linux/drivers/gpu/drm/nouveau/nvkm/subdev/fb/ramnv50.c
<<
>>
Prefs
   1/*
   2 * Copyright 2013 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24#define nv50_ram(p) container_of((p), struct nv50_ram, base)
  25#include "ram.h"
  26#include "ramseq.h"
  27#include "nv50.h"
  28
  29#include <core/option.h>
  30#include <subdev/bios.h>
  31#include <subdev/bios/perf.h>
  32#include <subdev/bios/pll.h>
  33#include <subdev/bios/rammap.h>
  34#include <subdev/bios/timing.h>
  35#include <subdev/clk/pll.h>
  36#include <subdev/gpio.h>
  37
  38struct nv50_ramseq {
  39        struct hwsq base;
  40        struct hwsq_reg r_0x002504;
  41        struct hwsq_reg r_0x004008;
  42        struct hwsq_reg r_0x00400c;
  43        struct hwsq_reg r_0x00c040;
  44        struct hwsq_reg r_0x100200;
  45        struct hwsq_reg r_0x100210;
  46        struct hwsq_reg r_0x10021c;
  47        struct hwsq_reg r_0x1002d0;
  48        struct hwsq_reg r_0x1002d4;
  49        struct hwsq_reg r_0x1002dc;
  50        struct hwsq_reg r_0x10053c;
  51        struct hwsq_reg r_0x1005a0;
  52        struct hwsq_reg r_0x1005a4;
  53        struct hwsq_reg r_0x100710;
  54        struct hwsq_reg r_0x100714;
  55        struct hwsq_reg r_0x100718;
  56        struct hwsq_reg r_0x10071c;
  57        struct hwsq_reg r_0x100da0;
  58        struct hwsq_reg r_0x100e20;
  59        struct hwsq_reg r_0x100e24;
  60        struct hwsq_reg r_0x611200;
  61        struct hwsq_reg r_timing[9];
  62        struct hwsq_reg r_mr[4];
  63        struct hwsq_reg r_gpio[4];
  64};
  65
  66struct nv50_ram {
  67        struct nvkm_ram base;
  68        struct nv50_ramseq hwsq;
  69};
  70
  71#define T(t) cfg->timing_10_##t
  72static int
  73nv50_ram_timing_calc(struct nv50_ram *ram, u32 *timing)
  74{
  75        struct nvbios_ramcfg *cfg = &ram->base.target.bios;
  76        struct nvkm_subdev *subdev = &ram->base.fb->subdev;
  77        struct nvkm_device *device = subdev->device;
  78        u32 cur2, cur4, cur7, cur8;
  79        u8 unkt3b;
  80
  81        cur2 = nvkm_rd32(device, 0x100228);
  82        cur4 = nvkm_rd32(device, 0x100230);
  83        cur7 = nvkm_rd32(device, 0x10023c);
  84        cur8 = nvkm_rd32(device, 0x100240);
  85
  86        switch ((!T(CWL)) * ram->base.type) {
  87        case NVKM_RAM_TYPE_DDR2:
  88                T(CWL) = T(CL) - 1;
  89                break;
  90        case NVKM_RAM_TYPE_GDDR3:
  91                T(CWL) = ((cur2 & 0xff000000) >> 24) + 1;
  92                break;
  93        }
  94
  95        /* XXX: N=1 is not proper statistics */
  96        if (device->chipset == 0xa0) {
  97                unkt3b = 0x19 + ram->base.next->bios.rammap_00_16_40;
  98                timing[6] = (0x2d + T(CL) - T(CWL) +
  99                                ram->base.next->bios.rammap_00_16_40) << 16 |
 100                            T(CWL) << 8 |
 101                            (0x2f + T(CL) - T(CWL));
 102        } else {
 103                unkt3b = 0x16;
 104                timing[6] = (0x2b + T(CL) - T(CWL)) << 16 |
 105                            max_t(s8, T(CWL) - 2, 1) << 8 |
 106                            (0x2e + T(CL) - T(CWL));
 107        }
 108
 109        timing[0] = (T(RP) << 24 | T(RAS) << 16 | T(RFC) << 8 | T(RC));
 110        timing[1] = (T(WR) + 1 + T(CWL)) << 24 |
 111                    max_t(u8, T(18), 1) << 16 |
 112                    (T(WTR) + 1 + T(CWL)) << 8 |
 113                    (3 + T(CL) - T(CWL));
 114        timing[2] = (T(CWL) - 1) << 24 |
 115                    (T(RRD) << 16) |
 116                    (T(RCDWR) << 8) |
 117                    T(RCDRD);
 118        timing[3] = (unkt3b - 2 + T(CL)) << 24 |
 119                    unkt3b << 16 |
 120                    (T(CL) - 1) << 8 |
 121                    (T(CL) - 1);
 122        timing[4] = (cur4 & 0xffff0000) |
 123                    T(13) << 8 |
 124                    T(13);
 125        timing[5] = T(RFC) << 24 |
 126                    max_t(u8, T(RCDRD), T(RCDWR)) << 16 |
 127                    T(RP);
 128        /* Timing 6 is already done above */
 129        timing[7] = (cur7 & 0xff00ffff) | (T(CL) - 1) << 16;
 130        timing[8] = (cur8 & 0xffffff00);
 131
 132        /* XXX: P.version == 1 only has DDR2 and GDDR3? */
 133        if (ram->base.type == NVKM_RAM_TYPE_DDR2) {
 134                timing[5] |= (T(CL) + 3) << 8;
 135                timing[8] |= (T(CL) - 4);
 136        } else
 137        if (ram->base.type == NVKM_RAM_TYPE_GDDR3) {
 138                timing[5] |= (T(CL) + 2) << 8;
 139                timing[8] |= (T(CL) - 2);
 140        }
 141
 142        nvkm_debug(subdev, " 220: %08x %08x %08x %08x\n",
 143                   timing[0], timing[1], timing[2], timing[3]);
 144        nvkm_debug(subdev, " 230: %08x %08x %08x %08x\n",
 145                   timing[4], timing[5], timing[6], timing[7]);
 146        nvkm_debug(subdev, " 240: %08x\n", timing[8]);
 147        return 0;
 148}
 149
 150static int
 151nv50_ram_timing_read(struct nv50_ram *ram, u32 *timing)
 152{
 153        unsigned int i;
 154        struct nvbios_ramcfg *cfg = &ram->base.target.bios;
 155        struct nvkm_subdev *subdev = &ram->base.fb->subdev;
 156        struct nvkm_device *device = subdev->device;
 157
 158        for (i = 0; i <= 8; i++)
 159                timing[i] = nvkm_rd32(device, 0x100220 + (i * 4));
 160
 161        /* Derive the bare minimum for the MR calculation to succeed */
 162        cfg->timing_ver = 0x10;
 163        T(CL) = (timing[3] & 0xff) + 1;
 164
 165        switch (ram->base.type) {
 166        case NVKM_RAM_TYPE_DDR2:
 167                T(CWL) = T(CL) - 1;
 168                break;
 169        case NVKM_RAM_TYPE_GDDR3:
 170                T(CWL) = ((timing[2] & 0xff000000) >> 24) + 1;
 171                break;
 172        default:
 173                return -ENOSYS;
 174                break;
 175        }
 176
 177        T(WR) = ((timing[1] >> 24) & 0xff) - 1 - T(CWL);
 178
 179        return 0;
 180}
 181#undef T
 182
 183static void
 184nvkm_sddr2_dll_reset(struct nv50_ramseq *hwsq)
 185{
 186        ram_mask(hwsq, mr[0], 0x100, 0x100);
 187        ram_mask(hwsq, mr[0], 0x100, 0x000);
 188        ram_nsec(hwsq, 24000);
 189}
 190
 191static void
 192nv50_ram_gpio(struct nv50_ramseq *hwsq, u8 tag, u32 val)
 193{
 194        struct nvkm_gpio *gpio = hwsq->base.subdev->device->gpio;
 195        struct dcb_gpio_func func;
 196        u32 reg, sh, gpio_val;
 197        int ret;
 198
 199        if (nvkm_gpio_get(gpio, 0, tag, DCB_GPIO_UNUSED) != val) {
 200                ret = nvkm_gpio_find(gpio, 0, tag, DCB_GPIO_UNUSED, &func);
 201                if (ret)
 202                        return;
 203
 204                reg = func.line >> 3;
 205                sh = (func.line & 0x7) << 2;
 206                gpio_val = ram_rd32(hwsq, gpio[reg]);
 207
 208                if (gpio_val & (8 << sh))
 209                        val = !val;
 210                if (!(func.log[1] & 1))
 211                        val = !val;
 212
 213                ram_mask(hwsq, gpio[reg], (0x3 << sh), ((val | 0x2) << sh));
 214                ram_nsec(hwsq, 20000);
 215        }
 216}
 217
 218static int
 219nv50_ram_calc(struct nvkm_ram *base, u32 freq)
 220{
 221        struct nv50_ram *ram = nv50_ram(base);
 222        struct nv50_ramseq *hwsq = &ram->hwsq;
 223        struct nvkm_subdev *subdev = &ram->base.fb->subdev;
 224        struct nvkm_bios *bios = subdev->device->bios;
 225        struct nvbios_perfE perfE;
 226        struct nvbios_pll mpll;
 227        struct nvkm_ram_data *next;
 228        u8  ver, hdr, cnt, len, strap, size;
 229        u32 data;
 230        u32 r100da0, r004008, unk710, unk714, unk718, unk71c;
 231        int N1, M1, N2, M2, P;
 232        int ret, i;
 233        u32 timing[9];
 234
 235        next = &ram->base.target;
 236        next->freq = freq;
 237        ram->base.next = next;
 238
 239        /* lookup closest matching performance table entry for frequency */
 240        i = 0;
 241        do {
 242                data = nvbios_perfEp(bios, i++, &ver, &hdr, &cnt,
 243                                     &size, &perfE);
 244                if (!data || (ver < 0x25 || ver >= 0x40) ||
 245                    (size < 2)) {
 246                        nvkm_error(subdev, "invalid/missing perftab entry\n");
 247                        return -EINVAL;
 248                }
 249        } while (perfE.memory < freq);
 250
 251        nvbios_rammapEp_from_perf(bios, data, hdr, &next->bios);
 252
 253        /* locate specific data set for the attached memory */
 254        strap = nvbios_ramcfg_index(subdev);
 255        if (strap >= cnt) {
 256                nvkm_error(subdev, "invalid ramcfg strap\n");
 257                return -EINVAL;
 258        }
 259
 260        data = nvbios_rammapSp_from_perf(bios, data + hdr, size, strap,
 261                        &next->bios);
 262        if (!data) {
 263                nvkm_error(subdev, "invalid/missing rammap entry ");
 264                return -EINVAL;
 265        }
 266
 267        /* lookup memory timings, if bios says they're present */
 268        if (next->bios.ramcfg_timing != 0xff) {
 269                data = nvbios_timingEp(bios, next->bios.ramcfg_timing,
 270                                        &ver, &hdr, &cnt, &len, &next->bios);
 271                if (!data || ver != 0x10 || hdr < 0x12) {
 272                        nvkm_error(subdev, "invalid/missing timing entry "
 273                                 "%02x %04x %02x %02x\n",
 274                                 strap, data, ver, hdr);
 275                        return -EINVAL;
 276                }
 277                nv50_ram_timing_calc(ram, timing);
 278        } else {
 279                nv50_ram_timing_read(ram, timing);
 280        }
 281
 282        ret = ram_init(hwsq, subdev);
 283        if (ret)
 284                return ret;
 285
 286        /* Determine ram-specific MR values */
 287        ram->base.mr[0] = ram_rd32(hwsq, mr[0]);
 288        ram->base.mr[1] = ram_rd32(hwsq, mr[1]);
 289        ram->base.mr[2] = ram_rd32(hwsq, mr[2]);
 290
 291        switch (ram->base.type) {
 292        case NVKM_RAM_TYPE_GDDR3:
 293                ret = nvkm_gddr3_calc(&ram->base);
 294                break;
 295        default:
 296                ret = -ENOSYS;
 297                break;
 298        }
 299
 300        if (ret) {
 301                nvkm_error(subdev, "Could not calculate MR\n");
 302                return ret;
 303        }
 304
 305        if (subdev->device->chipset <= 0x96 && !next->bios.ramcfg_00_03_02)
 306                ram_mask(hwsq, 0x100710, 0x00000200, 0x00000000);
 307
 308        /* Always disable this bit during reclock */
 309        ram_mask(hwsq, 0x100200, 0x00000800, 0x00000000);
 310
 311        ram_wait_vblank(hwsq);
 312        ram_wr32(hwsq, 0x611200, 0x00003300);
 313        ram_wr32(hwsq, 0x002504, 0x00000001); /* block fifo */
 314        ram_nsec(hwsq, 8000);
 315        ram_setf(hwsq, 0x10, 0x00); /* disable fb */
 316        ram_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
 317        ram_nsec(hwsq, 2000);
 318
 319        if (next->bios.timing_10_ODT)
 320                nv50_ram_gpio(hwsq, 0x2e, 1);
 321
 322        ram_wr32(hwsq, 0x1002d4, 0x00000001); /* precharge */
 323        ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
 324        ram_wr32(hwsq, 0x1002d0, 0x00000001); /* refresh */
 325        ram_wr32(hwsq, 0x100210, 0x00000000); /* disable auto-refresh */
 326        ram_wr32(hwsq, 0x1002dc, 0x00000001); /* enable self-refresh */
 327
 328        ret = nvbios_pll_parse(bios, 0x004008, &mpll);
 329        mpll.vco2.max_freq = 0;
 330        if (ret >= 0) {
 331                ret = nv04_pll_calc(subdev, &mpll, freq,
 332                                    &N1, &M1, &N2, &M2, &P);
 333                if (ret <= 0)
 334                        ret = -EINVAL;
 335        }
 336
 337        if (ret < 0)
 338                return ret;
 339
 340        /* XXX: 750MHz seems rather arbitrary */
 341        if (freq <= 750000) {
 342                r100da0 = 0x00000010;
 343                r004008 = 0x90000000;
 344        } else {
 345                r100da0 = 0x00000000;
 346                r004008 = 0x80000000;
 347        }
 348
 349        r004008 |= (mpll.bias_p << 19) | (P << 22) | (P << 16);
 350
 351        ram_mask(hwsq, 0x00c040, 0xc000c000, 0x0000c000);
 352        /* XXX: Is rammap_00_16_40 the DLL bit we've seen in GT215? Why does
 353         * it have a different rammap bit from DLLoff? */
 354        ram_mask(hwsq, 0x004008, 0x00004200, 0x00000200 |
 355                        next->bios.rammap_00_16_40 << 14);
 356        ram_mask(hwsq, 0x00400c, 0x0000ffff, (N1 << 8) | M1);
 357        ram_mask(hwsq, 0x004008, 0x91ff0000, r004008);
 358
 359        /* XXX: GDDR3 only? */
 360        if (subdev->device->chipset >= 0x92)
 361                ram_wr32(hwsq, 0x100da0, r100da0);
 362
 363        nv50_ram_gpio(hwsq, 0x18, !next->bios.ramcfg_FBVDDQ);
 364        ram_nsec(hwsq, 64000); /*XXX*/
 365        ram_nsec(hwsq, 32000); /*XXX*/
 366
 367        ram_mask(hwsq, 0x004008, 0x00002200, 0x00002000);
 368
 369        ram_wr32(hwsq, 0x1002dc, 0x00000000); /* disable self-refresh */
 370        ram_wr32(hwsq, 0x1002d4, 0x00000001); /* disable self-refresh */
 371        ram_wr32(hwsq, 0x100210, 0x80000000); /* enable auto-refresh */
 372
 373        ram_nsec(hwsq, 12000);
 374
 375        switch (ram->base.type) {
 376        case NVKM_RAM_TYPE_DDR2:
 377                ram_nuke(hwsq, mr[0]); /* force update */
 378                ram_mask(hwsq, mr[0], 0x000, 0x000);
 379                break;
 380        case NVKM_RAM_TYPE_GDDR3:
 381                ram_nuke(hwsq, mr[1]); /* force update */
 382                ram_wr32(hwsq, mr[1], ram->base.mr[1]);
 383                ram_nuke(hwsq, mr[0]); /* force update */
 384                ram_wr32(hwsq, mr[0], ram->base.mr[0]);
 385                break;
 386        default:
 387                break;
 388        }
 389
 390        ram_mask(hwsq, timing[3], 0xffffffff, timing[3]);
 391        ram_mask(hwsq, timing[1], 0xffffffff, timing[1]);
 392        ram_mask(hwsq, timing[6], 0xffffffff, timing[6]);
 393        ram_mask(hwsq, timing[7], 0xffffffff, timing[7]);
 394        ram_mask(hwsq, timing[8], 0xffffffff, timing[8]);
 395        ram_mask(hwsq, timing[0], 0xffffffff, timing[0]);
 396        ram_mask(hwsq, timing[2], 0xffffffff, timing[2]);
 397        ram_mask(hwsq, timing[4], 0xffffffff, timing[4]);
 398        ram_mask(hwsq, timing[5], 0xffffffff, timing[5]);
 399
 400        if (!next->bios.ramcfg_00_03_02)
 401                ram_mask(hwsq, 0x10021c, 0x00010000, 0x00000000);
 402        ram_mask(hwsq, 0x100200, 0x00001000, !next->bios.ramcfg_00_04_02 << 12);
 403
 404        /* XXX: A lot of this could be "chipset"/"ram type" specific stuff */
 405        unk710  = ram_rd32(hwsq, 0x100710) & ~0x00000100;
 406        unk714  = ram_rd32(hwsq, 0x100714) & ~0xf0000020;
 407        unk718  = ram_rd32(hwsq, 0x100718) & ~0x00000100;
 408        unk71c  = ram_rd32(hwsq, 0x10071c) & ~0x00000100;
 409        if (subdev->device->chipset <= 0x96) {
 410                unk710 &= ~0x0000006e;
 411                unk714 &= ~0x00000100;
 412
 413                if (!next->bios.ramcfg_00_03_08)
 414                        unk710 |= 0x00000060;
 415                if (!next->bios.ramcfg_FBVDDQ)
 416                        unk714 |= 0x00000100;
 417                if ( next->bios.ramcfg_00_04_04)
 418                        unk710 |= 0x0000000e;
 419        } else {
 420                unk710 &= ~0x00000001;
 421
 422                if (!next->bios.ramcfg_00_03_08)
 423                        unk710 |= 0x00000001;
 424        }
 425
 426        if ( next->bios.ramcfg_00_03_01)
 427                unk71c |= 0x00000100;
 428        if ( next->bios.ramcfg_00_03_02)
 429                unk710 |= 0x00000100;
 430        if (!next->bios.ramcfg_00_03_08)
 431                unk714 |= 0x00000020;
 432        if ( next->bios.ramcfg_00_04_04)
 433                unk714 |= 0x70000000;
 434        if ( next->bios.ramcfg_00_04_20)
 435                unk718 |= 0x00000100;
 436
 437        ram_mask(hwsq, 0x100714, 0xffffffff, unk714);
 438        ram_mask(hwsq, 0x10071c, 0xffffffff, unk71c);
 439        ram_mask(hwsq, 0x100718, 0xffffffff, unk718);
 440        ram_mask(hwsq, 0x100710, 0xffffffff, unk710);
 441
 442        /* XXX: G94 does not even test these regs in trace. Harmless we do it,
 443         * but why is it omitted? */
 444        if (next->bios.rammap_00_16_20) {
 445                ram_wr32(hwsq, 0x1005a0, next->bios.ramcfg_00_07 << 16 |
 446                                         next->bios.ramcfg_00_06 << 8 |
 447                                         next->bios.ramcfg_00_05);
 448                ram_wr32(hwsq, 0x1005a4, next->bios.ramcfg_00_09 << 8 |
 449                                         next->bios.ramcfg_00_08);
 450                ram_mask(hwsq, 0x10053c, 0x00001000, 0x00000000);
 451        } else {
 452                ram_mask(hwsq, 0x10053c, 0x00001000, 0x00001000);
 453        }
 454        ram_mask(hwsq, mr[1], 0xffffffff, ram->base.mr[1]);
 455
 456        if (!next->bios.timing_10_ODT)
 457                nv50_ram_gpio(hwsq, 0x2e, 0);
 458
 459        /* Reset DLL */
 460        if (!next->bios.ramcfg_DLLoff)
 461                nvkm_sddr2_dll_reset(hwsq);
 462
 463        ram_setf(hwsq, 0x10, 0x01); /* enable fb */
 464        ram_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
 465        ram_wr32(hwsq, 0x611200, 0x00003330);
 466        ram_wr32(hwsq, 0x002504, 0x00000000); /* un-block fifo */
 467
 468        if (next->bios.rammap_00_17_02)
 469                ram_mask(hwsq, 0x100200, 0x00000800, 0x00000800);
 470        if (!next->bios.rammap_00_16_40)
 471                ram_mask(hwsq, 0x004008, 0x00004000, 0x00000000);
 472        if (next->bios.ramcfg_00_03_02)
 473                ram_mask(hwsq, 0x10021c, 0x00010000, 0x00010000);
 474        if (subdev->device->chipset <= 0x96 && next->bios.ramcfg_00_03_02)
 475                ram_mask(hwsq, 0x100710, 0x00000200, 0x00000200);
 476
 477        return 0;
 478}
 479
 480static int
 481nv50_ram_prog(struct nvkm_ram *base)
 482{
 483        struct nv50_ram *ram = nv50_ram(base);
 484        struct nvkm_device *device = ram->base.fb->subdev.device;
 485        ram_exec(&ram->hwsq, nvkm_boolopt(device->cfgopt, "NvMemExec", true));
 486        return 0;
 487}
 488
 489static void
 490nv50_ram_tidy(struct nvkm_ram *base)
 491{
 492        struct nv50_ram *ram = nv50_ram(base);
 493        ram_exec(&ram->hwsq, false);
 494}
 495
 496void
 497__nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem *mem)
 498{
 499        struct nvkm_mm_node *next = mem->mem;
 500        struct nvkm_mm_node *node;
 501        while ((node = next)) {
 502                next = node->next;
 503                nvkm_mm_free(&ram->vram, &node);
 504        }
 505        nvkm_mm_free(&ram->tags, &mem->tag);
 506}
 507
 508void
 509nv50_ram_put(struct nvkm_ram *ram, struct nvkm_mem **pmem)
 510{
 511        struct nvkm_mem *mem = *pmem;
 512
 513        *pmem = NULL;
 514        if (unlikely(mem == NULL))
 515                return;
 516
 517        mutex_lock(&ram->fb->subdev.mutex);
 518        __nv50_ram_put(ram, mem);
 519        mutex_unlock(&ram->fb->subdev.mutex);
 520
 521        kfree(mem);
 522}
 523
 524int
 525nv50_ram_get(struct nvkm_ram *ram, u64 size, u32 align, u32 ncmin,
 526             u32 memtype, struct nvkm_mem **pmem)
 527{
 528        struct nvkm_mm *heap = &ram->vram;
 529        struct nvkm_mm *tags = &ram->tags;
 530        struct nvkm_mm_node **node, *r;
 531        struct nvkm_mem *mem;
 532        int comp = (memtype & 0x300) >> 8;
 533        int type = (memtype & 0x07f);
 534        int back = (memtype & 0x800);
 535        int min, max, ret;
 536
 537        max = (size >> NVKM_RAM_MM_SHIFT);
 538        min = ncmin ? (ncmin >> NVKM_RAM_MM_SHIFT) : max;
 539        align >>= NVKM_RAM_MM_SHIFT;
 540
 541        mem = kzalloc(sizeof(*mem), GFP_KERNEL);
 542        if (!mem)
 543                return -ENOMEM;
 544
 545        mutex_lock(&ram->fb->subdev.mutex);
 546        if (comp) {
 547                if (align == (1 << (16 - NVKM_RAM_MM_SHIFT))) {
 548                        int n = (max >> 4) * comp;
 549
 550                        ret = nvkm_mm_head(tags, 0, 1, n, n, 1, &mem->tag);
 551                        if (ret)
 552                                mem->tag = NULL;
 553                }
 554
 555                if (unlikely(!mem->tag))
 556                        comp = 0;
 557        }
 558
 559        mem->memtype = (comp << 7) | type;
 560        mem->size = max;
 561
 562        type = nv50_fb_memtype[type];
 563        node = &mem->mem;
 564        do {
 565                if (back)
 566                        ret = nvkm_mm_tail(heap, 0, type, max, min, align, &r);
 567                else
 568                        ret = nvkm_mm_head(heap, 0, type, max, min, align, &r);
 569                if (ret) {
 570                        mutex_unlock(&ram->fb->subdev.mutex);
 571                        ram->func->put(ram, &mem);
 572                        return ret;
 573                }
 574
 575                *node = r;
 576                node = &r->next;
 577                max -= r->length;
 578        } while (max);
 579        mutex_unlock(&ram->fb->subdev.mutex);
 580
 581        mem->offset = (u64)mem->mem->offset << NVKM_RAM_MM_SHIFT;
 582        *pmem = mem;
 583        return 0;
 584}
 585
 586static const struct nvkm_ram_func
 587nv50_ram_func = {
 588        .get = nv50_ram_get,
 589        .put = nv50_ram_put,
 590        .calc = nv50_ram_calc,
 591        .prog = nv50_ram_prog,
 592        .tidy = nv50_ram_tidy,
 593};
 594
 595static u32
 596nv50_fb_vram_rblock(struct nvkm_ram *ram)
 597{
 598        struct nvkm_subdev *subdev = &ram->fb->subdev;
 599        struct nvkm_device *device = subdev->device;
 600        int colbits, rowbitsa, rowbitsb, banks;
 601        u64 rowsize, predicted;
 602        u32 r0, r4, rt, rblock_size;
 603
 604        r0 = nvkm_rd32(device, 0x100200);
 605        r4 = nvkm_rd32(device, 0x100204);
 606        rt = nvkm_rd32(device, 0x100250);
 607        nvkm_debug(subdev, "memcfg %08x %08x %08x %08x\n",
 608                   r0, r4, rt, nvkm_rd32(device, 0x001540));
 609
 610        colbits  =  (r4 & 0x0000f000) >> 12;
 611        rowbitsa = ((r4 & 0x000f0000) >> 16) + 8;
 612        rowbitsb = ((r4 & 0x00f00000) >> 20) + 8;
 613        banks    = 1 << (((r4 & 0x03000000) >> 24) + 2);
 614
 615        rowsize = ram->parts * banks * (1 << colbits) * 8;
 616        predicted = rowsize << rowbitsa;
 617        if (r0 & 0x00000004)
 618                predicted += rowsize << rowbitsb;
 619
 620        if (predicted != ram->size) {
 621                nvkm_warn(subdev, "memory controller reports %d MiB VRAM\n",
 622                          (u32)(ram->size >> 20));
 623        }
 624
 625        rblock_size = rowsize;
 626        if (rt & 1)
 627                rblock_size *= 3;
 628
 629        nvkm_debug(subdev, "rblock %d bytes\n", rblock_size);
 630        return rblock_size;
 631}
 632
 633int
 634nv50_ram_ctor(const struct nvkm_ram_func *func,
 635              struct nvkm_fb *fb, struct nvkm_ram *ram)
 636{
 637        struct nvkm_device *device = fb->subdev.device;
 638        struct nvkm_bios *bios = device->bios;
 639        const u32 rsvd_head = ( 256 * 1024); /* vga memory */
 640        const u32 rsvd_tail = (1024 * 1024); /* vbios etc */
 641        u64 size = nvkm_rd32(device, 0x10020c);
 642        u32 tags = nvkm_rd32(device, 0x100320);
 643        enum nvkm_ram_type type = NVKM_RAM_TYPE_UNKNOWN;
 644        int ret;
 645
 646        switch (nvkm_rd32(device, 0x100714) & 0x00000007) {
 647        case 0: type = NVKM_RAM_TYPE_DDR1; break;
 648        case 1:
 649                if (nvkm_fb_bios_memtype(bios) == NVKM_RAM_TYPE_DDR3)
 650                        type = NVKM_RAM_TYPE_DDR3;
 651                else
 652                        type = NVKM_RAM_TYPE_DDR2;
 653                break;
 654        case 2: type = NVKM_RAM_TYPE_GDDR3; break;
 655        case 3: type = NVKM_RAM_TYPE_GDDR4; break;
 656        case 4: type = NVKM_RAM_TYPE_GDDR5; break;
 657        default:
 658                break;
 659        }
 660
 661        size = (size & 0x000000ff) << 32 | (size & 0xffffff00);
 662
 663        ret = nvkm_ram_ctor(func, fb, type, size, tags, ram);
 664        if (ret)
 665                return ret;
 666
 667        ram->part_mask = (nvkm_rd32(device, 0x001540) & 0x00ff0000) >> 16;
 668        ram->parts = hweight8(ram->part_mask);
 669        ram->ranks = (nvkm_rd32(device, 0x100200) & 0x4) ? 2 : 1;
 670        nvkm_mm_fini(&ram->vram);
 671
 672        return nvkm_mm_init(&ram->vram, rsvd_head >> NVKM_RAM_MM_SHIFT,
 673                            (size - rsvd_head - rsvd_tail) >> NVKM_RAM_MM_SHIFT,
 674                            nv50_fb_vram_rblock(ram) >> NVKM_RAM_MM_SHIFT);
 675}
 676
 677int
 678nv50_ram_new(struct nvkm_fb *fb, struct nvkm_ram **pram)
 679{
 680        struct nv50_ram *ram;
 681        int ret, i;
 682
 683        if (!(ram = kzalloc(sizeof(*ram), GFP_KERNEL)))
 684                return -ENOMEM;
 685        *pram = &ram->base;
 686
 687        ret = nv50_ram_ctor(&nv50_ram_func, fb, &ram->base);
 688        if (ret)
 689                return ret;
 690
 691        ram->hwsq.r_0x002504 = hwsq_reg(0x002504);
 692        ram->hwsq.r_0x00c040 = hwsq_reg(0x00c040);
 693        ram->hwsq.r_0x004008 = hwsq_reg(0x004008);
 694        ram->hwsq.r_0x00400c = hwsq_reg(0x00400c);
 695        ram->hwsq.r_0x100200 = hwsq_reg(0x100200);
 696        ram->hwsq.r_0x100210 = hwsq_reg(0x100210);
 697        ram->hwsq.r_0x10021c = hwsq_reg(0x10021c);
 698        ram->hwsq.r_0x1002d0 = hwsq_reg(0x1002d0);
 699        ram->hwsq.r_0x1002d4 = hwsq_reg(0x1002d4);
 700        ram->hwsq.r_0x1002dc = hwsq_reg(0x1002dc);
 701        ram->hwsq.r_0x10053c = hwsq_reg(0x10053c);
 702        ram->hwsq.r_0x1005a0 = hwsq_reg(0x1005a0);
 703        ram->hwsq.r_0x1005a4 = hwsq_reg(0x1005a4);
 704        ram->hwsq.r_0x100710 = hwsq_reg(0x100710);
 705        ram->hwsq.r_0x100714 = hwsq_reg(0x100714);
 706        ram->hwsq.r_0x100718 = hwsq_reg(0x100718);
 707        ram->hwsq.r_0x10071c = hwsq_reg(0x10071c);
 708        ram->hwsq.r_0x100da0 = hwsq_stride(0x100da0, 4, ram->base.part_mask);
 709        ram->hwsq.r_0x100e20 = hwsq_reg(0x100e20);
 710        ram->hwsq.r_0x100e24 = hwsq_reg(0x100e24);
 711        ram->hwsq.r_0x611200 = hwsq_reg(0x611200);
 712
 713        for (i = 0; i < 9; i++)
 714                ram->hwsq.r_timing[i] = hwsq_reg(0x100220 + (i * 0x04));
 715
 716        if (ram->base.ranks > 1) {
 717                ram->hwsq.r_mr[0] = hwsq_reg2(0x1002c0, 0x1002c8);
 718                ram->hwsq.r_mr[1] = hwsq_reg2(0x1002c4, 0x1002cc);
 719                ram->hwsq.r_mr[2] = hwsq_reg2(0x1002e0, 0x1002e8);
 720                ram->hwsq.r_mr[3] = hwsq_reg2(0x1002e4, 0x1002ec);
 721        } else {
 722                ram->hwsq.r_mr[0] = hwsq_reg(0x1002c0);
 723                ram->hwsq.r_mr[1] = hwsq_reg(0x1002c4);
 724                ram->hwsq.r_mr[2] = hwsq_reg(0x1002e0);
 725                ram->hwsq.r_mr[3] = hwsq_reg(0x1002e4);
 726        }
 727
 728        ram->hwsq.r_gpio[0] = hwsq_reg(0x00e104);
 729        ram->hwsq.r_gpio[1] = hwsq_reg(0x00e108);
 730        ram->hwsq.r_gpio[2] = hwsq_reg(0x00e120);
 731        ram->hwsq.r_gpio[3] = hwsq_reg(0x00e124);
 732
 733        return 0;
 734}
 735