disable_msi(h->pdev);
5297#endif                          /* CONFIG_PCI_MSI */
5298
5299        iounmap(h->transtable);
5300        iounmap(h->cfgtable);
5301        iounmap(h->vaddr);
5302
5303        cciss_free_cmd_pool(h);
5304        /* Free up sg elements */
5305        for (j = 0; j < h->nr_cmds; j++)
5306                kfree(h->scatter_list[j]);
5307        kfree(h->scatter_list);
5308        cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5309        kfree(h->blockFetchTable);
5310        if (h->reply_pool)
5311                pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5312                                h->reply_pool, h->reply_pool_dhandle);
5313        /*
5314         * Deliberately omit pci_disable_device(): it does something nasty to
5315         * Smart Array controllers that pci_enable_device does not undo
5316         */
5317        pci_release_regions(pdev);
5318        pci_set_drvdata(pdev, NULL);
5319        cciss_destroy_hba_sysfs_entry(h);
5320        mutex_unlock(&h->busy_shutting_down);
5321        free_hba(h);
5322}
5323
5324static struct pci_driver cciss_pci_driver = {
5325        .name = "cciss",
5326        .probe = cciss_init_one,
5327        .remove = cciss_remove_one,
5328        .id_table = cciss_pci_device_id,        /* id_table */
5329        .shutdown = cciss_shutdown,
5330};
5331
5332/*
5333 *  This is it.  Register the PCI driver information for the cards we control
5334 *  the OS will call our registered routines when it finds one of our cards.
5335 */
5336static int __init cciss_init(void)
5337{
5338        int err;
5339
5340        /*
5341         * The hardware requires that commands are aligned on a 64-bit
5342         * boundary. Given that we use pci_alloc_consistent() to allocate an
5343         * array of them, the size must be a multiple of 8 bytes.
5344         */
5345        BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5346        printk(KERN_INFO DRIVER_NAME "\n");
5347
5348        err = bus_register(&cciss_bus_type);
5349        if (err)
5350                return err;
5351
5352        /* Start the scan thread */
5353        cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5354        if (IS_ERR(cciss_scan_thread)) {
5355                err = PTR_ERR(cciss_scan_thread);
5356                goto err_bus_unregister;
5357        }
5358
5359        /* Register for our PCI devices */
5360        err = pci_register_driver(&cciss_pci_driver);
5361        if (err)
5362                goto err_thread_stop;
5363
5364        return err;
5365
5366err_thread_stop:
5367        kthread_stop(cciss_scan_thread);
5368err_bus_unregister:
5369        bus_unregister(&cciss_bus_type);
5370
5371        return err;
5372}
5373
5374static void __exit cciss_cleanup(void)
5375{
5376        int i;
5377
5378        pci_unregister_driver(&cciss_pci_driver);
5379        /* double check that all controller entrys have been removed */
5380        for (i = 0; i < MAX_CTLR; i++) {
5381                if (hba[i] != NULL) {
5382                        dev_warn(&hba[i]->pdev->dev,
5383                                "had to remove controller\n");
5384                        cciss_remove_one(hba[i]->pdev);
5385                }
5386        }
5387        kthread_stop(cciss_scan_thread);
5388        if (proc_cciss)
5389                remove_proc_entry("driver/cciss", NULL);
5390        bus_unregister(&cciss_bus_type);
5391}
5392
5393module_init(cciss_init);
5394module_exit(cciss_cleanup);
5395