linux/drivers/gpu/drm/i915/intel_ringbuffer.h
<<
>>
Prefs
   1#ifndef _INTEL_RINGBUFFER_H_
   2#define _INTEL_RINGBUFFER_H_
   3
   4#include <linux/hashtable.h>
   5#include "i915_gem_batch_pool.h"
   6#include "i915_gem_request.h"
   7#include "i915_gem_timeline.h"
   8#include "i915_selftest.h"
   9
  10#define I915_CMD_HASH_ORDER 9
  11
  12/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  13 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  14 * to give some inclination as to some of the magic values used in the various
  15 * workarounds!
  16 */
  17#define CACHELINE_BYTES 64
  18#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  19
  20struct intel_hw_status_page {
  21        struct i915_vma *vma;
  22        u32 *page_addr;
  23        u32 ggtt_offset;
  24};
  25
  26#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  27#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  28
  29#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  30#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  31
  32#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
  33#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  34
  35#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  36#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  37
  38#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  39#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  40
  41#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  42#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  43
  44/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  45 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  46 */
  47#define gen8_semaphore_seqno_size sizeof(uint64_t)
  48#define GEN8_SEMAPHORE_OFFSET(__from, __to)                          \
  49        (((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
  50#define GEN8_SIGNAL_OFFSET(__ring, to)                       \
  51        (dev_priv->semaphore->node.start + \
  52         GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  53#define GEN8_WAIT_OFFSET(__ring, from)                       \
  54        (dev_priv->semaphore->node.start + \
  55         GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  56
  57enum intel_engine_hangcheck_action {
  58        ENGINE_IDLE = 0,
  59        ENGINE_WAIT,
  60        ENGINE_ACTIVE_SEQNO,
  61        ENGINE_ACTIVE_HEAD,
  62        ENGINE_ACTIVE_SUBUNITS,
  63        ENGINE_WAIT_KICK,
  64        ENGINE_DEAD,
  65};
  66
  67static inline const char *
  68hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
  69{
  70        switch (a) {
  71        case ENGINE_IDLE:
  72                return "idle";
  73        case ENGINE_WAIT:
  74                return "wait";
  75        case ENGINE_ACTIVE_SEQNO:
  76                return "active seqno";
  77        case ENGINE_ACTIVE_HEAD:
  78                return "active head";
  79        case ENGINE_ACTIVE_SUBUNITS:
  80                return "active subunits";
  81        case ENGINE_WAIT_KICK:
  82                return "wait kick";
  83        case ENGINE_DEAD:
  84                return "dead";
  85        }
  86
  87        return "unknown";
  88}
  89
  90#define I915_MAX_SLICES 3
  91#define I915_MAX_SUBSLICES 3
  92
  93#define instdone_slice_mask(dev_priv__) \
  94        (INTEL_GEN(dev_priv__) == 7 ? \
  95         1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  96
  97#define instdone_subslice_mask(dev_priv__) \
  98        (INTEL_GEN(dev_priv__) == 7 ? \
  99         1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
 100
 101#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
 102        for ((slice__) = 0, (subslice__) = 0; \
 103             (slice__) < I915_MAX_SLICES; \
 104             (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
 105               (slice__) += ((subslice__) == 0)) \
 106                for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
 107                            (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
 108
 109struct intel_instdone {
 110        u32 instdone;
 111        /* The following exist only in the RCS engine */
 112        u32 slice_common;
 113        u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 114        u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
 115};
 116
 117struct intel_engine_hangcheck {
 118        u64 acthd;
 119        u32 seqno;
 120        enum intel_engine_hangcheck_action action;
 121        unsigned long action_timestamp;
 122        int deadlock;
 123        struct intel_instdone instdone;
 124        struct drm_i915_gem_request *active_request;
 125        bool stalled;
 126};
 127
 128struct intel_ring {
 129        struct i915_vma *vma;
 130        void *vaddr;
 131
 132        struct list_head request_list;
 133
 134        u32 head;
 135        u32 tail;
 136        u32 emit;
 137
 138        u32 space;
 139        u32 size;
 140        u32 effective_size;
 141};
 142
 143struct i915_gem_context;
 144struct drm_i915_reg_table;
 145
 146/*
 147 * we use a single page to load ctx workarounds so all of these
 148 * values are referred in terms of dwords
 149 *
 150 * struct i915_wa_ctx_bb:
 151 *  offset: specifies batch starting position, also helpful in case
 152 *    if we want to have multiple batches at different offsets based on
 153 *    some criteria. It is not a requirement at the moment but provides
 154 *    an option for future use.
 155 *  size: size of the batch in DWORDS
 156 */
 157struct i915_ctx_workarounds {
 158        struct i915_wa_ctx_bb {
 159                u32 offset;
 160                u32 size;
 161        } indirect_ctx, per_ctx;
 162        struct i915_vma *vma;
 163};
 164
 165struct drm_i915_gem_request;
 166struct intel_render_state;
 167
 168/*
 169 * Engine IDs definitions.
 170 * Keep instances of the same type engine together.
 171 */
 172enum intel_engine_id {
 173        RCS = 0,
 174        BCS,
 175        VCS,
 176        VCS2,
 177#define _VCS(n) (VCS + (n))
 178        VECS
 179};
 180
 181struct i915_priolist {
 182        struct rb_node node;
 183        struct list_head requests;
 184        int priority;
 185};
 186
 187#define INTEL_ENGINE_CS_MAX_NAME 8
 188
 189struct intel_engine_cs {
 190        struct drm_i915_private *i915;
 191        char name[INTEL_ENGINE_CS_MAX_NAME];
 192        enum intel_engine_id id;
 193        unsigned int uabi_id;
 194        unsigned int hw_id;
 195        unsigned int guc_id;
 196
 197        u8 class;
 198        u8 instance;
 199        u32 context_size;
 200        u32 mmio_base;
 201        unsigned int irq_shift;
 202
 203        struct intel_ring *buffer;
 204        struct intel_timeline *timeline;
 205
 206        struct intel_render_state *render_state;
 207
 208        atomic_t irq_count;
 209        unsigned long irq_posted;
 210#define ENGINE_IRQ_BREADCRUMB 0
 211#define ENGINE_IRQ_EXECLIST 1
 212
 213        /* Rather than have every client wait upon all user interrupts,
 214         * with the herd waking after every interrupt and each doing the
 215         * heavyweight seqno dance, we delegate the task (of being the
 216         * bottom-half of the user interrupt) to the first client. After
 217         * every interrupt, we wake up one client, who does the heavyweight
 218         * coherent seqno read and either goes back to sleep (if incomplete),
 219         * or wakes up all the completed clients in parallel, before then
 220         * transferring the bottom-half status to the next client in the queue.
 221         *
 222         * Compared to walking the entire list of waiters in a single dedicated
 223         * bottom-half, we reduce the latency of the first waiter by avoiding
 224         * a context switch, but incur additional coherent seqno reads when
 225         * following the chain of request breadcrumbs. Since it is most likely
 226         * that we have a single client waiting on each seqno, then reducing
 227         * the overhead of waking that client is much preferred.
 228         */
 229        struct intel_breadcrumbs {
 230                spinlock_t irq_lock; /* protects irq_*; irqsafe */
 231                struct intel_wait *irq_wait; /* oldest waiter by retirement */
 232
 233                spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
 234                struct rb_root waiters; /* sorted by retirement, priority */
 235                struct rb_root signals; /* sorted by retirement */
 236                struct task_struct *signaler; /* used for fence signalling */
 237                struct drm_i915_gem_request __rcu *first_signal;
 238                struct timer_list fake_irq; /* used after a missed interrupt */
 239                struct timer_list hangcheck; /* detect missed interrupts */
 240
 241                unsigned int hangcheck_interrupts;
 242
 243                bool irq_armed : 1;
 244                bool irq_enabled : 1;
 245                I915_SELFTEST_DECLARE(bool mock : 1);
 246        } breadcrumbs;
 247
 248        /*
 249         * A pool of objects to use as shadow copies of client batch buffers
 250         * when the command parser is enabled. Prevents the client from
 251         * modifying the batch contents after software parsing.
 252         */
 253        struct i915_gem_batch_pool batch_pool;
 254
 255        struct intel_hw_status_page status_page;
 256        struct i915_ctx_workarounds wa_ctx;
 257        struct i915_vma *scratch;
 258
 259        u32             irq_keep_mask; /* always keep these interrupts */
 260        u32             irq_enable_mask; /* bitmask to enable ring interrupt */
 261        void            (*irq_enable)(struct intel_engine_cs *engine);
 262        void            (*irq_disable)(struct intel_engine_cs *engine);
 263
 264        int             (*init_hw)(struct intel_engine_cs *engine);
 265        void            (*reset_hw)(struct intel_engine_cs *engine,
 266                                    struct drm_i915_gem_request *req);
 267
 268        void            (*set_default_submission)(struct intel_engine_cs *engine);
 269
 270        struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
 271                                          struct i915_gem_context *ctx);
 272        void            (*context_unpin)(struct intel_engine_cs *engine,
 273                                         struct i915_gem_context *ctx);
 274        int             (*request_alloc)(struct drm_i915_gem_request *req);
 275        int             (*init_context)(struct drm_i915_gem_request *req);
 276
 277        int             (*emit_flush)(struct drm_i915_gem_request *request,
 278                                      u32 mode);
 279#define EMIT_INVALIDATE BIT(0)
 280#define EMIT_FLUSH      BIT(1)
 281#define EMIT_BARRIER    (EMIT_INVALIDATE | EMIT_FLUSH)
 282        int             (*emit_bb_start)(struct drm_i915_gem_request *req,
 283                                         u64 offset, u32 length,
 284                                         unsigned int dispatch_flags);
 285#define I915_DISPATCH_SECURE BIT(0)
 286#define I915_DISPATCH_PINNED BIT(1)
 287#define I915_DISPATCH_RS     BIT(2)
 288        void            (*emit_breadcrumb)(struct drm_i915_gem_request *req,
 289                                           u32 *cs);
 290        int             emit_breadcrumb_sz;
 291
 292        /* Pass the request to the hardware queue (e.g. directly into
 293         * the legacy ringbuffer or to the end of an execlist).
 294         *
 295         * This is called from an atomic context with irqs disabled; must
 296         * be irq safe.
 297         */
 298        void            (*submit_request)(struct drm_i915_gem_request *req);
 299
 300        /* Call when the priority on a request has changed and it and its
 301         * dependencies may need rescheduling. Note the request itself may
 302         * not be ready to run!
 303         *
 304         * Called under the struct_mutex.
 305         */
 306        void            (*schedule)(struct drm_i915_gem_request *request,
 307                                    int priority);
 308
 309        /* Some chipsets are not quite as coherent as advertised and need
 310         * an expensive kick to force a true read of the up-to-date seqno.
 311         * However, the up-to-date seqno is not always required and the last
 312         * seen value is good enough. Note that the seqno will always be
 313         * monotonic, even if not coherent.
 314         */
 315        void            (*irq_seqno_barrier)(struct intel_engine_cs *engine);
 316        void            (*cleanup)(struct intel_engine_cs *engine);
 317
 318        /* GEN8 signal/wait table - never trust comments!
 319         *        signal to     signal to    signal to   signal to      signal to
 320         *          RCS            VCS          BCS        VECS          VCS2
 321         *      --------------------------------------------------------------------
 322         *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
 323         *      |-------------------------------------------------------------------
 324         *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
 325         *      |-------------------------------------------------------------------
 326         *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
 327         *      |-------------------------------------------------------------------
 328         * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
 329         *      |-------------------------------------------------------------------
 330         * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
 331         *      |-------------------------------------------------------------------
 332         *
 333         * Generalization:
 334         *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
 335         *  ie. transpose of g(x, y)
 336         *
 337         *       sync from      sync from    sync from    sync from     sync from
 338         *          RCS            VCS          BCS        VECS          VCS2
 339         *      --------------------------------------------------------------------
 340         *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
 341         *      |-------------------------------------------------------------------
 342         *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
 343         *      |-------------------------------------------------------------------
 344         *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
 345         *      |-------------------------------------------------------------------
 346         * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
 347         *      |-------------------------------------------------------------------
 348         * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
 349         *      |-------------------------------------------------------------------
 350         *
 351         * Generalization:
 352         *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
 353         *  ie. transpose of f(x, y)
 354         */
 355        struct {
 356                union {
 357#define GEN6_SEMAPHORE_LAST     VECS_HW
 358#define GEN6_NUM_SEMAPHORES     (GEN6_SEMAPHORE_LAST + 1)
 359#define GEN6_SEMAPHORES_MASK    GENMASK(GEN6_SEMAPHORE_LAST, 0)
 360                        struct {
 361                                /* our mbox written by others */
 362                                u32             wait[GEN6_NUM_SEMAPHORES];
 363                                /* mboxes this ring signals to */
 364                                i915_reg_t      signal[GEN6_NUM_SEMAPHORES];
 365                        } mbox;
 366                        u64             signal_ggtt[I915_NUM_ENGINES];
 367                };
 368
 369                /* AKA wait() */
 370                int     (*sync_to)(struct drm_i915_gem_request *req,
 371                                   struct drm_i915_gem_request *signal);
 372                u32     *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
 373        } semaphore;
 374
 375        /* Execlists */
 376        struct tasklet_struct irq_tasklet;
 377        struct i915_priolist default_priolist;
 378        bool no_priolist;
 379        struct execlist_port {
 380                struct drm_i915_gem_request *request_count;
 381#define EXECLIST_COUNT_BITS 2
 382#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 383#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
 384#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
 385#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
 386#define port_set(p, packed) ((p)->request_count = (packed))
 387#define port_isset(p) ((p)->request_count)
 388#define port_index(p, e) ((p) - (e)->execlist_port)
 389                GEM_DEBUG_DECL(u32 context_id);
 390        } execlist_port[2];
 391        struct rb_root execlist_queue;
 392        struct rb_node *execlist_first;
 393        unsigned int fw_domains;
 394
 395        /* Contexts are pinned whilst they are active on the GPU. The last
 396         * context executed remains active whilst the GPU is idle - the
 397         * switch away and write to the context object only occurs on the
 398         * next execution.  Contexts are only unpinned on retirement of the
 399         * following request ensuring that we can always write to the object
 400         * on the context switch even after idling. Across suspend, we switch
 401         * to the kernel context and trash it as the save may not happen
 402         * before the hardware is powered down.
 403         */
 404        struct i915_gem_context *last_retired_context;
 405
 406        /* We track the current MI_SET_CONTEXT in order to eliminate
 407         * redudant context switches. This presumes that requests are not
 408         * reordered! Or when they are the tracking is updated along with
 409         * the emission of individual requests into the legacy command
 410         * stream (ring).
 411         */
 412        struct i915_gem_context *legacy_active_context;
 413
 414        /* status_notifier: list of callbacks for context-switch changes */
 415        struct atomic_notifier_head context_status_notifier;
 416
 417        struct intel_engine_hangcheck hangcheck;
 418
 419        bool needs_cmd_parser;
 420
 421        /*
 422         * Table of commands the command parser needs to know about
 423         * for this engine.
 424         */
 425        DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
 426
 427        /*
 428         * Table of registers allowed in commands that read/write registers.
 429         */
 430        const struct drm_i915_reg_table *reg_tables;
 431        int reg_table_count;
 432
 433        /*
 434         * Returns the bitmask for the length field of the specified command.
 435         * Return 0 for an unrecognized/invalid command.
 436         *
 437         * If the command parser finds an entry for a command in the engine's
 438         * cmd_tables, it gets the command's length based on the table entry.
 439         * If not, it calls this function to determine the per-engine length
 440         * field encoding for the command (i.e. different opcode ranges use
 441         * certain bits to encode the command length in the header).
 442         */
 443        u32 (*get_cmd_length_mask)(u32 cmd_header);
 444};
 445
 446static inline unsigned int
 447intel_engine_flag(const struct intel_engine_cs *engine)
 448{
 449        return BIT(engine->id);
 450}
 451
 452static inline u32
 453intel_read_status_page(struct intel_engine_cs *engine, int reg)
 454{
 455        /* Ensure that the compiler doesn't optimize away the load. */
 456        return READ_ONCE(engine->status_page.page_addr[reg]);
 457}
 458
 459static inline void
 460intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
 461{
 462        /* Writing into the status page should be done sparingly. Since
 463         * we do when we are uncertain of the device state, we take a bit
 464         * of extra paranoia to try and ensure that the HWS takes the value
 465         * we give and that it doesn't end up trapped inside the CPU!
 466         */
 467        if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
 468                mb();
 469                clflush(&engine->status_page.page_addr[reg]);
 470                engine->status_page.page_addr[reg] = value;
 471                clflush(&engine->status_page.page_addr[reg]);
 472                mb();
 473        } else {
 474                WRITE_ONCE(engine->status_page.page_addr[reg], value);
 475        }
 476}
 477
 478/*
 479 * Reads a dword out of the status page, which is written to from the command
 480 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 481 * MI_STORE_DATA_IMM.
 482 *
 483 * The following dwords have a reserved meaning:
 484 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 485 * 0x04: ring 0 head pointer
 486 * 0x05: ring 1 head pointer (915-class)
 487 * 0x06: ring 2 head pointer (915-class)
 488 * 0x10-0x1b: Context status DWords (GM45)
 489 * 0x1f: Last written status offset. (GM45)
 490 * 0x20-0x2f: Reserved (Gen6+)
 491 *
 492 * The area from dword 0x30 to 0x3ff is available for driver usage.
 493 */
 494#define I915_GEM_HWS_INDEX              0x30
 495#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 496#define I915_GEM_HWS_SCRATCH_INDEX      0x40
 497#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 498
 499struct intel_ring *
 500intel_engine_create_ring(struct intel_engine_cs *engine, int size);
 501int intel_ring_pin(struct intel_ring *ring,
 502                   struct drm_i915_private *i915,
 503                   unsigned int offset_bias);
 504void intel_ring_reset(struct intel_ring *ring, u32 tail);
 505unsigned int intel_ring_update_space(struct intel_ring *ring);
 506void intel_ring_unpin(struct intel_ring *ring);
 507void intel_ring_free(struct intel_ring *ring);
 508
 509void intel_engine_stop(struct intel_engine_cs *engine);
 510void intel_engine_cleanup(struct intel_engine_cs *engine);
 511
 512void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
 513
 514int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
 515
 516u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
 517                                   unsigned int n);
 518
 519static inline void
 520intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
 521{
 522        /* Dummy function.
 523         *
 524         * This serves as a placeholder in the code so that the reader
 525         * can compare against the preceding intel_ring_begin() and
 526         * check that the number of dwords emitted matches the space
 527         * reserved for the command packet (i.e. the value passed to
 528         * intel_ring_begin()).
 529         */
 530        GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
 531}
 532
 533static inline u32
 534intel_ring_wrap(const struct intel_ring *ring, u32 pos)
 535{
 536        return pos & (ring->size - 1);
 537}
 538
 539static inline u32
 540intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
 541{
 542        /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
 543        u32 offset = addr - req->ring->vaddr;
 544        GEM_BUG_ON(offset > req->ring->size);
 545        return intel_ring_wrap(req->ring, offset);
 546}
 547
 548static inline void
 549assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
 550{
 551        /* We could combine these into a single tail operation, but keeping
 552         * them as seperate tests will help identify the cause should one
 553         * ever fire.
 554         */
 555        GEM_BUG_ON(!IS_ALIGNED(tail, 8));
 556        GEM_BUG_ON(tail >= ring->size);
 557
 558        /*
 559         * "Ring Buffer Use"
 560         *      Gen2 BSpec "1. Programming Environment" / 1.4.4.6
 561         *      Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
 562         *      Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
 563         * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
 564         * same cacheline, the Head Pointer must not be greater than the Tail
 565         * Pointer."
 566         *
 567         * We use ring->head as the last known location of the actual RING_HEAD,
 568         * it may have advanced but in the worst case it is equally the same
 569         * as ring->head and so we should never program RING_TAIL to advance
 570         * into the same cacheline as ring->head.
 571         */
 572#define cacheline(a) round_down(a, CACHELINE_BYTES)
 573        GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
 574                   tail < ring->head);
 575#undef cacheline
 576}
 577
 578static inline unsigned int
 579intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
 580{
 581        /* Whilst writes to the tail are strictly order, there is no
 582         * serialisation between readers and the writers. The tail may be
 583         * read by i915_gem_request_retire() just as it is being updated
 584         * by execlists, as although the breadcrumb is complete, the context
 585         * switch hasn't been seen.
 586         */
 587        assert_ring_tail_valid(ring, tail);
 588        ring->tail = tail;
 589        return tail;
 590}
 591
 592void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
 593
 594void intel_engine_setup_common(struct intel_engine_cs *engine);
 595int intel_engine_init_common(struct intel_engine_cs *engine);
 596int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
 597void intel_engine_cleanup_common(struct intel_engine_cs *engine);
 598
 599int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
 600int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
 601int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
 602int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
 603
 604u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
 605u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
 606
 607static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
 608{
 609        return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
 610}
 611
 612static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
 613{
 614        /* We are only peeking at the tail of the submit queue (and not the
 615         * queue itself) in order to gain a hint as to the current active
 616         * state of the engine. Callers are not expected to be taking
 617         * engine->timeline->lock, nor are they expected to be concerned
 618         * wtih serialising this hint with anything, so document it as
 619         * a hint and nothing more.
 620         */
 621        return READ_ONCE(engine->timeline->seqno);
 622}
 623
 624int init_workarounds_ring(struct intel_engine_cs *engine);
 625int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
 626
 627void intel_engine_get_instdone(struct intel_engine_cs *engine,
 628                               struct intel_instdone *instdone);
 629
 630/*
 631 * Arbitrary size for largest possible 'add request' sequence. The code paths
 632 * are complex and variable. Empirical measurement shows that the worst case
 633 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 634 * we need to allocate double the largest single packet within that emission
 635 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 636 */
 637#define MIN_SPACE_FOR_ADD_REQUEST 336
 638
 639static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
 640{
 641        return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
 642}
 643
 644/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
 645int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
 646
 647static inline void intel_wait_init(struct intel_wait *wait,
 648                                   struct drm_i915_gem_request *rq)
 649{
 650        wait->tsk = current;
 651        wait->request = rq;
 652}
 653
 654static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
 655{
 656        wait->tsk = current;
 657        wait->seqno = seqno;
 658}
 659
 660static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
 661{
 662        return wait->seqno;
 663}
 664
 665static inline bool
 666intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
 667{
 668        wait->seqno = seqno;
 669        return intel_wait_has_seqno(wait);
 670}
 671
 672static inline bool
 673intel_wait_update_request(struct intel_wait *wait,
 674                          const struct drm_i915_gem_request *rq)
 675{
 676        return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
 677}
 678
 679static inline bool
 680intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
 681{
 682        return wait->seqno == seqno;
 683}
 684
 685static inline bool
 686intel_wait_check_request(const struct intel_wait *wait,
 687                         const struct drm_i915_gem_request *rq)
 688{
 689        return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
 690}
 691
 692static inline bool intel_wait_complete(const struct intel_wait *wait)
 693{
 694        return RB_EMPTY_NODE(&wait->node);
 695}
 696
 697bool intel_engine_add_wait(struct intel_engine_cs *engine,
 698                           struct intel_wait *wait);
 699void intel_engine_remove_wait(struct intel_engine_cs *engine,
 700                              struct intel_wait *wait);
 701void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
 702                                   bool wakeup);
 703void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
 704
 705static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
 706{
 707        return READ_ONCE(engine->breadcrumbs.irq_wait);
 708}
 709
 710unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
 711#define ENGINE_WAKEUP_WAITER BIT(0)
 712#define ENGINE_WAKEUP_ASLEEP BIT(1)
 713
 714void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 715void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
 716
 717void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
 718void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
 719bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
 720
 721static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
 722{
 723        memset(batch, 0, 6 * sizeof(u32));
 724
 725        batch[0] = GFX_OP_PIPE_CONTROL(6);
 726        batch[1] = flags;
 727        batch[2] = offset;
 728
 729        return batch + 6;
 730}
 731
 732bool intel_engine_is_idle(struct intel_engine_cs *engine);
 733bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
 734
 735void intel_engines_mark_idle(struct drm_i915_private *i915);
 736void intel_engines_reset_default_submission(struct drm_i915_private *i915);
 737
 738static inline bool
 739__intel_engine_can_store_dword(unsigned int gen, unsigned int class)
 740{
 741        if (gen <= 2)
 742                return false; /* uses physical not virtual addresses */
 743
 744        if (gen == 6 && class == VIDEO_DECODE_CLASS)
 745                return false; /* b0rked */
 746
 747        return true;
 748}
 749
 750#endif /* _INTEL_RINGBUFFER_H_ */
 751