linux/drivers/md/raid10.c
<<
>>
Prefs
   1/*
   2 * raid10.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 2000-2004 Neil Brown
   5 *
   6 * RAID-10 support for md.
   7 *
   8 * Base on code in raid1.c.  See raid1.c for further copyright information.
   9 *
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2, or (at your option)
  14 * any later version.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * (for example /usr/src/linux/COPYING); if not, write to the Free
  18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  19 */
  20
  21#include <linux/slab.h>
  22#include <linux/delay.h>
  23#include <linux/blkdev.h>
  24#include <linux/module.h>
  25#include <linux/seq_file.h>
  26#include <linux/ratelimit.h>
  27#include <linux/kthread.h>
  28#include "md.h"
  29#include "raid10.h"
  30#include "raid0.h"
  31#include "bitmap.h"
  32
  33/*
  34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  35 * The layout of data is defined by
  36 *    chunk_size
  37 *    raid_disks
  38 *    near_copies (stored in low byte of layout)
  39 *    far_copies (stored in second byte of layout)
  40 *    far_offset (stored in bit 16 of layout )
  41 *    use_far_sets (stored in bit 17 of layout )
  42 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  43 *
  44 * The data to be stored is divided into chunks using chunksize.  Each device
  45 * is divided into far_copies sections.   In each section, chunks are laid out
  46 * in a style similar to raid0, but near_copies copies of each chunk is stored
  47 * (each on a different drive).  The starting device for each section is offset
  48 * near_copies from the starting device of the previous section.  Thus there
  49 * are (near_copies * far_copies) of each chunk, and each is on a different
  50 * drive.  near_copies and far_copies must be at least one, and their product
  51 * is at most raid_disks.
  52 *
  53 * If far_offset is true, then the far_copies are handled a bit differently.
  54 * The copies are still in different stripes, but instead of being very far
  55 * apart on disk, there are adjacent stripes.
  56 *
  57 * The far and offset algorithms are handled slightly differently if
  58 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  59 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  60 * are still shifted by 'near_copies' devices, but this shifting stays confined
  61 * to the set rather than the entire array.  This is done to improve the number
  62 * of device combinations that can fail without causing the array to fail.
  63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  64 * on a device):
  65 *    A B C D    A B C D E
  66 *      ...         ...
  67 *    D A B C    E A B C D
  68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  69 *    [A B] [C D]    [A B] [C D E]
  70 *    |...| |...|    |...| | ... |
  71 *    [B A] [D C]    [B A] [E C D]
  72 */
  73
  74/*
  75 * Number of guaranteed r10bios in case of extreme VM load:
  76 */
  77#define NR_RAID10_BIOS 256
  78
  79/* when we get a read error on a read-only array, we redirect to another
  80 * device without failing the first device, or trying to over-write to
  81 * correct the read error.  To keep track of bad blocks on a per-bio
  82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  83 */
  84#define IO_BLOCKED ((struct bio *)1)
  85/* When we successfully write to a known bad-block, we need to remove the
  86 * bad-block marking which must be done from process context.  So we record
  87 * the success by setting devs[n].bio to IO_MADE_GOOD
  88 */
  89#define IO_MADE_GOOD ((struct bio *)2)
  90
  91#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  92
  93/* When there are this many requests queued to be written by
  94 * the raid10 thread, we become 'congested' to provide back-pressure
  95 * for writeback.
  96 */
  97static int max_queued_requests = 1024;
  98
  99static void allow_barrier(struct r10conf *conf);
 100static void lower_barrier(struct r10conf *conf);
 101static int _enough(struct r10conf *conf, int previous, int ignore);
 102static int enough(struct r10conf *conf, int ignore);
 103static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
 104                                int *skipped);
 105static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
 106static void end_reshape_write(struct bio *bio, int error);
 107static void end_reshape(struct r10conf *conf);
 108
 109static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
 110{
 111        struct r10conf *conf = data;
 112        int size = offsetof(struct r10bio, devs[conf->copies]);
 113
 114        /* allocate a r10bio with room for raid_disks entries in the
 115         * bios array */
 116        return kzalloc(size, gfp_flags);
 117}
 118
 119static void r10bio_pool_free(void *r10_bio, void *data)
 120{
 121        kfree(r10_bio);
 122}
 123
 124/* Maximum size of each resync request */
 125#define RESYNC_BLOCK_SIZE (64*1024)
 126#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
 127/* amount of memory to reserve for resync requests */
 128#define RESYNC_WINDOW (1024*1024)
 129/* maximum number of concurrent requests, memory permitting */
 130#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 131
 132/*
 133 * When performing a resync, we need to read and compare, so
 134 * we need as many pages are there are copies.
 135 * When performing a recovery, we need 2 bios, one for read,
 136 * one for write (we recover only one drive per r10buf)
 137 *
 138 */
 139static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 140{
 141        struct r10conf *conf = data;
 142        struct page *page;
 143        struct r10bio *r10_bio;
 144        struct bio *bio;
 145        int i, j;
 146        int nalloc;
 147
 148        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 149        if (!r10_bio)
 150                return NULL;
 151
 152        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 153            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 154                nalloc = conf->copies; /* resync */
 155        else
 156                nalloc = 2; /* recovery */
 157
 158        /*
 159         * Allocate bios.
 160         */
 161        for (j = nalloc ; j-- ; ) {
 162                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 163                if (!bio)
 164                        goto out_free_bio;
 165                r10_bio->devs[j].bio = bio;
 166                if (!conf->have_replacement)
 167                        continue;
 168                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 169                if (!bio)
 170                        goto out_free_bio;
 171                r10_bio->devs[j].repl_bio = bio;
 172        }
 173        /*
 174         * Allocate RESYNC_PAGES data pages and attach them
 175         * where needed.
 176         */
 177        for (j = 0 ; j < nalloc; j++) {
 178                struct bio *rbio = r10_bio->devs[j].repl_bio;
 179                bio = r10_bio->devs[j].bio;
 180                for (i = 0; i < RESYNC_PAGES; i++) {
 181                        if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
 182                                               &conf->mddev->recovery)) {
 183                                /* we can share bv_page's during recovery
 184                                 * and reshape */
 185                                struct bio *rbio = r10_bio->devs[0].bio;
 186                                page = rbio->bi_io_vec[i].bv_page;
 187                                get_page(page);
 188                        } else
 189                                page = alloc_page(gfp_flags);
 190                        if (unlikely(!page))
 191                                goto out_free_pages;
 192
 193                        bio->bi_io_vec[i].bv_page = page;
 194                        if (rbio)
 195                                rbio->bi_io_vec[i].bv_page = page;
 196                }
 197        }
 198
 199        return r10_bio;
 200
 201out_free_pages:
 202        for ( ; i > 0 ; i--)
 203                safe_put_page(bio->bi_io_vec[i-1].bv_page);
 204        while (j--)
 205                for (i = 0; i < RESYNC_PAGES ; i++)
 206                        safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
 207        j = 0;
 208out_free_bio:
 209        for ( ; j < nalloc; j++) {
 210                if (r10_bio->devs[j].bio)
 211                        bio_put(r10_bio->devs[j].bio);
 212                if (r10_bio->devs[j].repl_bio)
 213                        bio_put(r10_bio->devs[j].repl_bio);
 214        }
 215        r10bio_pool_free(r10_bio, conf);
 216        return NULL;
 217}
 218
 219static void r10buf_pool_free(void *__r10_bio, void *data)
 220{
 221        int i;
 222        struct r10conf *conf = data;
 223        struct r10bio *r10bio = __r10_bio;
 224        int j;
 225
 226        for (j=0; j < conf->copies; j++) {
 227                struct bio *bio = r10bio->devs[j].bio;
 228                if (bio) {
 229                        for (i = 0; i < RESYNC_PAGES; i++) {
 230                                safe_put_page(bio->bi_io_vec[i].bv_page);
 231                                bio->bi_io_vec[i].bv_page = NULL;
 232                        }
 233                        bio_put(bio);
 234                }
 235                bio = r10bio->devs[j].repl_bio;
 236                if (bio)
 237                        bio_put(bio);
 238        }
 239        r10bio_pool_free(r10bio, conf);
 240}
 241
 242static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 243{
 244        int i;
 245
 246        for (i = 0; i < conf->copies; i++) {
 247                struct bio **bio = & r10_bio->devs[i].bio;
 248                if (!BIO_SPECIAL(*bio))
 249                        bio_put(*bio);
 250                *bio = NULL;
 251                bio = &r10_bio->devs[i].repl_bio;
 252                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 253                        bio_put(*bio);
 254                *bio = NULL;
 255        }
 256}
 257
 258static void free_r10bio(struct r10bio *r10_bio)
 259{
 260        struct r10conf *conf = r10_bio->mddev->private;
 261
 262        put_all_bios(conf, r10_bio);
 263        mempool_free(r10_bio, conf->r10bio_pool);
 264}
 265
 266static void put_buf(struct r10bio *r10_bio)
 267{
 268        struct r10conf *conf = r10_bio->mddev->private;
 269
 270        mempool_free(r10_bio, conf->r10buf_pool);
 271
 272        lower_barrier(conf);
 273}
 274
 275static void reschedule_retry(struct r10bio *r10_bio)
 276{
 277        unsigned long flags;
 278        struct mddev *mddev = r10_bio->mddev;
 279        struct r10conf *conf = mddev->private;
 280
 281        spin_lock_irqsave(&conf->device_lock, flags);
 282        list_add(&r10_bio->retry_list, &conf->retry_list);
 283        conf->nr_queued ++;
 284        spin_unlock_irqrestore(&conf->device_lock, flags);
 285
 286        /* wake up frozen array... */
 287        wake_up(&conf->wait_barrier);
 288
 289        md_wakeup_thread(mddev->thread);
 290}
 291
 292/*
 293 * raid_end_bio_io() is called when we have finished servicing a mirrored
 294 * operation and are ready to return a success/failure code to the buffer
 295 * cache layer.
 296 */
 297static void raid_end_bio_io(struct r10bio *r10_bio)
 298{
 299        struct bio *bio = r10_bio->master_bio;
 300        int done;
 301        struct r10conf *conf = r10_bio->mddev->private;
 302
 303        if (bio->bi_phys_segments) {
 304                unsigned long flags;
 305                spin_lock_irqsave(&conf->device_lock, flags);
 306                bio->bi_phys_segments--;
 307                done = (bio->bi_phys_segments == 0);
 308                spin_unlock_irqrestore(&conf->device_lock, flags);
 309        } else
 310                done = 1;
 311        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 312                clear_bit(BIO_UPTODATE, &bio->bi_flags);
 313        if (done) {
 314
 315                if (bio_data_dir(bio) == WRITE)
 316                        md_write_end(r10_bio->mddev);
 317                bio_endio(bio, 0);
 318                /*
 319                 * Wake up any possible resync thread that waits for the device
 320                 * to go idle.
 321                 */
 322                allow_barrier(conf);
 323        }
 324        free_r10bio(r10_bio);
 325}
 326
 327/*
 328 * Update disk head position estimator based on IRQ completion info.
 329 */
 330static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 331{
 332        struct r10conf *conf = r10_bio->mddev->private;
 333
 334        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 335                r10_bio->devs[slot].addr + (r10_bio->sectors);
 336}
 337
 338/*
 339 * Find the disk number which triggered given bio
 340 */
 341static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 342                         struct bio *bio, int *slotp, int *replp)
 343{
 344        int slot;
 345        int repl = 0;
 346
 347        for (slot = 0; slot < conf->copies; slot++) {
 348                if (r10_bio->devs[slot].bio == bio)
 349                        break;
 350                if (r10_bio->devs[slot].repl_bio == bio) {
 351                        repl = 1;
 352                        break;
 353                }
 354        }
 355
 356        BUG_ON(slot == conf->copies);
 357        update_head_pos(slot, r10_bio);
 358
 359        if (slotp)
 360                *slotp = slot;
 361        if (replp)
 362                *replp = repl;
 363        return r10_bio->devs[slot].devnum;
 364}
 365
 366static void raid10_end_read_request(struct bio *bio, int error)
 367{
 368        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 369        struct r10bio *r10_bio = bio->bi_private;
 370        int slot, dev;
 371        struct md_rdev *rdev;
 372        struct r10conf *conf = r10_bio->mddev->private;
 373
 374        slot = r10_bio->read_slot;
 375        dev = r10_bio->devs[slot].devnum;
 376        rdev = r10_bio->devs[slot].rdev;
 377        /*
 378         * this branch is our 'one mirror IO has finished' event handler:
 379         */
 380        update_head_pos(slot, r10_bio);
 381
 382        if (uptodate) {
 383                /*
 384                 * Set R10BIO_Uptodate in our master bio, so that
 385                 * we will return a good error code to the higher
 386                 * levels even if IO on some other mirrored buffer fails.
 387                 *
 388                 * The 'master' represents the composite IO operation to
 389                 * user-side. So if something waits for IO, then it will
 390                 * wait for the 'master' bio.
 391                 */
 392                set_bit(R10BIO_Uptodate, &r10_bio->state);
 393        } else {
 394                /* If all other devices that store this block have
 395                 * failed, we want to return the error upwards rather
 396                 * than fail the last device.  Here we redefine
 397                 * "uptodate" to mean "Don't want to retry"
 398                 */
 399                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 400                             rdev->raid_disk))
 401                        uptodate = 1;
 402        }
 403        if (uptodate) {
 404                raid_end_bio_io(r10_bio);
 405                rdev_dec_pending(rdev, conf->mddev);
 406        } else {
 407                /*
 408                 * oops, read error - keep the refcount on the rdev
 409                 */
 410                char b[BDEVNAME_SIZE];
 411                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 412                                   mdname(conf->mddev),
 413                                   bdevname(rdev->bdev, b),
 414                                   (unsigned long long)r10_bio->sector);
 415                set_bit(R10BIO_ReadError, &r10_bio->state);
 416                reschedule_retry(r10_bio);
 417        }
 418}
 419
 420static void close_write(struct r10bio *r10_bio)
 421{
 422        /* clear the bitmap if all writes complete successfully */
 423        bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 424                        r10_bio->sectors,
 425                        !test_bit(R10BIO_Degraded, &r10_bio->state),
 426                        0);
 427}
 428
 429static void one_write_done(struct r10bio *r10_bio)
 430{
 431        if (atomic_dec_and_test(&r10_bio->remaining)) {
 432                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 433                        reschedule_retry(r10_bio);
 434                else {
 435                        close_write(r10_bio);
 436                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 437                                reschedule_retry(r10_bio);
 438                        else
 439                                raid_end_bio_io(r10_bio);
 440                }
 441        }
 442}
 443
 444static void raid10_end_write_request(struct bio *bio, int error)
 445{
 446        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 447        struct r10bio *r10_bio = bio->bi_private;
 448        int dev;
 449        int dec_rdev = 1;
 450        struct r10conf *conf = r10_bio->mddev->private;
 451        int slot, repl;
 452        struct md_rdev *rdev = NULL;
 453        struct bio *to_put = NULL;
 454
 455        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 456
 457        if (repl)
 458                rdev = conf->mirrors[dev].replacement;
 459        if (!rdev) {
 460                smp_rmb();
 461                repl = 0;
 462                rdev = conf->mirrors[dev].rdev;
 463        }
 464        /*
 465         * this branch is our 'one mirror IO has finished' event handler:
 466         */
 467        if (!uptodate) {
 468                if (repl)
 469                        /* Never record new bad blocks to replacement,
 470                         * just fail it.
 471                         */
 472                        md_error(rdev->mddev, rdev);
 473                else {
 474                        set_bit(WriteErrorSeen, &rdev->flags);
 475                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 476                                set_bit(MD_RECOVERY_NEEDED,
 477                                        &rdev->mddev->recovery);
 478
 479                        dec_rdev = 0;
 480                        if (test_bit(FailFast, &rdev->flags) &&
 481                            (bio->bi_rw & MD_FAILFAST)) {
 482                                md_error(rdev->mddev, rdev);
 483                                if (!test_bit(Faulty, &rdev->flags))
 484                                        /* This is the only remaining device,
 485                                         * We need to retry the write without
 486                                         * FailFast
 487                                         */
 488                                        set_bit(R10BIO_WriteError, &r10_bio->state);
 489                                else {
 490                                        r10_bio->devs[slot].bio = NULL;
 491                                        to_put = bio;
 492                                        dec_rdev = 1;
 493                                }
 494                        } else
 495                                set_bit(R10BIO_WriteError, &r10_bio->state);
 496                }
 497        } else {
 498                /*
 499                 * Set R10BIO_Uptodate in our master bio, so that
 500                 * we will return a good error code for to the higher
 501                 * levels even if IO on some other mirrored buffer fails.
 502                 *
 503                 * The 'master' represents the composite IO operation to
 504                 * user-side. So if something waits for IO, then it will
 505                 * wait for the 'master' bio.
 506                 */
 507                sector_t first_bad;
 508                int bad_sectors;
 509
 510                /*
 511                 * Do not set R10BIO_Uptodate if the current device is
 512                 * rebuilding or Faulty. This is because we cannot use
 513                 * such device for properly reading the data back (we could
 514                 * potentially use it, if the current write would have felt
 515                 * before rdev->recovery_offset, but for simplicity we don't
 516                 * check this here.
 517                 */
 518                if (test_bit(In_sync, &rdev->flags) &&
 519                    !test_bit(Faulty, &rdev->flags))
 520                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 521
 522                /* Maybe we can clear some bad blocks. */
 523                if (is_badblock(rdev,
 524                                r10_bio->devs[slot].addr,
 525                                r10_bio->sectors,
 526                                &first_bad, &bad_sectors)) {
 527                        bio_put(bio);
 528                        if (repl)
 529                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 530                        else
 531                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 532                        dec_rdev = 0;
 533                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 534                }
 535        }
 536
 537        /*
 538         *
 539         * Let's see if all mirrored write operations have finished
 540         * already.
 541         */
 542        one_write_done(r10_bio);
 543        if (dec_rdev)
 544                rdev_dec_pending(rdev, conf->mddev);
 545        if (to_put)
 546                bio_put(to_put);
 547}
 548
 549/*
 550 * RAID10 layout manager
 551 * As well as the chunksize and raid_disks count, there are two
 552 * parameters: near_copies and far_copies.
 553 * near_copies * far_copies must be <= raid_disks.
 554 * Normally one of these will be 1.
 555 * If both are 1, we get raid0.
 556 * If near_copies == raid_disks, we get raid1.
 557 *
 558 * Chunks are laid out in raid0 style with near_copies copies of the
 559 * first chunk, followed by near_copies copies of the next chunk and
 560 * so on.
 561 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 562 * as described above, we start again with a device offset of near_copies.
 563 * So we effectively have another copy of the whole array further down all
 564 * the drives, but with blocks on different drives.
 565 * With this layout, and block is never stored twice on the one device.
 566 *
 567 * raid10_find_phys finds the sector offset of a given virtual sector
 568 * on each device that it is on.
 569 *
 570 * raid10_find_virt does the reverse mapping, from a device and a
 571 * sector offset to a virtual address
 572 */
 573
 574static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 575{
 576        int n,f;
 577        sector_t sector;
 578        sector_t chunk;
 579        sector_t stripe;
 580        int dev;
 581        int slot = 0;
 582        int last_far_set_start, last_far_set_size;
 583
 584        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 585        last_far_set_start *= geo->far_set_size;
 586
 587        last_far_set_size = geo->far_set_size;
 588        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 589
 590        /* now calculate first sector/dev */
 591        chunk = r10bio->sector >> geo->chunk_shift;
 592        sector = r10bio->sector & geo->chunk_mask;
 593
 594        chunk *= geo->near_copies;
 595        stripe = chunk;
 596        dev = sector_div(stripe, geo->raid_disks);
 597        if (geo->far_offset)
 598                stripe *= geo->far_copies;
 599
 600        sector += stripe << geo->chunk_shift;
 601
 602        /* and calculate all the others */
 603        for (n = 0; n < geo->near_copies; n++) {
 604                int d = dev;
 605                int set;
 606                sector_t s = sector;
 607                r10bio->devs[slot].devnum = d;
 608                r10bio->devs[slot].addr = s;
 609                slot++;
 610
 611                for (f = 1; f < geo->far_copies; f++) {
 612                        set = d / geo->far_set_size;
 613                        d += geo->near_copies;
 614
 615                        if ((geo->raid_disks % geo->far_set_size) &&
 616                            (d > last_far_set_start)) {
 617                                d -= last_far_set_start;
 618                                d %= last_far_set_size;
 619                                d += last_far_set_start;
 620                        } else {
 621                                d %= geo->far_set_size;
 622                                d += geo->far_set_size * set;
 623                        }
 624                        s += geo->stride;
 625                        r10bio->devs[slot].devnum = d;
 626                        r10bio->devs[slot].addr = s;
 627                        slot++;
 628                }
 629                dev++;
 630                if (dev >= geo->raid_disks) {
 631                        dev = 0;
 632                        sector += (geo->chunk_mask + 1);
 633                }
 634        }
 635}
 636
 637static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 638{
 639        struct geom *geo = &conf->geo;
 640
 641        if (conf->reshape_progress != MaxSector &&
 642            ((r10bio->sector >= conf->reshape_progress) !=
 643             conf->mddev->reshape_backwards)) {
 644                set_bit(R10BIO_Previous, &r10bio->state);
 645                geo = &conf->prev;
 646        } else
 647                clear_bit(R10BIO_Previous, &r10bio->state);
 648
 649        __raid10_find_phys(geo, r10bio);
 650}
 651
 652static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 653{
 654        sector_t offset, chunk, vchunk;
 655        /* Never use conf->prev as this is only called during resync
 656         * or recovery, so reshape isn't happening
 657         */
 658        struct geom *geo = &conf->geo;
 659        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 660        int far_set_size = geo->far_set_size;
 661        int last_far_set_start;
 662
 663        if (geo->raid_disks % geo->far_set_size) {
 664                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 665                last_far_set_start *= geo->far_set_size;
 666
 667                if (dev >= last_far_set_start) {
 668                        far_set_size = geo->far_set_size;
 669                        far_set_size += (geo->raid_disks % geo->far_set_size);
 670                        far_set_start = last_far_set_start;
 671                }
 672        }
 673
 674        offset = sector & geo->chunk_mask;
 675        if (geo->far_offset) {
 676                int fc;
 677                chunk = sector >> geo->chunk_shift;
 678                fc = sector_div(chunk, geo->far_copies);
 679                dev -= fc * geo->near_copies;
 680                if (dev < far_set_start)
 681                        dev += far_set_size;
 682        } else {
 683                while (sector >= geo->stride) {
 684                        sector -= geo->stride;
 685                        if (dev < (geo->near_copies + far_set_start))
 686                                dev += far_set_size - geo->near_copies;
 687                        else
 688                                dev -= geo->near_copies;
 689                }
 690                chunk = sector >> geo->chunk_shift;
 691        }
 692        vchunk = chunk * geo->raid_disks + dev;
 693        sector_div(vchunk, geo->near_copies);
 694        return (vchunk << geo->chunk_shift) + offset;
 695}
 696
 697/**
 698 *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
 699 *      @mddev: the md device
 700 *      @bvm: properties of new bio
 701 *      @biovec: the request that could be merged to it.
 702 *
 703 *      Return amount of bytes we can accept at this offset
 704 *      This requires checking for end-of-chunk if near_copies != raid_disks,
 705 *      and for subordinate merge_bvec_fns if merge_check_needed.
 706 */
 707static int raid10_mergeable_bvec(struct mddev *mddev,
 708                                 struct bvec_merge_data *bvm,
 709                                 struct bio_vec *biovec)
 710{
 711        struct r10conf *conf = mddev->private;
 712        sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
 713        int max;
 714        unsigned int chunk_sectors;
 715        unsigned int bio_sectors = bvm->bi_size >> 9;
 716        struct geom *geo = &conf->geo;
 717
 718        chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
 719        if (conf->reshape_progress != MaxSector &&
 720            ((sector >= conf->reshape_progress) !=
 721             conf->mddev->reshape_backwards))
 722                geo = &conf->prev;
 723
 724        if (geo->near_copies < geo->raid_disks) {
 725                max = (chunk_sectors - ((sector & (chunk_sectors - 1))
 726                                        + bio_sectors)) << 9;
 727                if (max < 0)
 728                        /* bio_add cannot handle a negative return */
 729                        max = 0;
 730                if (max <= biovec->bv_len && bio_sectors == 0)
 731                        return biovec->bv_len;
 732        } else
 733                max = biovec->bv_len;
 734
 735        if (mddev->merge_check_needed) {
 736                struct {
 737                        struct r10bio r10_bio;
 738                        struct r10dev devs[conf->copies];
 739                } on_stack;
 740                struct r10bio *r10_bio = &on_stack.r10_bio;
 741                int s;
 742                if (conf->reshape_progress != MaxSector) {
 743                        /* Cannot give any guidance during reshape */
 744                        if (max <= biovec->bv_len && bio_sectors == 0)
 745                                return biovec->bv_len;
 746                        return 0;
 747                }
 748                r10_bio->sector = sector;
 749                raid10_find_phys(conf, r10_bio);
 750                rcu_read_lock();
 751                for (s = 0; s < conf->copies; s++) {
 752                        int disk = r10_bio->devs[s].devnum;
 753                        struct md_rdev *rdev = rcu_dereference(
 754                                conf->mirrors[disk].rdev);
 755                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 756                                struct request_queue *q =
 757                                        bdev_get_queue(rdev->bdev);
 758                                if (q->merge_bvec_fn) {
 759                                        bvm->bi_sector = r10_bio->devs[s].addr
 760                                                + rdev->data_offset;
 761                                        bvm->bi_bdev = rdev->bdev;
 762                                        max = min(max, q->merge_bvec_fn(
 763                                                          q, bvm, biovec));
 764                                }
 765                        }
 766                        rdev = rcu_dereference(conf->mirrors[disk].replacement);
 767                        if (rdev && !test_bit(Faulty, &rdev->flags)) {
 768                                struct request_queue *q =
 769                                        bdev_get_queue(rdev->bdev);
 770                                if (q->merge_bvec_fn) {
 771                                        bvm->bi_sector = r10_bio->devs[s].addr
 772                                                + rdev->data_offset;
 773                                        bvm->bi_bdev = rdev->bdev;
 774                                        max = min(max, q->merge_bvec_fn(
 775                                                          q, bvm, biovec));
 776                                }
 777                        }
 778                }
 779                rcu_read_unlock();
 780        }
 781        return max;
 782}
 783
 784/*
 785 * This routine returns the disk from which the requested read should
 786 * be done. There is a per-array 'next expected sequential IO' sector
 787 * number - if this matches on the next IO then we use the last disk.
 788 * There is also a per-disk 'last know head position' sector that is
 789 * maintained from IRQ contexts, both the normal and the resync IO
 790 * completion handlers update this position correctly. If there is no
 791 * perfect sequential match then we pick the disk whose head is closest.
 792 *
 793 * If there are 2 mirrors in the same 2 devices, performance degrades
 794 * because position is mirror, not device based.
 795 *
 796 * The rdev for the device selected will have nr_pending incremented.
 797 */
 798
 799/*
 800 * FIXME: possibly should rethink readbalancing and do it differently
 801 * depending on near_copies / far_copies geometry.
 802 */
 803static struct md_rdev *read_balance(struct r10conf *conf,
 804                                    struct r10bio *r10_bio,
 805                                    int *max_sectors)
 806{
 807        const sector_t this_sector = r10_bio->sector;
 808        int disk, slot;
 809        int sectors = r10_bio->sectors;
 810        int best_good_sectors;
 811        sector_t new_distance, best_dist;
 812        struct md_rdev *best_rdev, *rdev = NULL;
 813        int do_balance;
 814        int best_slot;
 815        struct geom *geo = &conf->geo;
 816
 817        raid10_find_phys(conf, r10_bio);
 818        rcu_read_lock();
 819        sectors = r10_bio->sectors;
 820        best_slot = -1;
 821        best_rdev = NULL;
 822        best_dist = MaxSector;
 823        best_good_sectors = 0;
 824        do_balance = 1;
 825        clear_bit(R10BIO_FailFast, &r10_bio->state);
 826        /*
 827         * Check if we can balance. We can balance on the whole
 828         * device if no resync is going on (recovery is ok), or below
 829         * the resync window. We take the first readable disk when
 830         * above the resync window.
 831         */
 832        if (conf->mddev->recovery_cp < MaxSector
 833            && (this_sector + sectors >= conf->next_resync))
 834                do_balance = 0;
 835
 836        for (slot = 0; slot < conf->copies ; slot++) {
 837                sector_t first_bad;
 838                int bad_sectors;
 839                sector_t dev_sector;
 840
 841                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 842                        continue;
 843                disk = r10_bio->devs[slot].devnum;
 844                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 845                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 846                    test_bit(Unmerged, &rdev->flags) ||
 847                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 848                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 849                if (rdev == NULL ||
 850                    test_bit(Faulty, &rdev->flags) ||
 851                    test_bit(Unmerged, &rdev->flags))
 852                        continue;
 853                if (!test_bit(In_sync, &rdev->flags) &&
 854                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 855                        continue;
 856
 857                dev_sector = r10_bio->devs[slot].addr;
 858                if (is_badblock(rdev, dev_sector, sectors,
 859                                &first_bad, &bad_sectors)) {
 860                        if (best_dist < MaxSector)
 861                                /* Already have a better slot */
 862                                continue;
 863                        if (first_bad <= dev_sector) {
 864                                /* Cannot read here.  If this is the
 865                                 * 'primary' device, then we must not read
 866                                 * beyond 'bad_sectors' from another device.
 867                                 */
 868                                bad_sectors -= (dev_sector - first_bad);
 869                                if (!do_balance && sectors > bad_sectors)
 870                                        sectors = bad_sectors;
 871                                if (best_good_sectors > sectors)
 872                                        best_good_sectors = sectors;
 873                        } else {
 874                                sector_t good_sectors =
 875                                        first_bad - dev_sector;
 876                                if (good_sectors > best_good_sectors) {
 877                                        best_good_sectors = good_sectors;
 878                                        best_slot = slot;
 879                                        best_rdev = rdev;
 880                                }
 881                                if (!do_balance)
 882                                        /* Must read from here */
 883                                        break;
 884                        }
 885                        continue;
 886                } else
 887                        best_good_sectors = sectors;
 888
 889                if (!do_balance)
 890                        break;
 891
 892                if (best_slot >= 0)
 893                        /* At least 2 disks to choose from so failfast is OK */
 894                        set_bit(R10BIO_FailFast, &r10_bio->state);
 895                /* This optimisation is debatable, and completely destroys
 896                 * sequential read speed for 'far copies' arrays.  So only
 897                 * keep it for 'near' arrays, and review those later.
 898                 */
 899                if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
 900                        new_distance = 0;
 901
 902                /* for far > 1 always use the lowest address */
 903                else if (geo->far_copies > 1)
 904                        new_distance = r10_bio->devs[slot].addr;
 905                else
 906                        new_distance = abs(r10_bio->devs[slot].addr -
 907                                           conf->mirrors[disk].head_position);
 908                if (new_distance < best_dist) {
 909                        best_dist = new_distance;
 910                        best_slot = slot;
 911                        best_rdev = rdev;
 912                }
 913        }
 914        if (slot >= conf->copies) {
 915                slot = best_slot;
 916                rdev = best_rdev;
 917        }
 918
 919        if (slot >= 0) {
 920                atomic_inc(&rdev->nr_pending);
 921                r10_bio->read_slot = slot;
 922        } else
 923                rdev = NULL;
 924        rcu_read_unlock();
 925        *max_sectors = best_good_sectors;
 926
 927        return rdev;
 928}
 929
 930static int raid10_congested(struct mddev *mddev, int bits)
 931{
 932        struct r10conf *conf = mddev->private;
 933        int i, ret = 0;
 934
 935        if ((bits & (1 << BDI_async_congested)) &&
 936            conf->pending_count >= max_queued_requests)
 937                return 1;
 938
 939        rcu_read_lock();
 940        for (i = 0;
 941             (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
 942                     && ret == 0;
 943             i++) {
 944                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 945                if (rdev && !test_bit(Faulty, &rdev->flags)) {
 946                        struct request_queue *q = bdev_get_queue(rdev->bdev);
 947
 948                        ret |= bdi_congested(&q->backing_dev_info, bits);
 949                }
 950        }
 951        rcu_read_unlock();
 952        return ret;
 953}
 954
 955static void flush_pending_writes(struct r10conf *conf)
 956{
 957        /* Any writes that have been queued but are awaiting
 958         * bitmap updates get flushed here.
 959         */
 960        spin_lock_irq(&conf->device_lock);
 961
 962        if (conf->pending_bio_list.head) {
 963                struct bio *bio;
 964                bio = bio_list_get(&conf->pending_bio_list);
 965                conf->pending_count = 0;
 966                spin_unlock_irq(&conf->device_lock);
 967                /* flush any pending bitmap writes to disk
 968                 * before proceeding w/ I/O */
 969                bitmap_unplug(conf->mddev->bitmap);
 970                wake_up(&conf->wait_barrier);
 971
 972                while (bio) { /* submit pending writes */
 973                        struct bio *next = bio->bi_next;
 974                        bio->bi_next = NULL;
 975                        if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 976                            !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 977                                /* Just ignore it */
 978                                bio_endio(bio, 0);
 979                        else
 980                                generic_make_request(bio);
 981                        bio = next;
 982                }
 983        } else
 984                spin_unlock_irq(&conf->device_lock);
 985}
 986
 987/* Barriers....
 988 * Sometimes we need to suspend IO while we do something else,
 989 * either some resync/recovery, or reconfigure the array.
 990 * To do this we raise a 'barrier'.
 991 * The 'barrier' is a counter that can be raised multiple times
 992 * to count how many activities are happening which preclude
 993 * normal IO.
 994 * We can only raise the barrier if there is no pending IO.
 995 * i.e. if nr_pending == 0.
 996 * We choose only to raise the barrier if no-one is waiting for the
 997 * barrier to go down.  This means that as soon as an IO request
 998 * is ready, no other operations which require a barrier will start
 999 * until the IO request has had a chance.
1000 *
1001 * So: regular IO calls 'wait_barrier'.  When that returns there
1002 *    is no backgroup IO happening,  It must arrange to call
1003 *    allow_barrier when it has finished its IO.
1004 * backgroup IO calls must call raise_barrier.  Once that returns
1005 *    there is no normal IO happeing.  It must arrange to call
1006 *    lower_barrier when the particular background IO completes.
1007 */
1008
1009static void raise_barrier(struct r10conf *conf, int force)
1010{
1011        BUG_ON(force && !conf->barrier);
1012        spin_lock_irq(&conf->resync_lock);
1013
1014        /* Wait until no block IO is waiting (unless 'force') */
1015        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1016                            conf->resync_lock);
1017
1018        /* block any new IO from starting */
1019        conf->barrier++;
1020
1021        /* Now wait for all pending IO to complete */
1022        wait_event_lock_irq(conf->wait_barrier,
1023                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
1024                            conf->resync_lock);
1025
1026        spin_unlock_irq(&conf->resync_lock);
1027}
1028
1029static void lower_barrier(struct r10conf *conf)
1030{
1031        unsigned long flags;
1032        spin_lock_irqsave(&conf->resync_lock, flags);
1033        conf->barrier--;
1034        spin_unlock_irqrestore(&conf->resync_lock, flags);
1035        wake_up(&conf->wait_barrier);
1036}
1037
1038static void wait_barrier(struct r10conf *conf)
1039{
1040        spin_lock_irq(&conf->resync_lock);
1041        if (conf->barrier) {
1042                conf->nr_waiting++;
1043                /* Wait for the barrier to drop.
1044                 * However if there are already pending
1045                 * requests (preventing the barrier from
1046                 * rising completely), and the
1047                 * pre-process bio queue isn't empty,
1048                 * then don't wait, as we need to empty
1049                 * that queue to get the nr_pending
1050                 * count down.
1051                 */
1052                wait_event_lock_irq(conf->wait_barrier,
1053                                    !conf->barrier ||
1054                                    (atomic_read(&conf->nr_pending) &&
1055                                     current->bio_list &&
1056                                     (!bio_list_empty(&current->bio_list[0]) ||
1057                                      !bio_list_empty(&current->bio_list[1]))),
1058                                    conf->resync_lock);
1059                conf->nr_waiting--;
1060                if (!conf->nr_waiting)
1061                        wake_up(&conf->wait_barrier);
1062        }
1063        atomic_inc(&conf->nr_pending);
1064        spin_unlock_irq(&conf->resync_lock);
1065}
1066
1067static void allow_barrier(struct r10conf *conf)
1068{
1069        if ((atomic_dec_and_test(&conf->nr_pending)) ||
1070                        (conf->array_freeze_pending))
1071                wake_up(&conf->wait_barrier);
1072}
1073
1074static void freeze_array(struct r10conf *conf, int extra)
1075{
1076        /* stop syncio and normal IO and wait for everything to
1077         * go quiet.
1078         * We increment barrier and nr_waiting, and then
1079         * wait until nr_pending match nr_queued+extra
1080         * This is called in the context of one normal IO request
1081         * that has failed. Thus any sync request that might be pending
1082         * will be blocked by nr_pending, and we need to wait for
1083         * pending IO requests to complete or be queued for re-try.
1084         * Thus the number queued (nr_queued) plus this request (extra)
1085         * must match the number of pending IOs (nr_pending) before
1086         * we continue.
1087         */
1088        spin_lock_irq(&conf->resync_lock);
1089        conf->array_freeze_pending++;
1090        conf->barrier++;
1091        conf->nr_waiting++;
1092        wait_event_lock_irq_cmd(conf->wait_barrier,
1093                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1094                                conf->resync_lock,
1095                                flush_pending_writes(conf));
1096
1097        conf->array_freeze_pending--;
1098        spin_unlock_irq(&conf->resync_lock);
1099}
1100
1101static void unfreeze_array(struct r10conf *conf)
1102{
1103        /* reverse the effect of the freeze */
1104        spin_lock_irq(&conf->resync_lock);
1105        conf->barrier--;
1106        conf->nr_waiting--;
1107        wake_up(&conf->wait_barrier);
1108        spin_unlock_irq(&conf->resync_lock);
1109}
1110
1111static sector_t choose_data_offset(struct r10bio *r10_bio,
1112                                   struct md_rdev *rdev)
1113{
1114        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1115            test_bit(R10BIO_Previous, &r10_bio->state))
1116                return rdev->data_offset;
1117        else
1118                return rdev->new_data_offset;
1119}
1120
1121struct raid10_plug_cb {
1122        struct blk_plug_cb      cb;
1123        struct bio_list         pending;
1124        int                     pending_cnt;
1125};
1126
1127static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1128{
1129        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1130                                                   cb);
1131        struct mddev *mddev = plug->cb.data;
1132        struct r10conf *conf = mddev->private;
1133        struct bio *bio;
1134
1135        if (from_schedule || current->bio_list) {
1136                spin_lock_irq(&conf->device_lock);
1137                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1138                conf->pending_count += plug->pending_cnt;
1139                spin_unlock_irq(&conf->device_lock);
1140                wake_up(&conf->wait_barrier);
1141                md_wakeup_thread(mddev->thread);
1142                kfree(plug);
1143                return;
1144        }
1145
1146        /* we aren't scheduling, so we can do the write-out directly. */
1147        bio = bio_list_get(&plug->pending);
1148        bitmap_unplug(mddev->bitmap);
1149        wake_up(&conf->wait_barrier);
1150
1151        while (bio) { /* submit pending writes */
1152                struct bio *next = bio->bi_next;
1153                bio->bi_next = NULL;
1154                if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1155                    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1156                        /* Just ignore it */
1157                        bio_endio(bio, 0);
1158                else
1159                        generic_make_request(bio);
1160                bio = next;
1161        }
1162        kfree(plug);
1163}
1164
1165static bool raid10_make_request(struct mddev *mddev, struct bio * bio)
1166{
1167        struct r10conf *conf = mddev->private;
1168        struct r10bio *r10_bio;
1169        struct bio *read_bio;
1170        int i;
1171        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1172        int chunk_sects = chunk_mask + 1;
1173        const int rw = bio_data_dir(bio);
1174        const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1175        const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1176        const unsigned long do_discard = (bio->bi_rw
1177                                          & (REQ_DISCARD | REQ_SECURE));
1178        const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1179        unsigned long flags;
1180        struct md_rdev *blocked_rdev;
1181        struct blk_plug_cb *cb;
1182        struct raid10_plug_cb *plug = NULL;
1183        int sectors_handled;
1184        int max_sectors;
1185        int sectors;
1186
1187        if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1188                md_flush_request(mddev, bio);
1189                return true;
1190        }
1191
1192        /* If this request crosses a chunk boundary, we need to
1193         * split it.  This will only happen for 1 PAGE (or less) requests.
1194         */
1195        if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1196                     > chunk_sects
1197                     && (conf->geo.near_copies < conf->geo.raid_disks
1198                         || conf->prev.near_copies < conf->prev.raid_disks))) {
1199                struct bio_pair *bp;
1200                /* Sanity check -- queue functions should prevent this happening */
1201                if (bio_segments(bio) > 1)
1202                        goto bad_map;
1203                /* This is a one page bio that upper layers
1204                 * refuse to split for us, so we need to split it.
1205                 */
1206                bp = bio_split(bio,
1207                               chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1208
1209                /* Each of these 'make_request' calls will call 'wait_barrier'.
1210                 * If the first succeeds but the second blocks due to the resync
1211                 * thread raising the barrier, we will deadlock because the
1212                 * IO to the underlying device will be queued in generic_make_request
1213                 * and will never complete, so will never reduce nr_pending.
1214                 * So increment nr_waiting here so no new raise_barriers will
1215                 * succeed, and so the second wait_barrier cannot block.
1216                 */
1217                spin_lock_irq(&conf->resync_lock);
1218                conf->nr_waiting++;
1219                spin_unlock_irq(&conf->resync_lock);
1220
1221                raid10_make_request(mddev, &bp->bio1);
1222                raid10_make_request(mddev, &bp->bio2);
1223
1224                spin_lock_irq(&conf->resync_lock);
1225                conf->nr_waiting--;
1226                wake_up(&conf->wait_barrier);
1227                spin_unlock_irq(&conf->resync_lock);
1228
1229                bio_pair_release(bp);
1230                return true;
1231        bad_map:
1232                printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1233                       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1234                       (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1235
1236                bio_io_error(bio);
1237                return true;
1238        }
1239
1240        md_write_start(mddev, bio);
1241
1242        /*
1243         * Register the new request and wait if the reconstruction
1244         * thread has put up a bar for new requests.
1245         * Continue immediately if no resync is active currently.
1246         */
1247        wait_barrier(conf);
1248
1249        sectors = bio_sectors(bio);
1250        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1251            bio->bi_sector < conf->reshape_progress &&
1252            bio->bi_sector + sectors > conf->reshape_progress) {
1253                /* IO spans the reshape position.  Need to wait for
1254                 * reshape to pass
1255                 */
1256                allow_barrier(conf);
1257                wait_event(conf->wait_barrier,
1258                           conf->reshape_progress <= bio->bi_sector ||
1259                           conf->reshape_progress >= bio->bi_sector + sectors);
1260                wait_barrier(conf);
1261        }
1262        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1263            bio_data_dir(bio) == WRITE &&
1264            (mddev->reshape_backwards
1265             ? (bio->bi_sector < conf->reshape_safe &&
1266                bio->bi_sector + sectors > conf->reshape_progress)
1267             : (bio->bi_sector + sectors > conf->reshape_safe &&
1268                bio->bi_sector < conf->reshape_progress))) {
1269                gmb();
1270                /* Need to update reshape_position in metadata */
1271                mddev->reshape_position = conf->reshape_progress;
1272                set_mask_bits(&mddev->sb_flags, 0,
1273                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1274                md_wakeup_thread(mddev->thread);
1275                wait_event(mddev->sb_wait,
1276                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1277
1278                conf->reshape_safe = mddev->reshape_position;
1279        }
1280
1281        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1282
1283        r10_bio->master_bio = bio;
1284        r10_bio->sectors = sectors;
1285
1286        r10_bio->mddev = mddev;
1287        r10_bio->sector = bio->bi_sector;
1288        r10_bio->state = 0;
1289
1290        /* We might need to issue multiple reads to different
1291         * devices if there are bad blocks around, so we keep
1292         * track of the number of reads in bio->bi_phys_segments.
1293         * If this is 0, there is only one r10_bio and no locking
1294         * will be needed when the request completes.  If it is
1295         * non-zero, then it is the number of not-completed requests.
1296         */
1297        bio->bi_phys_segments = 0;
1298        clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1299
1300        if (rw == READ) {
1301                /*
1302                 * read balancing logic:
1303                 */
1304                struct md_rdev *rdev;
1305                int slot;
1306
1307read_again:
1308                rdev = read_balance(conf, r10_bio, &max_sectors);
1309                if (!rdev) {
1310                        raid_end_bio_io(r10_bio);
1311                        return true;
1312                }
1313                slot = r10_bio->read_slot;
1314
1315                read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1316                bio_trim(read_bio, r10_bio->sector - bio->bi_sector,
1317                         max_sectors);
1318
1319                r10_bio->devs[slot].bio = read_bio;
1320                r10_bio->devs[slot].rdev = rdev;
1321
1322                read_bio->bi_sector = r10_bio->devs[slot].addr +
1323                        choose_data_offset(r10_bio, rdev);
1324                read_bio->bi_bdev = rdev->bdev;
1325                read_bio->bi_end_io = raid10_end_read_request;
1326                read_bio->bi_rw = READ | do_sync;
1327                if (test_bit(FailFast, &rdev->flags) &&
1328                    test_bit(R10BIO_FailFast, &r10_bio->state))
1329                        read_bio->bi_rw |= MD_FAILFAST;
1330                read_bio->bi_private = r10_bio;
1331
1332                if (max_sectors < r10_bio->sectors) {
1333                        /* Could not read all from this device, so we will
1334                         * need another r10_bio.
1335                         */
1336                        sectors_handled = (r10_bio->sector + max_sectors
1337                                           - bio->bi_sector);
1338                        r10_bio->sectors = max_sectors;
1339                        spin_lock_irq(&conf->device_lock);
1340                        if (bio->bi_phys_segments == 0)
1341                                bio->bi_phys_segments = 2;
1342                        else
1343                                bio->bi_phys_segments++;
1344                        spin_unlock_irq(&conf->device_lock);
1345                        /* Cannot call generic_make_request directly
1346                         * as that will be queued in __generic_make_request
1347                         * and subsequent mempool_alloc might block
1348                         * waiting for it.  so hand bio over to raid10d.
1349                         */
1350                        reschedule_retry(r10_bio);
1351
1352                        r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1353
1354                        r10_bio->master_bio = bio;
1355                        r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1356                        r10_bio->state = 0;
1357                        r10_bio->mddev = mddev;
1358                        r10_bio->sector = bio->bi_sector + sectors_handled;
1359                        goto read_again;
1360                } else
1361                        generic_make_request(read_bio);
1362                return true;
1363        }
1364
1365        /*
1366         * WRITE:
1367         */
1368        if (conf->pending_count >= max_queued_requests) {
1369                md_wakeup_thread(mddev->thread);
1370                wait_event(conf->wait_barrier,
1371                           conf->pending_count < max_queued_requests);
1372        }
1373        /* first select target devices under rcu_lock and
1374         * inc refcount on their rdev.  Record them by setting
1375         * bios[x] to bio
1376         * If there are known/acknowledged bad blocks on any device
1377         * on which we have seen a write error, we want to avoid
1378         * writing to those blocks.  This potentially requires several
1379         * writes to write around the bad blocks.  Each set of writes
1380         * gets its own r10_bio with a set of bios attached.  The number
1381         * of r10_bios is recored in bio->bi_phys_segments just as with
1382         * the read case.
1383         */
1384
1385        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1386        raid10_find_phys(conf, r10_bio);
1387retry_write:
1388        blocked_rdev = NULL;
1389        rcu_read_lock();
1390        max_sectors = r10_bio->sectors;
1391
1392        for (i = 0;  i < conf->copies; i++) {
1393                int d = r10_bio->devs[i].devnum;
1394                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1395                struct md_rdev *rrdev = rcu_dereference(
1396                        conf->mirrors[d].replacement);
1397                if (rdev == rrdev)
1398                        rrdev = NULL;
1399                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1400                        atomic_inc(&rdev->nr_pending);
1401                        blocked_rdev = rdev;
1402                        break;
1403                }
1404                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1405                        atomic_inc(&rrdev->nr_pending);
1406                        blocked_rdev = rrdev;
1407                        break;
1408                }
1409                if (rdev && (test_bit(Faulty, &rdev->flags)
1410                             || test_bit(Unmerged, &rdev->flags)))
1411                        rdev = NULL;
1412                if (rrdev && (test_bit(Faulty, &rrdev->flags)
1413                              || test_bit(Unmerged, &rrdev->flags)))
1414                        rrdev = NULL;
1415
1416                r10_bio->devs[i].bio = NULL;
1417                r10_bio->devs[i].repl_bio = NULL;
1418
1419                if (!rdev && !rrdev) {
1420                        set_bit(R10BIO_Degraded, &r10_bio->state);
1421                        continue;
1422                }
1423                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1424                        sector_t first_bad;
1425                        sector_t dev_sector = r10_bio->devs[i].addr;
1426                        int bad_sectors;
1427                        int is_bad;
1428
1429                        is_bad = is_badblock(rdev, dev_sector,
1430                                             max_sectors,
1431                                             &first_bad, &bad_sectors);
1432                        if (is_bad < 0) {
1433                                /* Mustn't write here until the bad block
1434                                 * is acknowledged
1435                                 */
1436                                atomic_inc(&rdev->nr_pending);
1437                                set_bit(BlockedBadBlocks, &rdev->flags);
1438                                blocked_rdev = rdev;
1439                                break;
1440                        }
1441                        if (is_bad && first_bad <= dev_sector) {
1442                                /* Cannot write here at all */
1443                                bad_sectors -= (dev_sector - first_bad);
1444                                if (bad_sectors < max_sectors)
1445                                        /* Mustn't write more than bad_sectors
1446                                         * to other devices yet
1447                                         */
1448                                        max_sectors = bad_sectors;
1449                                /* We don't set R10BIO_Degraded as that
1450                                 * only applies if the disk is missing,
1451                                 * so it might be re-added, and we want to
1452                                 * know to recover this chunk.
1453                                 * In this case the device is here, and the
1454                                 * fact that this chunk is not in-sync is
1455                                 * recorded in the bad block log.
1456                                 */
1457                                continue;
1458                        }
1459                        if (is_bad) {
1460                                int good_sectors = first_bad - dev_sector;
1461                                if (good_sectors < max_sectors)
1462                                        max_sectors = good_sectors;
1463                        }
1464                }
1465                if (rdev) {
1466                        r10_bio->devs[i].bio = bio;
1467                        atomic_inc(&rdev->nr_pending);
1468                }
1469                if (rrdev) {
1470                        r10_bio->devs[i].repl_bio = bio;
1471                        atomic_inc(&rrdev->nr_pending);
1472                }
1473        }
1474        rcu_read_unlock();
1475
1476        if (unlikely(blocked_rdev)) {
1477                /* Have to wait for this device to get unblocked, then retry */
1478                int j;
1479                int d;
1480
1481                for (j = 0; j < i; j++) {
1482                        if (r10_bio->devs[j].bio) {
1483                                d = r10_bio->devs[j].devnum;
1484                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1485                        }
1486                        if (r10_bio->devs[j].repl_bio) {
1487                                struct md_rdev *rdev;
1488                                d = r10_bio->devs[j].devnum;
1489                                rdev = conf->mirrors[d].replacement;
1490                                if (!rdev) {
1491                                        /* Race with remove_disk */
1492                                        smp_mb();
1493                                        rdev = conf->mirrors[d].rdev;
1494                                }
1495                                rdev_dec_pending(rdev, mddev);
1496                        }
1497                }
1498                allow_barrier(conf);
1499                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1500                wait_barrier(conf);
1501                goto retry_write;
1502        }
1503
1504        if (max_sectors < r10_bio->sectors)
1505                r10_bio->sectors = max_sectors;
1506        sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1507
1508        atomic_set(&r10_bio->remaining, 1);
1509        bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1510
1511        for (i = 0; i < conf->copies; i++) {
1512                struct bio *mbio;
1513                int d = r10_bio->devs[i].devnum;
1514                if (r10_bio->devs[i].bio) {
1515                        struct md_rdev *rdev = conf->mirrors[d].rdev;
1516                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1517                        bio_trim(mbio, r10_bio->sector - bio->bi_sector,
1518                                 max_sectors);
1519                        r10_bio->devs[i].bio = mbio;
1520
1521                        mbio->bi_sector = (r10_bio->devs[i].addr+
1522                                           choose_data_offset(r10_bio,
1523                                                              rdev));
1524                        mbio->bi_bdev = rdev->bdev;
1525                        mbio->bi_end_io = raid10_end_write_request;
1526                        mbio->bi_rw =
1527                                WRITE | do_sync | do_fua | do_discard | do_same;
1528                        if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) &&
1529                            enough(conf, d))
1530                                mbio->bi_rw |= MD_FAILFAST;
1531                        mbio->bi_private = r10_bio;
1532
1533                        atomic_inc(&r10_bio->remaining);
1534
1535                        cb = blk_check_plugged(raid10_unplug, mddev,
1536                                               sizeof(*plug));
1537                        if (cb)
1538                                plug = container_of(cb, struct raid10_plug_cb,
1539                                                    cb);
1540                        else
1541                                plug = NULL;
1542                        spin_lock_irqsave(&conf->device_lock, flags);
1543                        if (plug) {
1544                                bio_list_add(&plug->pending, mbio);
1545                                plug->pending_cnt++;
1546                        } else {
1547                                bio_list_add(&conf->pending_bio_list, mbio);
1548                                conf->pending_count++;
1549                        }
1550                        spin_unlock_irqrestore(&conf->device_lock, flags);
1551                        if (!plug)
1552                                md_wakeup_thread(mddev->thread);
1553                }
1554
1555                if (r10_bio->devs[i].repl_bio) {
1556                        struct md_rdev *rdev = conf->mirrors[d].replacement;
1557                        if (rdev == NULL) {
1558                                /* Replacement just got moved to main 'rdev' */
1559                                smp_mb();
1560                                rdev = conf->mirrors[d].rdev;
1561                        }
1562                        mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1563                        bio_trim(mbio, r10_bio->sector - bio->bi_sector,
1564                                 max_sectors);
1565                        r10_bio->devs[i].repl_bio = mbio;
1566
1567                        mbio->bi_sector = (r10_bio->devs[i].addr +
1568                                           choose_data_offset(
1569                                                   r10_bio, rdev));
1570                        mbio->bi_bdev = rdev->bdev;
1571                        mbio->bi_end_io = raid10_end_write_request;
1572                        mbio->bi_rw =
1573                                WRITE | do_sync | do_fua | do_discard | do_same;
1574                        mbio->bi_private = r10_bio;
1575
1576                        atomic_inc(&r10_bio->remaining);
1577                        spin_lock_irqsave(&conf->device_lock, flags);
1578                        bio_list_add(&conf->pending_bio_list, mbio);
1579                        conf->pending_count++;
1580                        spin_unlock_irqrestore(&conf->device_lock, flags);
1581                        if (!mddev_check_plugged(mddev))
1582                                md_wakeup_thread(mddev->thread);
1583                }
1584        }
1585
1586        /* Don't remove the bias on 'remaining' (one_write_done) until
1587         * after checking if we need to go around again.
1588         */
1589
1590        if (sectors_handled < bio_sectors(bio)) {
1591                /* We need another r10_bio and it needs to be counted
1592                 * in bio->bi_phys_segments.
1593                 */
1594                spin_lock_irq(&conf->device_lock);
1595                if (bio->bi_phys_segments == 0)
1596                        bio->bi_phys_segments = 2;
1597                else
1598                        bio->bi_phys_segments++;
1599                spin_unlock_irq(&conf->device_lock);
1600                one_write_done(r10_bio);
1601                r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1602
1603                r10_bio->master_bio = bio;
1604                r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1605
1606                r10_bio->mddev = mddev;
1607                r10_bio->sector = bio->bi_sector + sectors_handled;
1608                r10_bio->state = 0;
1609                goto retry_write;
1610        }
1611        one_write_done(r10_bio);
1612
1613        /* In case raid10d snuck in to freeze_array */
1614        wake_up(&conf->wait_barrier);
1615        return true;
1616}
1617
1618static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1619{
1620        struct r10conf *conf = mddev->private;
1621        int i;
1622
1623        if (conf->geo.near_copies < conf->geo.raid_disks)
1624                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1625        if (conf->geo.near_copies > 1)
1626                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1627        if (conf->geo.far_copies > 1) {
1628                if (conf->geo.far_offset)
1629                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1630                else
1631                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1632                if (conf->geo.far_set_size != conf->geo.raid_disks)
1633                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1634        }
1635        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1636                                        conf->geo.raid_disks - mddev->degraded);
1637        rcu_read_lock();
1638        for (i = 0; i < conf->geo.raid_disks; i++) {
1639                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1640                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1641        }
1642        rcu_read_unlock();
1643        seq_printf(seq, "]");
1644}
1645
1646/* check if there are enough drives for
1647 * every block to appear on atleast one.
1648 * Don't consider the device numbered 'ignore'
1649 * as we might be about to remove it.
1650 */
1651static int _enough(struct r10conf *conf, int previous, int ignore)
1652{
1653        int first = 0;
1654        int has_enough = 0;
1655        int disks, ncopies;
1656        if (previous) {
1657                disks = conf->prev.raid_disks;
1658                ncopies = conf->prev.near_copies;
1659        } else {
1660                disks = conf->geo.raid_disks;
1661                ncopies = conf->geo.near_copies;
1662        }
1663
1664        rcu_read_lock();
1665        do {
1666                int n = conf->copies;
1667                int cnt = 0;
1668                int this = first;
1669                while (n--) {
1670                        struct md_rdev *rdev;
1671                        if (this != ignore &&
1672                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1673                            test_bit(In_sync, &rdev->flags))
1674                                cnt++;
1675                        this = (this+1) % disks;
1676                }
1677                if (cnt == 0)
1678                        goto out;
1679                first = (first + ncopies) % disks;
1680        } while (first != 0);
1681        has_enough = 1;
1682out:
1683        rcu_read_unlock();
1684        return has_enough;
1685}
1686
1687static int enough(struct r10conf *conf, int ignore)
1688{
1689        /* when calling 'enough', both 'prev' and 'geo' must
1690         * be stable.
1691         * This is ensured if ->reconfig_mutex or ->device_lock
1692         * is held.
1693         */
1694        return _enough(conf, 0, ignore) &&
1695                _enough(conf, 1, ignore);
1696}
1697
1698static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1699{
1700        char b[BDEVNAME_SIZE];
1701        struct r10conf *conf = mddev->private;
1702        unsigned long flags;
1703
1704        /*
1705         * If it is not operational, then we have already marked it as dead
1706         * else if it is the last working disks, ignore the error, let the
1707         * next level up know.
1708         * else mark the drive as failed
1709         */
1710        spin_lock_irqsave(&conf->device_lock, flags);
1711        if (test_bit(In_sync, &rdev->flags)
1712            && !enough(conf, rdev->raid_disk)) {
1713                /*
1714                 * Don't fail the drive, just return an IO error.
1715                 */
1716                spin_unlock_irqrestore(&conf->device_lock, flags);
1717                return;
1718        }
1719        if (test_and_clear_bit(In_sync, &rdev->flags))
1720                mddev->degraded++;
1721        /*
1722         * If recovery is running, make sure it aborts.
1723         */
1724        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1725        set_bit(Blocked, &rdev->flags);
1726        set_bit(Faulty, &rdev->flags);
1727        set_mask_bits(&mddev->sb_flags, 0,
1728                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1729        spin_unlock_irqrestore(&conf->device_lock, flags);
1730        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1731                "md/raid10:%s: Operation continuing on %d devices.\n",
1732                mdname(mddev), bdevname(rdev->bdev, b),
1733                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1734}
1735
1736static void print_conf(struct r10conf *conf)
1737{
1738        int i;
1739        struct md_rdev *rdev;
1740
1741        pr_debug("RAID10 conf printout:\n");
1742        if (!conf) {
1743                pr_debug("(!conf)\n");
1744                return;
1745        }
1746        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1747                 conf->geo.raid_disks);
1748
1749        /* This is only called with ->reconfix_mutex held, so
1750         * rcu protection of rdev is not needed */
1751        for (i = 0; i < conf->geo.raid_disks; i++) {
1752                char b[BDEVNAME_SIZE];
1753                rdev = conf->mirrors[i].rdev;
1754                if (rdev)
1755                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1756                                 i, !test_bit(In_sync, &rdev->flags),
1757                                 !test_bit(Faulty, &rdev->flags),
1758                                 bdevname(rdev->bdev,b));
1759        }
1760}
1761
1762static void close_sync(struct r10conf *conf)
1763{
1764        wait_barrier(conf);
1765        allow_barrier(conf);
1766
1767        mempool_destroy(conf->r10buf_pool);
1768        conf->r10buf_pool = NULL;
1769}
1770
1771static int raid10_spare_active(struct mddev *mddev)
1772{
1773        int i;
1774        struct r10conf *conf = mddev->private;
1775        struct raid10_info *tmp;
1776        int count = 0;
1777        unsigned long flags;
1778
1779        /*
1780         * Find all non-in_sync disks within the RAID10 configuration
1781         * and mark them in_sync
1782         */
1783        for (i = 0; i < conf->geo.raid_disks; i++) {
1784                tmp = conf->mirrors + i;
1785                if (tmp->replacement
1786                    && tmp->replacement->recovery_offset == MaxSector
1787                    && !test_bit(Faulty, &tmp->replacement->flags)
1788                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1789                        /* Replacement has just become active */
1790                        if (!tmp->rdev
1791                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1792                                count++;
1793                        if (tmp->rdev) {
1794                                /* Replaced device not technically faulty,
1795                                 * but we need to be sure it gets removed
1796                                 * and never re-added.
1797                                 */
1798                                set_bit(Faulty, &tmp->rdev->flags);
1799                                sysfs_notify_dirent_safe(
1800                                        tmp->rdev->sysfs_state);
1801                        }
1802                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1803                } else if (tmp->rdev
1804                           && tmp->rdev->recovery_offset == MaxSector
1805                           && !test_bit(Faulty, &tmp->rdev->flags)
1806                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1807                        count++;
1808                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1809                }
1810        }
1811        spin_lock_irqsave(&conf->device_lock, flags);
1812        mddev->degraded -= count;
1813        spin_unlock_irqrestore(&conf->device_lock, flags);
1814
1815        print_conf(conf);
1816        return count;
1817}
1818
1819static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1820{
1821        struct r10conf *conf = mddev->private;
1822        int err = -EEXIST;
1823        int mirror;
1824        int first = 0;
1825        int last = conf->geo.raid_disks - 1;
1826        struct request_queue *q = bdev_get_queue(rdev->bdev);
1827
1828        if (mddev->recovery_cp < MaxSector)
1829                /* only hot-add to in-sync arrays, as recovery is
1830                 * very different from resync
1831                 */
1832                return -EBUSY;
1833        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1834                return -EINVAL;
1835
1836        if (md_integrity_add_rdev(rdev, mddev))
1837                return -ENXIO;
1838
1839        if (rdev->raid_disk >= 0)
1840                first = last = rdev->raid_disk;
1841
1842        if (q->merge_bvec_fn) {
1843                set_bit(Unmerged, &rdev->flags);
1844                mddev->merge_check_needed = 1;
1845        }
1846
1847        if (rdev->saved_raid_disk >= first &&
1848            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1849                mirror = rdev->saved_raid_disk;
1850        else
1851                mirror = first;
1852        for ( ; mirror <= last ; mirror++) {
1853                struct raid10_info *p = &conf->mirrors[mirror];
1854                if (p->recovery_disabled == mddev->recovery_disabled)
1855                        continue;
1856                if (p->rdev) {
1857                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1858                            p->replacement != NULL)
1859                                continue;
1860                        clear_bit(In_sync, &rdev->flags);
1861                        set_bit(Replacement, &rdev->flags);
1862                        rdev->raid_disk = mirror;
1863                        err = 0;
1864                        if (mddev->gendisk)
1865                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1866                                                  rdev->data_offset << 9);
1867                        conf->fullsync = 1;
1868                        rcu_assign_pointer(p->replacement, rdev);
1869                        break;
1870                }
1871
1872                if (mddev->gendisk)
1873                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1874                                          rdev->data_offset << 9);
1875
1876                p->head_position = 0;
1877                p->recovery_disabled = mddev->recovery_disabled - 1;
1878                rdev->raid_disk = mirror;
1879                err = 0;
1880                if (rdev->saved_raid_disk != mirror)
1881                        conf->fullsync = 1;
1882                rcu_assign_pointer(p->rdev, rdev);
1883                break;
1884        }
1885        if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1886                /* Some requests might not have seen this new
1887                 * merge_bvec_fn.  We must wait for them to complete
1888                 * before merging the device fully.
1889                 * First we make sure any code which has tested
1890                 * our function has submitted the request, then
1891                 * we wait for all outstanding requests to complete.
1892                 */
1893                synchronize_sched();
1894                freeze_array(conf, 0);
1895                unfreeze_array(conf);
1896                clear_bit(Unmerged, &rdev->flags);
1897        }
1898        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1899                queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1900
1901        print_conf(conf);
1902        return err;
1903}
1904
1905static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1906{
1907        struct r10conf *conf = mddev->private;
1908        int err = 0;
1909        int number = rdev->raid_disk;
1910        struct md_rdev **rdevp;
1911        struct raid10_info *p = conf->mirrors + number;
1912
1913        print_conf(conf);
1914        if (rdev == p->rdev)
1915                rdevp = &p->rdev;
1916        else if (rdev == p->replacement)
1917                rdevp = &p->replacement;
1918        else
1919                return 0;
1920
1921        if (test_bit(In_sync, &rdev->flags) ||
1922            atomic_read(&rdev->nr_pending)) {
1923                err = -EBUSY;
1924                goto abort;
1925        }
1926        /* Only remove non-faulty devices if recovery
1927         * is not possible.
1928         */
1929        if (!test_bit(Faulty, &rdev->flags) &&
1930            mddev->recovery_disabled != p->recovery_disabled &&
1931            (!p->replacement || p->replacement == rdev) &&
1932            number < conf->geo.raid_disks &&
1933            enough(conf, -1)) {
1934                err = -EBUSY;
1935                goto abort;
1936        }
1937        *rdevp = NULL;
1938        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1939                synchronize_rcu();
1940                if (atomic_read(&rdev->nr_pending)) {
1941                        /* lost the race, try later */
1942                        err = -EBUSY;
1943                        *rdevp = rdev;
1944                        goto abort;
1945                }
1946        }
1947        if (p->replacement) {
1948                /* We must have just cleared 'rdev' */
1949                p->rdev = p->replacement;
1950                clear_bit(Replacement, &p->replacement->flags);
1951                smp_mb(); /* Make sure other CPUs may see both as identical
1952                           * but will never see neither -- if they are careful.
1953                           */
1954                p->replacement = NULL;
1955                clear_bit(WantReplacement, &rdev->flags);
1956        } else
1957                /* We might have just remove the Replacement as faulty
1958                 * Clear the flag just in case
1959                 */
1960                clear_bit(WantReplacement, &rdev->flags);
1961
1962        err = md_integrity_register(mddev);
1963
1964abort:
1965
1966        print_conf(conf);
1967        return err;
1968}
1969
1970static void end_sync_read(struct bio *bio, int error)
1971{
1972        struct r10bio *r10_bio = bio->bi_private;
1973        struct r10conf *conf = r10_bio->mddev->private;
1974        int d;
1975
1976        if (bio == r10_bio->master_bio) {
1977                /* this is a reshape read */
1978                d = r10_bio->read_slot; /* really the read dev */
1979        } else
1980                d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1981
1982        if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1983                set_bit(R10BIO_Uptodate, &r10_bio->state);
1984        else
1985                /* The write handler will notice the lack of
1986                 * R10BIO_Uptodate and record any errors etc
1987                 */
1988                atomic_add(r10_bio->sectors,
1989                           &conf->mirrors[d].rdev->corrected_errors);
1990
1991        /* for reconstruct, we always reschedule after a read.
1992         * for resync, only after all reads
1993         */
1994        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1995        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1996            atomic_dec_and_test(&r10_bio->remaining)) {
1997                /* we have read all the blocks,
1998                 * do the comparison in process context in raid10d
1999                 */
2000                reschedule_retry(r10_bio);
2001        }
2002}
2003
2004static void end_sync_request(struct r10bio *r10_bio)
2005{
2006        struct mddev *mddev = r10_bio->mddev;
2007
2008        while (atomic_dec_and_test(&r10_bio->remaining)) {
2009                if (r10_bio->master_bio == NULL) {
2010                        /* the primary of several recovery bios */
2011                        sector_t s = r10_bio->sectors;
2012                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2013                            test_bit(R10BIO_WriteError, &r10_bio->state))
2014                                reschedule_retry(r10_bio);
2015                        else
2016                                put_buf(r10_bio);
2017                        md_done_sync(mddev, s, 1);
2018                        break;
2019                } else {
2020                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
2021                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2022                            test_bit(R10BIO_WriteError, &r10_bio->state))
2023                                reschedule_retry(r10_bio);
2024                        else
2025                                put_buf(r10_bio);
2026                        r10_bio = r10_bio2;
2027                }
2028        }
2029}
2030
2031static void end_sync_write(struct bio *bio, int error)
2032{
2033        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2034        struct r10bio *r10_bio = bio->bi_private;
2035        struct mddev *mddev = r10_bio->mddev;
2036        struct r10conf *conf = mddev->private;
2037        int d;
2038        sector_t first_bad;
2039        int bad_sectors;
2040        int slot;
2041        int repl;
2042        struct md_rdev *rdev = NULL;
2043
2044        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2045        if (repl)
2046                rdev = conf->mirrors[d].replacement;
2047        else
2048                rdev = conf->mirrors[d].rdev;
2049
2050        if (!uptodate) {
2051                if (repl)
2052                        md_error(mddev, rdev);
2053                else {
2054                        set_bit(WriteErrorSeen, &rdev->flags);
2055                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
2056                                set_bit(MD_RECOVERY_NEEDED,
2057                                        &rdev->mddev->recovery);
2058                        set_bit(R10BIO_WriteError, &r10_bio->state);
2059                }
2060        } else if (is_badblock(rdev,
2061                             r10_bio->devs[slot].addr,
2062                             r10_bio->sectors,
2063                             &first_bad, &bad_sectors))
2064                set_bit(R10BIO_MadeGood, &r10_bio->state);
2065
2066        rdev_dec_pending(rdev, mddev);
2067
2068        end_sync_request(r10_bio);
2069}
2070
2071/*
2072 * Note: sync and recover and handled very differently for raid10
2073 * This code is for resync.
2074 * For resync, we read through virtual addresses and read all blocks.
2075 * If there is any error, we schedule a write.  The lowest numbered
2076 * drive is authoritative.
2077 * However requests come for physical address, so we need to map.
2078 * For every physical address there are raid_disks/copies virtual addresses,
2079 * which is always are least one, but is not necessarly an integer.
2080 * This means that a physical address can span multiple chunks, so we may
2081 * have to submit multiple io requests for a single sync request.
2082 */
2083/*
2084 * We check if all blocks are in-sync and only write to blocks that
2085 * aren't in sync
2086 */
2087static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2088{
2089        struct r10conf *conf = mddev->private;
2090        int i, first;
2091        struct bio *tbio, *fbio;
2092        int vcnt;
2093
2094        atomic_set(&r10_bio->remaining, 1);
2095
2096        /* find the first device with a block */
2097        for (i=0; i<conf->copies; i++)
2098                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2099                        break;
2100
2101        if (i == conf->copies)
2102                goto done;
2103
2104        first = i;
2105        fbio = r10_bio->devs[i].bio;
2106        fbio->bi_size = r10_bio->sectors << 9;
2107        fbio->bi_idx = 0;
2108
2109        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2110        /* now find blocks with errors */
2111        for (i=0 ; i < conf->copies ; i++) {
2112                int  j, d;
2113                struct md_rdev *rdev;
2114
2115                tbio = r10_bio->devs[i].bio;
2116
2117                if (tbio->bi_end_io != end_sync_read)
2118                        continue;
2119                if (i == first)
2120                        continue;
2121                d = r10_bio->devs[i].devnum;
2122                rdev = conf->mirrors[d].rdev;
2123                if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2124                        /* We know that the bi_io_vec layout is the same for
2125                         * both 'first' and 'i', so we just compare them.
2126                         * All vec entries are PAGE_SIZE;
2127                         */
2128                        int sectors = r10_bio->sectors;
2129                        for (j = 0; j < vcnt; j++) {
2130                                int len = PAGE_SIZE;
2131                                if (sectors < (len / 512))
2132                                        len = sectors * 512;
2133                                if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2134                                           page_address(tbio->bi_io_vec[j].bv_page),
2135                                           len))
2136                                        break;
2137                                sectors -= len/512;
2138                        }
2139                        if (j == vcnt)
2140                                continue;
2141                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2142                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2143                                /* Don't fix anything. */
2144                                continue;
2145                } else if (test_bit(FailFast, &rdev->flags)) {
2146                        /* Just give up on this device */
2147                        md_error(rdev->mddev, rdev);
2148                        continue;
2149                }
2150                /* Ok, we need to write this bio, either to correct an
2151                 * inconsistency or to correct an unreadable block.
2152                 * First we need to fixup bv_offset, bv_len and
2153                 * bi_vecs, as the read request might have corrupted these
2154                 */
2155                bio_reset(tbio);
2156
2157                tbio->bi_vcnt = vcnt;
2158                tbio->bi_size = fbio->bi_size;
2159                tbio->bi_rw = WRITE;
2160                tbio->bi_private = r10_bio;
2161                tbio->bi_sector = r10_bio->devs[i].addr;
2162
2163                for (j=0; j < vcnt ; j++) {
2164                        tbio->bi_io_vec[j].bv_offset = 0;
2165                        tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2166
2167                        memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2168                               page_address(fbio->bi_io_vec[j].bv_page),
2169                               PAGE_SIZE);
2170                }
2171                tbio->bi_end_io = end_sync_write;
2172
2173                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2174                atomic_inc(&r10_bio->remaining);
2175                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2176
2177                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2178                        tbio->bi_rw |= MD_FAILFAST;
2179                tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2180                tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2181                generic_make_request(tbio);
2182        }
2183
2184        /* Now write out to any replacement devices
2185         * that are active
2186         */
2187        for (i = 0; i < conf->copies; i++) {
2188                int j, d;
2189
2190                tbio = r10_bio->devs[i].repl_bio;
2191                if (!tbio || !tbio->bi_end_io)
2192                        continue;
2193                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2194                    && r10_bio->devs[i].bio != fbio)
2195                        for (j = 0; j < vcnt; j++)
2196                                memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2197                                       page_address(fbio->bi_io_vec[j].bv_page),
2198                                       PAGE_SIZE);
2199                d = r10_bio->devs[i].devnum;
2200                atomic_inc(&r10_bio->remaining);
2201                md_sync_acct(conf->mirrors[d].replacement->bdev,
2202                             bio_sectors(tbio));
2203                generic_make_request(tbio);
2204        }
2205
2206done:
2207        if (atomic_dec_and_test(&r10_bio->remaining)) {
2208                md_done_sync(mddev, r10_bio->sectors, 1);
2209                put_buf(r10_bio);
2210        }
2211}
2212
2213/*
2214 * Now for the recovery code.
2215 * Recovery happens across physical sectors.
2216 * We recover all non-is_sync drives by finding the virtual address of
2217 * each, and then choose a working drive that also has that virt address.
2218 * There is a separate r10_bio for each non-in_sync drive.
2219 * Only the first two slots are in use. The first for reading,
2220 * The second for writing.
2221 *
2222 */
2223static void fix_recovery_read_error(struct r10bio *r10_bio)
2224{
2225        /* We got a read error during recovery.
2226         * We repeat the read in smaller page-sized sections.
2227         * If a read succeeds, write it to the new device or record
2228         * a bad block if we cannot.
2229         * If a read fails, record a bad block on both old and
2230         * new devices.
2231         */
2232        struct mddev *mddev = r10_bio->mddev;
2233        struct r10conf *conf = mddev->private;
2234        struct bio *bio = r10_bio->devs[0].bio;
2235        sector_t sect = 0;
2236        int sectors = r10_bio->sectors;
2237        int idx = 0;
2238        int dr = r10_bio->devs[0].devnum;
2239        int dw = r10_bio->devs[1].devnum;
2240
2241        while (sectors) {
2242                int s = sectors;
2243                struct md_rdev *rdev;
2244                sector_t addr;
2245                int ok;
2246
2247                if (s > (PAGE_SIZE>>9))
2248                        s = PAGE_SIZE >> 9;
2249
2250                rdev = conf->mirrors[dr].rdev;
2251                addr = r10_bio->devs[0].addr + sect,
2252                ok = sync_page_io(rdev,
2253                                  addr,
2254                                  s << 9,
2255                                  bio->bi_io_vec[idx].bv_page,
2256                                  READ, false);
2257                if (ok) {
2258                        rdev = conf->mirrors[dw].rdev;
2259                        addr = r10_bio->devs[1].addr + sect;
2260                        ok = sync_page_io(rdev,
2261                                          addr,
2262                                          s << 9,
2263                                          bio->bi_io_vec[idx].bv_page,
2264                                          WRITE, false);
2265                        if (!ok) {
2266                                set_bit(WriteErrorSeen, &rdev->flags);
2267                                if (!test_and_set_bit(WantReplacement,
2268                                                      &rdev->flags))
2269                                        set_bit(MD_RECOVERY_NEEDED,
2270                                                &rdev->mddev->recovery);
2271                        }
2272                }
2273                if (!ok) {
2274                        /* We don't worry if we cannot set a bad block -
2275                         * it really is bad so there is no loss in not
2276                         * recording it yet
2277                         */
2278                        rdev_set_badblocks(rdev, addr, s, 0);
2279
2280                        if (rdev != conf->mirrors[dw].rdev) {
2281                                /* need bad block on destination too */
2282                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2283                                addr = r10_bio->devs[1].addr + sect;
2284                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2285                                if (!ok) {
2286                                        /* just abort the recovery */
2287                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2288                                                  mdname(mddev));
2289
2290                                        conf->mirrors[dw].recovery_disabled
2291                                                = mddev->recovery_disabled;
2292                                        set_bit(MD_RECOVERY_INTR,
2293                                                &mddev->recovery);
2294                                        break;
2295                                }
2296                        }
2297                }
2298
2299                sectors -= s;
2300                sect += s;
2301                idx++;
2302        }
2303}
2304
2305static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2306{
2307        struct r10conf *conf = mddev->private;
2308        int d;
2309        struct bio *wbio, *wbio2;
2310
2311        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2312                fix_recovery_read_error(r10_bio);
2313                end_sync_request(r10_bio);
2314                return;
2315        }
2316
2317        /*
2318         * share the pages with the first bio
2319         * and submit the write request
2320         */
2321        d = r10_bio->devs[1].devnum;
2322        wbio = r10_bio->devs[1].bio;
2323        wbio2 = r10_bio->devs[1].repl_bio;
2324        /* Need to test wbio2->bi_end_io before we call
2325         * generic_make_request as if the former is NULL,
2326         * the latter is free to free wbio2.
2327         */
2328        if (wbio2 && !wbio2->bi_end_io)
2329                wbio2 = NULL;
2330        if (wbio->bi_end_io) {
2331                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2332                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2333                generic_make_request(wbio);
2334        }
2335        if (wbio2) {
2336                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2337                md_sync_acct(conf->mirrors[d].replacement->bdev,
2338                             bio_sectors(wbio2));
2339                generic_make_request(wbio2);
2340        }
2341}
2342
2343/*
2344 * Used by fix_read_error() to decay the per rdev read_errors.
2345 * We halve the read error count for every hour that has elapsed
2346 * since the last recorded read error.
2347 *
2348 */
2349static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2350{
2351        struct timespec cur_time_mon;
2352        unsigned long hours_since_last;
2353        unsigned int read_errors = atomic_read(&rdev->read_errors);
2354
2355        ktime_get_ts(&cur_time_mon);
2356
2357        if (rdev->last_read_error.tv_sec == 0 &&
2358            rdev->last_read_error.tv_nsec == 0) {
2359                /* first time we've seen a read error */
2360                rdev->last_read_error = cur_time_mon;
2361                return;
2362        }
2363
2364        hours_since_last = (cur_time_mon.tv_sec -
2365                            rdev->last_read_error.tv_sec) / 3600;
2366
2367        rdev->last_read_error = cur_time_mon;
2368
2369        /*
2370         * if hours_since_last is > the number of bits in read_errors
2371         * just set read errors to 0. We do this to avoid
2372         * overflowing the shift of read_errors by hours_since_last.
2373         */
2374        if (hours_since_last >= 8 * sizeof(read_errors))
2375                atomic_set(&rdev->read_errors, 0);
2376        else
2377                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2378}
2379
2380static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2381                            int sectors, struct page *page, int rw)
2382{
2383        sector_t first_bad;
2384        int bad_sectors;
2385
2386        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2387            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2388                return -1;
2389        if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2390                /* success */
2391                return 1;
2392        if (rw == WRITE) {
2393                set_bit(WriteErrorSeen, &rdev->flags);
2394                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2395                        set_bit(MD_RECOVERY_NEEDED,
2396                                &rdev->mddev->recovery);
2397        }
2398        /* need to record an error - either for the block or the device */
2399        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2400                md_error(rdev->mddev, rdev);
2401        return 0;
2402}
2403
2404/*
2405 * This is a kernel thread which:
2406 *
2407 *      1.      Retries failed read operations on working mirrors.
2408 *      2.      Updates the raid superblock when problems encounter.
2409 *      3.      Performs writes following reads for array synchronising.
2410 */
2411
2412static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2413{
2414        int sect = 0; /* Offset from r10_bio->sector */
2415        int sectors = r10_bio->sectors;
2416        struct md_rdev*rdev;
2417        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2418        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2419
2420        /* still own a reference to this rdev, so it cannot
2421         * have been cleared recently.
2422         */
2423        rdev = conf->mirrors[d].rdev;
2424
2425        if (test_bit(Faulty, &rdev->flags))
2426                /* drive has already been failed, just ignore any
2427                   more fix_read_error() attempts */
2428                return;
2429
2430        check_decay_read_errors(mddev, rdev);
2431        atomic_inc(&rdev->read_errors);
2432        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2433                char b[BDEVNAME_SIZE];
2434                bdevname(rdev->bdev, b);
2435
2436                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2437                          mdname(mddev), b,
2438                          atomic_read(&rdev->read_errors), max_read_errors);
2439                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2440                          mdname(mddev), b);
2441                md_error(mddev, rdev);
2442                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2443                return;
2444        }
2445
2446        while(sectors) {
2447                int s = sectors;
2448                int sl = r10_bio->read_slot;
2449                int success = 0;
2450                int start;
2451
2452                if (s > (PAGE_SIZE>>9))
2453                        s = PAGE_SIZE >> 9;
2454
2455                rcu_read_lock();
2456                do {
2457                        sector_t first_bad;
2458                        int bad_sectors;
2459
2460                        d = r10_bio->devs[sl].devnum;
2461                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2462                        if (rdev &&
2463                            !test_bit(Unmerged, &rdev->flags) &&
2464                            test_bit(In_sync, &rdev->flags) &&
2465                            !test_bit(Faulty, &rdev->flags) &&
2466                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2467                                        &first_bad, &bad_sectors) == 0) {
2468                                atomic_inc(&rdev->nr_pending);
2469                                rcu_read_unlock();
2470                                success = sync_page_io(rdev,
2471                                                       r10_bio->devs[sl].addr +
2472                                                       sect,
2473                                                       s<<9,
2474                                                       conf->tmppage, READ, false);
2475                                rdev_dec_pending(rdev, mddev);
2476                                rcu_read_lock();
2477                                if (success)
2478                                        break;
2479                        }
2480                        sl++;
2481                        if (sl == conf->copies)
2482                                sl = 0;
2483                } while (!success && sl != r10_bio->read_slot);
2484                rcu_read_unlock();
2485
2486                if (!success) {
2487                        /* Cannot read from anywhere, just mark the block
2488                         * as bad on the first device to discourage future
2489                         * reads.
2490                         */
2491                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2492                        rdev = conf->mirrors[dn].rdev;
2493
2494                        if (!rdev_set_badblocks(
2495                                    rdev,
2496                                    r10_bio->devs[r10_bio->read_slot].addr
2497                                    + sect,
2498                                    s, 0)) {
2499                                md_error(mddev, rdev);
2500                                r10_bio->devs[r10_bio->read_slot].bio
2501                                        = IO_BLOCKED;
2502                        }
2503                        break;
2504                }
2505
2506                start = sl;
2507                /* write it back and re-read */
2508                rcu_read_lock();
2509                while (sl != r10_bio->read_slot) {
2510                        char b[BDEVNAME_SIZE];
2511
2512                        if (sl==0)
2513                                sl = conf->copies;
2514                        sl--;
2515                        d = r10_bio->devs[sl].devnum;
2516                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2517                        if (!rdev ||
2518                            test_bit(Unmerged, &rdev->flags) ||
2519                            test_bit(Faulty, &rdev->flags) ||
2520                            !test_bit(In_sync, &rdev->flags))
2521                                continue;
2522
2523                        atomic_inc(&rdev->nr_pending);
2524                        rcu_read_unlock();
2525                        if (r10_sync_page_io(rdev,
2526                                             r10_bio->devs[sl].addr +
2527                                             sect,
2528                                             s, conf->tmppage, WRITE)
2529                            == 0) {
2530                                /* Well, this device is dead */
2531                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2532                                          mdname(mddev), s,
2533                                          (unsigned long long)(
2534                                                  sect +
2535                                                  choose_data_offset(r10_bio,
2536                                                                     rdev)),
2537                                          bdevname(rdev->bdev, b));
2538                                pr_notice("md/raid10:%s: %s: failing drive\n",
2539                                          mdname(mddev),
2540                                          bdevname(rdev->bdev, b));
2541                        }
2542                        rdev_dec_pending(rdev, mddev);
2543                        rcu_read_lock();
2544                }
2545                sl = start;
2546                while (sl != r10_bio->read_slot) {
2547                        char b[BDEVNAME_SIZE];
2548
2549                        if (sl==0)
2550                                sl = conf->copies;
2551                        sl--;
2552                        d = r10_bio->devs[sl].devnum;
2553                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2554                        if (!rdev ||
2555                            test_bit(Faulty, &rdev->flags) ||
2556                            !test_bit(In_sync, &rdev->flags))
2557                                continue;
2558
2559                        atomic_inc(&rdev->nr_pending);
2560                        rcu_read_unlock();
2561                        switch (r10_sync_page_io(rdev,
2562                                             r10_bio->devs[sl].addr +
2563                                             sect,
2564                                             s, conf->tmppage,
2565                                                 READ)) {
2566                        case 0:
2567                                /* Well, this device is dead */
2568                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2569                                       mdname(mddev), s,
2570                                       (unsigned long long)(
2571                                               sect +
2572                                               choose_data_offset(r10_bio, rdev)),
2573                                       bdevname(rdev->bdev, b));
2574                                pr_notice("md/raid10:%s: %s: failing drive\n",
2575                                       mdname(mddev),
2576                                       bdevname(rdev->bdev, b));
2577                                break;
2578                        case 1:
2579                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2580                                       mdname(mddev), s,
2581                                       (unsigned long long)(
2582                                               sect +
2583                                               choose_data_offset(r10_bio, rdev)),
2584                                       bdevname(rdev->bdev, b));
2585                                atomic_add(s, &rdev->corrected_errors);
2586                        }
2587
2588                        rdev_dec_pending(rdev, mddev);
2589                        rcu_read_lock();
2590                }
2591                rcu_read_unlock();
2592
2593                sectors -= s;
2594                sect += s;
2595        }
2596}
2597
2598static int narrow_write_error(struct r10bio *r10_bio, int i)
2599{
2600        struct bio *bio = r10_bio->master_bio;
2601        struct mddev *mddev = r10_bio->mddev;
2602        struct r10conf *conf = mddev->private;
2603        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2604        /* bio has the data to be written to slot 'i' where
2605         * we just recently had a write error.
2606         * We repeatedly clone the bio and trim down to one block,
2607         * then try the write.  Where the write fails we record
2608         * a bad block.
2609         * It is conceivable that the bio doesn't exactly align with
2610         * blocks.  We must handle this.
2611         *
2612         * We currently own a reference to the rdev.
2613         */
2614
2615        int block_sectors;
2616        sector_t sector;
2617        int sectors;
2618        int sect_to_write = r10_bio->sectors;
2619        int ok = 1;
2620
2621        if (rdev->badblocks.shift < 0)
2622                return 0;
2623
2624        block_sectors = roundup(1 << rdev->badblocks.shift,
2625                                bdev_logical_block_size(rdev->bdev) >> 9);
2626        sector = r10_bio->sector;
2627        sectors = ((r10_bio->sector + block_sectors)
2628                   & ~(sector_t)(block_sectors - 1))
2629                - sector;
2630
2631        while (sect_to_write) {
2632                struct bio *wbio;
2633                sector_t wsector;
2634                if (sectors > sect_to_write)
2635                        sectors = sect_to_write;
2636                /* Write at 'sector' for 'sectors' */
2637                wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2638                bio_trim(wbio, sector - bio->bi_sector, sectors);
2639                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2640                wbio->bi_sector = wsector +
2641                                   choose_data_offset(r10_bio, rdev);
2642                wbio->bi_bdev = rdev->bdev;
2643                if (submit_bio_wait(WRITE, wbio) < 0)
2644                        /* Failure! */
2645                        ok = rdev_set_badblocks(rdev, wsector,
2646                                                sectors, 0)
2647                                && ok;
2648
2649                bio_put(wbio);
2650                sect_to_write -= sectors;
2651                sector += sectors;
2652                sectors = block_sectors;
2653        }
2654        return ok;
2655}
2656
2657static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2658{
2659        int slot = r10_bio->read_slot;
2660        struct bio *bio;
2661        struct r10conf *conf = mddev->private;
2662        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2663        char b[BDEVNAME_SIZE];
2664        unsigned long do_sync;
2665        int max_sectors;
2666
2667        /* we got a read error. Maybe the drive is bad.  Maybe just
2668         * the block and we can fix it.
2669         * We freeze all other IO, and try reading the block from
2670         * other devices.  When we find one, we re-write
2671         * and check it that fixes the read error.
2672         * This is all done synchronously while the array is
2673         * frozen.
2674         */
2675        bio = r10_bio->devs[slot].bio;
2676        bdevname(bio->bi_bdev, b);
2677        bio_put(bio);
2678        r10_bio->devs[slot].bio = NULL;
2679
2680        if (mddev->ro)
2681                r10_bio->devs[slot].bio = IO_BLOCKED;
2682        else if (!test_bit(FailFast, &rdev->flags)) {
2683                freeze_array(conf, 1);
2684                fix_read_error(conf, mddev, r10_bio);
2685                unfreeze_array(conf);
2686        } else
2687                md_error(mddev, rdev);
2688
2689        rdev_dec_pending(rdev, mddev);
2690
2691read_more:
2692        rdev = read_balance(conf, r10_bio, &max_sectors);
2693        if (rdev == NULL) {
2694                pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2695                                    mdname(mddev), b,
2696                                    (unsigned long long)r10_bio->sector);
2697                raid_end_bio_io(r10_bio);
2698                return;
2699        }
2700
2701        do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2702        slot = r10_bio->read_slot;
2703        pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2704                           mdname(mddev),
2705                           bdevname(rdev->bdev, b),
2706                           (unsigned long long)r10_bio->sector);
2707        bio = bio_clone_mddev(r10_bio->master_bio,
2708                              GFP_NOIO, mddev);
2709        bio_trim(bio, r10_bio->sector - bio->bi_sector, max_sectors);
2710        r10_bio->devs[slot].bio = bio;
2711        r10_bio->devs[slot].rdev = rdev;
2712        bio->bi_sector = r10_bio->devs[slot].addr
2713                + choose_data_offset(r10_bio, rdev);
2714        bio->bi_bdev = rdev->bdev;
2715        bio->bi_rw = READ | do_sync;
2716        if (test_bit(FailFast, &rdev->flags) &&
2717            test_bit(R10BIO_FailFast, &r10_bio->state))
2718                bio->bi_rw |= MD_FAILFAST;
2719        bio->bi_private = r10_bio;
2720        bio->bi_end_io = raid10_end_read_request;
2721        if (max_sectors < r10_bio->sectors) {
2722                /* Drat - have to split this up more */
2723                struct bio *mbio = r10_bio->master_bio;
2724                int sectors_handled =
2725                        r10_bio->sector + max_sectors
2726                        - mbio->bi_sector;
2727                r10_bio->sectors = max_sectors;
2728                spin_lock_irq(&conf->device_lock);
2729                if (mbio->bi_phys_segments == 0)
2730                        mbio->bi_phys_segments = 2;
2731                else
2732                        mbio->bi_phys_segments++;
2733                spin_unlock_irq(&conf->device_lock);
2734                generic_make_request(bio);
2735
2736                r10_bio = mempool_alloc(conf->r10bio_pool,
2737                                        GFP_NOIO);
2738                r10_bio->master_bio = mbio;
2739                r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2740                r10_bio->state = 0;
2741                set_bit(R10BIO_ReadError,
2742                        &r10_bio->state);
2743                r10_bio->mddev = mddev;
2744                r10_bio->sector = mbio->bi_sector
2745                        + sectors_handled;
2746
2747                goto read_more;
2748        } else
2749                generic_make_request(bio);
2750}
2751
2752static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2753{
2754        /* Some sort of write request has finished and it
2755         * succeeded in writing where we thought there was a
2756         * bad block.  So forget the bad block.
2757         * Or possibly if failed and we need to record
2758         * a bad block.
2759         */
2760        int m;
2761        struct md_rdev *rdev;
2762
2763        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2764            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2765                for (m = 0; m < conf->copies; m++) {
2766                        int dev = r10_bio->devs[m].devnum;
2767                        rdev = conf->mirrors[dev].rdev;
2768                        if (r10_bio->devs[m].bio == NULL)
2769                                continue;
2770                        if (test_bit(BIO_UPTODATE,
2771                                     &r10_bio->devs[m].bio->bi_flags)) {
2772                                rdev_clear_badblocks(
2773                                        rdev,
2774                                        r10_bio->devs[m].addr,
2775                                        r10_bio->sectors, 0);
2776                        } else {
2777                                if (!rdev_set_badblocks(
2778                                            rdev,
2779                                            r10_bio->devs[m].addr,
2780                                            r10_bio->sectors, 0))
2781                                        md_error(conf->mddev, rdev);
2782                        }
2783                        rdev = conf->mirrors[dev].replacement;
2784                        if (r10_bio->devs[m].repl_bio == NULL)
2785                                continue;
2786                        if (test_bit(BIO_UPTODATE,
2787                                     &r10_bio->devs[m].repl_bio->bi_flags)) {
2788                                rdev_clear_badblocks(
2789                                        rdev,
2790                                        r10_bio->devs[m].addr,
2791                                        r10_bio->sectors, 0);
2792                        } else {
2793                                if (!rdev_set_badblocks(
2794                                            rdev,
2795                                            r10_bio->devs[m].addr,
2796                                            r10_bio->sectors, 0))
2797                                        md_error(conf->mddev, rdev);
2798                        }
2799                }
2800                put_buf(r10_bio);
2801        } else {
2802                bool fail = false;
2803                for (m = 0; m < conf->copies; m++) {
2804                        int dev = r10_bio->devs[m].devnum;
2805                        struct bio *bio = r10_bio->devs[m].bio;
2806                        rdev = conf->mirrors[dev].rdev;
2807                        if (bio == IO_MADE_GOOD) {
2808                                rdev_clear_badblocks(
2809                                        rdev,
2810                                        r10_bio->devs[m].addr,
2811                                        r10_bio->sectors, 0);
2812                                rdev_dec_pending(rdev, conf->mddev);
2813                        } else if (bio != NULL &&
2814                                   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2815                                fail = true;
2816                                if (!narrow_write_error(r10_bio, m)) {
2817                                        md_error(conf->mddev, rdev);
2818                                        set_bit(R10BIO_Degraded,
2819                                                &r10_bio->state);
2820                                }
2821                                rdev_dec_pending(rdev, conf->mddev);
2822                        }
2823                        bio = r10_bio->devs[m].repl_bio;
2824                        rdev = conf->mirrors[dev].replacement;
2825                        if (rdev && bio == IO_MADE_GOOD) {
2826                                rdev_clear_badblocks(
2827                                        rdev,
2828                                        r10_bio->devs[m].addr,
2829                                        r10_bio->sectors, 0);
2830                                rdev_dec_pending(rdev, conf->mddev);
2831                        }
2832                }
2833                if (fail) {
2834                        spin_lock_irq(&conf->device_lock);
2835                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2836                        conf->nr_queued++;
2837                        spin_unlock_irq(&conf->device_lock);
2838                        md_wakeup_thread(conf->mddev->thread);
2839                } else {
2840                        if (test_bit(R10BIO_WriteError,
2841                                     &r10_bio->state))
2842                                close_write(r10_bio);
2843                        raid_end_bio_io(r10_bio);
2844                }
2845        }
2846}
2847
2848static void raid10d(struct md_thread *thread)
2849{
2850        struct mddev *mddev = thread->mddev;
2851        struct r10bio *r10_bio;
2852        unsigned long flags;
2853        struct r10conf *conf = mddev->private;
2854        struct list_head *head = &conf->retry_list;
2855        struct blk_plug plug;
2856
2857        md_check_recovery(mddev);
2858
2859        if (!list_empty_careful(&conf->bio_end_io_list) &&
2860            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2861                LIST_HEAD(tmp);
2862                spin_lock_irqsave(&conf->device_lock, flags);
2863                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2864                        while (!list_empty(&conf->bio_end_io_list)) {
2865                                list_move(conf->bio_end_io_list.prev, &tmp);
2866                                conf->nr_queued--;
2867                        }
2868                }
2869                spin_unlock_irqrestore(&conf->device_lock, flags);
2870                while (!list_empty(&tmp)) {
2871                        r10_bio = list_first_entry(&tmp, struct r10bio,
2872                                                   retry_list);
2873                        list_del(&r10_bio->retry_list);
2874                        if (mddev->degraded)
2875                                set_bit(R10BIO_Degraded, &r10_bio->state);
2876
2877                        if (test_bit(R10BIO_WriteError,
2878                                     &r10_bio->state))
2879                                close_write(r10_bio);
2880                        raid_end_bio_io(r10_bio);
2881                }
2882        }
2883
2884        blk_start_plug(&plug);
2885        for (;;) {
2886
2887                flush_pending_writes(conf);
2888
2889                spin_lock_irqsave(&conf->device_lock, flags);
2890                if (list_empty(head)) {
2891                        spin_unlock_irqrestore(&conf->device_lock, flags);
2892                        break;
2893                }
2894                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2895                list_del(head->prev);
2896                conf->nr_queued--;
2897                spin_unlock_irqrestore(&conf->device_lock, flags);
2898
2899                mddev = r10_bio->mddev;
2900                conf = mddev->private;
2901                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2902                    test_bit(R10BIO_WriteError, &r10_bio->state))
2903                        handle_write_completed(conf, r10_bio);
2904                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2905                        reshape_request_write(mddev, r10_bio);
2906                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2907                        sync_request_write(mddev, r10_bio);
2908                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2909                        recovery_request_write(mddev, r10_bio);
2910                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2911                        handle_read_error(mddev, r10_bio);
2912                else {
2913                        /* just a partial read to be scheduled from a
2914                         * separate context
2915                         */
2916                        int slot = r10_bio->read_slot;
2917                        generic_make_request(r10_bio->devs[slot].bio);
2918                }
2919
2920                cond_resched();
2921                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2922                        md_check_recovery(mddev);
2923        }
2924        blk_finish_plug(&plug);
2925}
2926
2927static int init_resync(struct r10conf *conf)
2928{
2929        int buffs;
2930        int i;
2931
2932        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2933        BUG_ON(conf->r10buf_pool);
2934        conf->have_replacement = 0;
2935        for (i = 0; i < conf->geo.raid_disks; i++)
2936                if (conf->mirrors[i].replacement)
2937                        conf->have_replacement = 1;
2938        conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2939        if (!conf->r10buf_pool)
2940                return -ENOMEM;
2941        conf->next_resync = 0;
2942        return 0;
2943}
2944
2945/*
2946 * perform a "sync" on one "block"
2947 *
2948 * We need to make sure that no normal I/O request - particularly write
2949 * requests - conflict with active sync requests.
2950 *
2951 * This is achieved by tracking pending requests and a 'barrier' concept
2952 * that can be installed to exclude normal IO requests.
2953 *
2954 * Resync and recovery are handled very differently.
2955 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2956 *
2957 * For resync, we iterate over virtual addresses, read all copies,
2958 * and update if there are differences.  If only one copy is live,
2959 * skip it.
2960 * For recovery, we iterate over physical addresses, read a good
2961 * value for each non-in_sync drive, and over-write.
2962 *
2963 * So, for recovery we may have several outstanding complex requests for a
2964 * given address, one for each out-of-sync device.  We model this by allocating
2965 * a number of r10_bio structures, one for each out-of-sync device.
2966 * As we setup these structures, we collect all bio's together into a list
2967 * which we then process collectively to add pages, and then process again
2968 * to pass to generic_make_request.
2969 *
2970 * The r10_bio structures are linked using a borrowed master_bio pointer.
2971 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2972 * has its remaining count decremented to 0, the whole complex operation
2973 * is complete.
2974 *
2975 */
2976
2977static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2978                             int *skipped)
2979{
2980        struct r10conf *conf = mddev->private;
2981        struct r10bio *r10_bio;
2982        struct bio *biolist = NULL, *bio;
2983        sector_t max_sector, nr_sectors;
2984        int i;
2985        int max_sync;
2986        sector_t sync_blocks;
2987        sector_t sectors_skipped = 0;
2988        int chunks_skipped = 0;
2989        sector_t chunk_mask = conf->geo.chunk_mask;
2990
2991        if (!conf->r10buf_pool)
2992                if (init_resync(conf))
2993                        return 0;
2994
2995        /*
2996         * Allow skipping a full rebuild for incremental assembly
2997         * of a clean array, like RAID1 does.
2998         */
2999        if (mddev->bitmap == NULL &&
3000            mddev->recovery_cp == MaxSector &&
3001            mddev->reshape_position == MaxSector &&
3002            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
3003            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3004            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
3005            conf->fullsync == 0) {
3006                *skipped = 1;
3007                return mddev->dev_sectors - sector_nr;
3008        }
3009
3010 skipped:
3011        max_sector = mddev->dev_sectors;
3012        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
3013            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3014                max_sector = mddev->resync_max_sectors;
3015        if (sector_nr >= max_sector) {
3016                /* If we aborted, we need to abort the
3017                 * sync on the 'current' bitmap chucks (there can
3018                 * be several when recovering multiple devices).
3019                 * as we may have started syncing it but not finished.
3020                 * We can find the current address in
3021                 * mddev->curr_resync, but for recovery,
3022                 * we need to convert that to several
3023                 * virtual addresses.
3024                 */
3025                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3026                        end_reshape(conf);
3027                        close_sync(conf);
3028                        return 0;
3029                }
3030
3031                if (mddev->curr_resync < max_sector) { /* aborted */
3032                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3033                                bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3034                                                &sync_blocks, 1);
3035                        else for (i = 0; i < conf->geo.raid_disks; i++) {
3036                                sector_t sect =
3037                                        raid10_find_virt(conf, mddev->curr_resync, i);
3038                                bitmap_end_sync(mddev->bitmap, sect,
3039                                                &sync_blocks, 1);
3040                        }
3041                } else {
3042                        /* completed sync */
3043                        if ((!mddev->bitmap || conf->fullsync)
3044                            && conf->have_replacement
3045                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3046                                /* Completed a full sync so the replacements
3047                                 * are now fully recovered.
3048                                 */
3049                                rcu_read_lock();
3050                                for (i = 0; i < conf->geo.raid_disks; i++) {
3051                                        struct md_rdev *rdev =
3052                                                rcu_dereference(conf->mirrors[i].replacement);
3053                                        if (rdev)
3054                                                rdev->recovery_offset = MaxSector;
3055                                }
3056                                rcu_read_unlock();
3057                        }
3058                        conf->fullsync = 0;
3059                }
3060                bitmap_close_sync(mddev->bitmap);
3061                close_sync(conf);
3062                *skipped = 1;
3063                return sectors_skipped;
3064        }
3065
3066        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3067                return reshape_request(mddev, sector_nr, skipped);
3068
3069        if (chunks_skipped >= conf->geo.raid_disks) {
3070                /* if there has been nothing to do on any drive,
3071                 * then there is nothing to do at all..
3072                 */
3073                *skipped = 1;
3074                return (max_sector - sector_nr) + sectors_skipped;
3075        }
3076
3077        if (max_sector > mddev->resync_max)
3078                max_sector = mddev->resync_max; /* Don't do IO beyond here */
3079
3080        /* make sure whole request will fit in a chunk - if chunks
3081         * are meaningful
3082         */
3083        if (conf->geo.near_copies < conf->geo.raid_disks &&
3084            max_sector > (sector_nr | chunk_mask))
3085                max_sector = (sector_nr | chunk_mask) + 1;
3086
3087        /*
3088         * If there is non-resync activity waiting for a turn, then let it
3089         * though before starting on this new sync request.
3090         */
3091        if (conf->nr_waiting)
3092                schedule_timeout_uninterruptible(1);
3093
3094        /* Again, very different code for resync and recovery.
3095         * Both must result in an r10bio with a list of bios that
3096         * have bi_end_io, bi_sector, bi_bdev set,
3097         * and bi_private set to the r10bio.
3098         * For recovery, we may actually create several r10bios
3099         * with 2 bios in each, that correspond to the bios in the main one.
3100         * In this case, the subordinate r10bios link back through a
3101         * borrowed master_bio pointer, and the counter in the master
3102         * includes a ref from each subordinate.
3103         */
3104        /* First, we decide what to do and set ->bi_end_io
3105         * To end_sync_read if we want to read, and
3106         * end_sync_write if we will want to write.
3107         */
3108
3109        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3110        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3111                /* recovery... the complicated one */
3112                int j;
3113                r10_bio = NULL;
3114
3115                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3116                        int still_degraded;
3117                        struct r10bio *rb2;
3118                        sector_t sect;
3119                        int must_sync;
3120                        int any_working;
3121                        struct raid10_info *mirror = &conf->mirrors[i];
3122                        struct md_rdev *mrdev, *mreplace;
3123
3124                        rcu_read_lock();
3125                        mrdev = rcu_dereference(mirror->rdev);
3126                        mreplace = rcu_dereference(mirror->replacement);
3127
3128                        if ((mrdev == NULL ||
3129                             test_bit(Faulty, &mrdev->flags) ||
3130                             test_bit(In_sync, &mrdev->flags)) &&
3131                            (mreplace == NULL ||
3132                             test_bit(Faulty, &mreplace->flags))) {
3133                                rcu_read_unlock();
3134                                continue;
3135                        }
3136
3137                        still_degraded = 0;
3138                        /* want to reconstruct this device */
3139                        rb2 = r10_bio;
3140                        sect = raid10_find_virt(conf, sector_nr, i);
3141                        if (sect >= mddev->resync_max_sectors) {
3142                                /* last stripe is not complete - don't
3143                                 * try to recover this sector.
3144                                 */
3145                                rcu_read_unlock();
3146                                continue;
3147                        }
3148                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3149                                mreplace = NULL;
3150                        /* Unless we are doing a full sync, or a replacement
3151                         * we only need to recover the block if it is set in
3152                         * the bitmap
3153                         */
3154                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3155                                                      &sync_blocks, 1);
3156                        if (sync_blocks < max_sync)
3157                                max_sync = sync_blocks;
3158                        if (!must_sync &&
3159                            mreplace == NULL &&
3160                            !conf->fullsync) {
3161                                /* yep, skip the sync_blocks here, but don't assume
3162                                 * that there will never be anything to do here
3163                                 */
3164                                chunks_skipped = -1;
3165                                rcu_read_unlock();
3166                                continue;
3167                        }
3168                        atomic_inc(&mrdev->nr_pending);
3169                        if (mreplace)
3170                                atomic_inc(&mreplace->nr_pending);
3171                        rcu_read_unlock();
3172
3173                        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3174                        r10_bio->state = 0;
3175                        raise_barrier(conf, rb2 != NULL);
3176                        atomic_set(&r10_bio->remaining, 0);
3177
3178                        r10_bio->master_bio = (struct bio*)rb2;
3179                        if (rb2)
3180                                atomic_inc(&rb2->remaining);
3181                        r10_bio->mddev = mddev;
3182                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3183                        r10_bio->sector = sect;
3184
3185                        raid10_find_phys(conf, r10_bio);
3186
3187                        /* Need to check if the array will still be
3188                         * degraded
3189                         */
3190                        rcu_read_lock();
3191                        for (j = 0; j < conf->geo.raid_disks; j++) {
3192                                struct md_rdev *rdev = rcu_dereference(
3193                                        conf->mirrors[j].rdev);
3194                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3195                                        still_degraded = 1;
3196                                        break;
3197                                }
3198                        }
3199
3200                        must_sync = bitmap_start_sync(mddev->bitmap, sect,
3201                                                      &sync_blocks, still_degraded);
3202
3203                        any_working = 0;
3204                        for (j=0; j<conf->copies;j++) {
3205                                int k;
3206                                int d = r10_bio->devs[j].devnum;
3207                                sector_t from_addr, to_addr;
3208                                struct md_rdev *rdev =
3209                                        rcu_dereference(conf->mirrors[d].rdev);
3210                                sector_t sector, first_bad;
3211                                int bad_sectors;
3212                                if (!rdev ||
3213                                    !test_bit(In_sync, &rdev->flags))
3214                                        continue;
3215                                /* This is where we read from */
3216                                any_working = 1;
3217                                sector = r10_bio->devs[j].addr;
3218
3219                                if (is_badblock(rdev, sector, max_sync,
3220                                                &first_bad, &bad_sectors)) {
3221                                        if (first_bad > sector)
3222                                                max_sync = first_bad - sector;
3223                                        else {
3224                                                bad_sectors -= (sector
3225                                                                - first_bad);
3226                                                if (max_sync > bad_sectors)
3227                                                        max_sync = bad_sectors;
3228                                                continue;
3229                                        }
3230                                }
3231                                bio = r10_bio->devs[0].bio;
3232                                bio_reset(bio);
3233                                bio->bi_next = biolist;
3234                                biolist = bio;
3235                                bio->bi_private = r10_bio;
3236                                bio->bi_end_io = end_sync_read;
3237                                bio->bi_rw = READ;
3238                                if (test_bit(FailFast, &rdev->flags))
3239                                        bio->bi_rw |= MD_FAILFAST;
3240                                from_addr = r10_bio->devs[j].addr;
3241                                bio->bi_sector = from_addr + rdev->data_offset;
3242                                bio->bi_bdev = rdev->bdev;
3243                                atomic_inc(&rdev->nr_pending);
3244                                /* and we write to 'i' (if not in_sync) */
3245
3246                                for (k=0; k<conf->copies; k++)
3247                                        if (r10_bio->devs[k].devnum == i)
3248                                                break;
3249                                BUG_ON(k == conf->copies);
3250                                to_addr = r10_bio->devs[k].addr;
3251                                r10_bio->devs[0].devnum = d;
3252                                r10_bio->devs[0].addr = from_addr;
3253                                r10_bio->devs[1].devnum = i;
3254                                r10_bio->devs[1].addr = to_addr;
3255
3256                                if (!test_bit(In_sync, &mrdev->flags)) {
3257                                        bio = r10_bio->devs[1].bio;
3258                                        bio_reset(bio);
3259                                        bio->bi_next = biolist;
3260                                        biolist = bio;
3261                                        bio->bi_private = r10_bio;
3262                                        bio->bi_end_io = end_sync_write;
3263                                        bio->bi_rw = WRITE;
3264                                        bio->bi_sector = to_addr
3265                                                + mrdev->data_offset;
3266                                        bio->bi_bdev = mrdev->bdev;
3267                                        atomic_inc(&r10_bio->remaining);
3268                                } else
3269                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3270
3271                                /* and maybe write to replacement */
3272                                bio = r10_bio->devs[1].repl_bio;
3273                                if (bio)
3274                                        bio->bi_end_io = NULL;
3275                                /* Note: if mreplace != NULL, then bio
3276                                 * cannot be NULL as r10buf_pool_alloc will
3277                                 * have allocated it.
3278                                 * So the second test here is pointless.
3279                                 * But it keeps semantic-checkers happy, and
3280                                 * this comment keeps human reviewers
3281                                 * happy.
3282                                 */
3283                                if (mreplace == NULL || bio == NULL ||
3284                                    test_bit(Faulty, &mreplace->flags))
3285                                        break;
3286                                bio_reset(bio);
3287                                bio->bi_next = biolist;
3288                                biolist = bio;
3289                                bio->bi_private = r10_bio;
3290                                bio->bi_end_io = end_sync_write;
3291                                bio->bi_rw = WRITE;
3292                                bio->bi_sector = to_addr +
3293                                        mreplace->data_offset;
3294                                bio->bi_bdev = mreplace->bdev;
3295                                atomic_inc(&r10_bio->remaining);
3296                                break;
3297                        }
3298                        rcu_read_unlock();
3299                        if (j == conf->copies) {
3300                                /* Cannot recover, so abort the recovery or
3301                                 * record a bad block */
3302                                if (any_working) {
3303                                        /* problem is that there are bad blocks
3304                                         * on other device(s)
3305                                         */
3306                                        int k;
3307                                        for (k = 0; k < conf->copies; k++)
3308                                                if (r10_bio->devs[k].devnum == i)
3309                                                        break;
3310                                        if (!test_bit(In_sync,
3311                                                      &mrdev->flags)
3312                                            && !rdev_set_badblocks(
3313                                                    mrdev,
3314                                                    r10_bio->devs[k].addr,
3315                                                    max_sync, 0))
3316                                                any_working = 0;
3317                                        if (mreplace &&
3318                                            !rdev_set_badblocks(
3319                                                    mreplace,
3320                                                    r10_bio->devs[k].addr,
3321                                                    max_sync, 0))
3322                                                any_working = 0;
3323                                }
3324                                if (!any_working)  {
3325                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3326                                                              &mddev->recovery))
3327                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3328                                                       mdname(mddev));
3329                                        mirror->recovery_disabled
3330                                                = mddev->recovery_disabled;
3331                                }
3332                                put_buf(r10_bio);
3333                                if (rb2)
3334                                        atomic_dec(&rb2->remaining);
3335                                r10_bio = rb2;
3336                                rdev_dec_pending(mrdev, mddev);
3337                                if (mreplace)
3338                                        rdev_dec_pending(mreplace, mddev);
3339                                break;
3340                        }
3341                        rdev_dec_pending(mrdev, mddev);
3342                        if (mreplace)
3343                                rdev_dec_pending(mreplace, mddev);
3344                        if (r10_bio->devs[0].bio->bi_rw & MD_FAILFAST) {
3345                                /* Only want this if there is elsewhere to
3346                                 * read from. 'j' is currently the first
3347                                 * readable copy.
3348                                 */
3349                                int targets = 1;
3350                                for (; j < conf->copies; j++) {
3351                                        int d = r10_bio->devs[j].devnum;
3352                                        if (conf->mirrors[d].rdev &&
3353                                            test_bit(In_sync,
3354                                                      &conf->mirrors[d].rdev->flags))
3355                                                targets++;
3356                                }
3357                                if (targets == 1)
3358                                        r10_bio->devs[0].bio->bi_rw
3359                                                &= ~MD_FAILFAST;
3360                        }
3361                }
3362                if (biolist == NULL) {
3363                        while (r10_bio) {
3364                                struct r10bio *rb2 = r10_bio;
3365                                r10_bio = (struct r10bio*) rb2->master_bio;
3366                                rb2->master_bio = NULL;
3367                                put_buf(rb2);
3368                        }
3369                        goto giveup;
3370                }
3371        } else {
3372                /* resync. Schedule a read for every block at this virt offset */
3373                int count = 0;
3374
3375                bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3376
3377                if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3378                                       &sync_blocks, mddev->degraded) &&
3379                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3380                                                 &mddev->recovery)) {
3381                        /* We can skip this block */
3382                        *skipped = 1;
3383                        return sync_blocks + sectors_skipped;
3384                }
3385                if (sync_blocks < max_sync)
3386                        max_sync = sync_blocks;
3387                r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3388                r10_bio->state = 0;
3389
3390                r10_bio->mddev = mddev;
3391                atomic_set(&r10_bio->remaining, 0);
3392                raise_barrier(conf, 0);
3393                conf->next_resync = sector_nr;
3394
3395                r10_bio->master_bio = NULL;
3396                r10_bio->sector = sector_nr;
3397                set_bit(R10BIO_IsSync, &r10_bio->state);
3398                raid10_find_phys(conf, r10_bio);
3399                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3400
3401                for (i = 0; i < conf->copies; i++) {
3402                        int d = r10_bio->devs[i].devnum;
3403                        sector_t first_bad, sector;
3404                        int bad_sectors;
3405                        struct md_rdev *rdev;
3406
3407                        if (r10_bio->devs[i].repl_bio)
3408                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3409
3410                        bio = r10_bio->devs[i].bio;
3411                        bio_reset(bio);
3412                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3413                        rcu_read_lock();
3414                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3415                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3416                                rcu_read_unlock();
3417                                continue;
3418                        }
3419                        sector = r10_bio->devs[i].addr;
3420                        if (is_badblock(rdev, sector, max_sync,
3421                                        &first_bad, &bad_sectors)) {
3422                                if (first_bad > sector)
3423                                        max_sync = first_bad - sector;
3424                                else {
3425                                        bad_sectors -= (sector - first_bad);
3426                                        if (max_sync > bad_sectors)
3427                                                max_sync = bad_sectors;
3428                                        rcu_read_unlock();
3429                                        continue;
3430                                }
3431                        }
3432                        atomic_inc(&rdev->nr_pending);
3433                        atomic_inc(&r10_bio->remaining);
3434                        bio->bi_next = biolist;
3435                        biolist = bio;
3436                        bio->bi_private = r10_bio;
3437                        bio->bi_end_io = end_sync_read;
3438                        bio->bi_rw = READ;
3439                        if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3440                                bio->bi_rw |= MD_FAILFAST;
3441                        bio->bi_sector = sector + rdev->data_offset;
3442                        bio->bi_bdev = rdev->bdev;
3443                        count++;
3444
3445                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3446                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3447                                rcu_read_unlock();
3448                                continue;
3449                        }
3450                        atomic_inc(&rdev->nr_pending);
3451                        rcu_read_unlock();
3452
3453                        /* Need to set up for writing to the replacement */
3454                        bio = r10_bio->devs[i].repl_bio;
3455                        bio_reset(bio);
3456                        clear_bit(BIO_UPTODATE, &bio->bi_flags);
3457
3458                        sector = r10_bio->devs[i].addr;
3459                        bio->bi_next = biolist;
3460                        biolist = bio;
3461                        bio->bi_private = r10_bio;
3462                        bio->bi_end_io = end_sync_write;
3463                        bio->bi_rw = WRITE;
3464                        if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3465                                bio->bi_rw |= MD_FAILFAST;
3466                        bio->bi_sector = sector + rdev->data_offset;
3467                        bio->bi_bdev = rdev->bdev;
3468                        count++;
3469                }
3470
3471                if (count < 2) {
3472                        for (i=0; i<conf->copies; i++) {
3473                                int d = r10_bio->devs[i].devnum;
3474                                if (r10_bio->devs[i].bio->bi_end_io)
3475                                        rdev_dec_pending(conf->mirrors[d].rdev,
3476                                                         mddev);
3477                                if (r10_bio->devs[i].repl_bio &&
3478                                    r10_bio->devs[i].repl_bio->bi_end_io)
3479                                        rdev_dec_pending(
3480                                                conf->mirrors[d].replacement,
3481                                                mddev);
3482                        }
3483                        put_buf(r10_bio);
3484                        biolist = NULL;
3485                        goto giveup;
3486                }
3487        }
3488
3489        nr_sectors = 0;
3490        if (sector_nr + max_sync < max_sector)
3491                max_sector = sector_nr + max_sync;
3492        do {
3493                struct page *page;
3494                int len = PAGE_SIZE;
3495                if (sector_nr + (len>>9) > max_sector)
3496                        len = (max_sector - sector_nr) << 9;
3497                if (len == 0)
3498                        break;
3499                for (bio= biolist ; bio ; bio=bio->bi_next) {
3500                        struct bio *bio2;
3501                        page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3502                        if (bio_add_page(bio, page, len, 0))
3503                                continue;
3504
3505                        /* stop here */
3506                        bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3507                        for (bio2 = biolist;
3508                             bio2 && bio2 != bio;
3509                             bio2 = bio2->bi_next) {
3510                                /* remove last page from this bio */
3511                                bio2->bi_vcnt--;
3512                                bio2->bi_size -= len;
3513                                __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3514                        }
3515                        goto bio_full;
3516                }
3517                nr_sectors += len>>9;
3518                sector_nr += len>>9;
3519        } while (biolist->bi_vcnt < RESYNC_PAGES);
3520 bio_full:
3521        r10_bio->sectors = nr_sectors;
3522
3523        while (biolist) {
3524                bio = biolist;
3525                biolist = biolist->bi_next;
3526
3527                bio->bi_next = NULL;
3528                r10_bio = bio->bi_private;
3529                r10_bio->sectors = nr_sectors;
3530
3531                if (bio->bi_end_io == end_sync_read) {
3532                        md_sync_acct(bio->bi_bdev, nr_sectors);
3533                        set_bit(BIO_UPTODATE, &bio->bi_flags);
3534                        generic_make_request(bio);
3535                }
3536        }
3537
3538        if (sectors_skipped)
3539                /* pretend they weren't skipped, it makes
3540                 * no important difference in this case
3541                 */
3542                md_done_sync(mddev, sectors_skipped, 1);
3543
3544        return sectors_skipped + nr_sectors;
3545 giveup:
3546        /* There is nowhere to write, so all non-sync
3547         * drives must be failed or in resync, all drives
3548         * have a bad block, so try the next chunk...
3549         */
3550        if (sector_nr + max_sync < max_sector)
3551                max_sector = sector_nr + max_sync;
3552
3553        sectors_skipped += (max_sector - sector_nr);
3554        chunks_skipped ++;
3555        sector_nr = max_sector;
3556        goto skipped;
3557}
3558
3559static sector_t
3560raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3561{
3562        sector_t size;
3563        struct r10conf *conf = mddev->private;
3564
3565        if (!raid_disks)
3566                raid_disks = min(conf->geo.raid_disks,
3567                                 conf->prev.raid_disks);
3568        if (!sectors)
3569                sectors = conf->dev_sectors;
3570
3571        size = sectors >> conf->geo.chunk_shift;
3572        sector_div(size, conf->geo.far_copies);
3573        size = size * raid_disks;
3574        sector_div(size, conf->geo.near_copies);
3575
3576        return size << conf->geo.chunk_shift;
3577}
3578
3579static void calc_sectors(struct r10conf *conf, sector_t size)
3580{
3581        /* Calculate the number of sectors-per-device that will
3582         * actually be used, and set conf->dev_sectors and
3583         * conf->stride
3584         */
3585
3586        size = size >> conf->geo.chunk_shift;
3587        sector_div(size, conf->geo.far_copies);
3588        size = size * conf->geo.raid_disks;
3589        sector_div(size, conf->geo.near_copies);
3590        /* 'size' is now the number of chunks in the array */
3591        /* calculate "used chunks per device" */
3592        size = size * conf->copies;
3593
3594        /* We need to round up when dividing by raid_disks to
3595         * get the stride size.
3596         */
3597        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3598
3599        conf->dev_sectors = size << conf->geo.chunk_shift;
3600
3601        if (conf->geo.far_offset)
3602                conf->geo.stride = 1 << conf->geo.chunk_shift;
3603        else {
3604                sector_div(size, conf->geo.far_copies);
3605                conf->geo.stride = size << conf->geo.chunk_shift;
3606        }
3607}
3608
3609enum geo_type {geo_new, geo_old, geo_start};
3610static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3611{
3612        int nc, fc, fo;
3613        int layout, chunk, disks;
3614        switch (new) {
3615        case geo_old:
3616                layout = mddev->layout;
3617                chunk = mddev->chunk_sectors;
3618                disks = mddev->raid_disks - mddev->delta_disks;
3619                break;
3620        case geo_new:
3621                layout = mddev->new_layout;
3622                chunk = mddev->new_chunk_sectors;
3623                disks = mddev->raid_disks;
3624                break;
3625        default: /* avoid 'may be unused' warnings */
3626        case geo_start: /* new when starting reshape - raid_disks not
3627                         * updated yet. */
3628                layout = mddev->new_layout;
3629                chunk = mddev->new_chunk_sectors;
3630                disks = mddev->raid_disks + mddev->delta_disks;
3631                break;
3632        }
3633        if (layout >> 19)
3634                return -1;
3635        if (chunk < (PAGE_SIZE >> 9) ||
3636            !is_power_of_2(chunk))
3637                return -2;
3638        nc = layout & 255;
3639        fc = (layout >> 8) & 255;
3640        fo = layout & (1<<16);
3641        geo->raid_disks = disks;
3642        geo->near_copies = nc;
3643        geo->far_copies = fc;
3644        geo->far_offset = fo;
3645        switch (layout >> 17) {
3646        case 0: /* original layout.  simple but not always optimal */
3647                geo->far_set_size = disks;
3648                break;
3649        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3650                 * actually using this, but leave code here just in case.*/
3651                geo->far_set_size = disks/fc;
3652                WARN(geo->far_set_size < fc,
3653                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3654                break;
3655        case 2: /* "improved" layout fixed to match documentation */
3656                geo->far_set_size = fc * nc;
3657                break;
3658        default: /* Not a valid layout */
3659                return -1;
3660        }
3661        geo->chunk_mask = chunk - 1;
3662        geo->chunk_shift = ffz(~chunk);
3663        return nc*fc;
3664}
3665
3666static struct r10conf *setup_conf(struct mddev *mddev)
3667{
3668        struct r10conf *conf = NULL;
3669        int err = -EINVAL;
3670        struct geom geo;
3671        int copies;
3672
3673        copies = setup_geo(&geo, mddev, geo_new);
3674
3675        if (copies == -2) {
3676                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3677                        mdname(mddev), PAGE_SIZE);
3678                goto out;
3679        }
3680
3681        if (copies < 2 || copies > mddev->raid_disks) {
3682                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3683                        mdname(mddev), mddev->new_layout);
3684                goto out;
3685        }
3686
3687        err = -ENOMEM;
3688        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3689        if (!conf)
3690                goto out;
3691
3692        /* FIXME calc properly */
3693        conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3694                                                            max(0,-mddev->delta_disks)),
3695                                GFP_KERNEL);
3696        if (!conf->mirrors)
3697                goto out;
3698
3699        conf->tmppage = alloc_page(GFP_KERNEL);
3700        if (!conf->tmppage)
3701                goto out;
3702
3703        conf->geo = geo;
3704        conf->copies = copies;
3705        conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3706                                           r10bio_pool_free, conf);
3707        if (!conf->r10bio_pool)
3708                goto out;
3709
3710        calc_sectors(conf, mddev->dev_sectors);
3711        if (mddev->reshape_position == MaxSector) {
3712                conf->prev = conf->geo;
3713                conf->reshape_progress = MaxSector;
3714        } else {
3715                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3716                        err = -EINVAL;
3717                        goto out;
3718                }
3719                conf->reshape_progress = mddev->reshape_position;
3720                if (conf->prev.far_offset)
3721                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3722                else
3723                        /* far_copies must be 1 */
3724                        conf->prev.stride = conf->dev_sectors;
3725        }
3726        conf->reshape_safe = conf->reshape_progress;
3727        spin_lock_init(&conf->device_lock);
3728        INIT_LIST_HEAD(&conf->retry_list);
3729        INIT_LIST_HEAD(&conf->bio_end_io_list);
3730
3731        spin_lock_init(&conf->resync_lock);
3732        init_waitqueue_head(&conf->wait_barrier);
3733        atomic_set(&conf->nr_pending, 0);
3734
3735        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3736        if (!conf->thread)
3737                goto out;
3738
3739        conf->mddev = mddev;
3740        return conf;
3741
3742 out:
3743        if (conf) {
3744                mempool_destroy(conf->r10bio_pool);
3745                kfree(conf->mirrors);
3746                safe_put_page(conf->tmppage);
3747                kfree(conf);
3748        }
3749        return ERR_PTR(err);
3750}
3751
3752static int raid10_run(struct mddev *mddev)
3753{
3754        struct r10conf *conf;
3755        int i, disk_idx, chunk_size;
3756        struct raid10_info *disk;
3757        struct md_rdev *rdev;
3758        sector_t size;
3759        sector_t min_offset_diff = 0;
3760        int first = 1;
3761        bool discard_supported = false;
3762
3763        if (mddev_init_writes_pending(mddev) < 0)
3764                return -ENOMEM;
3765
3766        if (mddev->private == NULL) {
3767                conf = setup_conf(mddev);
3768                if (IS_ERR(conf))
3769                        return PTR_ERR(conf);
3770                mddev->private = conf;
3771        }
3772        conf = mddev->private;
3773        if (!conf)
3774                goto out;
3775
3776        mddev->thread = conf->thread;
3777        conf->thread = NULL;
3778
3779        chunk_size = mddev->chunk_sectors << 9;
3780        if (mddev->queue) {
3781                blk_queue_max_discard_sectors(mddev->queue,
3782                                              mddev->chunk_sectors);
3783                blk_queue_max_write_same_sectors(mddev->queue, 0);
3784                blk_queue_io_min(mddev->queue, chunk_size);
3785                if (conf->geo.raid_disks % conf->geo.near_copies)
3786                        blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3787                else
3788                        blk_queue_io_opt(mddev->queue, chunk_size *
3789                                         (conf->geo.raid_disks / conf->geo.near_copies));
3790        }
3791
3792        rdev_for_each(rdev, mddev) {
3793                long long diff;
3794                struct request_queue *q;
3795
3796                disk_idx = rdev->raid_disk;
3797                if (disk_idx < 0)
3798                        continue;
3799                if (disk_idx >= conf->geo.raid_disks &&
3800                    disk_idx >= conf->prev.raid_disks)
3801                        continue;
3802                disk = conf->mirrors + disk_idx;
3803
3804                if (test_bit(Replacement, &rdev->flags)) {
3805                        if (disk->replacement)
3806                                goto out_free_conf;
3807                        disk->replacement = rdev;
3808                } else {
3809                        if (disk->rdev)
3810                                goto out_free_conf;
3811                        disk->rdev = rdev;
3812                }
3813                q = bdev_get_queue(rdev->bdev);
3814                if (q->merge_bvec_fn)
3815                        mddev->merge_check_needed = 1;
3816                diff = (rdev->new_data_offset - rdev->data_offset);
3817                if (!mddev->reshape_backwards)
3818                        diff = -diff;
3819                if (diff < 0)
3820                        diff = 0;
3821                if (first || diff < min_offset_diff)
3822                        min_offset_diff = diff;
3823
3824                if (mddev->gendisk)
3825                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3826                                          rdev->data_offset << 9);
3827
3828                disk->head_position = 0;
3829
3830                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3831                        discard_supported = true;
3832        }
3833
3834        if (mddev->queue) {
3835                if (discard_supported)
3836                        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3837                                                mddev->queue);
3838                else
3839                        queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3840                                                  mddev->queue);
3841        }
3842        /* need to check that every block has at least one working mirror */
3843        if (!enough(conf, -1)) {
3844                pr_err("md/raid10:%s: not enough operational mirrors.\n",
3845                       mdname(mddev));
3846                goto out_free_conf;
3847        }
3848
3849        if (conf->reshape_progress != MaxSector) {
3850                /* must ensure that shape change is supported */
3851                if (conf->geo.far_copies != 1 &&
3852                    conf->geo.far_offset == 0)
3853                        goto out_free_conf;
3854                if (conf->prev.far_copies != 1 &&
3855                    conf->prev.far_offset == 0)
3856                        goto out_free_conf;
3857        }
3858
3859        mddev->degraded = 0;
3860        for (i = 0;
3861             i < conf->geo.raid_disks
3862                     || i < conf->prev.raid_disks;
3863             i++) {
3864
3865                disk = conf->mirrors + i;
3866
3867                if (!disk->rdev && disk->replacement) {
3868                        /* The replacement is all we have - use it */
3869                        disk->rdev = disk->replacement;
3870                        disk->replacement = NULL;
3871                        clear_bit(Replacement, &disk->rdev->flags);
3872                }
3873
3874                if (!disk->rdev ||
3875                    !test_bit(In_sync, &disk->rdev->flags)) {
3876                        disk->head_position = 0;
3877                        mddev->degraded++;
3878                        if (disk->rdev &&
3879                            disk->rdev->saved_raid_disk < 0)
3880                                conf->fullsync = 1;
3881                }
3882                disk->recovery_disabled = mddev->recovery_disabled - 1;
3883        }
3884
3885        if (mddev->recovery_cp != MaxSector)
3886                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3887                          mdname(mddev));
3888        pr_info("md/raid10:%s: active with %d out of %d devices\n",
3889                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3890                conf->geo.raid_disks);
3891        /*
3892         * Ok, everything is just fine now
3893         */
3894        mddev->dev_sectors = conf->dev_sectors;
3895        size = raid10_size(mddev, 0, 0);
3896        md_set_array_sectors(mddev, size);
3897        mddev->resync_max_sectors = size;
3898        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3899
3900        if (mddev->queue) {
3901                int stripe = conf->geo.raid_disks *
3902                        ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3903
3904                /* Calculate max read-ahead size.
3905                 * We need to readahead at least twice a whole stripe....
3906                 * maybe...
3907                 */
3908                stripe /= conf->geo.near_copies;
3909                if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3910                        mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3911        }
3912
3913        if (md_integrity_register(mddev))
3914                goto out_free_conf;
3915
3916        if (conf->reshape_progress != MaxSector) {
3917                unsigned long before_length, after_length;
3918
3919                before_length = ((1 << conf->prev.chunk_shift) *
3920                                 conf->prev.far_copies);
3921                after_length = ((1 << conf->geo.chunk_shift) *
3922                                conf->geo.far_copies);
3923
3924                if (max(before_length, after_length) > min_offset_diff) {
3925                        /* This cannot work */
3926                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3927                        goto out_free_conf;
3928                }
3929                conf->offset_diff = min_offset_diff;
3930
3931                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3932                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3933                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3934                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3935                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3936                                                        "reshape");
3937        }
3938
3939        return 0;
3940
3941out_free_conf:
3942        md_unregister_thread(&mddev->thread);
3943        mempool_destroy(conf->r10bio_pool);
3944        safe_put_page(conf->tmppage);
3945        kfree(conf->mirrors);
3946        kfree(conf);
3947        mddev->private = NULL;
3948out:
3949        return -EIO;
3950}
3951
3952static void raid10_free(struct mddev *mddev, void *priv)
3953{
3954        struct r10conf *conf = priv;
3955
3956        mempool_destroy(conf->r10bio_pool);
3957        safe_put_page(conf->tmppage);
3958        kfree(conf->mirrors);
3959        kfree(conf->mirrors_old);
3960        kfree(conf->mirrors_new);
3961        kfree(conf);
3962}
3963
3964static void raid10_quiesce(struct mddev *mddev, int state)
3965{
3966        struct r10conf *conf = mddev->private;
3967
3968        switch(state) {
3969        case 1:
3970                raise_barrier(conf, 0);
3971                break;
3972        case 0:
3973                lower_barrier(conf);
3974                break;
3975        }
3976}
3977
3978static int raid10_resize(struct mddev *mddev, sector_t sectors)
3979{
3980        /* Resize of 'far' arrays is not supported.
3981         * For 'near' and 'offset' arrays we can set the
3982         * number of sectors used to be an appropriate multiple
3983         * of the chunk size.
3984         * For 'offset', this is far_copies*chunksize.
3985         * For 'near' the multiplier is the LCM of
3986         * near_copies and raid_disks.
3987         * So if far_copies > 1 && !far_offset, fail.
3988         * Else find LCM(raid_disks, near_copy)*far_copies and
3989         * multiply by chunk_size.  Then round to this number.
3990         * This is mostly done by raid10_size()
3991         */
3992        struct r10conf *conf = mddev->private;
3993        sector_t oldsize, size;
3994
3995        if (mddev->reshape_position != MaxSector)
3996                return -EBUSY;
3997
3998        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3999                return -EINVAL;
4000
4001        oldsize = raid10_size(mddev, 0, 0);
4002        size = raid10_size(mddev, sectors, 0);
4003        if (mddev->external_size &&
4004            mddev->array_sectors > size)
4005                return -EINVAL;
4006        if (mddev->bitmap) {
4007                int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
4008                if (ret)
4009                        return ret;
4010        }
4011        md_set_array_sectors(mddev, size);
4012        if (mddev->queue) {
4013                set_capacity(mddev->gendisk, mddev->array_sectors);
4014                revalidate_disk(mddev->gendisk);
4015        }
4016        if (sectors > mddev->dev_sectors &&
4017            mddev->recovery_cp > oldsize) {
4018                mddev->recovery_cp = oldsize;
4019                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4020        }
4021        calc_sectors(conf, sectors);
4022        mddev->dev_sectors = conf->dev_sectors;
4023        mddev->resync_max_sectors = size;
4024        return 0;
4025}
4026
4027static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4028{
4029        struct md_rdev *rdev;
4030        struct r10conf *conf;
4031
4032        if (mddev->degraded > 0) {
4033                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4034                        mdname(mddev));
4035                return ERR_PTR(-EINVAL);
4036        }
4037        sector_div(size, devs);
4038
4039        /* Set new parameters */
4040        mddev->new_level = 10;
4041        /* new layout: far_copies = 1, near_copies = 2 */
4042        mddev->new_layout = (1<<8) + 2;
4043        mddev->new_chunk_sectors = mddev->chunk_sectors;
4044        mddev->delta_disks = mddev->raid_disks;
4045        mddev->raid_disks *= 2;
4046        /* make sure it will be not marked as dirty */
4047        mddev->recovery_cp = MaxSector;
4048        mddev->dev_sectors = size;
4049
4050        conf = setup_conf(mddev);
4051        if (!IS_ERR(conf)) {
4052                rdev_for_each(rdev, mddev)
4053                        if (rdev->raid_disk >= 0) {
4054                                rdev->new_raid_disk = rdev->raid_disk * 2;
4055                                rdev->sectors = size;
4056                        }
4057                conf->barrier = 1;
4058        }
4059
4060        return conf;
4061}
4062
4063static void *raid10_takeover(struct mddev *mddev)
4064{
4065        struct r0conf *raid0_conf;
4066
4067        /* raid10 can take over:
4068         *  raid0 - providing it has only two drives
4069         */
4070        if (mddev->level == 0) {
4071                /* for raid0 takeover only one zone is supported */
4072                raid0_conf = mddev->private;
4073                if (raid0_conf->nr_strip_zones > 1) {
4074                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4075                                mdname(mddev));
4076                        return ERR_PTR(-EINVAL);
4077                }
4078                return raid10_takeover_raid0(mddev,
4079                        raid0_conf->strip_zone->zone_end,
4080                        raid0_conf->strip_zone->nb_dev);
4081        }
4082        return ERR_PTR(-EINVAL);
4083}
4084
4085static int raid10_check_reshape(struct mddev *mddev)
4086{
4087        /* Called when there is a request to change
4088         * - layout (to ->new_layout)
4089         * - chunk size (to ->new_chunk_sectors)
4090         * - raid_disks (by delta_disks)
4091         * or when trying to restart a reshape that was ongoing.
4092         *
4093         * We need to validate the request and possibly allocate
4094         * space if that might be an issue later.
4095         *
4096         * Currently we reject any reshape of a 'far' mode array,
4097         * allow chunk size to change if new is generally acceptable,
4098         * allow raid_disks to increase, and allow
4099         * a switch between 'near' mode and 'offset' mode.
4100         */
4101        struct r10conf *conf = mddev->private;
4102        struct geom geo;
4103
4104        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4105                return -EINVAL;
4106
4107        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4108                /* mustn't change number of copies */
4109                return -EINVAL;
4110        if (geo.far_copies > 1 && !geo.far_offset)
4111                /* Cannot switch to 'far' mode */
4112                return -EINVAL;
4113
4114        if (mddev->array_sectors & geo.chunk_mask)
4115                        /* not factor of array size */
4116                        return -EINVAL;
4117
4118        if (!enough(conf, -1))
4119                return -EINVAL;
4120
4121        kfree(conf->mirrors_new);
4122        conf->mirrors_new = NULL;
4123        if (mddev->delta_disks > 0) {
4124                /* allocate new 'mirrors' list */
4125                conf->mirrors_new = kzalloc(
4126                        sizeof(struct raid10_info)
4127                        *(mddev->raid_disks +
4128                          mddev->delta_disks),
4129                        GFP_KERNEL);
4130                if (!conf->mirrors_new)
4131                        return -ENOMEM;
4132        }
4133        return 0;
4134}
4135
4136/*
4137 * Need to check if array has failed when deciding whether to:
4138 *  - start an array
4139 *  - remove non-faulty devices
4140 *  - add a spare
4141 *  - allow a reshape
4142 * This determination is simple when no reshape is happening.
4143 * However if there is a reshape, we need to carefully check
4144 * both the before and after sections.
4145 * This is because some failed devices may only affect one
4146 * of the two sections, and some non-in_sync devices may
4147 * be insync in the section most affected by failed devices.
4148 */
4149static int calc_degraded(struct r10conf *conf)
4150{
4151        int degraded, degraded2;
4152        int i;
4153
4154        rcu_read_lock();
4155        degraded = 0;
4156        /* 'prev' section first */
4157        for (i = 0; i < conf->prev.raid_disks; i++) {
4158                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4159                if (!rdev || test_bit(Faulty, &rdev->flags))
4160                        degraded++;
4161                else if (!test_bit(In_sync, &rdev->flags))
4162                        /* When we can reduce the number of devices in
4163                         * an array, this might not contribute to
4164                         * 'degraded'.  It does now.
4165                         */
4166                        degraded++;
4167        }
4168        rcu_read_unlock();
4169        if (conf->geo.raid_disks == conf->prev.raid_disks)
4170                return degraded;
4171        rcu_read_lock();
4172        degraded2 = 0;
4173        for (i = 0; i < conf->geo.raid_disks; i++) {
4174                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4175                if (!rdev || test_bit(Faulty, &rdev->flags))
4176                        degraded2++;
4177                else if (!test_bit(In_sync, &rdev->flags)) {
4178                        /* If reshape is increasing the number of devices,
4179                         * this section has already been recovered, so
4180                         * it doesn't contribute to degraded.
4181                         * else it does.
4182                         */
4183                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4184                                degraded2++;
4185                }
4186        }
4187        rcu_read_unlock();
4188        if (degraded2 > degraded)
4189                return degraded2;
4190        return degraded;
4191}
4192
4193static int raid10_start_reshape(struct mddev *mddev)
4194{
4195        /* A 'reshape' has been requested. This commits
4196         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4197         * This also checks if there are enough spares and adds them
4198         * to the array.
4199         * We currently require enough spares to make the final
4200         * array non-degraded.  We also require that the difference
4201         * between old and new data_offset - on each device - is
4202         * enough that we never risk over-writing.
4203         */
4204
4205        unsigned long before_length, after_length;
4206        sector_t min_offset_diff = 0;
4207        int first = 1;
4208        struct geom new;
4209        struct r10conf *conf = mddev->private;
4210        struct md_rdev *rdev;
4211        int spares = 0;
4212        int ret;
4213
4214        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4215                return -EBUSY;
4216
4217        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4218                return -EINVAL;
4219
4220        before_length = ((1 << conf->prev.chunk_shift) *
4221                         conf->prev.far_copies);
4222        after_length = ((1 << conf->geo.chunk_shift) *
4223                        conf->geo.far_copies);
4224
4225        rdev_for_each(rdev, mddev) {
4226                if (!test_bit(In_sync, &rdev->flags)
4227                    && !test_bit(Faulty, &rdev->flags))
4228                        spares++;
4229                if (rdev->raid_disk >= 0) {
4230                        long long diff = (rdev->new_data_offset
4231                                          - rdev->data_offset);
4232                        if (!mddev->reshape_backwards)
4233                                diff = -diff;
4234                        if (diff < 0)
4235                                diff = 0;
4236                        if (first || diff < min_offset_diff)
4237                                min_offset_diff = diff;
4238                }
4239        }
4240
4241        if (max(before_length, after_length) > min_offset_diff)
4242                return -EINVAL;
4243
4244        if (spares < mddev->delta_disks)
4245                return -EINVAL;
4246
4247        conf->offset_diff = min_offset_diff;
4248        spin_lock_irq(&conf->device_lock);
4249        if (conf->mirrors_new) {
4250                memcpy(conf->mirrors_new, conf->mirrors,
4251                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4252                smp_mb();
4253                kfree(conf->mirrors_old);
4254                conf->mirrors_old = conf->mirrors;
4255                conf->mirrors = conf->mirrors_new;
4256                conf->mirrors_new = NULL;
4257        }
4258        setup_geo(&conf->geo, mddev, geo_start);
4259        smp_mb();
4260        if (mddev->reshape_backwards) {
4261                sector_t size = raid10_size(mddev, 0, 0);
4262                if (size < mddev->array_sectors) {
4263                        spin_unlock_irq(&conf->device_lock);
4264                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4265                                mdname(mddev));
4266                        return -EINVAL;
4267                }
4268                mddev->resync_max_sectors = size;
4269                conf->reshape_progress = size;
4270        } else
4271                conf->reshape_progress = 0;
4272        conf->reshape_safe = conf->reshape_progress;
4273        spin_unlock_irq(&conf->device_lock);
4274
4275        if (mddev->delta_disks && mddev->bitmap) {
4276                ret = bitmap_resize(mddev->bitmap,
4277                                    raid10_size(mddev, 0,
4278                                                conf->geo.raid_disks),
4279                                    0, 0);
4280                if (ret)
4281                        goto abort;
4282        }
4283        if (mddev->delta_disks > 0) {
4284                rdev_for_each(rdev, mddev)
4285                        if (rdev->raid_disk < 0 &&
4286                            !test_bit(Faulty, &rdev->flags)) {
4287                                if (raid10_add_disk(mddev, rdev) == 0) {
4288                                        if (rdev->raid_disk >=
4289                                            conf->prev.raid_disks)
4290                                                set_bit(In_sync, &rdev->flags);
4291                                        else
4292                                                rdev->recovery_offset = 0;
4293
4294                                        if (sysfs_link_rdev(mddev, rdev))
4295                                                /* Failure here  is OK */;
4296                                }
4297                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4298                                   && !test_bit(Faulty, &rdev->flags)) {
4299                                /* This is a spare that was manually added */
4300                                set_bit(In_sync, &rdev->flags);
4301                        }
4302        }
4303        /* When a reshape changes the number of devices,
4304         * ->degraded is measured against the larger of the
4305         * pre and  post numbers.
4306         */
4307        spin_lock_irq(&conf->device_lock);
4308        mddev->degraded = calc_degraded(conf);
4309        spin_unlock_irq(&conf->device_lock);
4310        mddev->raid_disks = conf->geo.raid_disks;
4311        mddev->reshape_position = conf->reshape_progress;
4312        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4313
4314        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4315        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4316        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4317        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4318        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4319
4320        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4321                                                "reshape");
4322        if (!mddev->sync_thread) {
4323                ret = -EAGAIN;
4324                goto abort;
4325        }
4326        conf->reshape_checkpoint = jiffies;
4327        md_wakeup_thread(mddev->sync_thread);
4328        md_new_event(mddev);
4329        return 0;
4330
4331abort:
4332        mddev->recovery = 0;
4333        spin_lock_irq(&conf->device_lock);
4334        conf->geo = conf->prev;
4335        mddev->raid_disks = conf->geo.raid_disks;
4336        rdev_for_each(rdev, mddev)
4337                rdev->new_data_offset = rdev->data_offset;
4338        smp_wmb();
4339        conf->reshape_progress = MaxSector;
4340        conf->reshape_safe = MaxSector;
4341        mddev->reshape_position = MaxSector;
4342        spin_unlock_irq(&conf->device_lock);
4343        return ret;
4344}
4345
4346/* Calculate the last device-address that could contain
4347 * any block from the chunk that includes the array-address 's'
4348 * and report the next address.
4349 * i.e. the address returned will be chunk-aligned and after
4350 * any data that is in the chunk containing 's'.
4351 */
4352static sector_t last_dev_address(sector_t s, struct geom *geo)
4353{
4354        s = (s | geo->chunk_mask) + 1;
4355        s >>= geo->chunk_shift;
4356        s *= geo->near_copies;
4357        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4358        s *= geo->far_copies;
4359        s <<= geo->chunk_shift;
4360        return s;
4361}
4362
4363/* Calculate the first device-address that could contain
4364 * any block from the chunk that includes the array-address 's'.
4365 * This too will be the start of a chunk
4366 */
4367static sector_t first_dev_address(sector_t s, struct geom *geo)
4368{
4369        s >>= geo->chunk_shift;
4370        s *= geo->near_copies;
4371        sector_div(s, geo->raid_disks);
4372        s *= geo->far_copies;
4373        s <<= geo->chunk_shift;
4374        return s;
4375}
4376
4377static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4378                                int *skipped)
4379{
4380        /* We simply copy at most one chunk (smallest of old and new)
4381         * at a time, possibly less if that exceeds RESYNC_PAGES,
4382         * or we hit a bad block or something.
4383         * This might mean we pause for normal IO in the middle of
4384         * a chunk, but that is not a problem as mddev->reshape_position
4385         * can record any location.
4386         *
4387         * If we will want to write to a location that isn't
4388         * yet recorded as 'safe' (i.e. in metadata on disk) then
4389         * we need to flush all reshape requests and update the metadata.
4390         *
4391         * When reshaping forwards (e.g. to more devices), we interpret
4392         * 'safe' as the earliest block which might not have been copied
4393         * down yet.  We divide this by previous stripe size and multiply
4394         * by previous stripe length to get lowest device offset that we
4395         * cannot write to yet.
4396         * We interpret 'sector_nr' as an address that we want to write to.
4397         * From this we use last_device_address() to find where we might
4398         * write to, and first_device_address on the  'safe' position.
4399         * If this 'next' write position is after the 'safe' position,
4400         * we must update the metadata to increase the 'safe' position.
4401         *
4402         * When reshaping backwards, we round in the opposite direction
4403         * and perform the reverse test:  next write position must not be
4404         * less than current safe position.
4405         *
4406         * In all this the minimum difference in data offsets
4407         * (conf->offset_diff - always positive) allows a bit of slack,
4408         * so next can be after 'safe', but not by more than offset_diff
4409         *
4410         * We need to prepare all the bios here before we start any IO
4411         * to ensure the size we choose is acceptable to all devices.
4412         * The means one for each copy for write-out and an extra one for
4413         * read-in.
4414         * We store the read-in bio in ->master_bio and the others in
4415         * ->devs[x].bio and ->devs[x].repl_bio.
4416         */
4417        struct r10conf *conf = mddev->private;
4418        struct r10bio *r10_bio;
4419        sector_t next, safe, last;
4420        int max_sectors;
4421        int nr_sectors;
4422        int s;
4423        struct md_rdev *rdev;
4424        int need_flush = 0;
4425        struct bio *blist;
4426        struct bio *bio, *read_bio;
4427        int sectors_done = 0;
4428
4429        if (sector_nr == 0) {
4430                /* If restarting in the middle, skip the initial sectors */
4431                if (mddev->reshape_backwards &&
4432                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4433                        sector_nr = (raid10_size(mddev, 0, 0)
4434                                     - conf->reshape_progress);
4435                } else if (!mddev->reshape_backwards &&
4436                           conf->reshape_progress > 0)
4437                        sector_nr = conf->reshape_progress;
4438                if (sector_nr) {
4439                        mddev->curr_resync_completed = sector_nr;
4440                        sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4441                        *skipped = 1;
4442                        return sector_nr;
4443                }
4444        }
4445
4446        /* We don't use sector_nr to track where we are up to
4447         * as that doesn't work well for ->reshape_backwards.
4448         * So just use ->reshape_progress.
4449         */
4450        if (mddev->reshape_backwards) {
4451                /* 'next' is the earliest device address that we might
4452                 * write to for this chunk in the new layout
4453                 */
4454                next = first_dev_address(conf->reshape_progress - 1,
4455                                         &conf->geo);
4456
4457                /* 'safe' is the last device address that we might read from
4458                 * in the old layout after a restart
4459                 */
4460                safe = last_dev_address(conf->reshape_safe - 1,
4461                                        &conf->prev);
4462
4463                if (next + conf->offset_diff < safe)
4464                        need_flush = 1;
4465
4466                last = conf->reshape_progress - 1;
4467                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4468                                               & conf->prev.chunk_mask);
4469                if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4470                        sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4471        } else {
4472                /* 'next' is after the last device address that we
4473                 * might write to for this chunk in the new layout
4474                 */
4475                next = last_dev_address(conf->reshape_progress, &conf->geo);
4476
4477                /* 'safe' is the earliest device address that we might
4478                 * read from in the old layout after a restart
4479                 */
4480                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4481
4482                /* Need to update metadata if 'next' might be beyond 'safe'
4483                 * as that would possibly corrupt data
4484                 */
4485                if (next > safe + conf->offset_diff)
4486                        need_flush = 1;
4487
4488                sector_nr = conf->reshape_progress;
4489                last  = sector_nr | (conf->geo.chunk_mask
4490                                     & conf->prev.chunk_mask);
4491
4492                if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4493                        last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4494        }
4495
4496        if (need_flush ||
4497            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4498                /* Need to update reshape_position in metadata */
4499                wait_barrier(conf);
4500                mddev->reshape_position = conf->reshape_progress;
4501                if (mddev->reshape_backwards)
4502                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4503                                - conf->reshape_progress;
4504                else
4505                        mddev->curr_resync_completed = conf->reshape_progress;
4506                conf->reshape_checkpoint = jiffies;
4507                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4508                md_wakeup_thread(mddev->thread);
4509                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4510                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4511                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4512                        allow_barrier(conf);
4513                        return sectors_done;
4514                }
4515                conf->reshape_safe = mddev->reshape_position;
4516                allow_barrier(conf);
4517        }
4518
4519read_more:
4520        /* Now schedule reads for blocks from sector_nr to last */
4521        r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4522        r10_bio->state = 0;
4523        raise_barrier(conf, sectors_done != 0);
4524        atomic_set(&r10_bio->remaining, 0);
4525        r10_bio->mddev = mddev;
4526        r10_bio->sector = sector_nr;
4527        set_bit(R10BIO_IsReshape, &r10_bio->state);
4528        r10_bio->sectors = last - sector_nr + 1;
4529        rdev = read_balance(conf, r10_bio, &max_sectors);
4530        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4531
4532        if (!rdev) {
4533                /* Cannot read from here, so need to record bad blocks
4534                 * on all the target devices.
4535                 */
4536                // FIXME
4537                mempool_free(r10_bio, conf->r10buf_pool);
4538                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4539                return sectors_done;
4540        }
4541
4542        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4543
4544        read_bio->bi_bdev = rdev->bdev;
4545        read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4546                               + rdev->data_offset);
4547        read_bio->bi_private = r10_bio;
4548        read_bio->bi_end_io = end_sync_read;
4549        read_bio->bi_rw = READ;
4550        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4551        __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4552        read_bio->bi_vcnt = 0;
4553        read_bio->bi_size = 0;
4554        r10_bio->master_bio = read_bio;
4555        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4556
4557        /* Now find the locations in the new layout */
4558        __raid10_find_phys(&conf->geo, r10_bio);
4559
4560        blist = read_bio;
4561        read_bio->bi_next = NULL;
4562
4563        rcu_read_lock();
4564        for (s = 0; s < conf->copies*2; s++) {
4565                struct bio *b;
4566                int d = r10_bio->devs[s/2].devnum;
4567                struct md_rdev *rdev2;
4568                if (s&1) {
4569                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4570                        b = r10_bio->devs[s/2].repl_bio;
4571                } else {
4572                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4573                        b = r10_bio->devs[s/2].bio;
4574                }
4575                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4576                        continue;
4577
4578                bio_reset(b);
4579                b->bi_bdev = rdev2->bdev;
4580                b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4581                b->bi_private = r10_bio;
4582                b->bi_end_io = end_reshape_write;
4583                b->bi_rw = WRITE;
4584                b->bi_next = blist;
4585                blist = b;
4586        }
4587
4588        /* Now add as many pages as possible to all of these bios. */
4589
4590        nr_sectors = 0;
4591        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4592                struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4593                int len = (max_sectors - s) << 9;
4594                if (len > PAGE_SIZE)
4595                        len = PAGE_SIZE;
4596                for (bio = blist; bio ; bio = bio->bi_next) {
4597                        struct bio *bio2;
4598                        if (bio_add_page(bio, page, len, 0))
4599                                continue;
4600
4601                        /* Didn't fit, must stop */
4602                        for (bio2 = blist;
4603                             bio2 && bio2 != bio;
4604                             bio2 = bio2->bi_next) {
4605                                /* Remove last page from this bio */
4606                                bio2->bi_vcnt--;
4607                                bio2->bi_size -= len;
4608                                __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4609                        }
4610                        goto bio_full;
4611                }
4612                sector_nr += len >> 9;
4613                nr_sectors += len >> 9;
4614        }
4615bio_full:
4616        rcu_read_unlock();
4617        r10_bio->sectors = nr_sectors;
4618
4619        /* Now submit the read */
4620        md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4621        atomic_inc(&r10_bio->remaining);
4622        read_bio->bi_next = NULL;
4623        generic_make_request(read_bio);
4624        sector_nr += nr_sectors;
4625        sectors_done += nr_sectors;
4626        if (sector_nr <= last)
4627                goto read_more;
4628
4629        /* Now that we have done the whole section we can
4630         * update reshape_progress
4631         */
4632        if (mddev->reshape_backwards)
4633                conf->reshape_progress -= sectors_done;
4634        else
4635                conf->reshape_progress += sectors_done;
4636
4637        return sectors_done;
4638}
4639
4640static void end_reshape_request(struct r10bio *r10_bio);
4641static int handle_reshape_read_error(struct mddev *mddev,
4642                                     struct r10bio *r10_bio);
4643static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4644{
4645        /* Reshape read completed.  Hopefully we have a block
4646         * to write out.
4647         * If we got a read error then we do sync 1-page reads from
4648         * elsewhere until we find the data - or give up.
4649         */
4650        struct r10conf *conf = mddev->private;
4651        int s;
4652
4653        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4654                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4655                        /* Reshape has been aborted */
4656                        md_done_sync(mddev, r10_bio->sectors, 0);
4657                        return;
4658                }
4659
4660        /* We definitely have the data in the pages, schedule the
4661         * writes.
4662         */
4663        atomic_set(&r10_bio->remaining, 1);
4664        for (s = 0; s < conf->copies*2; s++) {
4665                struct bio *b;
4666                int d = r10_bio->devs[s/2].devnum;
4667                struct md_rdev *rdev;
4668                rcu_read_lock();
4669                if (s&1) {
4670                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4671                        b = r10_bio->devs[s/2].repl_bio;
4672                } else {
4673                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4674                        b = r10_bio->devs[s/2].bio;
4675                }
4676                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4677                        rcu_read_unlock();
4678                        continue;
4679                }
4680                atomic_inc(&rdev->nr_pending);
4681                rcu_read_unlock();
4682                md_sync_acct(b->bi_bdev, r10_bio->sectors);
4683                atomic_inc(&r10_bio->remaining);
4684                b->bi_next = NULL;
4685                generic_make_request(b);
4686        }
4687        end_reshape_request(r10_bio);
4688}
4689
4690static void end_reshape(struct r10conf *conf)
4691{
4692        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4693                return;
4694
4695        spin_lock_irq(&conf->device_lock);
4696        conf->prev = conf->geo;
4697        md_finish_reshape(conf->mddev);
4698        smp_wmb();
4699        conf->reshape_progress = MaxSector;
4700        conf->reshape_safe = MaxSector;
4701        spin_unlock_irq(&conf->device_lock);
4702
4703        /* read-ahead size must cover two whole stripes, which is
4704         * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4705         */
4706        if (conf->mddev->queue) {
4707                int stripe = conf->geo.raid_disks *
4708                        ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4709                stripe /= conf->geo.near_copies;
4710                if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4711                        conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4712        }
4713        conf->fullsync = 0;
4714}
4715
4716static int handle_reshape_read_error(struct mddev *mddev,
4717                                     struct r10bio *r10_bio)
4718{
4719        /* Use sync reads to get the blocks from somewhere else */
4720        int sectors = r10_bio->sectors;
4721        struct r10conf *conf = mddev->private;
4722        struct {
4723                struct r10bio r10_bio;
4724                struct r10dev devs[conf->copies];
4725        } on_stack;
4726        struct r10bio *r10b = &on_stack.r10_bio;
4727        int slot = 0;
4728        int idx = 0;
4729        struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4730
4731        r10b->sector = r10_bio->sector;
4732        __raid10_find_phys(&conf->prev, r10b);
4733
4734        while (sectors) {
4735                int s = sectors;
4736                int success = 0;
4737                int first_slot = slot;
4738
4739                if (s > (PAGE_SIZE >> 9))
4740                        s = PAGE_SIZE >> 9;
4741
4742                rcu_read_lock();
4743                while (!success) {
4744                        int d = r10b->devs[slot].devnum;
4745                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4746                        sector_t addr;
4747                        if (rdev == NULL ||
4748                            test_bit(Faulty, &rdev->flags) ||
4749                            !test_bit(In_sync, &rdev->flags))
4750                                goto failed;
4751
4752                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4753                        atomic_inc(&rdev->nr_pending);
4754                        rcu_read_unlock();
4755                        success = sync_page_io(rdev,
4756                                               addr,
4757                                               s << 9,
4758                                               bvec[idx].bv_page,
4759                                               READ, false);
4760                        rdev_dec_pending(rdev, mddev);
4761                        rcu_read_lock();
4762                        if (success)
4763                                break;
4764                failed:
4765                        slot++;
4766                        if (slot >= conf->copies)
4767                                slot = 0;
4768                        if (slot == first_slot)
4769                                break;
4770                }
4771                rcu_read_unlock();
4772                if (!success) {
4773                        /* couldn't read this block, must give up */
4774                        set_bit(MD_RECOVERY_INTR,
4775                                &mddev->recovery);
4776                        return -EIO;
4777                }
4778                sectors -= s;
4779                idx++;
4780        }
4781        return 0;
4782}
4783
4784static void end_reshape_write(struct bio *bio, int error)
4785{
4786        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4787        struct r10bio *r10_bio = bio->bi_private;
4788        struct mddev *mddev = r10_bio->mddev;
4789        struct r10conf *conf = mddev->private;
4790        int d;
4791        int slot;
4792        int repl;
4793        struct md_rdev *rdev = NULL;
4794
4795        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4796        if (repl)
4797                rdev = conf->mirrors[d].replacement;
4798        if (!rdev) {
4799                smp_mb();
4800                rdev = conf->mirrors[d].rdev;
4801        }
4802
4803        if (!uptodate) {
4804                /* FIXME should record badblock */
4805                md_error(mddev, rdev);
4806        }
4807
4808        rdev_dec_pending(rdev, mddev);
4809        end_reshape_request(r10_bio);
4810}
4811
4812static void end_reshape_request(struct r10bio *r10_bio)
4813{
4814        if (!atomic_dec_and_test(&r10_bio->remaining))
4815                return;
4816        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4817        bio_put(r10_bio->master_bio);
4818        put_buf(r10_bio);
4819}
4820
4821static void raid10_finish_reshape(struct mddev *mddev)
4822{
4823        struct r10conf *conf = mddev->private;
4824
4825        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4826                return;
4827
4828        if (mddev->delta_disks > 0) {
4829                sector_t size = raid10_size(mddev, 0, 0);
4830                md_set_array_sectors(mddev, size);
4831                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4832                        mddev->recovery_cp = mddev->resync_max_sectors;
4833                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4834                }
4835                mddev->resync_max_sectors = size;
4836                if (mddev->queue) {
4837                        set_capacity(mddev->gendisk, mddev->array_sectors);
4838                        revalidate_disk(mddev->gendisk);
4839                }
4840        } else {
4841                int d;
4842                rcu_read_lock();
4843                for (d = conf->geo.raid_disks ;
4844                     d < conf->geo.raid_disks - mddev->delta_disks;
4845                     d++) {
4846                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4847                        if (rdev)
4848                                clear_bit(In_sync, &rdev->flags);
4849                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4850                        if (rdev)
4851                                clear_bit(In_sync, &rdev->flags);
4852                }
4853                rcu_read_unlock();
4854        }
4855        mddev->layout = mddev->new_layout;
4856        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4857        mddev->reshape_position = MaxSector;
4858        mddev->delta_disks = 0;
4859        mddev->reshape_backwards = 0;
4860}
4861
4862static struct md_personality raid10_personality =
4863{
4864        .name           = "raid10",
4865        .level          = 10,
4866        .owner          = THIS_MODULE,
4867        .make_request   = raid10_make_request,
4868        .run            = raid10_run,
4869        .free           = raid10_free,
4870        .status         = raid10_status,
4871        .error_handler  = raid10_error,
4872        .hot_add_disk   = raid10_add_disk,
4873        .hot_remove_disk= raid10_remove_disk,
4874        .spare_active   = raid10_spare_active,
4875        .sync_request   = raid10_sync_request,
4876        .quiesce        = raid10_quiesce,
4877        .size           = raid10_size,
4878        .resize         = raid10_resize,
4879        .takeover       = raid10_takeover,
4880        .check_reshape  = raid10_check_reshape,
4881        .start_reshape  = raid10_start_reshape,
4882        .finish_reshape = raid10_finish_reshape,
4883        .congested      = raid10_congested,
4884        .mergeable_bvec = raid10_mergeable_bvec,
4885};
4886
4887static int __init raid_init(void)
4888{
4889        return register_md_personality(&raid10_personality);
4890}
4891
4892static void raid_exit(void)
4893{
4894        unregister_md_personality(&raid10_personality);
4895}
4896
4897module_init(raid_init);
4898module_exit(raid_exit);
4899MODULE_LICENSE("GPL");
4900MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4901MODULE_ALIAS("md-personality-9"); /* RAID10 */
4902MODULE_ALIAS("md-raid10");
4903MODULE_ALIAS("md-level-10");
4904
4905module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4906